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Z-ideals and Z-congruences on semiring
R+(L)

Ali Akbar Estaji∗ and Toktam Haghdadi

Communicated by Professor Themba Dube

Abstract. For a frame L, R+(L) denotes the nonnegative real valued con-
tinuous functions on L. We define the concept of z-ideals in this semiring
and give a characterization of its z-ideals in terms of cozero elements of L.
Also, we show that there is a one-one correspondence between z-ideals and
z-congruences on a ring R(L) and a semiring R+(L). We establish a rela-
tionship between z-congruence relation on R(L) and z-congruence relation
on R+(L). A new characterization of P -frames is given via z-congruences on
R+(L). Also, we show that there is a bijection between the minimal prime
ideals of R(L) and coz-ultrafilter on L.

1 Introduction

The notion of semirings was introduced in [25] in 1934. In fact, semirings
are algebraic systems that generalize both rings and distributive lattices and
have many applications in diverse branches of mathematics and computer
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science. Semirings have two binary operations of addition and multiplica-
tion, which are connected by the ring-like distributive laws. However, unlike
in rings, subtraction is not allowed in semirings that are not rings. As we
know, in the study of ring structure, ideals play an important role; the same
is true for semirings. Although the concept of ideal in semirings is different
from this concept in rings. The lack of subtraction in semirings shows that
many results in rings have no equivalent in semirings. To solve the sub-
traction problem in semiring, the concept of k-ideal was introduced in [18].
After the introduction of the k-ideal, several studies have been carried out
on semirings (see [13, 17, 20, 21]).

The ring C(X) was studied extensively by Gillman and Jerison [15]. The
positive cone of this lattice ordered ring is denoted by C+(X), that is,

C+(X) = {f ∈ C(X) : f ≥ 0}.

Moreover, C+(X) is a partially ordered commutative semiring with additive
identity 0 and multiplicative identity 1. The semiring C+(X) emerged as an
important area in literature in [2, 3]. Later, Vechtomov et al. [27] studied
the semiring C+(X) extensively. Congruences on semirings were studied
by Varankina et al. [26]. They described maximal congruences on semirings
C+(X). In 1993, Acharyya et al. [2] introduced the z-congruence on C+(X)
and showed that there is a bijection between the set of all z-congruences
on C+(X) and the set of all z-filters on X. Mohammadian [22] introduced
the concept of positive semirings, and by using the fact that maximal ideals
contain an element of a positive semiring, he gave the concept of z-ideals in
this kind of semiring and investigated some properties of these ideals.

Since M. Stone worked on Stone duality in the 1930s and showed that
topology can be viewed from an algebraic point of view (lattice-theoretic),
the pointfree version of C(X) has also been studied. The ring of real valued
continuous functions on a frame L, which is the pointfree version of C(X),
is the set of all frame homomorphisms α : L(R) → L, where L(R) is the
frame of reals, which is isomorphic to the frame of open subsets of R. This
ring is denoted by R(L) (see [4] and [5] for details). In this article, we study
the semiring R+(L) of all nonnegative real valued continuous functions on
L, which is the pointfree version of C+(X).

This paper is organized as follows. Section 2 presents the basic concepts
and preliminaries, which will be used in the next sections. In Section 3, we
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give a characterization of z-ideals in a semiring R+(L) in terms of cozero
elements of L, which we shall need throughout. In Section 4, we introduce
the concepts of z-congruence in ring R(L) and semiring R+(L). We give a
correlation between z-congruences on R(L) and z-congruences on R+(L).
Also, we show that there is a one-one correspondence between z-ideals and
z-congruences on a ring R(L) and a semiring R+(L). In Section 5, we
consider the lattice

(
zSℓ(L),⊆

)
, where zSℓ(L) :=

{
cL
(
coz(α)

)
: α ∈ R(L)

}
,

and consider a z-filter on this lattice. We examine the relationships between
z-filters on Sℓ(L) and proper congruences on the ring R(L) and the semiring
R+(L). In Section 6, we check equivalence conditions that a frame L is an
F -frame and a P -frame. We show that there is a bijection between the
minimal prime ideals of R(L) and coz-ultrafilter on L.

2 Preliminaries

In this section, we give some basic concepts and preliminaries, which will
be used in next sections.

2.1 Ring of R(L) It is well known that a complete lattice L is called a
frame if a∧∨X =

∨
x∈X(a∧x) for every (a,X) ∈ L×P(L). The frame L(R)

of reals is obtained by taking the ordered pairs (p, q) of rational numbers as
generators and imposing the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),

(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,

(R3) (p, q) =
∨{

(r, s) : p < r < s < q
}
,

(R4) ⊤ =
∨{

(p, q) : p, q ∈ Q
}
.

Note that the pairs (p, q) in L(R) and the open intervals ⟨p, q⟩ =
{
x ∈

R : p < x < q
}
in the frame OR have the same role. Let R(L) be the set

of all frame maps from L(R) to a completely regular frame L, which is an
f -ring. The reader can see [5] for more details of all these facts.

The properties of mapping coz: R(L) → L, defined by coz(φ) = φ(−, 0)∨
φ(0,−), which are often used by us, read as follows:

(1) coz(αβ) = coz(α) ∧ coz(β).

(2) coz(α+ β) ≤ coz(α) ∨ coz(β) = coz(α2 + β2).

(3) α ∈ R(L) is invertible if and only if coz(α) = ⊤.
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(4) coz(α) = ⊥ if and only if α = 0.

For A ⊆ R(L), let Coz(A) :=
{
coz(α) : α ∈ A

}
and let the cozero part

of L, denoted by Coz(L), be the regular sub-σ-frame consisting of all the
cozero elements of L. It is known that L is completely regular if and only if
Coz(L) generates L. For A ⊆ Coz(L), we write Coz←(A) to designate the
family of frame maps

{
α ∈ R(L) : coz(α) ∈ A

}
.

2.2 Sublocale It is well known that a subset S of a frame L is called a
sublocale of L if

∧
A ∈ S and a −→ s ∈ S for every (A, a, s) ∈ P(S)×L×S.

A sublocale is an independent frame, where the meets (and hence the partial
order) and the Heyting implication are computed in L. The lattice of all
sublocales of a frame L is denoted by Sℓ(L). The finite meet in this lattice
is the intersection of them and the join of every subset

{
Sλ

}
λ∈Λ of Sℓ(L) in

this lattice is given by

∨

λ∈Λ
Sλ =

{∧
X : X ⊆

⋃

λ∈Λ
Sλ

}
.

The pair (Sℓ(L),⊆) is a coframe, which O :=
{
⊤
}
and L are bottom

and top elements of Sℓ(L), respectively. For every a ∈ L, we say oL(a) :={
a −→ x : (a −→ x) = x ∈ L

}
is an open sublocale of L and cL(a) :=

{
x ∈

L : a ≤ x
}
= ↑a is a closed sublocale of L. Also, the zero and the cozero

sublocales corresponding to each α ∈ R(L) are, respectively, the sublocales
cL
(
coz(α)

)
and oL

(
coz(α)

)
. We denote the set of all zero sublocales of L

by zSℓ(L). Some of the properties of open and closed sublocales, which will
be used freely, are as follows:

(1) oL(⊥) = O = cL(⊤) and oL(⊤) = L = cL(⊥).

(2) oL(a ∧ b) = oL(a) ∩ oL(b) and oL(
∨

i ai) =
∨

i oL(ai).

(3) cL(a ∧ b) = cL(a) ∨ cL(b) and cL(
∨

i ai) =
∧

i cL(ai).

The closure of a sublocale S of L, denoted S or clL(S), and its interior,
denoted S◦ or intL(S), are the sublocales

clL(S) =
⋂

{cL(a) : S ⊆ cL(a)} = cL

(∧
S
)
,

and
intL(S) =

∨
{oL(a) : oL(a) ⊆ S} = oL

(∧
(L \ S)

)
.
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2.3 Semiring We recall from [16, 24] that a semiring is a nonempty
set S on which operations of addition and multiplication have been defined
such that the following conditions are satisfied:

(1) (S,+) is a commutative monoid with identity element 0.

(2) (S, ·) is a commutative monoid with identity element 1.

(3) Multiplication distributes over addition.

(4) 0r = 0 = r0 for all r ∈ S.

An element r of a semiring S is a unit if and only if there exists an
element r′ of S satisfying rr′ = 1 = r′r. We denote the set of all units
of S by U(S). A semiring S is said to be positive if for each x ∈ S,
1 + x ∈ U(S). A nonempty subset I of S is called an ideal of S if a+ b ∈ I
and ra ∈ I for all a, b ∈ I and r ∈ S. An ideal I of S is said to be
proper if I ̸= S. Moreover, S and

{
0
}
are said to be trivial ideals of S.

Denote by ID(S) the family of all ideals of S. For an ideal I of S, the set
I =

{
x ∈ S : x+a = b for some a, b ∈ I

}
is called the subtractive closure

or k-closure of I in S. The set I is an ideal of S such that I ⊆ I and I = I.
An ideal I of S is called a subtractive ideal or k-ideal of S if I = I.
Denote by KI(S) the family of all k-ideals of S. Also, a proper ideal M of
a semiring S is called a maximal ideal of S if M ⊆ I ⊆ S for any ideal
I of S implies either I = M or I = S. We denote the set of all maximal
ideals of S by Max(S).

2.4 Congruence relation on semirings An equivalence relation
ρ defined on a semiring S which satisfies the additional condition that if
(a, b) ∈ ρ and (c, d) ∈ ρ then (a + c, b + d) ∈ ρ and (ac, bd) ∈ ρ is called a
congruence relation. It is easy to see that this definition is equivalent to;
a congruence relation ρ on S is an equivalence relation, such that (a, b) ∈
ρ implies (a + x, b + x), (ax, bx) ∈ ρ for every a, b, x ∈ S. The family
of all congruences on S is denoted by Cong(S). The set Cong(S) with
respect to the inclusion generates an algebraic lattice: ρ ⊆ τ means that
aρb implies aτb for all a, b ∈ S. Congruence ρ on S is called cancellative if
(a+ x, b+ x) ∈ ρ implies (a, b) ∈ ρ for every a, b, x ∈ S. Also, a cancellative
congruence ρ is called regular congruence if there exists (e1, e2) ̸= (0, 0),
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where e1 and e2 are distinct elements in S such that (a + e1a, e2a) ∈ ρ for
each a ∈ S.

Consider the ring R(L). The positive cone of this lattice ordered ring is
denoted by R+(L), that is,

R+(L) :=
{
α ∈ R(L) : α ≥ 0

}
.

In fact, R+(L) is a partially ordered commutative semiring with additive
identity 0 and multiplicative identity 1. It is easy to see that, for every
congruence relation ρ on R(L),

ρc := ρ ∩R+(L)×R+(L)

is a congruence relation on R+(L) and for every congruence relation ρ on
R+(L), the relation

ρe :=
{
(α, β) : α, β ∈ R(L) and α− β = γ − δ for some (γ, δ) ∈ ρ

}

is a congruence relation on R(L).

3 z-ideals in semiring R+(L)

The concept of z-ideal in positive semirings was introduced in [22]. In this
section, we give a characterization of z-ideals in the semiringR+(L) in terms
of cozero elements of L, which we shall need throughout.

An ideal J of L is said to be completely regular if for each x ∈ J ,
there exists y ∈ J such that x ≺≺ y. For a completely regular L, the frame
of its completely regular ideals is denoted by βL. The join map βL → L
is dense onto and referred to as the Stone-Čech compactification of L. We
denote its right adjoint by rL. A straightforward calculation shows that
rL(a) = {x ∈ L : x ≺≺ a} for each a ∈ L. For each I ∈ βL, the ideals
MI and OI of R(L) are defined by MI = {φ ∈ R(L) : rL(cozφ) ⊆ I} and
OI = {φ ∈ R(L) : rL(cozφ) ≺≺ I}(see [9, 12]).

Clearly, OI ⊆ MI . Since, for any I ∈ βL and a ∈ L, rL(a) ≺≺ I if and
only if a ∈ I, it follows that OI = {φ ∈ R(L) : coz(φ) ∈ I}. The following
is shown in [9]:

1. A subset Q of R(L) is a maximal ideal iff there is a unique I ∈ ΣβL
such that Q = MI , where ΣβL is the set of all prime elements of βL.
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2. If P is an ideal of R(L), there exists J ∈ βL such that OJ ⊆ P ⊆ MJ .

3. For any I ∈ ΣβL, MI is the unique maximal ideal containing OI .

Let Max(R(L)) be the set of all maximal ideals of a ring R(L). For
α ∈ R(L) and A ⊆ R(L), let Mα =

⋂{M ∈ Max(R(L)) : α ∈ M} and
MA =

⋂{M ∈ Max(R(L)) : M ⊇ A}. By [7, Lemma 3.7], for every ideal
Q of R(L),

MQ =
{
φ ∈ R(L) : rL

(
coz(φ)

)
≤
∨

α∈Q
rL
(
coz(α)

)}
,

and for every α ∈ R(L),

Mα =
{
φ ∈ R(L) : coz(φ) ≤ coz(α)

}
.

Now, let S be a semiring, let a ∈ S, and let Ma be the intersection of all
maximal ideal containing a. If S is a positive semiring, then by [22, Theorem
2],

Ma =
{
x ∈ S : ∀y ∈ S, a+ y ̸∈ U(S) ⇒ a+ x+ y ̸∈ U(S)

}
.

Definition 3.1. An ideal I of semiring S is called a z-ideal if for every
a ∈ I, Ma ⊆ I.

We recall that for every family {ai}i∈I of elements of L,
∨

i∈I ai = ⊤ if
and only if

⋂
i∈I cL

(
ai
)
= O. Then a frame L is compact if and only if for

every family F = {cL(ai)}i∈I of closed sublocales of L,
⋂F = O implies

there exists a finite subset
{
i1, . . . , in

}
of I such that

⋂n
j=1 cL

(
aij
)
= O.

Also, if L is a compact frame, then there exists a maximal element m of L
such that a ≤ m for every a ∈ L \

{
⊤
}
.

In the following proposition, we investigate the relationship between the
maximal ideals of the semiring R+(L) and the maximal ideals of the ring
R(L). We use the above points to prove this proposition.

Proposition 3.2. Let M be an ideal of R+(L). Then M is a maximal ideal
of R+(L) if and only if there exists a unique element I of ΣβL such that
M = MI ∩R+(L).

Proof. Necessity. Let M be a maximal ideal of R+(L). It is evident that
for every finite subset A of M ,

∧

α∈A
cL
(
coz(α)

)
= cL

(
coz

(∑

α∈A
α

))
̸= 0.
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From the compactness of βL, it follows that there exists an element (J, I) in

βL× ΣβL such that J ∈ ⋂α∈M clβLrL

(
cL
(
coz(α)

))
̸= O and J ⊆ I. Since

M ⊆ MJ ∩ R+(L) ⊆ M I ∩ R+(L), we deduce from the maximality of M
that M = MI ∩R+(L).

Sufficiency. Let I ∈ ΣβL with M = MI ∩ R+(L) be given. Suppose
α ∈ R+(L) \M . Then α ̸∈ MI , which implies from the maximality of MI

that there exists an element (β, γ) in R(L)×MI such that αβ+γ = 1, and
we obtain coz(α2β2 + γ2) ≥ coz(αβ + γ) = ⊤. Thus we have α2β2 + γ2 ∈
(M,α) ∩ U

(
R+(L)

)
, which implies that (M,α) = R+(L). Therefore, M is

a maximal ideal of R+(L).

Let α ∈ R+(L) and let M+
α be the intersection of all maximal ideal of

R+(L) containing α. Then

M+
α = {β ∈ R+(L) : ∀γ ∈ R+(L), coz(α+ γ) ̸= ⊤ ⇒ coz(α+ β + γ) ̸= ⊤}.

In the following proposition, we give a relation between Mα and M+
α for

every α ∈ R+(L).

Proposition 3.3. For every α ∈ R+(L), M+
α = Mα ∩R+(L).

Proof. By Proposition 3.2, we have

M+
α =

⋂

α∈M, M∈Max(R+(L))

M

=
⋂

α∈MI , I∈ΣβL

(
MI ∩ (R+(L)

)

=
( ⋂

α∈MI , I∈ΣβL

MI
)
∩R+(L)

=
( ⋂

α∈M, M∈Max(R(L))

M
)
∩R+(L)

= Mα ∩R+(L).

Now, by the above proposition, we show that the behavior of z-ideals in
the semiring R+(L) is completely similar to the behavior of z-ideals in the
ring R(L).
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Proposition 3.4. For any ideal Q of R+(L), the following conditions are
equivalent:

(1) Q is a z-ideal.

(2) For any α, β ∈ R+(L), α ∈ Q and coz(α) = coz(β) imply β ∈ Q.

Proof. (1)⇒(2) Suppose coz(α) = coz(β), where α, β ∈ R+(L) and α ∈ Q.
Then, β ∈ Mα and so β ∈ Mα∩R+(L). Hence by Proposition 3.3, β ∈ M+

α .
Now, since Q is a z-ideal and α ∈ Q, we have M+

α ⊆ Q. Therefore β ∈ Q.
(2)⇒(1) Let α ∈ Q and let β ∈ M+

α . Since β ∈ R+(L), by Proposition
3.3, we have β ∈ Mα and so coz(β) ≤ coz(α). Thus coz(αβ) = coz(β) and
since αβ ∈ Q, we have β ∈ Q by (2). Then M+

α ⊆ Q. Therefore Q is a
z-ideal.

4 z-congruences in ring R(L) and semiring R+(L)

In this section, we introduce the concept of z-congruence and study the
relationship between z-congruence and z-ideals in ring R(L) and semiring
R+(L).

Let L be a completely regular frame. We recall from [15] the following
concepts:

(1) If F is a proper filter on Coz(L), then it is called a coz-filter on L.

(2) A prime coz-filter on L is a coz-filter F such that coz(α)∨ coz(β) ∈ F
implies coz(α) ∈ F or coz(β) ∈ F .

(3) A coz-filter G on L is a coz-ultrafilter if whenever G ⊆ F , where F
is a coz-filter, then G = F .

Definition 4.1. Throughout this paper, we define

(1) ρQ :=
{
(α, β) : α, β ∈ R(L) and α − β ∈ Q

}
for every subset Q of

R(L)

(2) ρ+Q :=
{
(α, β) : α, β ∈ R+(L) and α − β ∈ Q

}
for every subset Q of

R+(L).

(3) Qρ :=
{
α − β : α, β ∈ R(L) and (α, β) ∈ ρ

}
for every binary relation

ρ on R(L).
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(4) Q+
ρ :=

{
α−β : α, β ∈ R+(L) and (α, β) ∈ ρ

}
for every binary relation

ρ on R+(L).

Definition 4.2. We call a proper congruence ρ on

(1) R(L) a z-congruence if α, β ∈ R(L) with coz(α − β) ∈ coz(Qρ)
implies (α, β) ∈ ρ.

(2) R+(L) a z-congruence if coz(α − β) ∈ coz(Q+
ρ ) implies (α, β) ∈ ρ

for every α, β ∈ R+(L).

Also, the set of all z-congruences on R(L) (or on R+(L)) will be denoted
by zCong(L) (or zCong+(L)).

Remark 4.3. Let ρ be a z-congruence on R+(L), and let α, β, γ ∈ R+(L)
with (α+ γ, β+ γ) ∈ ρ be given. Then coz(α−β) = coz

(
α+ γ− (β+ γ)

)
∈

coz(Q+
ρ ), which implies by the definition of z-congruence that (α, β) ∈ ρ.

Therefore, every z-congruence on R+(L) is cancellative.

Lemma 4.4. If ρ is a z-congruence on R+(L), then ρec = ρ.

Proof. It is clear that ρ ⊆ ρec. Conversely, let (α, β) ∈ ρec. Then α, β ∈
R+(L) and (α, β) ∈ ρe, which implies that α−β = γ−δ for some (γ, δ) ∈ ρ,
and so α + δ = β + γ. Since ρ is a congruence relation, we have (α + γ +
δ, β + γ + δ) ∈ ρ. Then, by Remark 4.3, (α, β) ∈ ρ and we see that ρec ⊆ ρ.
Therefore, ρec = ρ.

Lemma 4.5. For every α, β ∈ R(L), there exist γ, δ ∈ R+(L) such that
α− β = γ − δ.

Proof. We put (a, b) =
(
(α− β)(0,−), (β − α)(0,−)

)
,

{
A := cL(a),

B := cL(b),

{
γ1 := νA(α− β),

γ2 := νB0,
and

{
δ1 := νA0,

δ2 := νB(β − α).

It is evident that for every p, q ∈ Q,
δ2(p, q) ∨ a ∨ b = (β − α)(p, q) ∨ (β − α)(0,−) ∨ coz(α− β)

=

{
⊤ if p < 0 < q

coz(α− β) if 0 ≤ p or q < 0

= δ1(p, q) ∨ coz(α− β)

= δ1(p, q) ∨ a ∨ b,
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and a similar argument shows that

γ1(p, q) ∨ a ∨ b = γ2(p, q) ∨ a ∨ b.

Since a ∧ b = ⊥, we conclude from [6, Proposition 1.7] that there exists a
pair unique elements γ, δ in R(L) such that

{
νAδ(s) = δ(s) ∨ a = δ1(s),

νBδ(s) = δ(s) ∨ b = δ2(s),

{
νAγ(s) = γ(s) ∨ a = γ1(s),

νBγ(s) = γ(s) ∨ b = γ2(s),

for all s ∈ L(R). Then for every p, q ∈ Q,

(γ − δ)(p,−) =
[
(γ − δ)(p,−) ∨ a

]
∧
[
(γ − δ)(p,−) ∨ b

]

=


∨

t∈Q

(
γ(t,−) ∨ a

)
∧
(
δ(−, t− p) ∨ a

)

∧


∨

t∈Q

(
γ(t,−) ∨ b

)
∧
(
δ(−, t− p) ∨ b

)



=


∨

t∈Q

(
γ1(t,−) ∧ δ1(−, t− p)

)

 ∧


∨

t∈Q

(
γ2(t,−) ∧ δ2(−, t− p)

)



= (γ1 − δ1)(p,−) ∧ (γ2 − δ2)(p,−)

=
(
νA(α− β)− νA0)

)
(p,−) ∧

(
νB0− νB(β − α)

)
(p,−)

= νA(α− β)(p,−) ∧ νB(α− β)
)
(p,−)

=
(
(α− β)(p,−) ∨ a

)
∧
(
(α− β)(p,−) ∨ b

)

= (α− β)(p,−) ∨ (a ∧ b)

= (α− β)(p,−)

and similarly,

(γ − δ)(−, q) = (α− β)(−, q).

Therefore, γ − δ = α− β.

Proposition 4.6. The following statements are true:
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(1) If ρ is a z-congruence on R(L), then ρc is a z-congruence on R+(L).
Moreover,

{
coz(α−β) : α, β ∈ R(L), (α, β) ∈ ρ

}
=
{
coz(α−β) : α, β ∈ R+(L), (α, β) ∈ ρc

}
.

(2) If ρ is a z-congruence on R+(L), then ρe is a z-congruence on R(L).

Proof. (1). Let α, β ∈ R+(L) with coz(α − β) ∈ coz(Q+
ρc) be given. Then

there exist γ, δ ∈ R+(L) such that (γ, δ) ∈ ρc and coz(α− β) = coz(γ − δ).
Then (γ, δ) ∈ ρ and coz(α − β) = coz(γ − δ) ∈ coz(Qρ). Since ρ is a z-
congruence on R(L), (α, β) ∈ ρ ∩

(
R+(L)×R+(L)

)
= ρc. Therefore, ρc is

a z-congruence on R+(L).
(2). Let α, β ∈ R(L) with coz(α − β) ∈ coz(Qρe) be given. Then there

exist (γ, δ) ∈ ρe and (η, µ) ∈ ρ such that coz(α − β) = coz(γ − δ) and
γ − δ = η− µ. On the other hand, by Lemma 4.5, there exist h, k ∈ R+(L)
such that α− β = h− k. Hence

coz(h−k) = coz(α−β) = coz(γ− δ) = coz(η−µ) ∈ coz(Q+
ρ )(or coz(Qρe)).

Since ρ is a z-congruence and h, k ∈ R+(L), we have (h, k) ∈ ρ. Then
(α, β) ∈ ρe. Therefore, ρe is a z-congruence on R(L).

Proposition 4.7. The following statements are true:

(1) If ρ is a proper congruence relation on R(L), then Qρ is a proper ideal
of R(L) and ρ = ρQρ

. In particular, if ρ is a z-congruence relation on
R(L), then Qρ is a z-ideal of R(L).

(2) If ρ is a proper congruence relation on R+(L), then Q+
ρ is a proper

ideal of R+(L) and ρ = ρ+
Q+
ρ

. In particular, if ρ is a z-congruence

relation on R+(L), then Q+
ρ is a z-ideal of R+(L).

(3) If Q is a proper ideal of R(L), then ρQ is a proper congruence on
R(L) and Q = QρQ

. In particular, if Q is a z-ideal of R(L), then ρQ
is a z-congruence on R(L).

(4) If Q is a proper ideal of R+(L), then k+Q is a proper congruence on

R+(L) and if Q is a k-ideal of R+(L), then Q = Q+

k+
Q

. In particular, if

a k-ideal Q of R+(L) is a z-ideal of R+(L), then k+Q is a z-congruence

on R+(L).
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Proof. (1). Let η, µ ∈ Qρ and σ ∈ R(L) be given. Then there are α, β, γ, δ ∈
R(L) with (α, β), (γ, δ) ∈ ρ such that η = α − β and µ = γ − δ. Thus
(α + γ, β + δ), (ασ, βσ) ∈ ρ and so, η + µ, ησ ∈ Qρ. If 1 ∈ Qρ, then
1 = α− β for some (α, β) ∈ ρ, which implies that (1,0) ∈ ρ. Consequently,
ρ is not proper, and this is a contradiction. Therefore, Qρ is a proper ideal
of R(L).

Let (α, β) ∈ Qρ×R(L) with coz(α) = coz(β) be given. Then there exists
an element (γ, δ) ∈ ρ such that α = γ − δ, which implies that coz(β − 0) =
coz(α) = coz(γ − δ), and so (β,0) ∈ ρ. Thus β = β − 0 ∈ Qρ. Then Qρ is a
z-ideal of R(L).

(2). The proof is similar to the proof of part (1).
(3). Since α − α = 0 ∈ Q, we have (α, α) ∈ ρQ for every α ∈ R(L). If

α, β, γ ∈ R(L) with (α, β), (β, γ) ∈ ρQ, then α−γ = α−β+β−γ ∈ Q, which
implies that (α, γ) ∈ ρQ. Hence, ρQ is an equivalence relation on R(L). Let
α, β, γ, δ ∈ R(L) with (α, β), (γ, δ) ∈ ρQ be given. Then α − β, γ − δ ∈ Q,
which implies that (α+ γ)− (β + δ) ∈ Q and

αγ − βδ = αγ − βγ + βγ − βδ = (α− β)γ + (γ − δ)β ∈ Q.

Hence, (α+ γ, β + δ), (αγ, βδ) ∈ ρQ. Therefore, ρQ is a congruence relation
on R(L). It is evident that Q = QρQ

.

If Q is a z-ideal of R(L) and α, β ∈ R(L) with

coz(α− β) ∈ coz(QρQ
) = coz(Q),

then α−β ∈ Q, which implies that (α, β) ∈ ρQ. Hence, ρQ is a z-congruence
on R(L).

(4). From 0 ∈ Q and α + 0 = α + 0, (α, α) ∈ k+Q for every α ∈ R+(L).

If α, β, γ ∈ R+(L) with (α, β), (β, γ) ∈ k+Q, then there exist f, g, h, k ∈ Q
such that α+ f = β + g and β + h = γ + k. Therefore

α+ f + h = β + g + h = γ + k + h.

Since Q is an ideal of R+(L), we conclude that (α, γ) ∈ k+Q. Hence, k
+
Q is an

equivalence relation on R+(L). Let α, β, γ, δ ∈ R+(L) with (α, β), (γ, δ) ∈
k+Q be given. Then there exist f, g, h, k ∈ Q such that α + f = β + g and
γ + h = δ + k, which implies that α+ γ + f + h = β + δ + g + k and

(α+ f)(γ + h) = (β + g)(δ + k) ⇒ αγ + αh+ γf + fh

= βδ + βk + δg + gk.
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Hence, (α+ γ, β+ δ), (αγ, βδ) ∈ k+Q. Therefore, k
+
Q is a congruence relation

on R+(L).
Now, we show Q = Q+

k+
Q

. Let α ∈ Q. Since 0 ∈ Q and α + 0 = 0 + α,

so (α, 0) ∈ k+Q, which implies α = α − 0 ∈ Q+

k+
Q

. Conversely, let α ∈ Q+

k+
Q

.

Then there exist f, g ∈ R+(L) such that α = f − g and (f, g) ∈ k+Q. By the

definition of k+Q, there exist γ, δ ∈ Q such that f + γ = g + δ. Hence

α+ γ = f + γ − g = g + δ − g = δ ∈ Q.

Since Q is a k-ideal and γ, α+ γ ∈ Q, we have α ∈ Q. Hence Q+

k+
Q

⊆ Q.

If Q is a z-ideal of R+(L) and α, β ∈ R+(L) with

coz(α− β) ∈ coz(Q+

k+
Q

) = coz(Q),

then α−β ∈ Q, which implies that (α, β) ∈ k+Q. Hence, k
+
Q is a z-congruence

on R+(L).

We recall from [17] that a proper k-ideal I of a semiring S is called k-
maximal if it is not properly contained in another proper k-ideal. Hence,
by [17, Proposition 3.3 ], an ideal I of a semiring S is k-maximal if and only
if it is a k-ideal and a maximal ideal of S.

Lemma 4.8. Let Q be a k-ideal of R+(L) and let ρ be a cancellable con-
gruence on R+(L). Then k+

Q+
ρ
= ρ

Proof. Let α, β ∈ R+(L) with (α, β) ∈ ρ be given. Then, there exists
f ∈ Q+

ρ such that α−β = f . Hence, α+0 = β+f , which means (α, β) ∈ k+
Q+

ρ
.

Then, ρ ⊆ k+
Q+

ρ
. Conversely, let α, β ∈ R+(L) with (α, β) ∈ k+

Q+
ρ
be given.

Then there exist γ, δ ∈ Q+
ρ such that α+ γ = β+ δ, which implies from the

definition of Q+
ρ that γ = f−g and δ = h−k for some (f, g), (h, k) ∈ ρ. Since

ρ is a congruence relation, (g+ h, f + k) ∈ ρ and so (g+ h)− (f + k) ∈ Q+
ρ ,

which implies that α−β ∈ Q+
ρ . Hence, there exist α

′, β′ ∈ R+(L) such that
(α′, β′) ∈ ρ and α− β = α′− β′. Then α′+ β = α+ β′. On the other hand,
(α′ + β, β′ + β) ∈ ρ and so (α + β′, β′ + β) ∈ ρ. Since, ρ is a cancellative
relation on R+(L), we conclude (α, β) ∈ ρ. Thus, k+

Q+
ρ
⊆ ρ.
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Proposition 4.9. The following statements are true:

(1) If ρ is a maximal congruence on R(L), then ρ is a z-congruence on
R(L) and Qρ is a maximal ideal of R(L).

(2) If ρ is a maximal congruence on R+(L), then ρ is a z-congruence on
R+(L) and Q+

ρ is a maximal ideal of R+(L).

(3) If M is a maximal ideal of R(L), then ρM is a maximal congruence
on R(L).

(4) If M is a k-maximal ideal of R+(L), then k+M is a maximal congruence
on the class of cancellative congruence on R+(L).

Proof. (1). Let J be a proper ideal of R(L) such that Qρ ⊆ J . Then
ρ = ρQρ

⊆ ρJ , and by the maximality of congruences on R(L), we have
ρ = ρJ , which implies Qρ = QρJ

= J . Hence, Qρ is a maximal ideal of
R(L). Also, by part (3) of Proposition 4.7, ρ = ρQρ

is a z-congruence on
R(L), since Qρ is a z-ideal of R(L).

(2). The proof is similar to that of part (1).
(3). Let M be a maximal ideal of R(L). Since every maximal ideal

of R(L) is a z-ideal, we conclude from Proposition 4.7 that ρM is a z-
congruence on R(L). Now, let ρ be a congruence on R(L) and let ρM ⊆ ρ.
Then M = MρM ⊆ Mρ, and by the maximality of ideals of R(L) we have
M = Mρ, which implies ρM = ρMρ = ρ. Hence, ρM is a maximal congruence
on R(L).

(4). Let ρ be a cancellative congruence relation on R+(L) and let k+M ⊆
ρ. Then M = M+

k+M
⊆ M+

ρ , and by the maximality of ideals of R+(L) we

have M = M+
ρ , which implies from Lemma 4.8 that k+M = k+

M+
ρ
= ρ. Hence,

k+M is a maximal cancellative congruence on R+(L).

5 z-filter on the ring R(L) and semiring R+(L)

It is evident that
(
zSℓ(L),⊆

)
is a lattice. In this section, we examine the

relationships between z-filters on Sℓ(L) and proper congruences on the ring
R(L) and the semiring R+(L).

Definition 5.1. A proper filter of zSℓ(L) is called a z-filter on Sℓ(L).
Therefore, if F is a z-filter on Sℓ(L), then
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(1) O ̸∈ F ⊆ zSℓ(L),
(2) for every a, b ∈ F , a ∧ b ∈ F , and

(3) if b ∈ F , a ∈ zSℓ(L), and b ≤ a, then a ∈ F .

Also, the set of all z-filter on Sℓ(L) will be denoted by zFilSℓ(L).
Let α, β ∈ R(L). We put E(α, β) := cL

(
coz(α − β)

)
, and E(ρ) :={

E(α, β) : (α, β) ∈ ρ
}
for every binary relation ρ on R(L). Also, for every

subset Q of R(L), let

cLcoz(Q) :=
{
cL
(
coz(α)

)
: α ∈ Q

}
.

Proposition 5.2. Let L be a frame. Then, the following statements are
true:

(1) If ρ be a proper congruence relation on R(L), then E(ρ) is a z-filter
on Sℓ(L).

(2) For any ideal Q of R(L), cLcoz[Q] = E(ρQ).

(3) If F is a z-filter on Sℓ(L), then

E−1(F) :=
{
(α, β) ∈ R(L)×R(L) : cL

(
coz(α− β)

)
∈ F

}

is a proper congruence on R(L).

Proof. (1). If O ∈ E(ρ), then there exists an element (α, β) ∈ ρ such that
cL
(
coz(α− β)

)
= O, which implies that α− β is a unit of R(L). Then

(α, β) ∈ ρ ⇒ (α− β,0) ∈ ρ ⇒
(
(α− β)(α− β)−1,0

)
∈ ρ

⇒ (1,0), (0,1) ∈ ρ ⇒ ρ = R(L)×R(L),

which is a contradiction. Hence, O ̸∈ E(ρ). Let z1, z2 ∈ E(ρ) be given.
Then there exist (α1, β1), (α2, β2) ∈ ρ such that z1 = E(α1, β1) and z2 =
E(α2, β2). Then

z1 ∧ z2 = cL
(
coz(α1 − β1)

)
∧ cL

(
coz(α2 − β2)

)

= cL
(
coz(α2

1 + α2
2 + β2

1 + α2
2 − 2α1β1 − 2α2β2)

)

and (α2
1 + α2

2 + β2
1 + α2

2, 2α1β1 + 2α2β2) ∈ ρ. Hence, z1 ∧ z2 ∈ E(ρ).
Let (z1, z2) ∈ E(ρ) × zSℓ(L) with z1 ⊆ z2 be given. Then there exists
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an element
(
(α1, β1), β

)
∈ ρ × R(L) such that z1 = cL

(
coz(α1 − β1)

)
and

z2 = cL
(
coz(β)

)
. From z2 = z1∨z2 = cL

(
coz(β(α1−β1)

)
and (βα1, ββ1) ∈ ρ,

we conclude z2 ∈ E(ρ). Therefore, E(ρ) is a z-filter on Sℓ(L).
(2). Let Q be an ideal of R(L). If α ∈ Q, then (α,0) ∈ ρQ. Thus

cL
(
coz(α)

)
∈ E(ρQ). If z ∈ E(ρQ), then there exists an element (α, β) ∈ ρQ

such that z = cL
(
coz(α− β)

)
∈ cLcoz[Q]. Hence, cLcoz[Q] = E(ρQ).

(3). Let (α, β), (β, γ) ∈ E−1(F) be given. Then

cL
(
coz(α− β)

)
, cL
(
coz(β − γ) ∈ F ,

which implies that

cL
(
coz(α− γ)

)
≥ cL

(
coz(α2 + 2β2 + γ2 − 2β(α− γ))

)

= cL
(
coz(α− β)

)
∧ cL

(
coz(β − γ)

)
∈ F .

and so, (α, γ) ∈ E−1(F). Hence, E−1(F) is an equivalence relation on R(L)
and E−1(F) ̸= R(L)×R(L). Let (α, β) ∈ E−1(F) and γ ∈ R(L) be given.
Then

cL
(
coz(α− β)

)
∈ F ⇒ cL

(
coz(α+ γ − (β + γ)

)
∈ F and

cL
(
coz(γ(α− β)

)
≥ cL

(
coz(α− β)

)

⇒ (α+ γ, β + γ) ∈ E−1(F) and

cL
(
coz(γ(α− β)

)
∈ F

⇒ (α+ γ, β + γ), (αγ, βγ) ∈ E−1(F).

Therefore, E−1(F) is a proper congruence on R(L).

Lemma 5.3. Let L be a frame. Then, the following statements are true:

(1) If ρ is a z-congruence on R(L), then E−1(E(ρ)) = ρ.

(2) If F is a z-filter on Sℓ(L), then E−1(F) is a z-congruence on R(L).

Proof. (1). Let α, β ∈ R(L) and let (α, β) ∈ E−1(E(ρ)). Then cL
(
coz(α −

β)
)
∈ E(ρ). Hence there exists (γ, δ) ∈ ρ such that cL

(
coz(α − β)

)
=

cL
(
coz(γ − δ)

)
, and so coz(α − β) = coz(γ − δ) and γ − δ ∈ Qρ. Since ρ

is a z-congruence, we conclude (α, β) ∈ ρ. Therefore E−1(E(ρ)) ⊆ ρ. The
converse of inclusion is clear.
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(2). Let α, β ∈ R(L) with coz(α − β) ∈ coz(QE−1(F)) be given. Then,
there exists (f, g) ∈ E−1(F) such that coz(α− β) = coz(f − g). Therefore,
cL
(
coz(f −g)

)
∈ F and cL

(
coz(α−β)

)
= cL

(
coz(f −g)

)
. Hence cL

(
coz(α−

β)
)
∈ F , and so (α, β) ∈ E−1(F).

Proposition 5.4. Let L be a completely regular frame. Then, the following
statements are true:

(1) If M is a maximal ideal on R(L), then cLcoz[M ] is a z-ultrafilter on
Sℓ(L).

(2) If F is a z-ultrafilter on Sℓ(L), then
(
cLcoz

)←
[F ] = {α ∈ R(L) : cL(cozα) ∈

F} is a maximal ideal on R(L).

Proof. The proof is similar to [15, Theorem 2.5].

Proposition 5.5. Let L be a frame. Then, the following statements are
true:

(1) If ρ is a maximal congruence relation on R(L), then E(ρ) is a z-
ultrafilter on Sℓ(L).

(2) If F is a z-ultrafilter on Sℓ(L), then E−1(F) is a maximal congruence
on R(L).

Proof. (1). Since ρ is a maximal congruence relation on R(L), by Proposi-
tion 4.7 and 4.9, Qρ is a maximal ideal and ρQρ = ρ. Then, by Proposition
5.4, cLcoz[Qρ] is a z-ultrafilter on Sℓ(L). Also, by Proposition 5.2,

cLcoz[Qρ] = E(ρQρ) = E(ρ).

Then, E(ρ) is a z-ultrafilter on Sℓ(L).
(2). Let F be a z-ultrafilter on Sℓ(L). Then by Proposition 5.4, M =

{α ∈ R(L) : cL
(
coz(α) ∈ F} is a maximal ideal of R(L), and so ρM is a

maximal congruence by Proposition 4.9. Moreover, it is easy to see that
ρM = E−1(F) and so E−1(F) is a maximal congruence on R(L).

Lemma 5.6. Let α, β ∈ R+(L) be given. Suppose that A := cL(a) and
B := cL(b), where a := coz

(
(α− β)+

)
and b := coz

(
(β − α)+

)
. If h ∈ R(L)

such that νAh(s) = h(s)∨ coz
(
(α−β)+

)
and νBh(s) = h(s)∨ coz

(
(β−α)+

)

for every s ∈ L(R), then α− h, β − h ∈ R+(L).
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Proof. It is evident that, for every p ≤ 0,

νB(α− β)(p,−) = coz((β − α)+) ∨ (α− β)(p,−)

= (β − α)(0,−) ∨ (α− β)(p,−)

= (α− β)(−, 0) ∨ (α− β)(p,−)

= ⊤
= 0(p,−).

Now, let p ≤ 0, then

(α− h)(p,−) = (α− h)(p,−) ∨ (a ∧ b)

=
(
(α− h)(p,−) ∨ a

)
∧
(
(α− h)(p,−) ∨ b

)

=
(
(νAα− νAh)(p,−)

)
∧
(
(νBα− νBh)(p,−)

)

= νAα(p,−) ∧ (νBα− νBβ)(p,−)

= νAα(p,−) ∧ νB(α− β)(p,−)

= ⊤ ∧⊤ = ⊤

and if p > 0, then

(α− h)(p,−) ≥ ⊥ = 0(p,−),

Therefore α− h ∈ R+(L). Also, from

p ≤ 0 ⇒ (β − h)(p,−) = (β − h)(p,−) ∨ (a ∧ b)

=
(
(β − h)(p,−) ∨ a

)
∧
(
(β − h)(p,−) ∨ b

)

=
(
(νAβ − νAh)(p,−)

)
∧
(
(νBβ − νBh)(p,−)

)

= νAβ(p,−) ∧
(
(νBβ − νBβ)(p,−)

)

= νAβ(p,−) ∧ ⊤
= ⊤ ∧⊤ = ⊤

and

p > 0 ⇒ (β − h)(p,−) ≥ ⊥ = 0(p,−),

we infer that β − h ∈ R+(L).

Proposition 5.7. Let L be a frame. Then, the following statements are
true:
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(1) If ρ be a proper cancellative congruence relation on R+(L), then E(ρ)
is a z-filter on Sℓ(L).

(2) For a k-ideal Q of R+(L), cLcoz[Q] = E(k+Q).

(3) If F is a z-filter on Sℓ(L), then

E−1(F) :=
{
(α, β) ∈ R+(L)×R+(L) : cL

(
coz(α− β)

)
∈ F

}

is a proper congruence on R+(L).

Proof. (1). If O ∈ E(ρ), then there exists an element (α, β) ∈ ρ such that
cL
(
coz(α − β)

)
= O, which implies that α − β is a unit of R(L). Since for

every positive real r, (α + r, β + r) ∈ ρ, without loss of generality, we may
assume cL

(
coz(α)

)
= O = cL

(
coz(β)

)
. We set

{
A := cL

(
coz((α− β)+)

)
,

B := cL
(
coz((β − α)+)

)
,

{
k1 := νAα,

k2 := νB0,

{
h1 := νA0,

h2 := νBβ.

It is evident that

h1(s)∨coz
(
(α− β)+

)
∨coz

(
(β − α)+

)
=⊤
=h2(s)∨coz

(
(α− β)+

)
∨coz

(
(β − α)+

)

and that

k1(s)∨coz
(
(α− β)+

)
∨coz

(
(β − α)+

)
=⊤
=k2(s)∨ vcoz

(
(α− β)+

)
∨coz

(
(β − α)+

)

for every s ∈ L(R). Then, by [6, Proposition 1.7], there exists a pair unique
elements h, k in R(L) such that

{
νAh(s)=h(s)∨coz

(
(α− β)+

)
=h1(s),

νBh(s)=h(s)∨coz
(
(β − α)+

)
=h2(s),

{
νAk(s) = k(s) ∨ coz

(
(α− β)+

)
= k1(s),

νBk(s) = k(s) ∨ coz
(
(β − α)+

)
= k2(s),

for all s ∈ L(R). By Lemma 5.6, α−h, β−h, α−k, β−k ∈ R+(L) and since ρ
is a cancellative congruence, we conclude that (α−h, β−h), (α−k, β−k) ∈ ρ.
Consequently, (

(α− h)(β − k), (β − h)(α− k)
)
∈ ρ.
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From

coz
(
νB(β − h)

)
= coz

(
νBβ − νBh)

)
= coz

(
0B
)
= coz

(
(β − α)+

)

and

coz
(
νA(α− k)

)
= coz

(
νAα− νAk

)
= coz

(
0A
)
= coz

(
(α− β)+

)

and since
(
coz
(
(α− β)+

))
∧
(
coz
(
(β − α)+

))
= ⊥, we infer that

coz
(
(β − h)(α− k)

)
= coz(β − h) ∧ coz(α− k)

=
(
coz(β − h) ∧ coz(α− k)

)
∨(

coz
(
(α− β)+

)
∧ coz

(
(β − α)+

))

= coz
(
νA(β − h)

)
∧ coz

(
νB(β − h)

)
∧

coz
(
νA(α− k)

)
∧ coz

(
νB(α− k)

)

= coz
(
(α− β)+

)
∧ coz

(
(β − α)+

)
∧

coz
(
νA(β − h)

)
∧ coz

(
νB(α− k)

)

= ⊥,

which implies that (β − h)(α− k) = 0. Moreover,

coz
(
νA(β − k)(α− h)

)
= coz

(
(νAβ − νAk)(νAα− νAh)

)

= coz
(
(νAβ − νAα)(νAα− νA0)

)

= coz
(
νA(β − α)α

)

= coz
(
(α− β)+

)
∨ coz

(
(β − α)α

)

= coz
(
(α− β)+

)
∨ ⊤

= ⊤.

A similar argument shows that coz
(
νB(β − k)(α− h)

)
= ⊤. Hence,

coz
(
(α− h)(β − k)

)
= coz

(
(α− h)(β − k)

)
∨(

coz
(
(α− β)+

)
∧ coz

(
(β − α)+

))

= coz
(
νA(α− h)(β − k)

)
∧ coz

(
νB(α− h)(β − k)

)

= ⊤,
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which implies that (α − h)(β − k) has a multiplicative inverse in R+(L).
Then

((α− h)(β − k),0) ∈ ρ⇒
(
(α− h)(β − k)(α− h)−1(β − k)−1,0

)
∈ρ

⇒ (1,0) ∈ ρ

⇒ ρ = R(L)×R(L),

which is a contradiction. Hence, O ̸∈ E(ρ). Let z1, z2 ∈ E(ρ) be given.
Then there exist (α1, β1), (α2, β2) ∈ ρ such that z1 = E(α1, β1) and z2 =
E(α2, β2). Then

z1 ∧ z2 = cL
(
coz(α1 − β1)

)
∧ cL

(
coz(α2 − β2)

)

= cL
(
coz(α2

1 + α2
2 + β2

1 + α2
2 − 2α1β1 − 2α2β2)

)

and (α2
1 + α2

2 + β2
1 + α2

2, 2α1β1 + 2α2β2) ∈ ρ. Hence, z1 ∧ z2 ∈ E(ρ).
Let (z1, z2) ∈ E(ρ) × zSℓ(L) with z1 ⊆ z2 be given. Then there exists
an element

(
(α1, β1), β

)
∈ ρ × R(L) such that z1 = cL

(
coz(α1 − β1)

)
and

z2 = cL
(
coz(β)

)
. From z2 = z1∨z2 = cL

(
coz(β(α1−β1)

)
and (βα1, ββ1) ∈ ρ,

we conclude z2 ∈ E(ρ). Therefore, E(ρ) is a z-filter on Sℓ(L).
(2). Let α ∈ Q. Then α+ 0 = 0+ α and so (α,0) ∈ k+Q, which implies

that cL
(
coz(α)

)
∈ E(k+Q). If z ∈ E(k+Q), then there exists an element

(α, β) ∈ k+Q such that z = cL
(
coz(α− β)

)
. Since (α, β) ∈ k+Q, α+ f = β + g

for some f, g ∈ Q. Then (α− β) + f = g. Since Q is a k-ideal and f, g ∈ Q,
we conclude α− β ∈ Q, and so z ∈ cLcoz[Q].

(3). The proof is similar to the proof of Proposition 5.2.

6 Coz-filters on L and minimal prime ideals in semiring
R+(L)

In this section, we investigate relation between prime coz-filters and prime
z-ideals on frame L. Also, we show that there is a bijection between the
minimal prime ideals of R(L), and coz-ultrafilters on L.

Proposition 6.1. The following statements are true:
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(1) If P is a prime ideal of R(L), then Coz
(
R(L) \ P

)
is a coz-filter. In

particular, if P is a prime z-ideal of R(L), then Coz
(
R(L)

)
\Coz

(
P
)

is a prime coz-filter and

R(L) \ P = Coz←
(
Coz

(
R(L)

)
\ Coz

(
P
))

.

(2) If P is a prime ideal of R+(L), then Coz
(
R+(L) \ P

)
is a coz-filter.

Proof. (1). Let α, β ∈ R(L) with coz(α)∧coz(β) ∈ Coz
(
R(L)\P

)
be given.

We claim coz(α), coz(β) ∈ Coz
(
R(L) \ P

)
. If αβ ∈ R(L) \ P , then α, β ∈

R(L)\P , which implies that coz(α), coz(β) ∈ Coz
(
R(L)\P

)
. Now, suppose

αβ ̸∈ R(L) \ P and α ∈ P . By our hypothesis, there exists an element γ
in R(L) \ P such that coz(αβ) = coz(γ), which implies α2 + γ2 ∈ R(L) \ P
and

coz(α) = coz(α) ∨ coz(γ) = coz(α2 + γ2) ∈ Coz
(
R(L) \ P

)
,

This proves the claim.
Let α, β ∈ R(L) with coz(α), coz(β) ∈ Coz

(
R(L) \ P

)
be given. By

our hypothesis, there exist γ, δ ∈ R(L) \ P such that coz(α) = coz(γ)
and coz(β) = coz(δ), which implies γδ ∈ R(L) \ P and coz(α) ∧ coz(β) =
coz(γδ) ∈ Coz

(
R(L) \ P

)
.

Let α, β ∈ R(L) with coz(α) ∨ coz(β) ∈ Coz
(
R(L)

)
\ Coz

(
P
)
be given.

Since P is a z-ideal, α2 + β2 ̸∈ P , which implies α ̸∈ P or β ̸∈ P . Hence,
coz(α) ∈ Coz

(
R(L)

)
\Coz

(
P
)
or coz(β) ∈ Coz

(
R(L)

)
\Coz

(
P
)
. The proof

is now complete.
(2). Let α, β ∈ R+(L) with coz(α)∧ coz(β) ∈ Coz

(
R+(L)\P

)
be given.

We claim coz(α), coz(β) ∈ Coz
(
R+(L) \ P

)
. If αβ ∈ R+(L) \ P , then

α, β ∈ R(L)+ \ P , which implies that coz(α), coz(β) ∈ Coz
(
R+(L) \ P

)
.

Now, suppose αβ ̸∈ R+(L) \ P and α ∈ P . By our hypothesis, there exists
an element γ in R+(L) \ P such that coz(αβ) = coz(γ), which implies that
α+ γ ∈ R+(L) \ P and

coz(α) = coz(α) ∨ coz(γ) = coz(α+ γ) ∈ Coz
(
R+(L) \ P

)
,

which proves the claim.
Let α, β ∈ R+(L) with coz(α), coz(β) ∈ Coz

(
R+(L) \ P

)
be given. By

our hypothesis, there exist γ, δ ∈ R+(L) \ P such that coz(α) = coz(γ)
and coz(β) = coz(δ), which implies γδ ∈ R+(L) \ P and coz(α) ∧ coz(β) =
coz(γδ) ∈ Coz

(
R+(L) \ P

)
.
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In the following remark, we show that the primeness is necessary for
Proposition 6.1.

Remark 6.2. It is well known that the homomorphism τ : L(R) → OR
given by (p, q) 7→< p, q > is an isomorphism. Let B be a Boolean frame and
let a, b, and c be three atoms in B. By [14, Proposition 4.1], ea : LR → B
by

ea(U) =





⊤ if 0, 1 ∈ τ(U)

a′ if 0 ∈ τ(U) and 1 ̸∈ τ(U)

a if 0 ̸∈ τ(U) and 1 ∈ τ(U)

⊥ if 0 ̸∈ τ(U) and 1 ̸∈ τ(U),

is a continuous real valued function on B, e2a = ea, and coz(ea) = a for every
a ∈ B. We set Q := eaR(B). For every α ∈ R(B),

α ∈ Q ⇒ coz(α) ≤ coz(ea) ⇒ coz(α) = ⊥ or coz(α) = a ⇒ α = 0 or coz(α) = a.

Hence, eb, ec ̸∈ Q and ebec = e⊥ = 0 ∈ Q, and thus Q is not a prime ideal.
Also, from b, c ∈ Coz

(
R(B) \ Q

)
and b ∧ c = ⊥, we infer that R(B) \ Q is

not a coz-filter. This shows that primeness is needed in Proposition 6.1.

Proposition 6.3. The following statements are true:

(1) If F is a prime coz-filter on L, then P := R(L) \Coz←(F) is a prime
z-ideal of R(L) and F = Coz

(
Coz←(F)

)
.

(2) If F is a prime coz-filter on L and Q :=
{
α ∈ R+(L) : coz(α) ∈ F

}
,

then P := R+(L) \Q is a prime z-ideal of R+(L) and F = Coz(Q).

Proof. Let α, β ∈ R(L) with α, β ∈ P be given. Then coz(α) ̸∈ F and
coz(β) ̸∈ F , which follows that coz(α − β) ≤ coz(α) ∨ coz(β) ̸∈ F , because
F is prime, and this implies that α−β belongs to P . Also, since coz(αγ) ≤
coz(α) ̸∈ F , we infer that αγ ∈ P . Hence, P is an ideal of R(L).

Let (α, β) ∈ P ×R(L) with coz(α) = coz(β) be given. Then coz(β) ̸∈ F ,
which implies that β ∈ P . It is clear P ̸= R(L). Thus P is a z-ideal of
R(L).

Let α, β ∈ R(L) with αβ ∈ P be given. Then

coz(αβ) ̸∈ F ⇒ coz(α) ̸∈ F or coz(β) ̸∈ F , since F is a coz-filter on L

⇒ α ∈ P or β ∈ P.
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Thus, P is a prime z-ideal of R(L). The rest is evident.

(2). Let α, β ∈ R+(L) with α, β ∈ P be given. Then coz(α), coz(β) ̸∈ F ,
which follows that coz(α + β) = coz(α) ∨ coz(β) ̸∈ F , because F is prime,
and this implies that α + β belongs to R+(L) \ Q. Also, since coz(αγ) ≤
coz(α) ̸∈ F , we infer αγ ∈ P . Hence, P is an ideal of R+(L).

Let (α, β) ∈ P ×R+(L) with coz(α) = coz(β) be given. Then coz(β) ̸∈
F , which implies that β ∈ P . It is clear P ̸= R+(L). Thus P is a z-ideal of
R+(L).

Let α, β ∈ R+(L) with αβ ∈ P be given. Then

coz(αβ) ̸∈ F ⇒ coz(α) ̸∈ F or coz(β) ̸∈ F , since F is a coz-filter on L

⇒ α ∈ P or β ∈ P.

Thus, P is a prime z-ideal of R(L). Now, we show F = Coz(Q). Let α ∈ Q.
Then coz(α) ∈ F , and so Coz(Q) ⊆ F . It is clear F ⊆ Coz(Q).

We recalled from [23] that a nilpotent-free semiring is a semiring
with no nontrivial multiplicative nilpotent elements. It is clear that R+(L)
is a nilpotent-free semiring.

Lemma 6.4. [23, Corollary 3.6] Let S be a nilpotent-free semiring and let
P be a prime ideal of S. Then P is a minimal prime ideal of S if and only
if for each x ∈ P , there exist y ̸∈ P such that xy = 0.

Proposition 6.5. The following statements are true:

(1) If F is a coz-ultrafilter on L, then P := R(L)\Coz←(F) is a minimal
prime ideal of R(L).

(2) If F is a coz-ultrafilter on L and Q :=
{
α ∈ R+(L) : coz(α) ∈ F

}
,

then P := R+(L) \Q is a minimal prime ideal of R+(L).

Proof. (1). Let α ∈ P be given. Then coz(α) ̸∈ F , which follows that there
exists an element β in R(L) with coz(β) ∈ F such that coz(α)∧coz(β) = ⊥,
that is, β ̸∈ P and αβ = 0, because F is a coz-ultrafilter on L. Thus,
by [19, Corollary 2.2], P is a minimal prime ideal of R(L).

(2).It is evident that P is a proper ideal of R+(L). Let α ∈ P be given.
Then coz(α) ̸∈ F , which follows that there exists an element β in R+(L)
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with coz(β) ∈ F such that coz(α)∧ coz(β) = ⊥, that is, β ̸∈ P and αβ = 0,
because F is a coz-ultrafilter on L. Thus, by Lemma 6.4, P is a minimal
prime ideal of semiring R+(L).

Proposition 6.6. The following statements are true:

(1) If P is a minimal prime ideal of R(L), then Coz
(
R(L) \ P

)
is a coz-

ultrafilter on L. In particular, the map

Ψ
(
P 7→ Coz

(
R(L) \ P

))
: Min

(
R(L)

)
→ Ω(L)

is a bijection map (Ω(L) is the set of all coz-ultrafilter on L).

(2) If P is a minimal prime ideal of R+(L), then Coz
(
R+(L) \ P

)
is a

coz-ultrafilter on L.

Proof. (1). See [1, Proposition 4.6].
(2). Let α ∈ R+(L) with coz(α) ̸∈ Coz

(
R+(L) \ P

)
be given. Then

α ∈ P , which implies from Lemma 6.4 that there exists an element β ∈
R+(L) with β ̸∈ P such that αβ = 0. Hence coz(β) ∈ Coz

(
R+(L) \ P

)

and coz(α)∧ coz(β) = ⊥. Therefore, Coz
(
R+(L) \P

)
is a coz-ultrafilter on

L.

Proposition 6.7. Let L be a completely regular frame. Then, the following
statements are equivalent:

(1) L is a P -frame.

(2) For every I ∈ ΣβL, OI = MI .

(3) For every I ∈ ΣβL, Coz
(
R(L) \MI

)
is a coz-ultrafilter.

Proof. (1) ⇔ (2). See [7, Proposition 3.9].
(2) ⇒ (3). Let I ∈ ΣβL be given. Since, by [9, Proposition 5.2],

MI is a minimal prime ideal of R(L), we infer from Proposition 6.6 that
Coz

(
R(L) \MI

)
is a coz-ultrafilter.

(3) ⇒ (2). Let I ∈ ΣβL be given. Suppose α ∈ MI . Since, by Proposi-
tion 6.5, MI is a minimal prime ideal of R(L), we infer from [19, Corollary
2.2] that there exists an element β ∈ R(L) with β ̸∈ MI such that αβ = 0,
which, from [9, Lemma 5.3], gives α ∈ OI . Since OI ⊆ MI , we deduce that
OI = MI .
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Let L be a completely regular frame and let I ∈ ΣβL. Throughout this
paper, we define

CI :=
{
coz(α) : α ∈ R(L) and cβL(I) ⊆ clβLoβL

(
rL(coz(α))

)}
.

One can prove

CI =
{
coz(α) : α ∈ R(L) and cβL(I) ⊆ cβL

(
rL(coz(α))

∗)}.

Proposition 6.8. Let L be a completely regular frame and let I ∈ ΣβL.
Then, the following statements are true:

(1) For every α ∈ R(L), coz(α) ∈ CI if and only if α ̸∈ OI .

(2) If the set OI is a prime ideal of R(L), then CI is a prime coz-filter
on L.

(3) If the set CI is a coz-filter on L, then OI is a prime ideal of R(L).

Proof. (1). Necessity. Let α ∈ R(L) with coz(α) ∈ CI be given. If α ∈ OI ,
then

cβL(I) ⊆ intβLcβL
(
rL(coz(α))

)
= oβL

(
rL(coz(α))

∗),
which implies that

cβL(I) ⊆ oβL
(
rL(coz(α))

∗) ∩ cβL
(
rL(coz(α))

∗) = O,

which is a contradiction. Hence, α ̸∈ OI .

Sufficiency. Let α ∈ R(L) with α ̸∈ OI be given. Since coz(α) ∧
coz(α)∗ = ⊥ ∈ I and coz(α) ̸∈ I, we deduce coz(α)∗ ∈ I, because I is a
prime ideal of L. Thus,

rL(coz(α))
∗ = rL(coz(α)

∗) ⊆ I ⇒ cβL(I) ⊆ cβL(rL(coz(α))
∗)

⇒ coz(α) ∈ CI .

(2). Since cβL(I) ̸⊆ O = clβLoβL
(
rL(⊥)

)
, we infer ⊥ ̸∈ CI . Let α, β ∈

R(L) with coz(α), coz(β) ∈ CI be given. Then, by part (1), α, β ̸∈ OI , and
since OI is a prime ideal of R(L), we deduce αβ ̸∈ OI , which, from part
(1), gives

coz(α) ∧ coz(β) = coz(αβ) ∈ CI .
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Let α, β ∈ R(L) with coz(α) ∈ CI and coz(α) ≤ coz(β) be given. Then

cβL(I) ⊆ clβLoβL
(
rL(coz(α))

)
⊆ clβLoβL

(
rL(coz(β))

)
,

which implies coz(β) ∈ CI . Hence, CI is a coz-filter on L.

Let α, β ∈ R(L) with coz(α) ∨ coz(β) ∈ CI be given. Then, by part
(1), α2 + β2 ̸∈ OI , which gives α ̸∈ OI or β ̸∈ OI , and hence, by part (1),
coz(α) ∈ CI or coz(β) ∈ CI . Therefore, CI is a prime coz-filter on L.

(3). Let α, β ∈ R(L) with α ̸∈ OI and β ̸∈ OI be given. Then,
by part (1), coz(α) ∈ CI and coz(β) ∈ CI , which imply that coz(αβ) =
coz(α) ∧ coz(β) ∈ CI , because CI is a coz-filter on L, which, from part (1),
gives αβ ̸∈ OI . Therefore, OI is a prime ideal of R(L).

We recall that a frame L is a F -frame (a quasi-F -frame) if the open
quotient of each (dense) cozero element is a C∗-quotient. L is a F ′-frame
if a ∧ b = ⊥ for a, b ∈ Coz(L) implies a∗ ∨ b∗ = ⊤.

A frame L is a F -frame if and only if for all a, b ∈ Coz(L) with a∧b = ⊥,
there exist c, d ∈ Coz(L) such that c ∨ d = ⊤ and c ∧ a = d ∧ b = ⊥.

Proposition 6.9. For a completely regular frame L, the following state-
ments are equivalent:

(1) L is a F -frame.

(2) For every I ∈ ΣβL, CI is a prime coz-filter on L.

(3) For every I ∈ ΣβL, CI is a coz-ultrafilter on L.

Proof. (1) ⇒ (2). Let L be a F -frame. Then for every I ∈ ΣβL, by [8,
Proposition 3.4], OI is a minimal prime ideal of R(L), which implies from
Proposition 6.8 that CI is a prime coz-filter on L.

(2) ⇒ (3). Let I ∈ ΣβL be given. Then, by our hypothesis, CI is a
prime coz-filter on L, which, from Proposition 6.8, gives OI is a prime ideal
of R(L), and so, by [8, Proposition 3.4], OI is a minimal prime ideal of
R(L). Therefore, by Propositions 6.3 and 6.8, CI = Coz

(
R(L) \ OI

)
is a

coz-ultrafilter on L.

(3) ⇒ (1). Let I ∈ ΣβL be given. Then, by our hypothesis and Propo-
sition 6.8, OI is a prime ideal of R(L). Hence, by [10, Proposition 4.9], L
is a F -frame.
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It is well known that an ideal I ofR(L) is fixed if and only if
∨

α∈I coz(α) ̸=
⊤ and by Lemma 4.4 in [8], for every I ∈ ΣβL,

∨

α∈OI

coz(α) =
∨

α∈MI

coz(α) =
∨

I.

In [11, Lemma 4.7 ], it was shown that a completely regular frame L is
compact if and only if every maximal ideal of R(L) is fixed. Also, by [8,
Proposition 4.5], a completely regular frame L is a F ′-space if and only if
OI is a prime ideal for every I ∈ ΣβL with

∨
I ̸= ⊤. Using these facts and

Propositions 6.8 and 6.9, the following proposition holds.

Proposition 6.10. For a compact completely regular frame L, the following
statements are equivalent:

(1) L is a F ′-frame.

(2) For every I ∈ ΣβL, CI is a prime coz-filter on L.

(3) For every I ∈ ΣβL, CI is a coz-ultrafilter on L.
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