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Abstract. The TD axiom, a low order separation axiom between T0 and
T1, has been of interest to classical topologists for some time; latterly it has
also proved interesting to pointfree topologists. Here we investigate it in
the context of partial spaces and partial frames (think: σ-frames, κ-frames,
frames, bounded distributive lattices). We establish an adjunction between
the category of TD partial spaces with continuous maps and the category
of partial frames with D-homomorphisms. Several standard tools (covered
primes, right adjoints, point closures) are not appropriate in our setting; we
use linked pairs and slicing points instead. Of particular interest are the
slicing points of free frames and congruence frames.We examine the fixed
objects of the adjunction; both similarities and differences to the classical
situation become clear. In particular, there are compact Hausdorff partial
spaces that are not TD. We introduce sharp partial frames, those for which
all points are slicing and characterize these as well as the TD spatial and
strongly TD spatial partial frames. We conclude with a comparison of sober
and TD partial spaces.
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1 Introduction and Preliminaries

The appearance of the text “Separation in Point-Free Topology” [27] shows
the substantial interest in this topic by frame and locale theorists. One of
the themes in the book concerns the function of the TD axiom in the study
of topological spaces and frames. Partial spaces and partial frames serve to
elucidate the role of separation axioms more generally; here we focus on the
TD axiom specifically. In particular, some of the classical relations between
the various separation properties are seen not to hold in this more general
setting.

We are particularly indebted to the authors of two papers: Banaschewski
and Pultr for [7], and Arrieta and Suarez for [4]. For further work on this
topic see, for instance, [26], [2] and [3]. Our presentation of this work is
modelled primarily on [7], but substantially different tools are required. To
be specific, on the frame side, the notions of prime elements, completely
prime elements, covered primes, sublocales and right adjoints of maps are
inappropriate tools for this particular paper. On the topological side, clo-
sures in partial spaces are ill-behaved, making point closures not the right
thing to use here.

The essential idea for a partial frame is that it should be “frame-like” but
that not all joins need exist; only certain joins have guaranteed existence and
binary meets should distribute over these joins. The guaranteed joins are
specified in a global way on the category of meet-semilattices by specifying
what is called a selection function. Partial spaces are to partial frames what
topological spaces are to frames; the categories are adjoint on the right with
the expected open set and spectrum functors. The latter makes use of maps
into the two-element object, or filters, rather than prime elements.

In order to define the TD spectrum we make use of special, so-called
slicing points, each of which is associated with a linked pair. We call a pair
of distinct elements a < b a linked pair if there are no elements between
them; an associated slicing point then maps a to 0 and b to 1. We make
use of these to define D-homomorphisms, which, in the frame case, are seen
to be the same as the D-homomorphisms of [7]. Of particular interest in
our context are the embeddings of partial frames into their free frames and
congruence frames, and the slicing points of these.

We move on to the spatial side by defining TD partial spaces and char-
acterizing these in terms of slicing points. They are also characterized using
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certain congruences, which echoes their behaviour in the full topological set-
ting. However we provide an example of a compact Hausdorff partial space
which is not TD showing that, unlike in the topological case, T1 objects need
not be TD.

Next we describe the open set and TD spectrum functors needed to es-
tablish the adjunction between the category of TD partial spaces with con-
tinuous maps and the category of partial frames with D-homomorphisms.
As usual, the adjunction gives rise to a category equivalence between the
fixed objects on either side. On the space side all objects are fixed, but
on the frame side the fixed objects are the so-called TD spatial ones. Of
interest are those partial frames all of whose points are slicing; we call these
sharp and provide a description of these using D-homomorphisms. With
these definitions, sharp spatial partial frames correspond to the strongly TD
spatial frames of [4].

We conclude with an examination of the relationship between sober and
TD partial spaces.

2 Background and Preliminaries

This entire section summarises some prerequisites on partial frames from
our previous work. New material begins in Section 3.

See [25] and [19] as references for frame theory; see [6] and [5] for σ-frames;
see [22] and [23] for κ-frames; see [21] and [1] for general category theory.

The basics of our approach to partial frames can be found in [8], [9] and [10].
For earlier work by other authors in this field see [24], [29], [30] and [28].
For those interested in a comparison of the various approaches, see [9].

A meet-semilattice is a partially ordered set in which all finite subsets have a
meet. In particular, we regard the empty set as finite, so a meet-semilattice
comes equipped with a top element, which we denote by 1. We do not insist
that a meet-semilattice should have a bottom element, which, if it exists,
we denote by 0. A function between meet-semilattices f : L→M is a meet-
semilattice map if it preserves finite meets, including the top element. A sub
meet-semilattice is a subset for which the inclusion map is a meet-semilattice
map.
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Definition 2.1. A selection function is a rule, which we usually denote by
S, which assigns to each meet-semilattice A a collection SA of subsets of A,
such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all x ∈ A, {x} ∈ SA.
(S2) If G,H ∈ SA then {x ∧ y : x ∈ G, y ∈ H} ∈ SA.
(S2)′ If G,H ∈ SA then {x ∨ y : x ∈ G, y ∈ H} ∈ SA.
(S3) If G ∈ SA and, for all x ∈ G, x =

∨
Hx for some Hx ∈ SA, then

⋃

x∈G
Hx ∈ SA.

(S4) For any meet-semilattice map f : A→ B,

S(f [A]) = {f [G] : G ∈ SA} ⊆ SB.

(SSub) For any sub meet-semilattice B of meet-semilattice A, ifG ⊆ B
and G ∈ SA, then G ∈ SB.

(SFin) If F is a finite subset of A, then F ∈ SA.
(SCov) If G ⊆ H and H ∈ SA with

∨
H = 1 then G ∈ SA. (Such H

are called S-covers.)
(SRef) Let X,Y ⊆ A. If X ≤ Y with X ∈ SA there is a C ∈ SA such
that X ≤ C ⊆ Y . (By X ≤ Y we mean, as usual, that for each x ∈ X
there exists y ∈ Y such that x ≤ y.)

Of course (SFin) implies (S1) but there are situations where we do not
impose (SFin) but insist on (S1). Note that we always have ∅ ∈ SA.
Once a selection function, S, has been fixed, we speak informally of the
members of SA as the designated subsets of A.

Definition 2.2. An S-frame L is a meet-semilattice in which every desig-
nated subset has a join and for any such designated subset B of L and any
a ∈ L

a ∧
∨
B =

∨

b∈B
a ∧ b.
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Of course such an S-frame has both a top and a bottom element which we
denote by 1 and 0 respectively.
A meet-semilattice map f : L → M , where L and M are S-frames, is an
S-frame map if f(

∨
B) =

∨
b∈B

f(b) for any designated subset B of L. In

particular such an f preserves the top and bottom element.
A sub S-frame T of an S-frame L is a subset of L such that the inclusion
map i : T → L is an S-frame map.
The category SFrm has objects S-frames and arrows S-frame maps.

We use the terms “partial frame” and “S-frame” interchangeably, especially
if no confusion about the selection function is likely. We also use the term
full frame in situations where we wish to emphasize that all joins exist.

Note 2.3. Here are some examples of different selection functions and their
corresponding S-frames.

(1) In the case that all joins are specified, we are of course considering
the notion of a frame.

(2) In the case that (at most) countable joins are specified, we have the
notion of a σ-frame.

(3) In the case that joins of subsets with cardinality less than some
(regular) cardinal κ are specified, we have the notion of a κ-frame.

(4) In the case that only finite joins are specified, we have the notion of
a bounded distributive lattice.

The next results come from [10] on HSL, [11], [12] and [15] on CSL.

Definition 2.4. Let L be an S-frame.

(1) A subset J of L is an S-ideal of L if J is a non-empty downset closed
under designated joins (the latter meaning that if X ⊆ J , for X a
designated subset of L, then

∨
X ∈ J).

(2) The collection of all S-ideals of L will be denoted HSL, and called
the S-ideal frame of L. It is in fact the free full frame over L, with
embedding map ↓ : L→ HSL given by ↓x = {t ∈ L : t ≤ x}.

(3) We call θ ⊆ L× L an S-congruence on L if it satisfies the following:
(C1) θ is an equivalence relation on L.
(C2) (a, b), (c, d) ∈ θ implies that (a ∧ c, b ∧ d) ∈ θ.
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(C3) If {(aα, bα) : α ∈ A} ⊆ θ and {aα : α ∈ A} and {bα : α ∈ A} are
designated subsets of L, then (

∨
α∈A

aα,
∨
α∈A

bα) ∈ θ.

(4) The collection of all S-congruences on L is denoted by CSL; we refer
to it as the congruence frame of L. It is in fact a full frame with meet
given by intersection.

(5) (i) For A ⊆ L×L, ⟨A⟩ denotes the smallest S-congruence containing
A.

(ii) For a ∈ L we define ∇a = {(x, y) : x∨a = y∨a} and ∆a = {(x, y) :
x ∧ a = y ∧ a}; these are S-congruences on L.

(iii) It is easily seen that ∇a = ⟨(0, a)⟩ and that ∆a = ⟨(a, 1)⟩.
(iv) For a ≤ b, it follows that ∆a ∩∇b = ⟨(a, b)⟩ and ∆a ∩∇a = ∆.

(6) For any I ∈ HSL,
∨
x∈I
∇x =

⋃
x∈I
∇x, the point being that this union is

indeed an S-congruence.
(7) The function ∇ : L → CSL given by ∇(a) = ∇a is an S-frame embed-

ding. It has the universal property that if f : L→M is an S-frame map
into a frame M with complemented image, then there exists a unique
frame map f̄ : CSL→M such that f = f̄ ◦ ∇.

We note that partial spaces are to partial frames as spaces are to frames
with the appropriate open and spectrum functors and fixed objects. Some
details appear below.

Definition 2.5. Let S be a selection function.

(1) An S-topological space (or S-space) is a pair (X,OX) where X is a set,
OX ⊆ PX, the power set of X and OX is a sub S-frame of PX, with
binary meet given by intersection and designated join by union.

(2) Let (X,OX) and (Y,OY ) be S-spaces; a function f : X → Y is S-
continuous if, for each U ∈ OY , f−1(U) ∈ OX.

(3) The category STop has objects S-spaces and arrows S-continuous func-
tions.

Definition 2.6. (1) The open set functor O : STop → SFrm assigns to
each S-space (X,OX) the set of opens OX. For an S-continuous map
f : (X,OX) → (Y,OY ) define Of : OY → OX by Of(V ) = f−1(V )
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for each V ∈ OY . This easily provides a contravariant functor from
STop to SFrm.

(2) Let L be an S-frame. Set ΣL = hom(L,2), the set of all S-frame maps
from L to 2, where 2 is the 2-chain viewed as an S-frame. These are
the “points” of L, also called S-points. For each a ∈ L, set Σa = {ξ ∈
ΣL : ξ(a) = 1}. The collection TL = {Σa : a ∈ L} is an S-topology
on ΣL. The assignment L → (ΣL, TL) provides the object part of the
contravariant spectrum functor Σ : SFrm → STop. For the maps, let
h : L → M be an S-frame map. Define Σh : (ΣM, TM ) → (ΣL, TL) by
Σh(ξ) = ξ ◦ h. Then Σh is S-continuous.

(3) We have O and Σ adjoint on the right. For an S-space X and an S-
frame L the adjunction maps ηL : L → OΣL and ϵX : X → ΣOX are
given as follows, where a ∈ L and U ∈ OX:

ηL(a) = Σa and ϵX(x)(U) = 1 iff x ∈ U.

In this paper, we will denote the map ϵX(x) by ξx, so for U ∈ OX,

ξx(U) = 1 ⇐⇒ x ∈ U.

A spatial S-frame L is one for which the adjunction map ηL is an iso-
morphism; similarly a sober S-space X is one for which ϵX is an iso-
morphism. Spatial S-frames and sober S-spaces are the fixed objects
of the adjunction maps. The functors O and Σ restrict to a category
equivalence on the fixed objects. (See [13] and [14] for details.)

3 Linked pairs and slicing points

Our main technical tool throughout this paper will be the notion of a slicing
point; this depends on the idea of a linked pair. We use slicing points
to define D-homomorphisms, which are needed to establish an adjunction
between TD partial spaces and a non-full subcategory of partial frames. (See
Proposition 5.7.) We conclude this section with a discussion of linked pairs
and slicing points in the context of free frames and congruence frames over
partial frames.
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Definition 3.1. If a and b are elements of a partial frame L, we say a is
directly below b and write a ⋖ b if a < b and a ≤ x ≤ b implies x = a or
x = b. We call such a⋖ b a linked pair.
Grätzer [18] and Banaschewski and Pultr [7] say a is covered by b.

Lemma 3.2. Suppose a⋖ b in an S-frame L. For any x ∈ L,

x ∧ a = x ∧ b ⇐⇒ x ∨ a ̸= x ∨ b.

Proof. (⇒) If x∧a = x∧ b and x∨a = x∨ b then distributivity gives a = b,
a contradiction.

(⇐) Suppose x ∨ a ̸= x ∨ b. Clearly a ≤ (x ∧ b) ∨ a ≤ b, so using a ⋖ b
gives us two cases.

Case 1 (x ∧ b) ∨ a = b: then (x ∨ a) ∧ (b ∨ a) = b, so (x ∨ a) ∧ b = b, so
b ≤ x ∨ a, so x ∨ b ≤ x ∨ a, so x ∨ b = x ∨ a, a contradiction.

Case 2 (x∧ b)∨ a = a: then x∧ b ≤ a, so x∧ b ≤ x∧ a, so x∧ b = x∧ a,
as required.

Note 3.3. The statement of Lemma 3.2 could be rephrased as:
if a ⋖ b then (a, b) ∈ ∆x ⇐⇒ (a, b) /∈ ∇x, for all x. So (a, b) ∈ ∆x or
(a, b) ∈ ∇x but (a, b) /∈ ∆x ∩∇x.

Proposition 3.4. Suppose a ⋖ b in an S-frame L. Define λ : L → 2 by
λ(x) = 0 ⇐⇒ x ∧ a = x ∧ b. Then λ is an S-point of L (that is, λ is an
S-frame map).

Proof. By Lemma 3.2, λ(x) = 1 ⇐⇒ x ∨ a = x ∨ b. Clearly λ(0) = 0 and
λ(1) = 1. The remainder of the proof is routine and we prove some of it for
illustrative purposes. We first show that λ is order preserving: suppose that
c ≤ d and λ(c) = 1. Then c∨a = c∨b, so d∨a = d∨b and λ(d) = 1. We also
prove that if S is a designated subset of L, then λ(

∨
S) ≤ ∨{λ(s) : s ∈ S}:

suppose that
∨{λ(s) : s ∈ S} = 0. Then, for all s ∈ S, λ(s) = 0, so

s ∧ a = s ∧ b; now

a ∧
∨
S =

∨
{s ∧ a : s ∈ S} =

∨
{s ∧ b : s ∈ S} = b ∧

∨
S,

so λ(
∨
S) = 0 as needed.

We note further that λ(a) = 0 and λ(b) = 1.
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Proposition 3.5. Suppose a ⋖ b in an S-frame L, and ξ : L → 2 is an
S-point satisfying ξ(a) = 0 and ξ(b) = 1. Then ξ is the unique such.

Proof. We show that ξ(x) = 0 ⇐⇒ x ∧ a = x ∧ b.
(⇒) Suppose x ∈ L and ξ(x) = 0. Clearly a ≤ (a ∨ x) ∧ b ≤ b so there

are two cases:
Case 1 (a ∨ x) ∧ b = b: then b ≤ a ∨ x, so ξ(b) ≤ ξ(a) ∨ ξ(x) = 0 which is a
contradiction.
Case 2 (a ∨ x) ∧ b = a: then (a ∧ b) ∨ (x ∧ b) = a, so x ∧ b ≤ a giving
x ∧ b ≤ x ∧ a and so x ∧ a = x ∧ b as needed.

(⇐) Suppose x ∈ L and x ∧ a = x ∧ b. Then ξ(x) ∧ ξ(a) = ξ(x) ∧ ξ(b),
so ξ(x) ∧ 0 = ξ(x) ∧ 1, giving ξ(x) = 0.

Definition 3.6. We call an S-point ξ : L→ 2 a slicing point of L if there
exists a linked pair a⋖ b in L for which ξ(a) = 0 and ξ(b) = 1. We say that
ξ slices the pair a⋖ b.

Note 3.7. Propositions 3.4 and 3.5 show that any linked pair a ⋖ b in an
S-frame has a unique associated slicing point. This is given, equivalently,
by:

λ(x) = 0 ⇐⇒ a ∧ x = b ∧ x or
λ(x) = 1 ⇐⇒ a ∨ x = b ∨ x.

Example 3.8. In [17] we discuss in some detail closed and open maps in
categories of partial frames. In particular, we consider closed and open
points. These are indeed examples of slicing points:

A closed point of an S-frame L is an S-frame map ζa : L → 2 where a
is a co-atom of L and ζa(x) = 0 ⇔ x ≤ a. Here a ⋖ 1 and ζa is the slicing
point corresponding to this linked pair.

Similarly, an open point of L is an S-frame map ρa : L → 2 where a is
an atom of L and ρa(x) = 1⇔ x ≥ a. Here 0⋖ a and ρa is the slicing point
corresponding to this linked pair.

Note 3.9. Alternative using filters: As mentioned in [13] the spectrum
ΣL of a partial frame L can be described equally well using maps from L
to 2 or using certain kinds of filters, the S-prime ones, on L. The filter
corresponding to ξ : L → 2 is F = {x ∈ L : ξ(x) = 1}. We naturally call
a filter corresponding to a slicing point a slicing filter of L: these are the
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S-prime filters F of L for which there exists a linked pair a⋖ b with a /∈ F
but b ∈ F . There is then a one-one correspondence between the slicing
points of L and the slicing filters of L. We mention that slicing filters are
introduced and used in [7].

We will frequently use the following, from [18].

Lemma 3.10. Grätzer’s Lemma.
Suppose a, b, c are elements of a distributive lattice and a⋖ b.

Then a ∨ c⋖ b ∨ c or a ∨ c = b ∨ c.
Also a ∧ c⋖ b ∧ c or a ∧ c = b ∧ c.

Definition 3.11. Let h : L → M be an S-frame map between S-frames.
We call h a D-homomorphism if it satisfies the following condition:

Whenever ξ :M → 2 is a slicing point of M
then ξ ◦ h : L→ 2 is a slicing point of L.

We note that, in the above definition, ξ ◦ h is automatically a point of
L; the substance of the definition is that it should be a slicing point of
L. These D-homomorphisms will play an essential role in the adjunction
between TD partial spaces and partial frames. (See Proposition 5.7.)

We now justify this choice of terminology by showing that, in the cat-
egory of full frames, the morphisms that we call “D-homomorphisms” are
exactly the ones called “D-homomorphisms” by Banaschewski and Pultr
in [7]. Note that there a frame map h : L→M with right adjoint r is called
a D-homomorphism if, whenever p is a covered prime of M , then r(p) is a
covered prime of L, where p is a covered prime if it is prime and p ⋖ t for
some t.

Proposition 3.12. Let h : L → M be a frame map between (full) frames,
and let r be its right adjoint. Then h is a D-homomorphism (according to
Definition 3.11) if and only if, whenever p is a covered prime of M , then
r(p) is a covered prime of L.

Proof. (⇒) Suppose p is a covered prime of M ; so p⋖ t for some t ∈M and
p is prime. We note that r(p) is automatically prime (see [7] 1.3); we show
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that r(p) is covered. Let ξ : M → 2 be the point of M associated with p,
that is

ξ(m) =

{
1 if m ̸≤ p
0 if m ≤ p

Then ξ(p) = 0 and ξ(t) = 1, so ξ is a slicing point of M . By assumption,
ξ ◦ h is a slicing point of L. So there exists a ⋖ b in L with ξh(a) = 0
and ξh(b) = 1. Then h(a) ≤ p and so a ≤ r(p). Also h(b) ̸≤ p and so
b ̸≤ r(p). By Grätzer’s Lemma, a ∨ r(p) = b ∨ r(p) or a ∨ r(p) ⋖ b ∨ r(p).
If a ∨ r(p) = b ∨ r(p) then r(p) = b ∨ r(p) so b ≤ r(p), a contradiction. So
r(p) = a ∨ r(p)⋖ b ∨ r(p) as needed.

(⇐) Suppose that ξ :M → 2 is a slicing point of M . Then there exists
s⋖t inM with ξ(s) = 0 and ξ(t) = 1. Let p be the associated prime element
of M , that is,

p =
∨
{x ∈M : ξ(x) = 0}.

Then s ≤ p and t ̸≤ p. By assumption, r(p) is a covered prime of L so
there exists c ∈ L with r(p) ⋖ c. Then ξh(r(p)) ≤ ξ(p) = 0 and ξh(c) = 1
(this latter because ξh(c) = 0 would imply that h(c) ≤ p, so c ≤ r(p), a
contradiction).

So ξh is indeed a slicing point of L as required.

Banaschewski and Pultr ( [7] 3.1) give a substantial list ofD-homomorphisms,
a justification of their claim that this is not a particularly strong require-
ment.

Lemma 3.13. Let ξ : L→ 2 be an S-point of the S-frame L. Then ξ is a
D-homomorphism if and only if ξ is a slicing point of L.

Proof. (⇒) Use the fact that the identity function id : 2 → 2 is a slicing
point of 2 to conclude that id ◦ ξ : L→ 2 is a slicing point of L.

(⇐) Use the fact that the identity function id : 2→ 2 is the only slicing
point of 2 to deduce that ξ : L→ 2 is a D-homomorphism.

In the remainder of this section, we consider linked pairs and slicing
points in two interesting and important contexts: free frames and congru-
ence frames over partial frames.
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Remark 3.1. We note that if h : L→M is a one-one S-frame map between
S-frames then, for a, b ∈ L, h(a)⋖h(b)⇒ a⋖b, as a direct calculation shows.

Proposition 3.14. Let L be an S-frame and ↓: L → HSL its embedding
into its free frame. For a, b ∈ L, a⋖ b⇔↓a⋖ ↓b.

Proof. (⇒): Suppose that ↓a ⊆ I ⊆↓b for some I ∈ HSL, and I ̸=↓b. We
show that ↓a = I. Suppose i ∈ I. Then a ∨ i ∈ I, so a ≤ a ∨ i ≤ b. By
assumption, a = a ∨ i or a ∨ i = b. In the former case i ≤ a making I =↓a.
In the latter case, b ∈ I, a contradiction.

(⇐): The embedding map ↓ is one-one, so this follows from Remark
3.1.

Proposition 3.15. Let L be an S-frame and ∇ : L → CSL its embedding
into its congruence frame. For a, b ∈ L, a⋖ b⇔ ∇a ⋖∇b.

Proof. (⇒): Suppose that ∇a ⊆ θ ⊆ ∇b for some θ ∈ CSL, and θ ̸= ∇b. We
prove that ∇a = θ. To this end, suppose that (s, t) ∈ θ, s ≤ t. We show
that s ∨ a = t ∨ a.

Case 1 (s ∨ a) ∧ b = (t ∨ a) ∧ b.
Here (s∨ a, t∨ a) ∈ ∆b. However, (s, t) ∈ θ ⊆ ∇b, so (s∨ a, t∨ a) ∈ ∇b also.
So (s ∨ a, t ∨ a) ∈ ∆b ∩∇b = ∆, giving s ∨ a = t ∨ a, as desired.

Case 2 (s ∨ a) ∧ b < (t ∨ a) ∧ b.
Here a ≤ (s ∨ a) ∧ b < (t ∨ a) ∧ b ≤ b. Since a⋖ b, we have two deductions.
First a = (s ∨ a) ∧ b. Distributing gives b ∧ s = a ∧ s, so (a, b) ∈ ∆s.
Next b = (t ∨ a) ∧ b. Distributing gives b ∨ t = a ∨ t, so (a, b) ∈ ∇t.
Together this yields (a, b) ∈ ∇t ∩∆s ⊆ θ, since ∇t ∩∆s is the congruence
generated by the pair (s, t). Finally, since (0, a) ∈ θ, we have (0, b) ∈ θ, a
contradiction.

(⇐): Automatic, since the embedding ∇ : L → CSL is one-one; see
Remark 3.1.

We recall that, for any S-frame L, the S-points of L are in one-one
correspondence with the frame points of its free frame HSL. Given any
S-point ξ : L → 2, there exists a unique frame point ρ : HSL → 2 making
the diagram below commute:
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2

L HSL

ξ

↓

ρ

The behaviour of slicing points is different, as the following result shows.
We use the notation above.

Proposition 3.16. Let L be an S-frame. If ξ : L→ 2 is a slicing point of
L, then the corresponding ρ : HSL → 2 is a slicing point of HSL; but not
conversely.

Proof. (⇒) Suppose ξ : L → 2 slices the linked pair a⋖ b. By Proposition
3.14 ↓a⋖ ↓b. Further ρ(↓a) = ξ(a) = 0 and ρ(↓b) = ξ(b) = 1, as required.

(⇍) See Example 3.17 below.

Example 3.17. Let L be the σ-frame consisting of all countable subsets
of R with R itself as top element. The σ-frame map ξ : L → 2 given by
ξ(A) = 0 ⇔ A is countable, is a a σ-point of L which is not slicing, since
there is no countable subset of A of R with A⋖R. Now let K consist of all
countable subsets of R. Then K is indeed a σ-ideal, so a member of HSL,
and the frame point corresponding to ξ is given by ρ(I) = 0 ⇔ I ⊆ K, for
all I ∈ HSL. Since K is a co-atom of HSL, ρ is indeed slicing.

We now present a very similar result for the congruence frame CSL.
Again, for any S-frame L, the S-points are in one-one correspondence with
the frame points of CSL. Given any S-point ξ : L→ 2, there exists a unique
frame point γ : CSL→ 2 making the diagram below commute:

2

L CSL

ξ

∇

γ

Proposition 3.18. Let L be an S-frame. If ξ : L → 2 is a slicing point
of L then the corresponding γ : CSL → 2 is a slicing point of CSL; but not
conversely.
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Proof. (⇒) Similar to that of Proposition 3.16.
(⇍) The σ-frame of Example 3.17 applies once more, with the same

ξ : L → 2. The corresponding frame point γ : CSL → 2 is slicing, because
γ(
⋃{∇A : A is countable}) = 0 and γ(∇R) = 1 and there is no congruence

strictly between these two. We note that
⋃{∇A : A is countable} is in fact

an S-congruence of L, using Definition 2.4 (6).

4 TD partial spaces

We now turn from partial frames to partial spaces; in particular we intro-
duce TD partial spaces. The definition is modelled directly on that of TD
topological spaces, but the two situations are significantly different, as Ex-
ample 4.7 shows. In [7] heavy use is made of closures of singletons in the
characterization of TD spaces. In [14] closures of subsets of partial spaces
are defined, but need not be closed in the given S-topology, though in fact,
they are closed in the generated full topology. As a result, closures are not
a useful tool in this context of partial spaces. In place of point closures, we
make substantial use of slicing points.

Definition 4.1. We say that an S-space (X,OX) is S0 if for any x, y ∈ X
there is U ∈ OX such that x ∈ U but y /∈ U , or conversely. (See Definition
4.11 of [13].)

Clearly the S0 property just generalizes the T0 property to partial spaces.
So we make the same restrictions as in [7] (1.6): since the restriction to S0
spaces has no impact on the pointfree aspects of spaces, that is, their partial
frames of open sets, we assume throughout that all spaces are S0.
Recall that we defined ξx : OX → 2 by ξx(U) = 1 ⇐⇒ x ∈ U .

Lemma 4.2. Let X be an S0 S-space and U, V ∈ OX. Then:
(1) U ⋖ V in OX ⇔ U = V \{z} for some z ∈ X.
(2) Every slicing point of OX has the form ξx, for some x ∈ X.
Proof. (1) (⇒) Since U ̸= V there is some z ∈ V \U . Suppose now that
z1, z2 ∈ V \U . Using the S0 property, there exists W ∈ OX with, say, z1 ∈
W and z2 /∈W .Then U ⊆ U∪(V ∩W ) ⊆ V and of course U∪(V ∩W ) ∈ OX.
Also U ̸= U ∪ (V ∩ W ) (use z1) and U ∪ (V ∩ W ) ̸= V (use z2). This
contradicts U ⋖ V .
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(⇐) Clear.
(2) Suppose ρ : OX → 2 is a slicing point of OX. Then there exists

a linked pair U ⋖ V in OX with ρ(U) = 0 and ρ(V ) = 1. By (a) there
exists x ∈ V with V = U ∪ {x}. We show that, for W ∈ OX, ρ(W ) = 1⇔
ξx(W ) = 1, that is, x ∈W .
Suppose ρ(W ) = 1. If x /∈ W then U ∩W = V ∩W . But ρ(U ∩W ) =
ρ(U) ∧ ρ(W ) = 0 and ρ(V ∩W ) = ρ(V ) ∧ ρ(W ) = 1, a contradiction. So
x ∈W . Conversely, suppose x ∈W : then

ρ(W ) = ρ(W ) ∨ ρ(U) = ρ(W ∪ U) = ρ(W ∪ V ) = ρ(W ) ∨ ρ(V ) = 1.

Definition 4.3. Let (X,OX) be an S-space. We call x ∈ X a TD-point of
X if there exists V ∈ OX with x ∈ V and V \{x} ∈ OX. We call (X,OX)
a TD space (or TD S-space) if every x ∈ X is a TD-point.

In [27] the authors state when describing the role of TD: “Here is one
of its features that is particularly important for point-free topology, namely
that this is precisely the condition under which subspaces are correctly
represented by frame congruences.” This holds equally well in the partial
setting as Proposition 4.5 shows.

Definition 4.4. Let (X,OX) be an S-space and Y a subset of X. We
define an S-congruence on OX by

EY = {(U, V ) ∈ OX ×OX : U ∩ Y = V ∩ Y }

That EY is in fact an S-congruence is straightforward to check.

Proposition 4.5. The S-space X is TD iff EY ̸= EZ for any two distinct
Y,Z ⊆ X.

Proof. The proof is identical to that provided in Chapter I Section 6.3 of
[27].

Note 4.6. We note that any TD partial space is S0: Suppose x ̸= y and
Ux, Uy are open neighbourhoods of x and y respectively with Ux\{x} and
Uy\{y} open. If y ∈ Ux\{x}, the S0 condition is satisfied, since x /∈ Ux\{x}.
If y /∈ Ux\{x} then y /∈ Ux since x ̸= y. Again the S0 condition is satisfied,
since x ∈ Ux.
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In (full) topological spaces, T1 ⇒ TD ⇒ T0, making TD a weak sep-
aration axiom. The situation in partial spaces is rather different, as the
example below shows. The notions Boolean, normal, regular, compact and
Hausdorff referred to below will not be used again in this paper but have
familiar definitions (see [9, 16]).

Example 4.7. The Finite Extended Sorgenfrey Line.
Let S be the selection function designating finite subsets, so S-frames are
bounded distributive lattices. Let X = R and OX consist of finite unions
of intervals of the form [a, b), [a,∞), (−∞, b). Then (X,OX) is an S-space.
Here OX is Boolean, so normal and regular, (X,OX) is S2 (Hausdorff) and
(vacuously) compact; yet (X,OX) is not TD.

Note 4.8. The open sets of any S-space can be used to generate a topolog-
ical space (see [13]). If X is a TD S-space, the topological space generated
by it is still TD; this is clear. The converse does not hold, as Example 4.7
shows, since the Sorgenfrey topology on the real line is TD.

Note 4.9. A T0 topological space X is TD if and only its Skula topology
(generated by the open and closed sets of X) is discrete. The corresponding
result for S-spaces does not hold, as Example 4.10 shows.

Example 4.10. Let X = R and OX = {A ⊆ R : A is countable} ∪ {R},
with S designating countable subsets. Then (X,OX) is a TD σ-space. Its
Skula σ-space is (X,UX) where

UX = {A ⊆ R : A is countable or cocountable}

not the power set of X.

We can now characterize TD spaces in terms of slicing points.

Proposition 4.11. Let X be an S0 S-space.

(1) For all x ∈ X, x is a TD-point of X if and only if ξx is a slicing point
of OX.

(2) X is a TD space if and only if ξx is a slicing point of OX for all
x ∈ X.
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(3) If X is a TD space and x ∈ X, then ξx slices every linked pair W ⋖Z
in OX for which Z =W ∪{x}, and ξx is the only slicing point of OX
to do so.

Proof. (1) We have

x is a TD-point of X
⇔ there exists V ∈ OX with x ∈ V and V \{x} ∈ OX
⇔ there exist U, V ∈ OX with U ⋖ V and V = U ∪ {x}
⇔ there exist U, V ∈ OX with U ⋖ V and x /∈ U, x ∈ V
⇔ there exist U, V ∈ OX with U ⋖ V and ξx(U) = 0, ξx(V ) = 1
⇔ ξx is a slicing point of OX

(2) This follows immediately from (1).
(3) IfW ⋖Z in OX and Z =W ∪{x}, then x /∈W,x ∈ Z, so ξx(W ) = 0

and ξx(Z) = 1. Uniqueness follows from Proposition 3.5.

Note 4.12. If x ∈ X is a TD-point of an S0 space X, and Y is a subspace
of X with x ∈ Y , then x is a TD-point of Y . So the subspace Y = {x ∈ X :
x is a TD-point of X} of X is a TD space.

5 The adjunction between STopD and SFrmD

Technically, this section provides a generalization of the adjunction given
by Banaschewski and Pultr in [7], between the category of TD spaces and
continuous functions and that of frames with D-homomorphisms. However,
while our results are similar, the tools we use are different.

Prime elements, covered primes, completely prime elements and right
adjoints of frame maps are not available in our setting. This is in con-
trast to the work of [4, 7, 20]. The notions of TD partial spaces and D-
homomorphisms between partial frames were defined and characterized in
terms of slicing points in Sections 3 and 4. In this section we see their use
in the construction of the open set functor and the TD spectrum functor.

Definition 5.1. We denote by STopD the category with objects all S-
spaces that are TD and morphisms all continuous functions between them.

We denote by SFrmD the category with objects all S-frames and mor-
phisms all D-homomorphisms between them.
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The Open Set Functor We restrict the usual open set functor O :
STop→ SFrm to O : STopD → SFrmD. (See Definition 2.5.)

To this end we need check only that, if f : X → Y is a continuous
function between TD spaces, then Of : OY → OX is a D-homomorphism.
That Of is an S-frame map is already established; it remains to show that
if ρ : OX → 2 is a slicing point of OX, then ρ◦Of is a slicing point of OY :

Proof. By Lemma 4.2, ρ has the form ξx, for some x ∈ X. Since f(x) is a
TD-point of Y , by assumption ξf(x) is a slicing point of OY , by Proposition
4.11. Further ξx ◦ Of = ξf(x):
For W ∈ OY ,

(ξx ◦ Of)(W ) = 1 ⇔ ξx(f
−1(W )) = 1

⇔ x ∈ f−1(W )

⇔ f(x) ∈W
⇔ ξf(x)(W ) = 1

The TD spectrum functor Let L be an S-frame. The spectrum ΣL of
L consists of all points of L, i.e. all S-frame maps ξ : L→ 2. We denote by
ΦL the set of all slicing points of L, with ΦL regarded as a subspace of ΣL.

For a ∈ L, let Φa = {ξ ∈ ΦL : ξ(a) = 1}. Since Φa = Σa ∩ ΦL, all open
subsets of ΦL have the form Φa for some a ∈ L. Further:

Φ0 = ∅ and Φ1 = ΦL

Φa∧b = Φa ∩ Φb for all a, b ∈ L
Φ∨

S = ∪{Φx : x ∈ S} for all designated subsets S of L.

Lemma 5.2. For any S-frame L, ΦL is a TD S-space.

Proof. Since ΣL is S0, so is ΦL. We show that, for all ξ ∈ ΦL, there exists
Φb such that ξ ∈ Φb and Φb\{ξ} = Φa for some a ∈ L:
Since ξ is a slicing point of L, there exists a linked pair a ⋖ b in L with
ξ(a) = 0 and ξ(b) = 1. Then

• ξ ∈ Φb because ξ(b) = 1
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• ξ /∈ Φa because ξ(a) = 0

• Φb = Φa ∪ {ξ}; the inclusion Φb ⊆ Φa ∪ {ξ} following because if ρ
is a slicing point of L, ρ(b) = 1 and ρ ̸= ξ, then ρ(a) = 1 also, by
Proposition 3.5.

The TD spectrum functor Φ : SFrmD → STopD acts on objects as
given above, and on morphisms by restricting the action of the spectrum
functor to slicing points. To be specific:

Suppose h : L → M is a D-homomorphism between S-frames. Then
Φh : ΦM → ΦL is given as follows:

For ξ ∈ ΦM , Φh(ξ) = ξ ◦ h.
We note that ξ ◦ h is a slicing point of L precisely because ξ is a slicing

point of M and h is a D-homomorphism.

That Φh is continuous now follows in routine fashion. For a ∈ L

(Φh)−1(Φa) = {ρ ∈ ΦM : (Φh)(ρ) ∈ Φa}
= {ρ ∈ ΦM : ρ ◦ h ∈ Φa}
= {ρ ∈ ΦM : ρ(h(a)) = 1}
= Φh(a)

Lemma 5.3. For any S-frame L, the function δL : L → OΦL given by
δL(a) = Φa is a D-homomorphism.

Proof. That δL is an S-frame map follows from the properties of the Φa
listed earlier.

To show that δL is a D-homomorphism, begin with a slicing point ξ :
OΦL→ 2. This means that there exists a linked pair Φa⋖Φb in OΦL such
that ξ(Φa) = 0 and ξ(Φb) = 1. Also, by Lemma 4.2 Φb = Φa ∪ {ρ} for some
ρ ∈ Φb. Clearly ρ(a) = 0 and ρ(b) = 1. Since ρ is a slicing point of L, there
exists a linked pair c⋖ d in L with ρ(c) = 0 and ρ(d) = 1.

We show that (ξ ◦ δL)(c) = 0 and (ξ ◦ δL)(d) = 1. This will show that
ξ ◦ δL is a slicing point of L, and also, in the process, that ξ ◦ δL = ρ.

By definition (ξ◦δL)(c) = ξ(Φc) and by Note 3.7, ξ(Φc) = 1⇔ Φa∪Φc =
Φb ∪ Φc. Since ρ /∈ Φa ∪ Φc and ρ ∈ Φb ∪ Φc we conclude that ξ(Φc) = 0.
Assuming ξ(Φd) = 0 leads to a similar contradiction, and so ξ(Φd) = 1.
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Lemma 5.4. The maps δL : L → OΦL provide a natural transformation
δ : Id→ OΦ.
Proof. The claim is that, for any D-homomorphism h : L → M between
S-frames, the following diagram commutes:

M

L OΦL

OΦM

h

δL

δM

OΦh

A routine calculation shows that, indeed, for all a ∈ L, OΦh(Φa) = Φh(a),
as needed.

Lemma 5.5. For any TD S-space X, the function πX : X → ΦOX given
by πX(x) = ξx, is a homeomorphism.

Proof. We note that Proposition 4.11 shows that ξx is indeed a slicing point
of OX, for any x ∈ X since X is TD. To show that πX is one-one, take
x ̸= y in X. There exists U ⋖ V in OX with V = U ∪ {x}. If y ∈ U ,
then ξy(U) = 1 while ξx(U) = 0. If y /∈ U then y /∈ V , so ξy(V ) = 0 but
ξx(V ) = 1. In either case ξx ̸= ξy.

We note that Lemma 4.2 shows that πX is onto.
To show πX is a homeomorphism use the fact that π−1

X (ΦU ) = U , for all
U ∈ OX.

Lemma 5.6. The maps πX : X → ΦOX provide a natural equivalence
π : Id→ ΦO.
Proof. The claim is that, for any continuous function f : X → Y between
TD S-spaces, the diagram below commutes:

Y

X ΦOX

ΦOY

f

πX

πY

ΦOf
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For x ∈ X, ΦOf(πX(x)) = ΦOf(ξx) = ξx◦Of and πY (f(x)) = ξf(x). These
are equal as seen earlier in the section on the Open Set Functor.

Proposition 5.7. The contravariant functors O : STopD → SFrmD and
Φ : SFrmD → STopD are adjoint on the right.

Proof. The adjunction maps are given in Lemmas 5.3 and 5.5.

6 TD spatiality of partial frames

As usual the adjunction between STopD and SFrmD gives rise to a dual
equivalence between the fixed objects on either side. By Lemma 5.5, all
objects of STopD are fixed. We now consider the corresponding fixed ob-
jects of SFrmD, namely, the TD spatial partial frames, and we characterize
these.

Definition 6.1. An S-frame L is called TD spatial if the S-frame map
δL : L→ OΦL is an isomorphism.

Corollary 6.2. The category STopD is dually equivalent to the full sub-
category of SFrmD consisting of the TD spatial partial frames.

We note that an S-frame L is TD spatial if and only if L ∼= OX for some
TD S-space X.

In [7] an example is given showing that TD spatiality is strictly stronger
for frames than spatiality; this example also applies in our situation.

Proposition 6.3. For any S-frame L, the following are equivalent:

(1) L is TD spatial.

(2) Whenever s < t in L, there is a slicing point ρ of L with ρ(s) = 0 and
ρ(t) = 1.

(3) Every proper interval [s, t] in L contains a linked pair; that is, there
exists a⋖ b with s ≤ a⋖ b ≤ t.

Proof. (1) ⇔ (2) This follows from the fact that δL : L → OΦL, always
being an onto D-homomorphism is an isomorphism if and only if it is one-
one.
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(2) ⇒ (3) Suppose s < t and ρ ∈ ΦL satisfies ρ(s) = 0 and ρ(t) = 1.
Since ρ is a slicing point of L, there exists a linked pair c⋖ d with ρ(c) = 0
and ρ(d) = 1. Now let a = (c ∨ s) ∧ t and b = (d ∨ s) ∧ t. Then a ̸= b and
by Grätzer’s Lemma 3.10, a⋖ b, and s ≤ a⋖ b ≤ t as needed.

(3)⇒ (2) Given s ≤ a⋖ b ≤ t, let ρ be the slicing point of L associated
with the linked pair a⋖ b. (See Note 3.7.) Then ρ(s) = 0 and ρ(t) = 1.

A natural condition on a partial frame is that of having all its points
slicing: we call such a partial frame sharp. We note that such (full) frames
have been called TD-frames in, for instance, [3].

Definition 6.4. (1) An S-frame L is called sharp if each S-point of L is
slicing; that is, ΦL = ΣL.
(2) An S-frame L is called strongly TD spatial if it is sharp and spatial.

We will see in Lemma 6.7 that a strongly TD spatial partial frame is
indeed TD spatial.

Lemma 6.5. The following are equivalent for an S-frame L.

(1) L is sharp.

(2) Every S-frame map h : L→M to an S-frameM is a D-homomorphism.

(3) Every onto S-frame map h : L→M to an S-frameM is a D-homomorphism.

Proof. (1) ⇒ (2) We must show that, for every slicing point ξ : M → 2 of
M , the composite ξ ◦ h : L → 2 is slicing. However, ξ ◦ h is certainly an
S-point of of L, so, by assumption, is a slicing point.

(2)⇒ (3) Clear.
(3)⇒ (1) Use Lemma 3.13.

In Section 3.1 of [7] the authors show that every frame map with reg-
ular domain is a D-homomorphism; in our terminology, regular frames are
sharp. The corresponding result for S-frames does not hold, as the following
example shows. We refer the reader to [9] for definitions of regularity and
Booleanness for S-frames.

Example 6.6. Let L consist of the countable and cocountable subsets of R,
and let S designate the countable subsets. The σ-frame L is Boolean, hence
regular. However, the map ξ : L → 2 given by ξ(A) = 0⇔ A is countable,
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is a σ-frame point that is not slicing, since there are no subsets C,D of R
with C countable, D cocountable and C ⋖D.

Lemma 6.7. The following are equivalent for any S-frame L.

(1) L is strongly TD spatial.

(2) L ∼= OY for some S-space Y that is TD and sober.

(3) L is spatial and ΣL is a TD S-space.
Proof. (1)⇒ (3) If L is TD spatial, L is clearly spatial. Moreover ΦL = ΣL
and since ΦL is automatically TD, ΣL is TD.

(3)⇒ (2) Since L is spatial, L ∼= OΣL and use Y = ΣL.
(2) ⇒ (1) Since L ∼= OY , L is clearly spatial. Suppose ρ ∈ ΣOY . By

sobriety of Y , there exists y ∈ Y with ρ(U) = 1 ⇔ y ∈ U , for U ∈ OY .
This means ρ = ξy. By Proposition 4.11(2), Y being TD gives ξy slicing, as
required.

We note that the concept of strong TD spatiality was introduced for
frames by Arrieta and Suarez in [4]. Lemma 6.7 shows that their notion
and ours correspond for frames.

7 TD and sober partial spaces

The study of TD and sober topological spaces has a long history. There is an
informal duality between these two notions that is presented clearly in [7].
In this section we see that the very same ideas extend, using somewhat
different methods, to the partial setting. The informal duality in question
is given in Proposition 7.3.

Sober partial spaces were studied in [14] where it is shown that they
are not as seemingly plentiful as in the topological case: even regular S2
(Hausdorff) partial spaces need not be sober. In fact, Example 6.6 above is
a case in point.

Lemma 7.1. (1) Let X be an S-space, x ∈ X and j : X\{x} → X the
identical embedding. Then Oj is an isomorphism if and only if x is not a
TD-point of X.

(2) For Z ⊆ Y ⊆ X, let k : Z → Y and j : Y → Z be the identical
embeddings and let l = j ◦ k. If Ol is an isomorphism, then Oj and Ok are
isomorphisms.
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Proof. The proof is as it appears in [7] Lemma 4.2 and Note 4.2. We remind
the reader that Oj(U) = U\{x} for U ∈ OX.

Definition 7.2. For S-spaces A and B we consider the relation:

R(A,B) :
•A is a proper subspace of B
• the identical embedding j : A→ B makes
Oj : OB → OA an isomorphism

Proposition 7.3. Let X be an S-space.
(1) X is sober iff there is no Y with R(X,Y ).

(2) X is TD iff there is no Y with R(Y,X).

Proof. (1) We show that X is not sober iff there exists Y with R(X,Y ).
(⇒) If X is not sober, let Y = ΣOX, the sobrification of X. Then

ϵX : X → ΣOX is not onto, but OϵX : OΣOX → OX is an isomorphism.
(⇐) SupposeX is sober and there exists Y with R(X,Y ). Let j : X → Y

be an embedding that is not onto, with Oj : OY → OX an isomorphism.
Consider this diagram:

ΣOX

X Y

ΣOY

∼= ϵX

j

ΣOj
∼=

ϵY

We note that ϵY : Y → ΣOY is one-one because Y is S0. Since the diagram
commutes, ϵY ◦ j is onto, making j onto as well; a contradiction.

(2) We show that X is not TD iff there exists Y with R(Y,X).
(⇒) If X is not TD, it has a non-TD-point x. Lemma 7.1 (1) shows that

X\{x} can be chosen for Y .
(⇐) Suppose j : Y → X is an identical embedding that is not onto,

with Oj : OX → OY an isomorphism. For x ∈ X\Y , consider the identical
embeddings

Y → X\{x} → X.

By Lemma 7.1 (2) OX → O(X\{x}) is an isomorphism. By Lemma 7.1
(1), x is not a TD-point of X.
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Corollary 7.4. (1) If j : X → Y is an embedding that is not onto and
Oj : OY → OX is an isomorphism, then X is not sober and Y is not
TD.

(2) A non-trivial sobrification is never TD.

(3) If, for each x ∈ X, X\{x} is sober, then X is TD.

Proof. (3) If x were a non-TD-point of X, then R(X\{x}, X) making X\{x}
not sober, by (1).
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