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H-Fibrations: Fibrations in homotopy
category

Ali Pakdaman∗, Saba Dehrooye, Mehdi Tajik, and Behrooz
Mashayekhy

Abstract. In this paper we generalize fibrations by H-fibrations, the maps
which homotopically lift homotopies. We replace the equalities in the defini-
tion of covering homotopy property with the homotopy relation so that we
can first get an expression of the concept of covering homotopy property in
the homotopy category. After introducing H-fibrations, we will have a ho-
motopy expression of some concepts related to fibration, such as path lifting,
lifting function and unique path lifting property, to generalize some results in
fibration. In particular, we show that an H-fibration has homotopical path
lifting property and also prove that a map is an H-fibration if and only if it
has a homotopical lifting function.

1 Introduction

1.1 Motivation Fibrations are maps with the covering homotopy prop-
erty. A map p : E → B has the covering homotopy property if for every
space X, every map f̃ : X → E and every homotopy F : X × I → B with
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p ◦ f̃ = F ◦ J0, there exists a homtopy F̃ : X × I → E such that p ◦ F̃ = F
and F̃ ◦ J0 = f̃ , where J0 : X → X × I is J0(x) = (x, 0).

Putting this definition in diagrammatic form, we have that p has the
covering homotopy property if and only if for every commutative square

X
f̃

//

Jo
��

E

p

��

X × I

F̃

;;

F // B,

there exists a map F̃ , as indicated by the dashed arrow, that makes the two
triangles commute in the T OP category: Category of topological spaces
and continuous maps.

A homotopical version of the covering homotopy property, that is, the
weak covering homotopy property introduced by K. Fuchs [2]. A map p :
E → B has the weak covering homotopy property if in the definition of the
covering homotopy property, F̃ ◦ J0 = f̃ is replaced by the fiber homotopy
F̃ ◦ J0 ≃p f̃ . We recall that two maps f0, f1 : X → E are said to be fiber
homotopic with respect to p, denoted by f0 ≃p f1 if there is a homotopy
F : f0 ≃ f1 such that p ◦ F = p ◦ f0 = p ◦ f1 [7].

In diagrammatic form, we have that p has the weak covering homotopy
property if and only if for every commutative square (in T OP category)
there exists a map F̃ , as indicated by the dashed arrow, that makes the lower
triangle commutes in the T OP category and the upper triangle commutes
to fiber homotopy, i.e. commutes in the homotopy category HT OP: The
category that has topological spaces for objects and homotopy equivalence
classes of continuous maps for morphisms. In fact HT OP is the quotient
category of T OP by the homotopy relation on morphisms.

A. Dold, et.al [1, 2, 4], studied the maps which have the weak covering
homotopy property, called h-fibrations (or Dold fibrations). They proved
that the weak covering homotopy property is invariant under the fiber ho-
motopy equivalence, the fibers of an h-fibration have the same homotopy
type, for every h-fibration there exists the long exact sequence, and etc
(see [1, 2, 4]).

We introduce H-fibrations as another homotopical generalization of fi-
brations. An H-fibration is a map which has the homotopical covering
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homotopy property: in the definition of the covering homotopy prop-
erty, p ◦ F̃ = F is replaced by p ◦ F̃ ≃ F , rel X × İ.

In diagrammatic form, the dashed arrow makes the upper triangle com-
mute in the T OP category and the lower triangle commute in the HT OP.
This approach led us to use the name H-fibration.

It is well known that fibrations by the unique path lifting property have
interesting results (see [7]). A map p : E → B has the unique path lifting
property if for given paths α̃ and β̃ in E with the same initial point, p◦ α̃ =
p ◦ β̃ implies that α̃ = β̃. In [6] it is shown that an h-fibration with the
unique path lifting property is a fibration and therefore do not give a new
result. Here, we consider unique path homotopical lifting property, that is
a homotopical analogue of unique path lifting property, but stronger of it.

A map p : E → B has the unique path homotopical lifting property if
for given paths α̃ and β̃ in E with the same initial point, p ◦ α̃ ≃ p ◦ β̃ rel İ
implies that α̃ ≃ β̃ rel İ (see [5]). We show that an H-fibration even with
unique path homotopical lifting necessarily is not a fibration, while some
important results of fibrations with unique path lifting property are satisfied
for H-fibrations with unique path homotopical lifting property.

As main results, we show that an H-fibration has homotopical path
lifting property and also prove that a map is an H-fibration if and only if it
has a homotopical lifting function.

1.2 Preliminaries Throughout this article, all spaces are path con-
nected, unless otherwise stated. A map f : X −→ Y means a continuous
function and I := [0, 1]. The map α : I −→ X is called a path from
x0 = α(0) to x1 = α(1).

For given maps p : E → B and f : X → B, a map f̃ : X → E is called
a lifting of f if p ◦ f̃ = f , and p has unique lifting property, if every two
lifts f̃ , f of f with the same image on some points of X, are equal. When
F : X × I −→ Y is a map, we say that F is a homotopy from F0 to F1 and
write F : F0 ≃ F1, where Fi : X −→ Y is Fi(x) = F (x, i), for i = 0, 1. The
constant map from X to Y which sends all points to y ∈ Y is denoted by
Cy.
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2 H-fibrations

In this section we introduce H-fibrations, the maps which have homotopical
covering homotopy property.

Definition 2.1. A map p : E → B is said to have homotopical covering
homotopy property, if for every space X, every map f̃ : X → E and every
homotopy F : X × I → B with p ◦ f̃ = F ◦ J0, there exists a homotopy
F̃ : X × I → E such that p ◦ F̃ ≃ F , rel X × İ and F̃ ◦ J0 = f̃ , where
İ = {0, 1}.
A map p : E → B is said to be an H-fibration if it has homotopical covering
homotopy property.

Clearly every fibration is an H-fibration. The following example shows
that an H-fibration necessarily is not a fibration.

Example 2.2.
(i) Let E = I × I − {(0, 12)}, B = I and p be the projection on the

first component. Moreover, let F : X × I → B, f̃ : X → E be maps with
p ◦ f̃ = F ◦ J0. Let e = (1, 12), and define a homotopy F̃ : X × I → E by

F̃ (x, t) =

{
f̃(x) + 2(e− f̃(x))t t ∈ [0, 12 ],

(F (x, t), 0) + 2(e− (F (x, t), 0))(1− t) t ∈ [12 , 1].

Define H : X× I× I → B by H(x, t, s) = (1− s)p◦ F̃ (x, t)+ sF (x, t). Then
H : p ◦ F̃ ≃ F rel X × İ because
H(x, t, 0) = p ◦ F̃ (x, t),

H(x, t, 1) = F (x, t),

H(x, i, s) = (1− s)p ◦ F̃ (x, i) + sF (x, i) = p ◦ F̃ (x, i) = F (x, i), for i = 0, 1.

Also, F̃ ◦ J0 = f̃ . Note that F̃ (x, t) is a line (consisting of two line
segments) from f̃(x) to (F (x, t), 0) which passes through the point e at
t = 1

2 . Hence for every x ∈ X, p ◦ F̃ (x, 12) = p(e) = 1 while F (x, 12) is not

necessarily 1. This shows that p ◦ F̃ ̸= F .
(ii) Let E = {(t, 0)|t ∈ I}∪{(t, t)|t ∈ I − {1}}, B = I and p : E → B be

the projection on the first component. Let f̃ : X → E and F : X × I → B
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be maps with p ◦ f̃ = F ◦ J0. Define,

F̃ (x, t) =

{
(1− 2t)f̃(x) t ∈ [0, 12 ],(
(2t− 1)F (x, t), 0

)
t ∈ [12 , 1].

Therefore, by the gluing lemma F̃ is continuous. Define H : X × I × I → B
by H(x, t, s) = (1− s)p◦ F̃ (x, t)+ sF (x, t). Then for every x ∈ X and every
t, s ∈ I we have

H(x, t, 0) = p ◦ F̃ (x, t),

H(x, t, 1) = F (x, t),

H(x, 0, s) = (1− s)p ◦ F̃ (x, 0) + sF (x, 0) = p ◦ F̃ (x, 0) = F (x, 0),

H(x, 1, s) = (1− s)p ◦ F̃ (x, 1) + sF (x, 1) = p ◦ F̃ (x, 1) = F (x, 1).

Moreover, F̃ ◦J0 = f̃ . Note that similar to the part (i), F̃ (x, t) is a line (con-
sisting of two line segments) from f̃(x) to (F (x, t), 0) which passes through
the point (0, 0) at t = 1

2 . Hence for every x ∈ X, p ◦ F̃ (x, 12) = 0 while

F (x, 12) is not necessarily 0. This shows that p ◦ F̃ ̸= F .

A map p : E → B has path lifting property if for a given b ∈ B,
e ∈ p−1(b) and a path α in B beginning at b, there exists a path α̃ in E
such that α̃(0) = e and p ◦ α̃ = α (see [7]). Also by replacing p ◦ α̃ = α by
p ◦ α̃ ≃ α, rel İ, it is said that p has homotopical path lifting property and
α̃ is a homotopical lifting of α (see [6]). We know that fibrations and h-
fibrations have path lifting property and homotopical path lifting property
(see [6, 7]).

Proposition 2.3. If p : E → B is an H-fibration, then p has homotopical
path lifting property.

Proof. If α is a path in B and e ∈ p−1(α(0)), we show that α has a ho-
motopical lifting at e. Let F : {∗} × I → B be the homotopy defined by
F (∗, t) = α(t) and f̃ : {∗} → E be the map f̃(∗) = e. Then p ◦ f̃ = F ◦ J0
and since p is an H-fibration, there exist two homotopies F̃ : {∗} × I → E
and H : {∗}×I×I → B such that H : p◦ F̃ ≃ F rel {∗}× İ and F̃ ◦J0 = f̃ .
Let α̃(t) = F̃ (∗, t) and define H : I × I → B by H(s, t) = H(∗, s, t). There-
fore we have α̃(0) = F̃ (∗, 0) = F̃ ◦ J0(∗) = f̃(∗) = e and H : p ◦ α̃ ≃ α rel İ,
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because for every s, t ∈ I we have

H(s, 0) = H(∗, s, 0) = p ◦ F̃ (∗, s) = p ◦ α̃(s),
H(s, 1) = H(∗, s, 1) = F (∗, s) = α(s),

H(0, t) = H(∗, 0, t) = p ◦ F̃ (∗, 0) = p ◦ α̃(0) = F (∗, 0) = α(0),

H(1, t) = H(∗, 1, t) = p ◦ F̃ (∗, 1) = p ◦ α̃(1) = F (∗, 1) = α(1)

If p : E → B is an H-fibration and A ⊆ B, then p|p−1(A) : p
−1(A) → A

is not necessarily an H-fibration. Let p be the H-fibration in Example
2.2, (ii), and A = {(t, 0)|t ∈ [12 , 1]}. Since p|p−1(A) has not the homotopical
path lifting property, by Proposition 2.3, p|p−1(A) : p

−1(A) → A is not an
H-fibration. This shortcoming is fixed when A is a path component.

Proposition 2.4. Let p : E → B be a map.
(i) If p is an H-fibration, then for every path component A of E, p(A) is a
path component of B and p|A : A → p(A) is an H-fibration.
(ii) If E is locally path connected and for every path component A of E,
p|A : A → p(A) is an H-fibration, then p is an H-fibration.

Proof. (i) p(A) be path connected. Let α be a path in B such that α(0) ∈
p(A). If e is a point of A such that p(e) = α(0), then by Proposition 2.3, there
is a homotopical lifting α̃ of α beginning at e. Since A is a path component
and e ∈ A, α̃ belongs to A, so p(α̃) is a path in p(A) and p ◦ α̃ ≃ α, rel İ.
Then α is a path in p(A) which implies that p(A) is path component.
Now, let f̃ : X → A and F : X × I → p(A) be two maps such that p ◦ f̃ =
F ◦ J0. Since p is an H-fibration, there exists a homotopy F̃ : X × I → E
such that p◦F̃ ≃ F , rel X× İ and F̃ ◦J0 = f̃ . For every x ∈ X, F̃ (x,−) and
F (x,−) are paths beginning at F̃ ◦J0(x) and F (x, 0) = p◦f̃(x), respectively.
Since, F̃ ◦ J0(x) = f̃(x) ∈ A and F ◦ J0 = p ◦ f̃ ∈ p(A), we have F̃ (x, t) ∈ A
and F (x, t) ∈ p(A).
(ii) Let f̃ : Y → E and F : Y × I → B be maps such that F ◦ J0 = p ◦ f̃ . If
{Aj |j ∈ J} are the path components of E, then {Aj |j ∈ J} are disjoint open

subsets of E. Let Vj = f̃−1(Aj), f̃j = f̃ |Vj : Vj → Aj and Fj = F |Vj×I. For
every y ∈ Vj , F ({y}×I) is contained in the path component of B containing

F ◦ J0(y) = p ◦ f̃(y). Also, since p ◦ f̃(y) = p ◦ f̃j(y) ∈ p ◦ f̃j(Vj) = p(Aj)
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and p(Aj) is a path component of B, ImFj = F (Vj × I) ⊆ p(Aj) for all
j. Because p|Aj : Aj → p(Aj) is an H-fibration, there exists a homotopy

F̃j : Vj × I → Aj with homotopy Hj : p ◦ F̃j ≃ Fj , rel {Vj} × İ and

F̃j ◦ J0 = f̃j .

Define F̃ : Y ×I → E and H : Y ×I → B by F̃ |Vj×I = F̃j and H|Vj×I = Hj .

Since {Vj |j ∈ J} is an open cover of Y and Vj ‘s are disjoint, F̃ and H are

well-defined. We claim that H : p ◦ F̃ ≃ F , rel Y × İ. For every y ∈ Y ,
there exists a unique j ∈ J such that y ∈ Vj . Then for every s, t ∈ I we
have

H(y, s, 0) = Hj(y, s, 0) = p ◦ F̃ j(y, s) = p ◦ F̃ (y, s),

H(y, s, 1) = Hj(y, s, 1) = Fj(y, s) = F (y, s),

H(y, 0, t) = Hj(y, 0, t) = p ◦ F̃j(y, 0) = Fj(y, 0) = p ◦ F̃ (y, 0) = F (y, 0),

H(y, 1, t) = Hj(y, 1, t) = p ◦ F̃j(y, 1) = Fj(y, 1) = p ◦ F̃ (y, 1) = F (y, 1).

Moreover, F̃ ◦ J0 = f̃ and so p is an H-fibration.

Theorem 2.5. Composition of two H-fibrations is an H-fibration.

Proof. Let p : E −→ E′ and p′ : E′ −→ B be two H-fibrations, f̃ : X −→ E
and F : X×I −→ B be two maps such that (p′◦p)◦f̃ = F ◦J0. Since p′ is an
H-fibration and p′◦(p◦f̃) = F ◦J0, there exists a homotopy G : X×I −→ E′

such that G◦J0 = p◦ f̃ and p′ ◦G ≃ F , rel X× İ. Since p is an H-fibration,
there exists F̃ : X × I −→ E such that F̃ ◦J0 = f̃ and p ◦ F̃ ≃ G, rel X × İ.
Thus p′ ◦ (p ◦ F̃ ) ≃ p′ ◦G, rel X × İ which implies that (p′ ◦ p) ◦ F̃ ≃ F , rel
X × İ because p′ ◦G ≃ F , rel X × İ.

Definition 2.6. [6, Definition 2.21]
Let p : E → B be a map and B = {(e, ω) ∈ E ×BI |ω(0) = p(e)}. A
homotopical lifting function for p is a continuous function λ : B → EI

which assigns to each point e ∈ E and path ω in B starting at p(e), a path
λ(e, ω) in E starting at e such that it is a homotopical lifting of ω.

Note that the topology on BI is the compact-open topology and the
topology on B is the subspace topology induced by the product topology
on E ×BI .
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Theorem 2.7. A map p : E → B is an H-fibration if and only if it has a
homotopical lifting function.

Proof. Assume that p is an H-fibration. Define two maps f̃ : B → E and
F : B × I → B by f̃(e, ω) = e and F ((e, ω), t) = ω(t) which are continuous.
Since F ((e, ω), 0) = ω(0) = p(e) = p ◦ f̃(e, ω) and p is an H-fibration, there
exists a homotopy F̃ : B × I → E such that p ◦ F̃ ≃ F , rel B × İ and
F̃ ◦ J0 = f̃ . Define λ : B → EI by λ(e, ω)(t) = F̃ ((e, ω), t). Then,

λ(e, ω)(0) = F̃ ((e, ω), 0) = F̃ ◦ J0(e, ω) = f̃(e, ω) = e

p ◦ λ(e, ω) = p ◦ F̃ ((e, ω),−) ≃ F ((e, ω),−) = ω, rel İ.

Continuity of λ comes from the continuity of F̃ . Therefore λ is a homotopical
lifting function for p.

For the converse, let λ : B → EI be a homotopical lifting function for
p. Also, let f̃ : X → E and F : X × I → B be the maps such that
p ◦ f̃ = F ◦ J0. Define g : X → BI by g(x)(t) = F (x, t). By assumption
for the path g(x) : I → B starting at p ◦ f̃(x), there exists a homotopical
lifting λx := λ(f̃(x), g(x)) : I → E of g(x). Then there exists a homotopy
H : I × I → B such that H : p ◦ λx ≃ g(x), rel İ. Therefore we can define
a map F̃ : X × I → E by F̃ (x, t) = λx(t) which is continuous because
λ is continuous. Hence F̃ (x, 0) = λx(0) = f̃(x). Moreover, by defining
H ′ : X × I × I → B by H ′(x, t, s) = H(t, s). We have H ′ : p ◦ F̃ ≃ F , rel
X × İ since for every x ∈ X and every s, t ∈ I we have

H ′(x, t, 0) = H(t, 0) = p ◦ λx(t) = p ◦ F̃ (x, t),

H ′(x, t, 1) = H(t, 1) = g(x)(t) = F (x, t),

H ′(x, 0, s) = H(0, s) = p ◦ λx(0) = p ◦ F̃ (x, 0) = p ◦ f̃(x) = F (x, 0),

H ′(x, 1, s) = H(1, s) = p ◦ λx(1) = p ◦ F̃ (x, 1) = g(x)(1) = F (x, 1).

Thus, p is an H-fibration.

Remark 2.8. Every fibration p : E → B with contractible base space
B is fibre-homotopy equivalent to the trivial fibration pr : B × F → B
(see [3, Proposition 2.1]). But this is not true for H-fibrations. For instance,
Example 2.2 is an H-fibration with contractible base B := I that is not
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fibre-homotopy equivalent to the trivial fibration. Because, the fibers of
pr : I × F → I have the same homotopy while in Example 2.2 this is not
true. In fact, in part (i), p−1(0) has two path components but the other
fibers are path connected and in part (ii), p−1(0) and p−1(1) are singletons
but the other fibers have two points.

For a map f : X → E, by f̌ : X× I → E we mean f̌(x, t) = f ◦pr1(x, t),
for every x ∈ X and any t ∈ I.

Definition 2.9. Let p : E → B be a map. The maps f0, f1 : X → E
are said to be homotopically fiber homotopic, with respect to p denoted by
f0 ≃hp f1, if there is a homotopy F : f0 ≃ f1 such that p◦F ≃ p◦ f̌0 = p◦ f̌1,
rel X × İ.

Note that the above definition guarantees p◦f0 = p◦f1. Also, by defini-
tions of fiber homotopy and Definition 2.9, if two maps are fiber homotopic,
they are also homotopically fiber homotopic. Moreover,

Proposition 2.10. Let p : E → B be a map. The homotopically fiber
homotopy with respect to p is an equivalence relation on the set of maps
from X to E.

Proof. Clearly, it is reflexive and symmetric. Now, consider the maps
f0, f1, f2 : X → E with f0 ≃hp f1 and f1 ≃hp f2. By definition, there
exist homotopies F : f0 ≃ f1, G : f1 ≃ f2, T : p ◦ F ≃ p ◦ f̌0 = p ◦ f̌1 rel
X × İ and K : p ◦G ≃ p ◦ f̌1 = p ◦ f̌2 rel X × İ. Define, H : X × I → E and
H ′ : X × I × I → B by

H(x, s, t) =

{
F (x, 2s) s ∈ [0, 12 ],

G(x, 2s− 1) s ∈ [12 , 1],

H ′(x, s, t) =

{
T (x, 2s, t) s ∈ [0, 12 ],

K(x, 2s− 1, t) s ∈ [12 , 1].

Then H : f0 ≃ f2. T and K are continuous and

T (x, 1, t) = p ◦ f̌1(x, 1) = p ◦ f1(x) = p ◦ f̌1(x, 0) = K(x, 0, t).
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Hence by gluing lemma H ′ is continuous. Also, H ′ : p ◦H ≃ p ◦ f̌0 = p ◦ f̌2
rel X × İ because

H ′(x, s, 0) =

{
T (x, 2s, 0) = p ◦ F (x, 2s) s ∈ [0, 12 ],

K(x, 2s− 1, 0) = p ◦G(x, 2s− 1) s ∈ [12 , 1],

which is p ◦H and

H ′(x, s, 1) =

{
T (x, 2s, 1) = p ◦ f̌1(x, 2s) s ∈ [0, 12 ],

K(x, 2s− 1, 1) = p ◦ f̌1(x, 2s− 1) s ∈ [12 , 1],

which is p ◦ f̌1 = p ◦ f̌0 = p ◦ f̌2. Since

H ′(x, 0, t) = T (x, 0, t) = p ◦ F (x, 0) = p ◦ f̌0(x, 0) = p ◦ f̌1(x, 0),

we have

H ′(x, 0, t) = p ◦H(x, 0) = p ◦ f̌0(x, 0) = p ◦ f̌2(x, 0)

and since

H ′(x, 1, t) = K(x, 1, t) = p ◦G(x, 1) = p ◦ f̌1(x, 1) = p ◦ f̌2(x, 1),

we have

H ′(x, 1, t) = p ◦H(x, 1) = p ◦ f̌1(x, 1) = p ◦ f̌2(x, 1).

Now, we have the following proposition which is a homotopical version
of [7, Theorem 2.8.10]. We recall that for a homotopy F : X × I → E, by
F0 and F1 we mean F |X × {0} and F |X × {1}, respectively.

Proposition 2.11. Let p : E → B be an H-fibration and F, F ′ : X×I → E
be homotopies. Given homotopies H : p ◦ F ≃ p ◦ F ′ and G : F0 ≃ F ′

0 with

H|X ×{0}× I = p ◦G, there exists an extension H̃ of G from F to F ′ with
p ◦ H̃ ≃ H, rel X × I × İ.
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Proof. Let A = (I × {0}) ∪ ({0} × I) ∪ (I × {1}) ⊆ I × I. We know that
there exists a homeomorphism δ : I × I → I × I such that δ(A) = I × {0}
(see [7, Theorem 2.8.10]). So we have the homeomorphism θ : X × I × I →
X × I × I defined by θ(x, r, s) = (x, δ(r, s)). Define f : X × A → E by
f |X × I × {0} = F, f |X × {0} × I = G|X × {0} × I, f |X × I × {1} = F ′.
Since H|X ×A = p ◦ f ,

H ◦ θ−1|X × I × {0} = p ◦ f ◦ θ−1|X × I × {0}.

Since p is an H-fibration, there exists G̃ : X×I×I → E with the homotopy
T : p ◦ G̃ ≃ H ◦ θ−1 rel X × I × İ and G̃ ◦ J0 = f ◦ θ−1|X × I × {0}.
Define H̃ : X × I × I → E by H̃ = G̃ ◦ θ.

Let T ′ : X × I × I × I → B be the map T ′(x, r, s, t) = T (θ(x, r, s), t).
Therefore, T ′ : p ◦ H̃ ≃ H rel X × I × İ because

T ′(x, r, s, 0) = T (θ(x, r, s), 0) = p ◦ G̃(θ(x, r, s))

= p ◦ G̃ ◦ θ(x, r, s) = p ◦ H̃(x, r, s),

T ′(x, r, s, 1) = T (θ(x, r, s), 1) = H ◦ θ−1(θ(x, r, s)) = H(x, r, s).

For (x, r, 0) ∈ X ×A, By definition of δ and θ, there exists r′ ∈ I such that
θ(x, r, 0) = (x, r′, 0). Since T : p ◦ G̃ ≃ H ◦ θ−1 rel X × I × İ, we have

T ′(x, r, 0, t) = T (x, r′, 0, t) = p◦G̃(x, r′, 0) = p◦G̃◦θ(x, r, 0) = p◦H̃(x, r, 0),

T ′(x, r, 0, t) = T (x, r′, 0, t) = H ◦ θ−1(x, r′, 0) = H(x, r, 0).

Also, for (x, r, 1) ∈ X×A, there exists r′′ ∈ I such that θ(x, r, 1) = (x, r′′, 0),
then

T ′(x, r, 1, t) = T (x, r′′, 0, t) = p◦G̃(x, r′′, 0) = p◦G̃◦θ(x, r, 1) = p◦H̃(x, r, 1),

T ′(x, r, 1, t)) = T (x, r′′, 0, t) = H ◦ θ−1(x, r′′, 0) = H(x, r, 1).

Moreover, H̃ : F ≃ F ′ and H̃ is a extension of G because

H̃(x, r, 0) = G̃ ◦ θ(x, r, 0) = f ◦ θ−1 ◦ θ(x, r, 0) = f(x, r, 0) = F (x, r),

H̃(x, r, 1) = G̃ ◦ θ(x, r, 1) = f ◦ θ−1 ◦ θ(x, r, 1) = f(x, r, 1) = F ′(x, r),

H̃(x, 0, s) = G̃ ◦ θ(x, 0, s) = f ◦ θ−1 ◦ θ(x, 0, s) = f(x, 0, s) = G(x, 0, s).
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By using this proposition, we can show that liftings of a homotopy with
the same starting map by an H-fibration is uniqe up to homotopically fiber
homotopy.

Theorem 2.12. Let p : E → B be an H-fibration and F, F ′ : X × I → E
be two homotopies in which F0 = F ′

0 and p ◦ F = p ◦ F ′. Then F ≃hp F
′.

Proof. Let H : X×I×I → B and G : X×{0}×I → E be the corresponding
constant homotopies H : p◦F = p◦F ′ and G : F0 = F ′

0. Since, H(x, 0, s) =
p ◦ F (x, 0) = p ◦ G(x, 0, s), by Proposition 2.11 there exists a homotopy
H̃ from F to F ′ such that p ◦ H̃ ≃ H rel X × I × İ. By the definitions,
H = p ◦ F̌ = p ◦ F̌ ′. Then, p ◦ H̃ ≃ p ◦ F̌ = p ◦ F̌ ′ rel X × I × İ and hence
the result holds.

Acknowledgement

The authors would like to thank the referee for his/her careful reading and
useful suggestions.

References

[1] Dold, A., Partitions of unity in the theory of fibrations, Annal. Math. 78 (1963),
223-255.

[2] Fuchs, K., “Homotopiefaserungen”, Dissertation, Universität des Saarbrücken.
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