[1] Abedi, M., Concerning real-closed ideals in RL and SV-frames, Topology Appl. 258 (2019), 402-414.
[2] Acharyya, S.K., Chattopadhyay, K.C., and Ray, G.G., Hemirings, congruences and the Stone- ˇ Cech compactification, Simon Stevin 67 (1993), 21-35.
[3] Acharyya, S.K. and Chattopadhyay, K.C., Hemirings, congruences and the Hewitt realcompactification, Bull. Belg. Math. Soc. Simon Stevin 2(1) (1995), 47-58.
[4] Ball, R.N. and Walters-Wayland, J., C- and C∗-quotients in pointfree topology, Diss. Math. 412(62) (2002), 1-62.
[5] Banaschewski, B., “The real numbers in pointfree topology”, Textos Mat., S´er. B, vol. 12, Coimbra: Universidade de Coimbra, Departamento de Matem´atica, 1997.
[6] Banaschewski, B., On the pointfree counterpart of the local definition of classical continuous maps, Categ. Gen. Algebr. Struct. Appl. 8(1) (2018), 1-8.
[7] Dube, T., Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Univers. 61(1) (2009), 115-138.
[8] Dube, T., Some algebraic characterizations of F-frames, Algebra Univers. 62(2) (2009), 273-288.
[9] Dube, T., Some ring-theoretic properties of almost P-frames, Algebra Univers. 60(2) (2009), 145-162.
[10] Dube, T., Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categ. Struct. 18(1) (2010), 55-72.
[11] Dube, T., On the ideal of functions with compact support in pointfree function rings, Acta Math. Hung. 129(3) (2010), 205-226.
[12] Dube, T., Concerning P-sublocales and disconnectivity, Appl. Categ. Struct. 27(4) (2019), 365-383.
[13] Ebrahimi Atani, R. and Ebrahimi Atani, Sh., Ideal theory in commutative semirings, Bul. Acad. ˇStiinˇte Repub. Mold., Mat. 57(2) (2008), 14-23.
[14] Estaji, A.A. and Abedi, M., On injectivity of the ring of real-valued continuous functions on a frame, Bull. Belg. Math. Soc. Simon Stevin 25(3) (2018), 467-480.
[15] Gillman, L. and Jerison, M., “Rings of Continuous Functions”, D. Van Nostrand Co., Princeton, 1960.
[16] Golan, J.S., “Semirings and their Applications”, Springer, 1999.
[17] Goswami, A. and Dube, T., Some aspects of k-ideals of semirings, Rend. Circ. Mat. Palermo, II. Ser 73 (2024), 3105-3117.
[18] Henriksen, M., Ideals in semirings with commutative addition, Amer. Math. Soc. 6(3) (1985), 321-330.
[19] Huckaba, J., “Commutative Rings with Zero Divisors”, Marcel Dekker, 1988.
[20] Jun, J., Ray, S., and Tolliver, J., Lattices, spectral spaces, and closure operations on idempotent semirings, J. Algebra 594 (2022), 313-363.
[21] Lescot, P., Prime and primary ideals in semirings, Osaka J. Math. 52(3) (2015), 721-736.
[22] Mohammadian, R., Positive semirings, J. Adv. Math. Model. 3(2) (2013), 103-125.
[23] Nasehpour, P., Pseudocomplementation and minimal prime ideals in semirings, Algebra Univers. 79 (2018), article number 11.
[24] Sen, M.K. and Bandyopadhyay, S., Structure space of a semi algebra over a hemiring, Kyungpook Math. J. 33(1) (1993), 25-36.
[25] Vandiver, H.S., Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Am. Math. Soc. 40 (1934), 914-920.
[26] Varankina, V.I., Vechtomov, E.M., and Semenova, I.A., Semirings of continuous nonnegative functions: divisibility, ideals, congruences, Fundam. Prikl. Mat. 4(2) (1998), 493-510 (in Russian).
[27] Vechtomov, E.M., Sidorov, V.V., and Vasilievich, M.A., Semirings of continuous functions, J. Math. Sci. 237 (2019), 191-244.