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Abstract. For a frame L, R (L) denotes the nonnegative real valued con-
tinuous functions on L. We define the concept of z-ideals in this semiring
and give a characterization of its z-ideals in terms of cozero elements of L.
Also, we show that there is a one-one correspondence between z-ideals and
z-congruences on a ring R(L) and a semiring R (L). We establish a rela-
tionship between z-congruence relation on R(L) and z-congruence relation
on RY(L). A new characterization of P-frames is given via z-congruences on
RT(L). Also, we show that there is a bijection between the minimal prime
ideals of R(L) and coz-ultrafilter on L.

1 Introduction

The notion of semirings was introduced in [25] in 1934. In fact, semirings
are algebraic systems that generalize both rings and distributive lattices and
have many applications in diverse branches of mathematics and computer
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science. Semirings have two binary operations of addition and multiplica-
tion, which are connected by the ring-like distributive laws. However, unlike
in rings, subtraction is not allowed in semirings that are not rings. As we
know, in the study of ring structure, ideals play an important role; the same
is true for semirings. Although the concept of ideal in semirings is different
from this concept in rings. The lack of subtraction in semirings shows that
many results in rings have no equivalent in semirings. To solve the sub-
traction problem in semiring, the concept of k-ideal was introduced in [18].
After the introduction of the k-ideal, several studies have been carried out
on semirings (see [13, 17, 20, 21]).

The ring C'(X) was studied extensively by Gillman and Jerison [15]. The
positive cone of this lattice ordered ring is denoted by CT(X), that is,

CH(X)={feC(X): f>0}

Moreover, C*(X) is a partially ordered commutative semiring with additive
identity 0 and multiplicative identity 1. The semiring C*(X) emerged as an
important area in literature in [2, 3]. Later, Vechtomov et al. [27] studied
the semiring C*(X) extensively. Congruences on semirings were studied
by Varankina et al. [26]. They described maximal congruences on semirings
CT(X). In 1993, Acharyya et al. [2] introduced the z-congruence on C*(X)
and showed that there is a bijection between the set of all z-congruences
on CT(X) and the set of all 2-filters on X. Mohammadian [22] introduced
the concept of positive semirings, and by using the fact that maximal ideals
contain an element of a positive semiring, he gave the concept of z-ideals in
this kind of semiring and investigated some properties of these ideals.

Since M. Stone worked on Stone duality in the 1930s and showed that
topology can be viewed from an algebraic point of view (lattice-theoretic),
the pointfree version of C'(X) has also been studied. The ring of real valued
continuous functions on a frame L, which is the pointfree version of C'(X),
is the set of all frame homomorphisms « : L(R) — L, where L(R) is the
frame of reals, which is isomorphic to the frame of open subsets of R. This
ring is denoted by R(L) (see [4] and [5] for details). In this article, we study
the semiring R* (L) of all nonnegative real valued continuous functions on
L, which is the pointfree version of C*(X).

This paper is organized as follows. Section 2 presents the basic concepts
and preliminaries, which will be used in the next sections. In Section 3, we
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give a characterization of z-ideals in a semiring R (L) in terms of cozero
elements of L, which we shall need throughout. In Section 4, we introduce
the concepts of z-congruence in ring R(L) and semiring R (L). We give a
correlation between z-congruences on R(L) and z-congruences on R (L).
Also, we show that there is a one-one correspondence between z-ideals and
z-congruences on a ring R(L) and a Semiring RT(L). In Section 5, we
consider the lattice (28¢(L), C ), where 2S/(L) := {¢z(coz(a)): o € R(L)},
and consider a z-filter on this lattice. We examine the relationships between
z-filters on S¢(L) and proper congruences on the ring R(L) and the semiring
RT(L). In Section 6, we check equivalence conditions that a frame L is an
F-frame and a P-frame. We show that there is a bijection between the
minimal prime ideals of R(L) and coz-ultrafilter on L.

2 Preliminaries

In this section, we give some basic concepts and preliminaries, which will
be used in next sections.

2.1 Ring of R(L) It is well known that a complete lattice L is called a
frame if aA\/ X = \/,cx (aAz) for every (a, X) € LxP(L). The frame L(R)
of reals is obtained by taking the ordered pairs (p, ¢) of rational numbers as
generators and imposing the following relations:

(R1) (p,q) A (r,s) = (pV g Ns),

(B2) ()Y (10) = .0 vhenever p <7 < g

(R3) (p,q) \/{r,s.p<r<s<q},

(R4) T =V{(p,9): p,q € Q}.

Note that the pairs (p,q) in £(R) and the open intervals (p,q) = {:U €
R: p < z < ¢} in the frame OR have the same role. Let R(L) be the set
of all frame maps from L£(R) to a completely regular frame L, which is an
f-ring. The reader can see [5] for more details of all these facts.
The properties of mapping coz: R(L) — L, defined by coz(y) = ¢(—,0)V

—), which are often used by us, read as follows:

1) coz(ap) = coz(a) A coz(B).
2) coz(a+ () < coz(a) V coz(B) = coz(a? + £2).
3) a € R(L) is invertible if and only if coz(a) = T.

¥
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(4) coz(a) = L if and only if « =0

For A C R(L), let Coz(A) := {coz(a): a € A} and let the cozero part
of L, denoted by Coz(L), be the regular sub-o-frame consisting of all the
cozero elements of L. It is known that L is completely regular if and only if
Coz(L) generates L. For A C Coz(L), we write Coz* (A4) to designate the
family of frame maps {& € R(L): coz(a) € A}.

2.2 Sublocale It is well known that a subset S of a frame L is called a
sublocale of L if A A € Sand a — s € S for every (4,a,s) € P(S)xLxS.
A sublocale is an independent frame, where the meets (and hence the partial
order) and the Heyting implication are computed in L. The lattice of all
sublocales of a frame L is denoted by S¢(L). The finite meet in this lattice
is the intersection of them and the join of every subset {5} yep Of SU(L) in
this lattice is given by

\/SA:{/\X:XQ USA}.

AEA AEA

The pair (S/(L),C) is a coframe, which O := {T} and L are bottom
and top elements of SI(L), respectively. For every a € L, we say 0 L( ) =
{a — 2: (a — ) = x € L} is an open sublocale of L and ¢y (a) := {z €
L:a< a:} = Ta is a closed sublocale of L. Also, the zero and the COZEero
sublocales corresponding to each o € R(L) are, respectively, the sublocales
cr,(coz(a)) and oy (coz(r)). We denote the set of all zero sublocales of L
by z8(L). Some of the properties of open and closed sublocales, which will
be used freely, are as follows:

(1) OL(J_) =0= CL(T) and OL( ) L= CL(J_)
(2) oL(a/\b) = OL(CL) Nor(b) and OL(\/ i) = \/ ( i)
(3) CL(CL/\ b) = CL((J,) V CL(b) and CL(\/i z) = /\2 cL(ai).

The closure of a sublocale S of L, denoted S or cl;,(S), and its interior,
denoted S° or intz,(.9), are the sublocales

clp(S) :ﬂ{cL( S Cer(a —CL</\S)

int(S) = \/{or(a) CS}—0L</\(L\S)>.

and
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2.3 Semiring We recall from [16, 24] that a semiring is a nonempty
set S on which operations of addition and multiplication have been defined
such that the following conditions are satisfied:

1
2
3
4

(S,4) is a commutative monoid with identity element 0.
(S,-) is a commutative monoid with identity element 1.
Multiplication distributes over addition.

(
(
(
(4) Or=0=r0forall re S.

)
)
)
)

An element r of a semiring S is a unit if and only if there exists an
element 1’ of S satisfying rr' = 1 = r'r. We denote the set of all units
of S by U(S). A semiring S is said to be positive if for each z € S,
14z € U(S). A nonempty subset I of S is called an ideal of S'if a+b € [
and ra € [ for all a,b € I and r € S. An ideal I of S is said to be
proper if I # S. Moreover, S and {0} are said to be trivial ideals of S.
Denote by ZD(S) the family of all ideals of S. For an ideal I of S, the set
I= {:c €S:xz+a=>for some a,b € I} is called the subtractive closure

or k-closure of I in S. The set I is an ideal of S such that I C T and I = I.
An ideal I of S is called a subtractive ideal or k-ideal of S if I = I.
Denote by KZ(S) the family of all k-ideals of S. Also, a proper ideal M of
a semiring S is called a maximal ideal of S if M C I C S for any ideal
I of S implies either I = M or I = S. We denote the set of all maximal
ideals of S by Max(S).

2.4 Congruence relation on semirings An equivalence relation
p defined on a semiring S which satisfies the additional condition that if
(a,b) € p and (¢,d) € p then (a+ ¢, b+ d) € p and (ac,bd) € p is called a
congruence relation. It is easy to see that this definition is equivalent to;
a congruence relation p on S is an equivalence relation, such that (a,b) €
p implies (a + z,b + ), (azx,bx) € p for every a,b,xz € S. The family
of all congruences on S is denoted by Cong(S). The set Cong(S) with
respect to the inclusion generates an algebraic lattice: p C 7 means that
apb implies a7b for all a,b € S. Congruence p on S is called cancellative if
(a+x,b+x) € p implies (a,b) € p for every a,b,z € S. Also, a cancellative
congruence p is called regular congruence if there exists (e1, e2) # (0,0),
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where e; and ey are distinct elements in S such that (a + eja, e2a) € p for
each a € S.

Consider the ring R(L). The positive cone of this lattice ordered ring is
denoted by R*(L), that is,

RT(L) :={aeR(L): o >0}.

In fact, RT(L) is a partially ordered commutative semiring with additive
identity 0 and multiplicative identity 1. It is easy to see that, for every
congruence relation p on R(L),

p°i=pNRT(L) x RY(L)

is a congruence relation on R*(L) and for every congruence relation p on
RT(L), the relation

p¢ = {(a,8): a, € R(L) and o — B = — § for some (7,0) € p}

is a congruence relation on R(L).

3 z-ideals in semiring R* (L)

The concept of z-ideal in positive semirings was introduced in [22]. In this
section, we give a characterization of z-ideals in the semiring R (L) in terms
of cozero elements of L, which we shall need throughout.

An ideal J of L is said to be completely regular if for each = € J,
there exists y € J such that x << y. For a completely regular L, the frame
of its completely regular ideals is denoted by SL. The join map 8L — L
is dense onto and referred to as the Stone-Cech compactification of L. We
denote its right adjoint by r7. A straightforward calculation shows that
rp(a) = {xr € L: z << a} for each a € L. For each I € BL, the ideals
M’ and O of R(L) are defined by M! = {p € R(L): r1(coz¢) C I} and
O = {p € R(L): rp(cozp) =< T}(see [9, 12]).

Clearly, Of € M. Since, for any I € 3L and a € L, rr(a) << I if and
only if a € I, it follows that Of = {¢ € R(L): coz(¢) € I}. The following
is shown in [9]:

1. A subset @ of R(L) is a maximal ideal iff there is a unique I € ¥5L
such that Q = M/, where YL is the set of all prime elements of SL.
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2. If P is an ideal of R(L), there exists J € BL such that O/ C P C M”.
3. For any I € 8L, M! is the unique maximal ideal containing O’.

Let Max(R(L)) be the set of all maximal ideals of a ring R(L). For
a € R(L) and A C R(L), let M, = ({M € Max(R(L)): o € M} and
My =M € Mazx(R(L)): M 2> A}. By [7, Lemma 3.7], for every ideal
Q of R(L),

Mg = {<p e R(L): rL(coz(go)) < \/ TL(COZ(Q))},
a€e@

and for every o € R(L),
M, = {p € R(L): coz(p) < coz(a)}.

Now, let S be a semiring, let a € S, and let M, be the intersection of all
maximal ideal containing a. If S is a positive semiring, then by [22, Theorem
2],

My={zeS:VyeSa+ygUS)=a+z+ydU(S)}.

Definition 3.1. An ideal I of semiring S is called a z-ideal if for every
acel, M, C1I.

We recall that for every family {a;};.; of elements of L, \/,.;a; = T if
and only if ;¢ ¢ (a,-) = 0. Then a frame L is compact if and only if for
every family 7 = {cr(a;)};c; of closed sublocales of L, [|F = O implies
there exists a finite subset {il, ces ,in} of I such that ﬂ?:l cr (aij) = 0.
Also, if L is a compact frame, then there exists a maximal element m of L
such that a < m for every a € L\ {T}

In the following proposition, we investigate the relationship between the
maximal ideals of the semiring R*(L) and the maximal ideals of the ring
R(L). We use the above points to prove this proposition.

Proposition 3.2. Let M be an ideal of RT(L). Then M is a mazimal ideal
of RY(L) if and only if there exists a unique element I of 3L such that
M =M NRH(L).

Proof. Necessity. Let M be a maximal ideal of R (L). It is evident that
for every finite subset A of M,

N\ crlcoz(e)) = ¢z <coz (Z oz)) £0.

acA acA
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From the compactness of 5L, it follows that there exists an element (J, ) in
BL x AL such that J € (e clgrrr <cL (coz(a))) # O and J C I. Since
M C M/ NRT(L) € MINR*(L), we deduce from the maximality of M
that M = M NR*(L).

Sufficiency. Let I € YL with M = M! N R*(L) be given. Suppose
a € RTY(L)\ M. Then a ¢ M!, which implies from the maximality of M’
that there exists an element (3,7) in R(L) x M! such that a8+~ = 1, and
we obtain coz(a?% +9?) > coz(af + ) = T. Thus we have a?38% ++? €
(M,0) NU(R*(L)), which implies that (M,a) = R*(L). Therefore, M is
a maximal ideal of R*(L). O

Let o € RT(L) and let M} be the intersection of all maximal ideal of
R* (L) containing . Then

M ={3e€R"(L):Vy € RT(L),coz(a+~) # T = coz(a+ B +7) # T}
In the following proposition, we give a relation between M, and M for
every o € RT(L).

Proposition 3.3. For every a € RY(L), M} = M, NR*(L).

Proof. By Proposition 3.2, we have

Mt = N M
aeM, MeMax(R*t(L))
= N (M N (RH(L))
aceM!, IeSBL
- ( N MI) AR (L)
aeM!, IeXBL
- ( N M) NR*(L)
aeM, MeMax(R(L))
= M,NR"(L).

O]

Now, by the above proposition, we show that the behavior of z-ideals in
the semiring R (L) is completely similar to the behavior of z-ideals in the
ring R(L).



Z-ideals and Z-congruences on semiring Rt (L) 113

Proposition 3.4. For any ideal Q of R (L), the following conditions are
equivalent:

(1) @ is a z-ideal.
(2) For any o, € R (L), o € Q and coz(a) = coz(B) imply B € Q.

Proof. (1)=(2) Suppose coz(a) = coz(f3), where o, 8 € RT(L) and «a € Q.
Then, 8 € M, and so 8 € M,NR"(L). Hence by Proposition 3.3, 3 € M.
Now, since @ is a z-ideal and a € @, we have M C Q. Therefore 3 € Q.
(2)=(1) Let a € Q and let 3 € M. Since 8 € R*(L), by Proposition
3.3, we have € M, and so coz(f) < coz(a). Thus coz(af) = coz(f) and
since aff € @, we have 8 € Q by (2). Then M} C Q. Therefore Q is a
z-ideal. O

4 z-congruences in ring R(L) and semiring R* (L)

In this section, we introduce the concept of z-congruence and study the
relationship between z-congruence and z-ideals in ring R(L) and semiring
RT(L).

Let L be a completely regular frame. We recall from [15] the following
concepts:

(1) If F is a proper filter on Coz(L), then it is called a coz-filter on L.

(2) A prime coz-filter on L is a coz-filter F such that coz(«) V coz(8) € F
implies coz(a) € F or coz(f) € F.

(3) A coz-filter G on L is a coz-ultrafilter if whenever G C F, where F
is a coz-filter, then G = F.
Definition 4.1. Throughout this paper, we define
(1) pg == {(,B8): a,f € R(L) and a — 3 € Q} for every subset Q of
R(L)
(2) pa = {(a,ﬁ): a,3 € RY(L) and a — 8 € Q} for every subset @Q of
RT(L).

(3) Qp = {a —pB:a,8 € R(L) and (o, B) € p} for every binary relation
pon R(L).
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(4) QF :=={a—p:a,8 R (L) and (o, B) € p} for every binary relation
pon RT(L).
Definition 4.2. We call a proper congruence p on
(1) R(L) a z-congruence if o, € R(L) with coz(a — ) € coz(Q,)
implies («, B) € p.
(2) R*(L) a z-congruence if coz(a — () € coz(Q}) implies (a, ) € p
for every o, 3 € RT(L).
Also, the set of all z-congruences on R(L) (or on R*(L)) will be denoted
by zCong(L) (or zCong™(L)).

Remark 4.3. Let p be a z-congruence on R* (L), and let a, 3,7 € R (L)
with (a+~,8+7) € p be given. Then coz(a — ) = coz(a+v— (B+7)) €
coz(Qj), which implies by the definition of z-congruence that (o, 3) € p.
Therefore, every z-congruence on R* (L) is cancellative.

Lemma 4.4. If p is a z-congruence on R (L), then p = p.

Proof. Tt is clear that p C p®. Conversely, let («,3) € p®“. Then «,f €
RT(L) and («, B) € p°, which implies that o« — 3 = — 4 for some (v, ) € p,
and so o+ = § + . Since p is a congruence relation, we have (o + v +
3,4+~ +6) € p. Then, by Remark 4.3, (o, #) € p and we see that p°© C p.
Therefore, p® = p. O

Lemma 4.5. For every a,3 € R(L), there exist v,6 € RY(L) such that
a—p=v—9.

Proof. We put (a,b) = ((a — 8)(0,-), (8 — @)(0,—)),

@), Jy=vala=p), )= 0a0,
= CL( ), Y2 := vBO, 0 :==vB(f —a).
It is evident that for every p,q € Q,

d2(p,q) VaVvb=(8—a)p,q) V(B —a)0,—)Vcoz(a—F)

T ifp<0<yq
B coz(a — ) if0<porg<0

=d1(p,q) V coz(ax — B)
=d1(p,q) Va Vb,
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and a similar argument shows that

(P, q) VaVvb="(p,q)VaVb.

Since a A b = L, we conclude from [6, Proposition 1.7] that there exists a
pair unique elements 7, ¢ in R(L) such that

for all s € L(R). Then for every p,q € Q,

(y=0)(p,—) = [(v=08)(p,—) Va] A[(y—0)(p,—) VD]

— [\/ (mi(t,—) /\51(,tp))] A {\/ (72(t, —) A52(ﬂfp))]

teQ
= (m —d1)(p, =) A (2 = d2)(p, —)
= (vala = B) = v40))(p, =) A (vBO — v5(8 — a)) (p, -)
= vala = B)(p.—) Avp(a—B))(p, )
= ((a=B)p,—) Va) A ((e=B)p,—) VD)
=(a=B)p.—)V(aAb)
= (a—B)(p,-)
and similarly,
(v =0)(—q) = (a=B)(—,q).
Therefore, v — 6 = a — 5. O

Proposition 4.6. The following statements are true:
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(1) If p is a z-congruence on R(L), then p° is a z-congruence on R*(L).
Moreover,

{coz(a—ﬁ): a,f €R(L), (o, B) € ,0} = {Coz(a—ﬁ): a,B€RY(L),(a,B) € pc}.

(2) If p is a z-congruence on RT (L), then p° is a z-congruence on R(L).

Proof. (1). Let o, € RT(L) with coz(a — ) € coz(Q}.) be given. Then
there exist v,d € R (L) such that (v,d) € p¢ and coz(a — 8) = coz(y — 9).
Then (v,9) € p and coz(a — B) = coz(y — J) € coz(Q,). Since p is a z-
congruence on R(L), (o, 3) € pN (RT(L) x RT(L)) = p°. Therefore, p° is
a z-congruence on R (L).

(2). Let o, B € R(L) with coz(a — ) € coz(Q,e) be given. Then there
exist (vy,0) € p® and (n,u) € p such that coz(aw — B) = coz(y — J) and
v — 38 =n— u. On the other hand, by Lemma 4.5, there exist h,k € R*(L)
such that o — 8 = h — k. Hence

coz(h—k) = coz(a— ) = coz(y— ) = coz(n—pu) € coz(Q;r)(or coz(Qpe)).

Since p is a z-congruence and h,k € R (L), we have (h,k) € p. Then
(a, B) € p°. Therefore, p° is a z-congruence on R(L). O

Proposition 4.7. The following statements are true:

(1) If p is a proper congruence relation on R(L), then Q, is a proper ideal
of R(L) and p = P, In particular, if p is a z-congruence relation on
R(L), then Q, is a z-ideal of R(L).

(2) If p is a proper congruence relation on RY(L), then Q;r is a proper
ideal of RT(L) and p = p++. In particular, if p is a z-congruence

Qp
relation on R* (L), then QF is a z-ideal of R*(L).

(3) If Q is a proper ideal of R(L), then pg is a proper congruence on
R(L) and Q = QPQ. In particular, if Q is a z-ideal of R(L), then pg
is a z-congruence on R(L).

(4) If Q is a proper ideal of RY(L), then ké 18 a proper congruence on
RY(L) and if Q is a k-ideal of RT (L), then Q = th. In particular, if

Q

a k-ideal Q of R (L) is a z-ideal of R (L), then k‘5 is a z-congruence
on RT(L).
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Proof. (1). Let n,u € Q, and o € R(L) be given. Then there are o, 3,7, €
R(L) with (a, 8),(7,d) € p such that n = a — 8 and u = v — 0. Thus
(o + 7,6+ 90),(ao,Bo) € p and so, n + p,no € Q,. If 1 € @Q,, then
1 =« — j for some («, 8) € p, which implies that (1,0) € p. Consequently,
p is not proper, and this is a contradiction. Therefore, @), is a proper ideal
of R(L).

Let (o, B) € Q,x R(L) with coz(c) = coz(/3) be given. Then there exists
an element (v, ) € p such that a = v — §, which implies that coz(8 — 0) =
coz(a) = coz(y —¢), and so (3,0) € p. Thus B =5 —0 € Q,. Then Q, is a
z-ideal of R(L).

(2). The proof is similar to the proof of part (1).

(3). Since @ —a =0 € Q, we have (o, a) € pg for every aw € R(L). If
a, B,y € R(L) with (o, B), (8,7) € pg, then a—v = a—S+F—v € Q, which
implies that (c,7) € pg. Hence, pg is an equivalence relation on R(L). Let
a,B,7,6 € R(L) with (o, 8), (7,9) € pg be given. Then oo — 5,7 — 0 € Q,
which implies that (o +7) — (84 9) € Q and

ay—pBo=ay—=PBy+py—pi=(a—-B)y+(y—9)B Q.
Hence, (a4 7,5+ 9), (v, 89) € pg. Therefore, pg is a congruence relation
on R(L). It is evident that Q = @y,

If Q is a z-ideal of R(L) and «, 5 € R(L) with
coz(a — fB) € coz(QpQ) = coz(Q),
then a—f € @, which implies that («, 8) € pg. Hence, pg is a z-congruence
on R(L).
(4). From0 € Qand a+0=a+0, (o, ) € k5 for every a € R*(L).

If o, 8,7 € RY(L) with (o, 8),(8,7) € k‘zg, then there exist f,g,h,k € Q
such that a + f = 8+ g and 8+ h = v + k. Therefore

at+f+h=B+g+h=y+k+h.

Since @ is an ideal of R* (L), we conclude that (a,7) € kzg Hence, k5 is an
equivalence relation on R*(L). Let «, 3,7v,6 € R*(L) with («, 3), (7,9) €
kJQr be given. Then there exist f,g,h,k € @ such that a + f = 5+ ¢g and
v+ h =6 + k, which implies that « + v+ f+h =+ + g+ k and

(a+)(y+h)=B+9) 0 +k) = ay+ah+~f+ fh
= B8 + Bk + 6g + gk.
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Hence, (a+~v,84+9), (a7, 5d) € kgg Therefore, ké is a congruence relation
on RT(L).
Now, we show Q = Q*, . Let a € Q. Since 0 € Q and o +0 = 0 + «,
k
Q
so («,0) € k‘zg, which implies @« = o — 0 € Qt. Conversely, let a € Q++.
k k

Q Q
Then there exist f,g € RT(L) such that « = f —g and (f,g) € k:g By the

definition of kg, there exist v,6 € @ such that f +~ =g+ . Hence

aty=f+7-9g=9g+di—g=0€Q.
Since @ is a k-ideal and v, + v € @), we have a € ). Hence Q; C Q.
Q
If Q is a z-ideal of R*(L) and «, 8 € RT(L) with

coz(a — fB) € COZ(Q;L) = coz(Q),

Q

then a—f € @, which implies that (a, 8) € k:zg Hence, k:5 is a z-congruence
on RT(L). O

We recall from [17] that a proper k-ideal I of a semiring S is called k-
maximal if it is not properly contained in another proper k-ideal. Hence,
by [17, Proposition 3.3 ], an ideal I of a semiring S is k-maximal if and only
if it is a k-ideal and a maximal ideal of S.

Lemma 4.8. Let Q be a k-ideal of RT (L) and let p be a cancellable con-
gruence on RY(L). Then k5+ =p
p

Proof. Let a,8 € RY(L) with (a,8) € p be given. Then, there exists
fe Q;‘ such that a—f = f. Hence, a+0 = S+ f, which means («, 3) € kJQr+.
P

Then, p C k‘éﬁr. Conversely, let o, 3 € R (L) with (a, ) € k5+ be given.
p p

Then there exist v,d € Q;r such that a4+~ = 8+ 4, which implies from the
definition of Q:{ that v = f—g and § = h—k for some (f, g), (h, k) € p. Since
p is a congruence relation, (g +h, f+k) € pand so (g+h) — (f+k) € QF,
which implies that o — 8 € Q. Hence, there exist o/, 8/ € R (L) such that
(/,8Yepand a— B =a' — . Then o/ + 3 = a+ . On the other hand,
(o/ + 8,8 +B) € pand so (a«+ 3,8 + B) € p. Since, p is a cancellative
relation on Rt (L), we conclude («a, 8) € p. Thus, k5+ Cp. O
p
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Proposition 4.9. The following statements are true:

(1) If p is a mazimal congruence on R(L), then p is a z-congruence on
R(L) and Q, is a mazimal ideal of R(L).

(2) If p is a mazimal congruence on R (L), then p is a z-congruence on
R (L) and QF is a mazimal ideal of R*(L).

(3) If M is a mazximal ideal of R(L), then pyr is a mazimal congruence
on R(L).

(4) If M is a k-mazimal ideal of RT(L), then kj; is a mazimal congruence
on the class of cancellative congruence on R*(L).

Proof. (1). Let J be a proper ideal of R(L) such that @, € J. Then
p = pg, € P and by the maximality of congruences on R(L), we have
p = pg, which implies @, = Q,, = J. Hence, @, is a maximal ideal of
R(L). Also, by part (3) of Proposition 4.7, p = P, 1s a z-congruence on
R(L), since Q, is a z-ideal of R(L).

(2). The proof is similar to that of part (1).

(3). Let M be a maximal ideal of R(L). Since every maximal ideal
of R(L) is a z-ideal, we conclude from Proposition 4.7 that pps is a z-
congruence on R(L). Now, let p be a congruence on R(L) and let pys C p.
Then M = M,,, € M,, and by the maximality of ideals of R(L) we have
M = M,, which implies pps = ppr, = p. Hence, pp is a maximal congruence
on R(L).

(4). Let p be a cancellative congruence relation on R (L) and let ki, C

p. Then M = M Ij ~ C Mf, and by the maximality of ideals of R*(L) we
M

have M = M Ij , which implies from Lemma 4.8 that k]'\t[ = kzj\}+ = p. Hence,
P

k]'\tf is a maximal cancellative congruence on R*(L). O

5 z-filter on the ring R(L) and semiring R*(L)

It is evident that (28(L),C ) is a lattice. In this section, we examine the
relationships between z-filters on S/(L) and proper congruences on the ring
R(L) and the semiring R*(L).

Definition 5.1. A proper filter of 2S/(L) is called a z-filter on S/(L).
Therefore, if F is a z-filter on SI(L), then
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(1) O ¢ F Cz8(L),
(2) for every a,be F,aAbe F, and
(3) ifbe F,a€ 28(L), and b < a, then a € F.
Also, the set of all z-filter on S/(L) will be denoted by zFilS/(L).
Let o, € R(L). We put E(a,B) := ¢g(coz(a — ), and E(p) :=

{E(a, 8): (o, B) € p} for every binary relation p on R(L). Also, for every
subset @ of R(L), let

crcoz(Q) := {cr(coz(a)): o € Q}.

Proposition 5.2. Let L be a frame. Then, the following statements are
true:

(1) If p be a proper congruence relation on R(L), then E(p) is a z-filter
on SU(L).

(2) For any ideal Q of R(L), crcoz[Q] = E(pg)-
(3) If F is a z-filter on SU(L), then

E7YF) = {(a,8) € R(L) x R(L): ¢1(coz(a — B)) € F}
is a proper congruence on R(L).

Proof. (1). If O € E(p), then there exists an element (o, 3) € p such that
¢z, (coz(a — 8)) = O, which implies that a — 3 is a unit of R(L). Then

(aaB)Epi(O‘_ﬁvo) cEp= ((a—ﬁ)(a—ﬁ)_l,O) €p
= (1,0),(0,1) € p= p = R(L) x R(L),

which is a contradiction. Hence, O ¢ E(p). Let 21,22 € E(p) be given.
Then there exist (a1, 51), (a2, B2) € p such that z; = E(ay, 1) and zo =
E(OQ,,BQ). Then

21 Az = ¢ (coz(ay — B1)) Acp(coz(az — B2))
=L (coz(a% +a3+ B+ a3 — 2018 — 201232))

and (o} + a3 + B} + a3,2a161 + 2a262) € p. Hence, z1 A 20 € E(p).
Let (21,22) € E(p) x 2z8/(L) with 23 C 29 be given. Then there exists
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an element ((ou, 1), 8) € p x R(L) such that z; = ¢z (coz(a; — B1)) and
= cL(coz(ﬁ)). From zo = z1Vzy = cL(coz(B(oq—Bl)) and (Boq,ﬁﬁl) € p,
we conclude z3 € E(p). Therefore, E(p) is a z-filter on S¢(L).

(2). Let @ be an ideal of R(L). If a € @, then (a,0) € pg. Thus
cr(coz()) € E(pg). If z € E(pg), then there exists an element («, 3) € po
such that z = ¢z (coz(a — B3)) € ccoz[Q]. Hence, crcoz[Q] = E(pg).

(3). Let (o, 8), (B,7) € E~(F) be given. Then

cr,(coz(a — B)), cr (coz(B — ) € F,
which implies that

cr(coz(a — 7)) > ¢p(coz(a® + 287 ++* — 28(a — 7))
= ¢z (coz(a — B)) Acp(coz(B — 7)) € F.

and so, (a,y) € E71(F). Hence, E~1(F) is an equivalence relation on R(L)
(F) #

and B! R(L) x R(L). Let (a, 8) € E~Y(F) and v € R(L) be given.
Then
cr(coz(a— B)) € F = ¢ (coz(a+v— (B+7)) € F and
cr, (coz(y(a — B)) > ¢z (coz(a — B))
= (a+7,6+7) € BE7H(F) and
¢ (coz(v(a — B)) € F
= (a+7,8+7), (ay,By) € E7H(F).
Therefore, E~1(F) is a proper congruence on R(L). O

Lemma 5.3. Let L be a frame. Then, the following statements are true:

(1) If p is a z-congruence on R(L), then E~1(E(p)) = p.
(2) If F is a z-filter on S(L), then E~Y(F) is a z-congruence on R(L).

Proof. (1). Let o, 3 € R(L) and let (o, 3) € E~*(E(p)). Then ¢z (coz(a —
B)) € E(p). Hence there exists (v,8) € p such that ¢ (coz(aw — B)) =
cr,(coz(y — 4)), and so coz(a — B) = coz(y — §) and v — § € Q,. Since p
is a z-congruence, we conclude («, 3) € p. Therefore E~1(E(p)) C p. The
converse of inclusion is clear.
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(2). Let o, € R(L) with coz(a — B) € coz(Qp-1(F)) be given. Then,
there exists (f,g) € E71(F) such that coz(a — B) = coz(f — g). Therefore,
cr(coz(f —g)) € F and ¢, (coz(a— 3)) = ¢z (coz(f —g)). Hence ¢y, (coz(a —
B)) € F, and so (a, ) € E~1(F). O

Proposition 5.4. Let L be a completely reqular frame. Then, the following
statements are true:

(1) If M is a maximal ideal on R(L), then cpcoz[M] is a z-ultrafilter on
SU(L).

(2) If F is a z-ultrafilter on S¢(L), then (choz)F[]:] ={aeR(L): cr(coza) €
F} is a mazimal ideal on R(L).

Proof. The proof is similar to [15, Theorem 2.5]. O

Proposition 5.5. Let L be a frame. Then, the following statements are
true:

(1) If p is a mazimal congruence relation on R(L), then E(p) is a z-
ultrafilter on SU(L).

(2) If F is a z-ultrafilter on SI(L), then E~1(F) is a mazimal congruence
on R(L).

Proof. (1). Since p is a maximal congruence relation on R(L), by Proposi-
tion 4.7 and 4.9, @), is a maximal ideal and pg, = p. Then, by Proposition
5.4, crcoz[@)) is a z-ultrafilter on SI(L). Also, by Proposition 5.2,

creoz[@p] = E(pg,) = E(p).

Then, E(p) is a z-ultrafilter on S¢(L).

(2). Let F be a z-ultrafilter on S/(L). Then by Proposition 5.4, M =
{a € R(L): ¢ (coz(ar) € F} is a maximal ideal of R(L), and so py is a
maximal congruence by Proposition 4.9. Moreover, it is easy to see that
pv = E71(F) and so E71(F) is a maximal congruence on R(L). O

Lemma 5.6. Let a,3 € RT(L) be given. Suppose that A := cp(a) and
B :=¢1(b), where a := coz((a — B)*) and b :=coz((8—a)). Ifh € R(L)
such that vah(s) = h(s)V coz((a—B)") and vgh(s) = h(s) V coz((f—a)")
for every s € L(R), then « —h, 3 —h € R*(L).
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Proof. 1t is evident that, for every p <0,

vp(a = B)(p, ) = coz((8 — &)™) V (a = B)(p, )

Now, let p < 0, then

(@ —=h)(p,—) = (@=h)(p,—) V(aAD)

= ( a—h)(p,—) \/a) A ((a —h)(p,—) V b)

= ((vaa = vah)(p,—)) A ((vpa —vph)(p, —))
vaa(p,—) A (vpa —vpB)(p, —)

=vaa(p, —) Ave(a— B)(p, —)

=TAT=T

and if p > 0, then

Therefore o — h € RT(L). Also, from

p<0=(B-h)(p,—)=(B-h)(p,— ) (a/\b)
((B=n)(p,—) Va) A((B~h)(p,—) VD)
((VAB - VAh pv )) ((VBﬂ - VBh‘)(p¢ _))

VAB(pv ) ((VBB - VBB)(pv _))

:VAﬂ(pa _)/\T
=TAT=T
and
we infer that § —h € RT(L). O

Proposition 5.7. Let L be a frame. Then, the following statements are
true:
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(1) If p be a proper cancellative congruence relation on R* (L), then E(p)
is a z-filter on SU(L).

(2) For a k-ideal Q of RT(L), ¢pcoz[Q] = E(kg)
(3) If F is a z-filter on SU(L), then
E7YF) = {(a,8) € RT(L) x RT(L): ¢ (coz(a — B)) € F}
is a proper congruence on RY(L).

Proof. (1). If O € E(p), then there exists an element (o, 3) € p such that
¢, (coz(aw — B)) = O, which implies that a — f is a unit of R(L). Since for
every positive real 7, (a +r, 3 + r) € p, without loss of generality, we may
assume ¢z, (coz(a)) = O = ¢z (coz(B)). We set

A= cL(coz((a — 5)+)), ki :=rvaa, h1 := 140,
B :=cp(coz((B — a)™)), ko = vp0, ho 1= vpp.
It is evident that
hi(s)Veoz((a — B) ) Veoz (B — a)F) =T
=ha(s)Veoz((a — B)F) Veoz((8 — a)?)
and that
ki(s)Veoz((a — B)F)Veoz((B — a)T) =T
=ka(s)V veoz((o — B)F) Veoz (B — o))

for every s € L(R). Then, by [6, Proposition 1.7], there exists a pair unique
elements h, k in R(L) such that

{VAh(s):h(s)\/coz((a — )" =hi(s), {VAk(s) = k(s) V coz((a — B)F) = ki(s),
vph(s)=h(s)Veoz((8 — a)*) =ha(s), |vek(s) =k(s)V coz((8 — a)T) = ka(s),

for all s € L(R). By Lemma 5.6, a—h, 3—h,a—k, 3—k € R (L) and since p
is a cancellative congruence, we conclude that (a«—h, B—h), (a—k, B—k) € p.
Consequently,

((a=h)(B—Fk),(B—h)(a—k) €p.
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From

coz(vg(B — h)) = coz(vpB — vph)) = coz(0p) = coz((8 — a)™)

and
coz(va(a — k)) = coz(vaa — vak) = coz(04) = coz((aw — 8)*)
and since (coz((a - 5)+)> A (coz((ﬁ - oz)*)) = 1, we infer that

COZ((B —h)(a — k)) = coz(S — h) A coz(a — k)
= (coz(B — h) A coz(a — k))V
(coz((a -/t ) A coz((ﬁ +))
= coz(va(B — h)) Acoz(vg(8 — h))A
COZ(VA o — )) A coz(yB k;))
= coz(( - B) +) A COZ((ﬁ )+)/\
( — k)

coz(va(B )) A COZ(I/B

which implies that (8 — h)(a — k) = 0. Moreover,

coz(va(B — k)(a — h)) = coz

A similar argument shows that coz(vp(8 — k)(ow — h)) = T. Hence,

coz((a — h)(B —k)) = coz((a — h) (B — k))V
(coz((a = B)F) Acoz((B—a)™))
= coz(va(a — h)(B — k)) A coz(vp(o — h) (B — k))
=T,
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which implies that (o — h)(8 — k) has a multiplicative inverse in R*(L).
Then

(= h)(B = k),0) € p= (@ = B)(B—K)(a—h) " (B-k) "0 €p
= (1,0) € p
= p=R(L) x R(L),

which is a contradiction. Hence, O ¢ E(p). Let 21,22 € E(p) be given.
Then there exist (aq, 1), (ae, B2) € p such that z1 = F(aq,51) and zo =
E(ag, B2). Then

21 A 29 = ¢ (coz(ar — B1)) Acp(coz(ag — B2))
= ¢z (coz(af + a3 + BT + a3 — 20181 — 2a2032))

and (af + a3 + B + a3,2a161 + 2a262) € p. Hence, z1 A 20 € E(p).
Let (21,22) € E(p) x z8/(L) with 23 C 29 be given. Then there exists
an element ((ov,B1),8) € p x R(L) such that z1 = ¢ (coz(ay — B1)) and
29 = cL(coz(ﬁ)). From 29 = z1V29 = cL(coz(ﬁ(al—Bl)) and (Bai, BB1) € p,
we conclude zy € E(p). Therefore, E(p) is a z-filter on S¢(L).

(2). Let o € Q. Then o+ 0 = 0 + « and so (o, 0) € k), which implies
that ¢z (coz(a)) € E(kg) If z € E(k‘zg), then there exists an element
(o, B) € kzg such that z = ¢z (coz(a — B)). Since (o, B) € k), a+ f=B+yg
for some f,g € Q. Then (o — )+ f = g. Since Q is a k-ideal and f,g € Q,
we conclude o — 8 € @, and so z € cpcoz[Q)].

(3). The proof is similar to the proof of Proposition 5.2. O

6 Coz-filters on L and minimal prime ideals in semiring
R*(L)

In this section, we investigate relation between prime coz-filters and prime

z-ideals on frame L. Also, we show that there is a bijection between the

minimal prime ideals of R(L), and coz-ultrafilters on L.

Proposition 6.1. The following statements are true:
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(1) If P is a prime ideal of R(L), then Coz(R(L) \ P) is a cozfilter. In
particular, if P is a prime z-ideal of R(L), then Coz (R(L)) \COZ(P)
is a prime coz-filter and

R(L)\ P = Coz*™ (coz( L)\ coz(P))

(2) If P is a prime ideal of RT (L), then COZ(R+ )\ P) is a cozfilter.

Proof. (1). Let o, 8 € R(L) with coz(a) Acoz(3) € Coz(R(L)\ P) be given.
We claim coz(a),coz(3) € Coz(R(L)\ P). If aff € R( )\ P, then o, 3 €
R(L)\ P, which implies that coz(«), coz(8) € Coz( L)\ ) Now, suppose
af € R(L)\ P and o € P. By our hypothesis, there exists an element ~y
in R(L) \ P such that coz(af) = coz(y), which implies a? +~% € R(L) \ P
and

coz(a) = coz(a) V coz(y) = coz(a® +~%) € Coz(R(L) \ P),

This proves the claim.

Let a, 8 € R(L) with coz(a),coz(8) € Coz(R(L) \ P) be given. By
our hypothesis, there exist 7,6 € R(L) \ P such that coz(a) = coz(v)
and coz(f) = coz(d), which implies 7§ € R(L) \ P and coz(a) A coz(f) =
coz(y0) € Coz(R(L) \ P).

Let o, 8 € R(L) with coz() V coz(3) € Coz(R(L)) \ Coz(P) be given.
Since P is a z-ideal, o 4+ 32 ¢ P, which implies o € P or ¢ P. Hence,
coz(a) € Coz(R(L)) \ Coz(P) or coz(B) € Coz(R(L)) \ Coz(P). The proof
is now complete.

(2). Let o, B € R (L) with coz(a) Acoz(B) € Coz(R*(L)\ P) be given.
We claim coz(a),coz(8) € Coz(RT(L) \ P). If af € R™(L) \ P, then
o, € R(L)* \ P, which implies that coz(a),coz(8) € Coz(R*(L) \ P).
Now, suppose a8 € RT (L) \ P and a € P. By our hypothesis, there exists
an element v in RT (L) \ P such that coz(af3) = coz(v), which implies that
a+v€RT(L)\ P and

coz(a) = coz(a) V coz(y) = coz(a + ) € Coz(R* (L) \ P),

which proves the claim.

Let o, 8 € RY(L) with coz(a), coz(8) € Coz(R*(L)\ P) be given. By
our hypothesis, there exist 7,6 € RT(L) \ P such that coz(a) = coz(v)
and coz() = coz(d), which implies 7§ € RT(L) \ P and coz(a) A coz(3) =
coz(v8) € Coz(RT(L) \ P). O
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In the following remark, we show that the primeness is necessary for
Proposition 6.1.

Remark 6.2. It is well known that the homomorphism 7 : L(R) — OR
given by (p, q) —< p,q > is an isomorphism. Let B be a Boolean frame and
let a, b, and ¢ be three atoms in B. By [14, Proposition 4.1], ¢, : LR — B
by

T if0,1e7(U)

a if0er(U)and1¢T(U)

a if0Z7(U)and 1€ (U)

L if0g7(U)and 1 &7(U),

Ga(U) = U)
U)
is a continuous real valued function on B, €2 = e,, and coz(e,) = a for every
a € B. We set QQ := e, R(B). For every a € R(B),

a € Q = coz(a) < coz(e,) = coz(a) = L or coz(a) = a = a =0 or coz(a) = a.

Hence, ep,e. € Q and epe. = e = 0 € @, and thus @ is not a prime ideal.
Also, from b,c¢ € Coz(R(B)\ Q) and b A ¢ = L, we infer that R(B)\ Q is
not a coz-filter. This shows that primeness is needed in Proposition 6.1.

Proposition 6.3. The following statements are true:

(1) If F is a prime coz-filter on L, then P := R(L)\ Coz" (F) is a prime
z-ideal of R(L) and F = Coz(Coz* (F)).

(2) If F is a prime coz-filter on L and Q := {a € RT(L): coz(a) € F},
then P :=R*(L)\ Q is a prime z-ideal of R*(L) and F = Coz(Q).

Proof. Let o, € R(L) with «, € P be given. Then coz(a) ¢ F and
coz(3) ¢ F, which follows that coz(a — 3) < coz(«) V coz(B) € F, because
F is prime, and this implies that o — 3 belongs to P. Also, since coz(ay) <
coz(a) € F, we infer that ay € P. Hence, P is an ideal of R(L).

Let (o, 8) € P xR(L) with coz(a) = coz(3) be given. Then coz(5) € F,
which implies that 5 € P. It is clear P # R(L). Thus P is a z-ideal of
R(L).

Let a, 8 € R(L) with aff € P be given. Then

coz(af) € F = coz(a) & F or coz(f) ¢ F, since F is a coz-filter on L
=a€PorpeP
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Thus, P is a prime z-ideal of R(L). The rest is evident.

(2). Let o, € RT(L) with , 8 € P be given. Then coz(a), coz(f) & F,
which follows that coz(a + ) = coz(a) V coz(3) &€ F, because F is prime,
and this implies that o + 8 belongs to R*(L) \ Q. Also, since coz(ay) <
coz(a) € F, we infer ary € P. Hence, P is an ideal of R*(L).

Let (o, 8) € P x RT(L) with coz(a) = coz(B) be given. Then coz(f) &
F, which implies that 8 € P. Tt is clear P # R*(L). Thus P is a z-ideal of
RY(L).

Let o, 3 € RT(L) with a3 € P be given. Then

coz(af) € F = coz(a) & F or coz(f) ¢ F, since F is a coz-filter on L
=acPorpeP.

Thus, P is a prime z-ideal of R(L). Now, we show F = Coz(Q). Let a € Q.
Then coz(a) € F, and so Coz(Q) C F. It is clear F C Coz(Q).
O

We recalled from [23] that a nilpotent-free semiring is a semiring
with no nontrivial multiplicative nilpotent elements. It is clear that R* (L)
is a nilpotent-free semiring.

Lemma 6.4. [23, Corollary 3.6] Let S be a nilpotent-free semiring and let
P be a prime ideal of S. Then P is a minimal prime ideal of S if and only
if for each x € P, there exist y ¢ P such that xy = 0.

Proposition 6.5. The following statements are true:

(1) If F is a coz-ultrafilter on L, then P := R(L)\ Coz" (F) is a minimal
prime ideal of R(L).

(2) If F is a coz-ultrafilter on L and Q := {a € RT(L): coz(e) € F},
then P :=R*(L)\ Q is a minimal prime ideal of R*(L).

Proof. (1). Let a € P be given. Then coz(a) ¢ F, which follows that there
exists an element /3 in R(L) with coz(3) € F such that coz(a)Acoz(B) = L,
that is, 8 € P and af = 0, because F is a coz-ultrafilter on L. Thus,
by [19, Corollary 2.2], P is a minimal prime ideal of R(L).

(2).It is evident that P is a proper ideal of R*(L). Let o € P be given.
Then coz(a) € F, which follows that there exists an element 3 in R*(L)
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with coz() € F such that coz(a) Acoz() = L, that is, 5 ¢ P and aff = 0,
because F is a coz-ultrafilter on L. Thus, by Lemma 6.4, P is a minimal
prime ideal of semiring R (L). O

Proposition 6.6. The following statements are true:

(1) If P is a minimal prime ideal of R(L), then Coz(R(L)\ P) is a coz-
ultrafilter on L. In particular, the map

\I/(P  Coz(R(L) \ P)) : Min(R(L)) — Q(L)

is a bijection map (L) is the set of all coz-ultrafilter on L).

(2) If P is a minimal prime ideal of R (L), then Coz(R™(L) \ P) is a
coz-ultrafilter on L.

Proof. (1). See [1, Proposition 4.6].

(2). Let o € RT(L) with coz(a) ¢ Coz(R*(L) \ P) be given. Then
a € P, which implies from Lemma 6.4 that there exists an element 8 €
R*(L) with 8 ¢ P such that o3 = 0. Hence coz(8) € Coz(R" (L) \ P)
and coz(a) A coz(B) = L. Therefore, Coz(R* (L) \ P) is a coz-ultrafilter on
L. O

Proposition 6.7. Let L be a completely reqular frame. Then, the following
statements are equivalent:

(1) L is a P-frame.
(2) For every I € ¥8L, O =M.
(3) For every I € SBL, Coz(R(L)\ M) is a coz-ultrafilter.

Proof. (1) < (2). See [7, Proposition 3.9].

(2) = (3). Let I € XSL be given. Since, by [9, Proposition 5.2],
M/ is a minimal prime ideal of R(L), we infer from Proposition 6.6 that
Coz(R(L) \ M’) is a coz-ultrafilter.

(3) = (2). Let I € ¥BL be given. Suppose a € M!. Since, by Proposi-
tion 6.5, M is a minimal prime ideal of R(L), we infer from [19, Corollary
2.2] that there exists an element 8 € R(L) with 8 ¢ M! such that a8 = 0,
which, from [9, Lemma 5.3], gives a € O'. Since Of C M/, we deduce that
o' =M’ O
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Let L be a completely regular frame and let I € ¥5L. Throughout this
paper, we define

Cr = {coz(a): a € R(L) and cg1(I) C clgropgy (rr(coz())) }.
One can prove
Cr = {coz(a): a € R(L) and g (I) C g1 (rr(coz(a))®) }.

Proposition 6.8. Let L be a completely regular frame and let I € S3L.
Then, the following statements are true:

(1) For every a € R(L), coz(a) € Cr if and only if a & O'.
(2) If the set O is a prime ideal of R(L), then Cy is a prime coz-filter
on L.

3 the set Cr s a coz-filter on L, then 18 a prime tdeal o .
If th C fil L, then Of deal of R(L

Proof. (1). Necessity. Let a € R(L) with coz(a) € C be given. If a € Of,
then

cgr.(I) C intgrepr (ro(coz(a))) = o (ri(coz(a))*),
which implies that

cpr(I) C UﬁL(TL(COZ(a))*) N cﬁL(rL(coz(a))*) =0,

which is a contradiction. Hence, a & O.

Sufficiency. Let a € R(L) with a ¢ O’ be given. Since coz(a) A
coz(a)* = L € I and coz(a) ¢ I, we deduce coz(a)* € I, because I is a
prime ideal of L. Thus,

rp(coz(a))” = rp(coz(a)*) €I = ¢gr(I) C cpr(rp(coz(a))”)
= coz(a) € CJ.

(2). Since ¢gr,(I) € O = clgrogr(rr(L)), we infer L & Cy. Let o, 8 €
R(L) with coz(a),coz(B) € C; be given. Then, by part (1), o, 3 ¢ O, and
since O is a prime ideal of R(L), we deduce a3 ¢ O, which, from part
(1), gives

coz(a) A coz(f) = coz(af) € Cr.
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Let o, 8 € R(L) with coz(a) € Cr and coz(a) < coz(f3) be given. Then

csr(I) € clgrogr (rr(coz(a))) € clgrogy (rr(coz(8))),

which implies coz(f3) € Cj. Hence, Cf is a coz-filter on L.

Let a, 8 € R(L) with coz(a) V coz(f8) € Cr be given. Then, by part
(1), o® + B2 ¢ O!, which gives a € Of or B ¢ O, and hence, by part (1),
coz(a) € Cy or coz(f) € Cr. Therefore, Ct is a prime coz-filter on L.

(3). Let a,8 € R(L) with a ¢ O and 8 ¢ O be given. Then,
by part (1), coz(a) € Cr and coz(f) € Cr, which imply that coz(af) =
coz(a) A coz(f) € Cr, because C7 is a coz-filter on L, which, from part (1),
gives a3 ¢ O'. Therefore, O’ is a prime ideal of R(L). O

We recall that a frame L is a F-frame (a quasi-F-frame) if the open
quotient of each (dense) cozero element is a C*-quotient. L is a F'-frame
ifaNb= 1 for a,b € Coz(L) implies a* V b* = T.

A frame L is a F-frame if and only if for all a,b € Coz(L) with aAb = L,
there exist ¢,d € Coz(L) such that cVd=T and cAa=dAb= L.

Proposition 6.9. For a completely regular frame L, the following state-
ments are equivalent:

(1) L is a F-frame.
(2) For every I € 5L, Cr is a prime coz-filter on L.
(3) For every I € 5L, Cr is a coz-ultrafilter on L.

Proof. (1) = (2). Let L be a F-frame. Then for every I € 3L, by [8,
Proposition 3.4], O’ is a minimal prime ideal of R(L), which implies from
Proposition 6.8 that Cf is a prime coz-filter on L.

(2) = (3). Let I € ¥SL be given. Then, by our hypothesis, Cy is a
prime coz-filter on L, which, from Proposition 6.8, gives O is a prime ideal
of R(L), and so, by [8, Proposition 3.4], O is a minimal prime ideal of
R(L). Therefore, by Propositions 6.3 and 6.8, C; = Coz(R(L) \ O') is a
coz-ultrafilter on L.

(3) = (1). Let I € ¥38L be given. Then, by our hypothesis and Propo-
sition 6.8, O is a prime ideal of R(L). Hence, by [10, Proposition 4.9], L
is a F-frame. O
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It is well known that an ideal I of R(L) is fixed if and only if \/ . ; coz(a) #
T and by Lemma 4.4 in [8], for every I € ¥5L,

\/ coz(a) = \/ coz(a) = \/I.

acO! aeM!

In [11, Lemma 4.7 ], it was shown that a completely regular frame L is
compact if and only if every maximal ideal of R(L) is fixed. Also, by [8,
Proposition 4.5], a completely regular frame L is a F’-space if and only if
O is a prime ideal for every I € £ 3L with \/ I # T. Using these facts and
Propositions 6.8 and 6.9, the following proposition holds.

Proposition 6.10. For a compact completely reqular frame L, the following
statements are equivalent:

(1) L is a F'-frame.
(2) For every I € ¥5L, Cy is a prime coz-filter on L.
(3) For every I € ¥5L, Cy is a coz-ultrafilter on L.
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