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Category of M-relations as a quotient of
the span category

Seyed Naser Hosseini

Abstract. We introduce M-spans for a class M of morphisms in a cat-
egory C. Using the equivalence class of M-spans under a given equivalence
relation, we give the notion of an M-relation in C. We first show under what
conditions, C-objects together with M-relations form a category, called the
category of M-relations and we construct a quotient of the span category
as a byproduct. Then we investigate the connection between M-relation
categories and quotient span categories. We establish when a category of M-
relations is isomorphic to a quotient span category. Finally several illustrative
examples are given.

1 Introduction and Preliminaries

Relations are defined in [4] in a category with a stable factorization struc-
ture (E ,M), where the category of relations is formed and investigated
structurally. In [3] relations are defined in a regular category where one
has (RegEpi,Mono)-factorizations, and they are utilized as an approach to

Keywords: M-relation, (quotient of) M-span, (compatible) equivalence relation, isomor-
phism of categories.
Mathematics Subject Classification [2010]: 18A99, 18B10, 18B99.
Received: 9 May 2024, Accepted: 10 August 2024.

ISSN: Print 2345-5853, Online 2345-5861.

© Shahid Beheshti University

1



2 S. N. Hosseini

the notion of topos theory. In [1], the category of relations is defined based
on the collection of monomorphisms and explained how it can be used as a
model for quantum theory. Also in [2] relations are defined in a category
with a stable factorization structure (E ,M) and the authors show that the
category of relations is isomorphic to a quotient of the span category. In [3]
and [1] the collection M of monomorphisms is used in defining relations,
however in [4] and [2] the collection M is the counterpart of a stable factor-
ization structure (E ,M). In all the cases, the isomorphism class of a span
is used to define a relation.

In this paper we provide a two-folded generalization of a relation in a
category, by utilizing an arbitrary class M of morphisms and instead of us-
ing the isomorphism calss of morphisms as a relation, we use the class with
respect to a more general equivalence relation. In Section 2, we investigate
conditions under which we actually get a category of relations, which we
call the category of M-relations. We use that to get a more general version
of the span category, called the quotient span category. In Section 3, we
discuss the interrelation between the category of M-relations and the quo-
tient span category. As the main result we show that under what conditions
the category of M-relations is isomorphic to a quotient span category. Fi-
nally in Setion 4, we give several illustrative examples, showing on the one
hand that some of the previous work can be proved in a more straightfor-
ward fashion and on the other hand how we get more general categories of
relations.

In the following we give briefly some of the concepts needed in the sub-
sequent sections.

1.1 Spans A span f = (f1, f2) : A // B in a category C is a pair of

morphisms A F
f1
oo

f2
// B with the same domain, see [2]. In a category

C with pullbacks, the composition g ◦ f of spans f and g is given by a
pullback and so it is unique only up to isomorphism of spans. For C a
category with binary products, there exists a one to one correspondence

between spans A F
f1
oo

f2
// B and morphisms ⟨f1, f2⟩ : F // A×B.

For a span f = (f1, f2) we write f̂ for its corresponding morphism ⟨f1, f2⟩
and for a morphism g = ⟨g1, g2⟩ we write ġ for its corresponding span
(g1, g2).
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1.2 Quasi Right Factorization Structures

Definition 1.1. [5]. A quasi right factorization structure in a category C
is a collection M of morphisms such that for every morphism f in C there
is a morphism mf in M satisfying:

• f = mfg, for some g and

• if there is a morphism m ∈ M such that f = mh, for some h, then
mf = mk, for some k.

mf is called a quasi right part or just an M-part, of f .

Definition 1.2. Let f and g be morphisms in C with the same codomain.
We say f ≤C g if there is a morphism α ∈ C such that f = gα. And we
define f ▷◁ g if f ≤C g and g ≤C f .

One can easily verify that ≤C is a preorder and that ▷◁ is an equivalence
relation.

Remark 1.3. Using Theorem 1.2, we can restate the two parts of Theo-
rem 1.1 as:

• f ≤C mf and

• if there is a morphism m ∈ M such that f ≤C m, then mf ≤C m.

So M-parts of a morphism are only unique up to ▷◁.

We state proposition 3 of [5] with a slight change of notation, as follows:

Lemma 1.4. Let M be a quasi right factorization structure in C and mf

be an M-part of a morphism f .

• If f ∈ M, then f ▷◁ mf .

• m is an M-part of f if and only if m ∈ M and m ▷◁ mf .

• If f ▷◁ g, then mf ▷◁ mg, and so mf is an M-part of g.
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2 M-Relations modulo an equivalence relation

Let M be a collection of morphisms in a category C with binary products.
We call a span f an M-span whenever f̂ belongs to M. Throughout the
paper we assume a collection M is given and whenever we talk about an
equivalence relation on spans or on M-spans, we mean spans or M-spans
with the same domain and codomain. In this section we construct the M-
relation category and the quotient span category. To this end we have:

Definition 2.1. For an equivalence relation ≈ on M-spans, an M-relation
modulo ≈ from A to B is the equivalence class,

[f ]≈ = {g|g is a M-span and g ≈ f}

where f : A // B is an M-span. [f ]≈ is also denoted by f̄ .

We denote by Span(C)(A,B) (respectively MSpan(C)(A,B)) the col-
lection of all spans (M-spans) with domain A and codomain B, and we
assume that for each pair of objects A and B, a function

mA,B : Span(C)(A,B) −→ MSpan(C)(A,B)

which we simply write as m, is given.

Definition 2.2. Suppose that C has binary products and pullbacks. An
equivalence relation ≈ on M-spans is said to be compm-compatible if for
M-spans f, g, h, k, f ≈ h and g ≈ k yields m(f ◦ g) ≈ m(h ◦ k).

We remark that since the span composition f ◦ g is only unique up to
isomorphism, compm-compatibility requires that m(f ◦ g)1 ≈ m(f ◦ g)2,
where (f ◦ g)1 and (f ◦ g)2 are two isomorphic copies of the composition.

Definition 2.3. For composable M-spans f and g, the composition of M-
relations is defined by [f ]≈[g]≈ = [m(f ◦ g)]≈.

One can easily verify that:

Proposition 2.4. The composition of M-relations is well-defined if and
only if the equivalence relation ≈ is compm-compatible.
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Definition 2.5. An equivalence relation ∼ on spans is called m-proper if

• it contains the isomorphism equivalence relation ∼=,

• it is comp-compatible, i.e., f ∼ g and h ∼ k, yields f ◦ h ∼ g ◦ k; and
• it is m-compatible, i.e., for every span f , f ∼ m(f).

The following easy consequence of m-compatibility will be used fre-
quently in the paper.

Lemma 2.6. Suppose ∼ is an m-compatible equivalence relation on spans.
For all spans f and g with the same domain and codomain, f ∼ g if and
only if m(f) ∼ m(g).

Denoting the restriction of ∼ to M-spans by ∼|M , we have:

Proposition 2.7. Let ≈ be an equivalence relation on M-spans. If there is
an m-proper equivalence relation ∼ on spans such that ∼|M ⊆ ≈, then the
composition of M-relations is associative.

Proof. Let f , g and h be composable M-spans. Since ∼ is m-compatible,
m(g ◦ f) ∼ g ◦ f . Comp-compatibility of ∼ implies that h ◦ m(g ◦ f) ∼
h ◦ (g ◦ f). It follows that m(h ◦ m(g ◦ f)) ∼ h ◦ m(g ◦ f) ∼ h ◦ (g ◦ f).
Similarly m(m(h ◦ g) ◦ f) ∼ (h ◦ g) ◦ f . Now since composition of spans is
associative up to isomorphism, h◦(g◦f) ∼= (h◦g)◦f , and since ∼= ⊆ ∼, we get
h◦(g ◦f) ∼ (h◦g)◦f . It follows that m(h◦m(g ◦f)) ∼ m(m(h◦g)◦f) and
thus m(h◦m(g◦f)) ∼|M m(m(h◦g)◦f). Since ∼|M ⊆ ≈, m(h◦m(g◦f)) ≈
m(m(h ◦ g) ◦ f). Hence h̄(ḡf̄) = (h̄ḡ)f̄ as desired.

For each object A ∈ C, setting δA = m((1A, 1A)), we have:

Lemma 2.8. Suppose ∼ is m-proper. For spans f : A −→ B and g : B −→
A, f ◦ δA ∼ f and δA ◦ g ∼ g.

Proof. Since ∼ is m-compatible, we have δA = m((1A, 1A)) ∼ (1A, 1A).
Now by comp-compatibility we have, f ◦ δA ∼ f ◦ (1A, 1A) ∼= f . Hence
f ◦ δA ∼ f . Similarly δA ◦ g ∼ g.

Proposition 2.9. Let ≈ be an equivalence relation on M-spans. If there is
an m-proper equivalence relation ∼ on spans such that ∼|M ⊆ ≈, then for
each A, δ̄A acts neutral with respect to composition of M-relations.
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Proof. By m-compatiblity of ∼ and Theorem 2.8, for each M-span f :
A −→ B, we have m(f ◦ δA) ∼ f ◦ δA ∼ f . Since ∼|M ⊆ ≈, m(f ◦ δA) ≈ f ,
implying f̄ δ̄A = f̄ . Similarly for each M-span g : B −→ A, δ̄Aḡ = ḡ.

Definition 2.10. Let ≈ (respectively ∼) be an equivelence relation on M-
spans (respectively spans). We say the pair (≈,∼) is m-consistent if ≈ is
compm-compatible, ∼ is m-proper and ∼|M ⊆ ≈.

We now summarize what we have done in the following theorem.

Theorem 2.11. Suppose C is a category with binary products and pullbacks
and let ≈ be an equivalence relation on M-spans. If there is an equiva-
lence relation ∼ on spans such that (≈,∼) is an m-consistent pair, then
Rel≈(C,M) with C-objects as objects, M-relations as morphisms, composi-
tion and identities as in 2.3 and 2.9, is a category.

Proof. Follows from Propositions 2.4, 2.7 and 2.9.

We call Rel≈(C,M) the M-Relation category.

Corollary 2.12. Let C be a category with binary products and pullbacks
and ∼′ be an equivalence relation on spans that contains the isomorphism
equivalence relation and is comp-compatible. Then Span∼′(C) with C-objects
as objects and equivalence classes [f ]∼′ of spans as morphisms is a category.

Proof. Follows from Theorem 2.11, by letting M be the collection of all
C-morphisms, m be the identity function and ∼′=∼=≈.

We call Span∼′(C) the quotient span category.

3 M-Relation category as a quotient span category

In this section we establish functors between certain M-relation and quo-
tient span categories and we show under what conditions they are isomor-
phic.

Proposition 3.1. Let ≈ be an equivalence relation on M-spans. Suppose
there is an equivalence relation ∼ on spans such that (≈,∼) is m-consistent.
If ∼′ is m-proper and ≈ ⊆ ∼′

|M, then the mapping

S : Rel≈(C,M) // Span∼′(C)
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taking [f ]≈ to [f ]∼′ is a functor. And if ≈ = ∼′
|M, then S is faithful as well.

Proof. The fact that ≈ ⊆ ∼′
|M , gives the well-definedness of the mapping

S. Using m-compatibility of ∼′, for each object A we have, S([δA]≈) =
[δA]∼′ = [m(1A, 1A)]∼′ = [(1A, 1A)]∼′ , showing the preservation of identities.
For preservation of composition we have, S([f ]≈[g]≈) = S([m(f ◦ g)]≈) =
[m(f ◦ g)]∼′ = [f ◦ g]∼′ = [f ]∼′ [g]∼′ as desired. To show faithfulness, let f
and g be M-spans such that [f ]∼′ = [g]∼′ . So f ∼′ g and since f and g are
M-spans, we get f ∼′

|M g. Since ∼′
|M= ≈, f ≈ g. Hence [f ]≈ = [g]≈.

Proposition 3.2. Let ≈ be an equivalence relation on M-spans. Suppose
there is an equivalence relation ∼ on spans such that (≈,∼) is m-consistent.
If ∼′ is m-proper and ∼′

|M ⊆ ≈, then the mapping

R : Span∼′(C) // Rel≈(C,M)

taking [f ]∼′ to [m(f)]≈ is a functor. Furthermore R is full.

Proof. Lemma 2.6 and the fact that ∼′
|M ⊆ ≈ yields the well-definedness

of R. Identities are preserved because for each object A, R([1A, 1A]∼′) =
[m(1A, 1A)]≈ = [δA]≈. To show preservation of composition, let f and g
be composable spans. Since ∼ is m-proper, f ∼ m(f) and g ∼ m(g).
and thus f ◦ g ∼ m(f) ◦ m(g). Therefore m(f ◦ g) ∼ m(m(f) ◦ m(g))
implying m(f ◦ g) ∼|M m(m(f) ◦ m(g)). Since ∼|M ⊆ ≈, m(f ◦ g) ≈
m(m(f)◦m(g)). Now we have R([f ]∼′([g]∼′) = R([f ◦g]∼′) = [m(f ◦g)]≈ =
[m(m(f) ◦ m(g))]≈ = [m(f)]≈[m(g)]≈ = R([f ]∼′)R([g]∼′) as desired. For
the last assertion, given [f ]≈, with f an M-span, we have m(f) ∼′ f and
since f is an M-span, we get m(f) ∼′

|M f and thus m(f) ≈ f . Therefore

R([f ]∼′) = [m(f)]≈ = [f ]≈.

Theorem 3.3. Let ≈ be an equivalence relation on M-spans. Suppose there
is an m-proper equivalence relation ∼ on spans such that ∼|M ⊆ ≈. If ∼′

is m-proper and ≈ = ∼′
|M, then S and R are inverse functors, so that

Rel≈(C,M) ∼= Span∼′(C).

Proof. The facts that ∼′ ism-proper and ∼′
|M = ≈, imply that ≈ is compm-

compatible. Thus (≈,∼) is m-consistent. So by Propositions 3.1 and 3.2, S
and R are functors which act as identity on objects. On the morphisms for
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each M-span f , by m-properness of ∼′ and the fact that ∼′
|M = ≈ we have,

m(f) ∼′ f and thus m(f) ≈ f . It follows that R ◦ S([f ]≈) = R([f ]∼′) =
[m(f)]≈ = [f ]≈. On the other hand for each span f by m-properness of ∼′

we have, m(f) ∼′ f . It follows that S◦R([f ]∼′) = S([m(f)]≈) = [m(f)]∼′ =
[f ]∼′ .

In the next two lemma we discuss the connection between the equivalence
relations involved in the above theorem.

Lemma 3.4. Let ∼ and ∼′ be equivalence relations on spans, with ∼ m-
compatible. We have,

(a) ∼|M is m-compatible.

(b) if ∼ ⊆ ∼′, then ∼′ is m-compatible. This is the case if ∼ and ∼′ are
equivelence relations on M-spans.

(c) if ∼′ is m-compatible we have, ∼ ⊆ ∼′ if and only if ∼|M ⊆ ∼′
|M.

Proof. Let f be an M-span. Since ∼ is m-compatible, f ∼ m(f). Now
(a) since f and m(f) are M-spans, f ∼|M m(f) and
(b) since ∼ ⊆ ∼′, f ∼′ m(f).
(c) The direct implication is obvious. For the converse, let f and g be

spans such that f ∼ g. Since ∼ is m-compatible, by 2.6 we get m(f) ∼
m(g). Since ∼|M ⊆ ∼′

|M , m(f) ∼′ m(g). Now since ∼′ is m-compatible,
by 2.6 we get f ∼′ g, as desired.

For an equivalence relation ≈ on M-spans, one can easily verify that
the relation ≈e defined by

f ≈e g
def
≡≡ m(f) ≈ m(g)

and called the extension of ≈ to spans, is an equivalence relation.

Lemma 3.5. Suppose ∼ (respectively, ≈) is an equivalence relation on
spans (respectively M-spans). If ∼ is m-compatible and ∼|M ⊆ ≈, then

(a) ∼ ⊆ ≈e.

(b) ≈e contains ∼= and is m-compatible.

(c) ≈e|M = ≈.
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(d) ≈e is the unique m-compatible equivalence relation on spans with
≈e|M = ≈.

Proof. (a) Let f , g be spans and f ∼ g. Since ∼ is m-compatible, by 2.6,
m(f) ∼ m(g). Since ∼|M ⊆ ≈, m(f) ≈ m(g) and so f ≈e g.

(b) Since ∼ contains ∼=, by (a), so does ≈e. Since ∼ is m-compatible,
by (a) and 3.4(b), so is ≈e.

(c) Let f , g be M-spans. We have f≈e|Mg if and only if f ≈e g if and
only if m(f) ≈ m(g). By 3.4(a) and (b), ≈ is m-compatible. So by 2.6,
m(f) ≈ m(g) if and only if f ≈ g. This proves f≈e|Mg if and only if f ≈ g,
as desired.

(d) Suppose ∼′ is an m-compatible equivalence relation on spans with
∼′

|M = ≈. By part (c), ∼′
|M = ≈e|M . Since ∼′ and ≈e (by part (b)) are

m-compatible, by 3.4(c), ∼′ = ≈e.

Theorem 3.6.

(a) Suppose an m-proper equivalence relation ∼ on spans is given. Then

Rel∼|M
(C,M) ∼= Span∼(C)

(b) Suppose an equivalence relation ≈ on M-spans is given for which there
is an equivalence relation ∼ on spans making (≈,∼) m-consistent.
If ≈e is comp-compatible, then it is the only m-proper equivalence
relation on spans such that ≈e|M = ≈. In this case

Rel≈(C,M) ∼= Span≈e(C)

Proof. (a) Follows from 3.3 by setting ∼′ = ∼.

(b) Since ∼ is m-compatible and ∼|M ⊆ ≈, by 3.5(b) ≈e contains ∼=
and is m-compatible. By hypothesis ≈e is comp-compatible, so it is m-
proper. The uniqueness follows by part (d) of 3.5. So by 3.3, Rel≈(C,M) ∼=
Span≈e(C).

Let us rematk that in part (b) of the above theorem, if ≈e is not comp-
compatible, then by 3.5 there is no m-proper equivalence relation ∼′ such
that ∼′

|M = ≈, because otherwise ≈e = ∼′ is comp-comatible.
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4 Examples

We give several examples in this section. The following first example is
intended to provide a more concise and simpler proof of a known result
given in Theorem 2.3 of [2].

Example 4.1. Suppose (E ,M) is a pullback-stable factorization structure
in C. Define

m : Span(C)(A,B) −→ MSpan(C)(A,B)

by m(f) = ṁf̂ , where mf̂ is an M-part of the (E ,M)-factorization of f̂ , see
Subsection 1.1. Let us remark that since a right M-part of a morphism is
not unique, in defining m, we are choosing one such representative. Let ∼E
be the equivalence relation given in Definition 2.1 of [2]. By Definition 2.1
and Proposition 2.2 of [2], ∼E contains ∼= and is comp-compatible and the
comments on page 1181 of the same article show that ∼E is m-compatible.
Thus ∼E is m-proper. It can be easily verified that ∼E |M = ∼=. Hence by
3.6(a), Rel∼=(C,M) ∼= Span∼E (C). One can easily see that Rel∼=(C,M) and
Span∼E (C) are the categories RelM(C) and SpanE(C) given in [2] and the
isomorphism between them is just the result given in Theorem 2.3 of the
same article.

The following example generalizes the above example.

Example 4.2. In this example we just suppose M is a quasi right factor-
ization structure in C, see Subsection 1.2. Define

m : Span(C)(A,B) −→ MSpan(C)(A,B)

by m(f) = ṁf̂ , where mf̂ is a quasi right M-part of f̂ . Set

M⊥ = {e ∈ C : ∃m ∈ M, ∀n ∈ M(me ≤C n ⇒ m ≤C n)}

and note that e belongs to M provided that there is m ∈ M such that m
is a quasi right part of the morphism me. Let E be a stable collection of
morphisms in C that contains M⊥. As mentioned in the previous example,
∼E contains ∼= and is comp-compatible. Now for a span f , we have f̂ = mf̂e,
for some e ∈ C. It follows that e ∈ M⊥ ⊆ E . Thus f ≤E ṁf̂ , implying
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f ∼E ṁf̂ . Hence ∼E ism-proper and so by 3.6(a), Rel≈(C,M) ∼= Span∼E (C),
where ≈ = ∼E |M .

Note that here (E ,M) is not necessarily a factorization structure and ≈
is not necessarily equal to ∼=.

Example 4.3. In this example we give an equivalence relation ≈ on M-
spans whose extension ≈e is not comp-compatible. Let M, m, M⊥ and E
be as in Example 1.1. Define ≈ on M-spans by f ≈ g if there are M-spans
h1, h2, · · · , hn for n ≥ 1 such that f = h1 ≥E h2 ≤E h3 · · · ≥E hn = g
(note that the spans hi are assumed to be M-spans). One can show that
≈ is an equivelance relation on M-spans whose extension ≈e contains ∼=, is
m-compatible, but it is not comp-compatible.

Example 4.4. Let M and m be as in Example 1.1. Since the collection C1
(also denoted by C) of all the morphisms in C is a stable class, the relation
∼C can be shown to be an m-proper equivalence relation. With ≈ = ∼C|M ,
by 3.6(a), Rel≈(C,M) ∼= Span∼C(C). Since the category C is assumed to
have products, one can easily verify that for any span f : A → B, f ≤C π,
where π is the product span. Thus [f ]∼C = [π]∼C , implying there is a unique
morphism from A to B in Span∼C(C). Hence Span∼C(C) is equivalent to a
partially ordered class and therefore so is Rel≈(C,M).

Example 4.5. Let for each pair of objects A,B in a category C with prod-
ucts and pullbacks, a morphism rA,B : RA,B → A × B be given and set
R = {rA,B : A,B ∈ C}. For a span f : A → B , let df de the diagonal of the
following pullback,

F ∗

r∗A,B

��

df
''

f∗
A,B

// RA,B

rA,B

��

F
f̂

// A×B

and set M = {df : f is a span}. By taking f : A → B to be a product

span, we have f̂ is an isomorphism and so df can be chosen to be rA,B, thus
R ⊆ M. Define

mA,B : Span(C)(A,B) −→ MSpan(C)(A,B)
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by m(f) = ḋf .
We have g is an M-span if and only if ĝ ∈ M if and only if there is a

span f such that ĝ = df if and only if there is a span f such that g = ḋf
if and only if there is a span f such that g = m(f). This yields m is a
surjection.

Let E be a stable system containg M. Since df = f̂ r∗A,B and r∗A,B ∈ E ,
we get f̂ ≥E df . Therefore f ≥E ḋf , i.e. f ≥E m(f) and thus f ∼E
m(f). It follows that ∼E is m-proper. Therefore by 3.6(a), Rel∼|M

(C,M) ∼=
Span∼(C).

Conclusion

A concept of relations (called M-relations) in a category C based on a
collection M of morphisms, a function m from spans to M-spans and an
equivalence relation≈ onM-spans is given. The category Rel≈(C,M) ofM-
relations is formed and the interconnection between this category and quo-
tient span categories is investigated. In particular conditions under which a
category of M-relations is isomorphic to a quotient span category is given.

The motivation for this work is that by varying the collection M, the
function m and the equivalence relation ≈ or by imposing conditions on
these entities, one can come up with a category of relations that satisfies
the desired conditions, such as being a dagger category, a Mal’cev category,
an allegory, or the like. Besides as shown in Example 4.1, this gives us a
tool to provide easier and more concise proofs for some related results.
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