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On homological classification of monoids
by Condition (Psc) and new classification

on Condition (PE)

Hossein Mohammadzadeh Saany∗, Morteza Jafari, and Leila Nouri

Abstract. In 1997, Golchin and Renshaw introduced Condition (PE) and
showed that this condition implies weak flatness, although the converse is not
generally valid. In this paper, we present Condition (Psc) as a generalization
of Condition (PE). We also see that Condition (Psc) implies weak flatness,
but the converse is not necessarily true. However, for left PSF monoids
the converse is holds. Moreover, we discuss some general properties and
provide a homological classification of monoids by comparing Condition (Psc)
with some other properties. Furthermore, a new homological classification of
monoids is presented by comparing Condition (PE) with other properties.

1 Introduction and Preliminaries

In this paper, we refer to a monoid as S, with 1 representing its identity
element. A non-empty set A is called a right S-act, usually denoted by
AS (or simply A), when S acts on A unitarily from the right. This means
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there exists a mapping A × S → A, (a, s) 7→ as, satisfying the conditions
a1 = a and (as)t = a(st) for all a ∈ A and all s, t ∈ S. Left S-act can
be defined dually. Hereafter, when we mention S-act, we are referring to a
right S-act. For further details and definitions related to semigroups and
acts over monoids, we recommend referring to [8, 11].

As per the definition provided in [11], an S-act A is called flat if the
functor A ⊗S − preserves all monomorphisms of left S-acts. If the functor
A⊗S − preserves all embeddings of (principal) left ideals into S, then A is
called (principally) weakly flat. An S-act A satisfies Condition (E) if for all
a ∈ A and s, s′ ∈ S, as = as′ implies the existence of a′ ∈ A and u ∈ S such
that a = a′u and us = us′. It satisfies Condition (P ) if for all a, a′ ∈ A and
s, s′ ∈ S, as = a′s′ implies the existence of a′′ ∈ A and u′ ∈ S such that
a = a′′u, a′ = a′′u′, and us = u′s′. An S-act A is considered strongly flat if
it satisfies both Conditions (P ) and (E).

Moreover, an S-act A satisfies Condition (P ′) if for all a, a′ ∈ A and
s, t, z ∈ S, as = a′t and sz = tz imply the existence of a′′ ∈ A and u, v ∈ S
such that a = a′′u, a′ = a′′v, and us = vt. It is obvious that Condition (P )
implies Condition (P ′), but the converse is not necessarily true. For more
comprehensive information, refer to [6].

Recall from [12], [7], [13], [5], and [15] that an S-act A satisfies Condition
(WP ) if for all elements s, t ∈ S, all homomorphisms f : S(Ss ∪ St) → SS
and all a, a′ ∈ A, when af(s) = a′f(t), then there exist a′′ ∈ A, u, v ∈ S,
s′, t′ ∈ {s, t} such that a⊗s = a′′⊗us′ and a′⊗t = a′′⊗vt′ in AS⊗S(Ss ∪ St),
and f(us′) = f(vt′). Furthermore, it satisfies Condition (PE) if for all
a, a′ ∈ A, and s, s′ ∈ S, as = a′s′ implies the existence of a′′ ∈ A, u, u′ ∈ S
and e, f ∈ E(S) such that ae = a′′ue, a′f = a′′u′f, es = s, fs′ = s′ and
us = u′s′. An S-act A satisfies Condition (PWP ) if for all a, a′ ∈ A and
s ∈ S, as = a′s implies the existence of a′′ ∈ A and u, v ∈ S such that
a = a′′u, a′ = a′′v and us = vs. Moreover, an S-act A satisfies Condition
(PWPE) if as = a′s with a, a′ ∈ A and s ∈ S, implies the existence of a′′ ∈
A, u, v ∈ S and e, f ∈ E(S) such that ae = a′′ue, a′f = a′′vf, es = s = fs
and us = vs, and it satisfies Condition (PWPsc) if as = a′s, with a, a′ ∈ A
and s ∈ S, implies the existence of a′′ ∈ A and u, v, r, r′ ∈ S such that
ar = a′′ur, a′r′ = a′′vr′, rs = s = r′s and us = vs.

An S-act A is called torsion free if for any a, b ∈ A and for any right
cancellable element u ∈ S, the equality au = bu implies a = b. It is also
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called R-torsion free, if for any a, b ∈ A and any right cancellable element
c ∈ S, ac = bc and aRb (R denotes Green’s equivalence, as described in [8]),
imply that a = b. It is evident that torsion freeness implies R-torsion
freeness, however, the converse is not generally true.

An element s of S is called right e-cancellable, for an idempotent e ∈ S,
if s = es and kerρs ≤ kerρe (where ρx represents the right translation on
S, for every x ∈ S, defined as ρx : S −→ S, t 7→ tx, for every t ∈ S). A
monoid S is called left PP if every principal left ideal of S is projective
as a left S-act. This is equivalent to saying that every element s ∈ S
is right e-cancellable for an idempotent e ∈ S. Furthermore, S is called
left PSF if every principal left ideal of S is strongly flat as a left S-act.
Equivalently, this implies that S is right semi-cancellative, meaning that
whenever su = s′u, for s, s′, u ∈ S, there exists r ∈ S such that u = ru and
sr = s′r (refer to [1, 14]).

2 General properties

In this section, we present Condition (Psc) and show that this condition
for acts can be transferred to their coproduct and vice versa. Additionally,
we show that a retract or coproduct of any act satisfying Condition (Psc)
also satisfies Condition (Psc). Furthermore, we observe that Condition (Psc)
implies weak flatness, although the converse is not necessarily valid. For left
PSF monoids, we establish that the converse holds true as well.

Definition 2.1. An S-act A satisfies Condition (Psc) if as = a′t for a, a′ ∈ A
and s, t ∈ S, implies the existence of a′′ ∈ A and u, v, r, r′ ∈ S, such that
ar = a′′ur, a′r′ = a′′vr′, rs = s, r′t = t and us = vt.

As a reminder from [11], S is called right reversible if for every s, s′ ∈ S,
there exist u, v ∈ S such that us = vs′. In the following proposition, all
statements are straightforward consequences of the definition.

Proposition 2.2. The following statements are true:

(1) SS satisfies Condition (Psc).

(2) ΘS satisfies Condition (Psc) if and only if S is right reversible.

(3) For an idempotent monoid, Conditions (PE) and (Psc) are equivalent.
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(4) Let A =
∐
i∈I Ai, where each Ai is an S-act. Then A satisfies Condi-

tion (Psc) if and only if each Ai satisfies Condition (Psc).

(5) Let {Bi |i ∈ I} is a chain of subacts of A and every Bi, i ∈ I, satisfies
Condition (Psc), then

⋃
i∈I Bi satisfies Condition (Psc).

(6) If A satisfies Condition (Psc), then every retract of A satisfies Condi-
tion (Psc).

In items 4, 5 and 6 of the above theorem, Condition (Psc) can be replaced
by Condition (PE).

The following diagram illustrates how the conditions are related to the
properties already studied.

(P )

(WP ) (P ′) (PE)

(PWP )

(PWPE)

(PWPsc)

(Psc)

flat

WF

PWF

TF

R-TF

WF=weak flatness, PWF=principal weak flatness, TF=being torsion-free,
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R-TF=being R-torsion free

Now, an equivalent condition for a cyclic S-act satisfying Condition (Psc)
is given.

Theorem 2.3. Let ρ be a right congruence on S. Then the S-act S/ρ
satisfies Condition (Psc) if and only if for all x, y, t, t′ ∈ S with (xt)ρ(yt′),
there exist u, v, r, r′ ∈ S such that ut = vt′, (xr)ρ(ur), (yr′)ρ(vr′), rt = t
and r′t′ = t′.

Proof. Necessity. Let (xt)ρ(yt′), for x, y, t, t′ ∈ S, then [x]ρt = [y]ρt
′. There-

fore, there exist u1, v1, w, r, r
′ ∈ S such that u1t = v1t

′, [x]ρr = [w]ρu1r,
[y]ρr

′ = [w]ρv1r
′, rt = t and r′t′ = t′. By letting u = wu1 and v = wv1, we

get (xr)ρ(ur), (yr′)ρ(vr′) and ut = vt′.
Sufficiency. Suppose that [x]ρt = [y]ρt

′ for x, y, t, t′ ∈ S, then (xt)ρ(yt′). By
the assumption, there exist u, v, r, r′ ∈ S such that (xr)ρ(ur), (yr′)ρ(vr′),
ut = vt′, rt = t and r′t′ = t′. This implies [x]ρr = [1]ρur, [y]ρr

′ = [1]ρvr
′,

rt = t, r′t′ = t′ and ut = vt′. Therefore, S/ρ satisfies Condition (Psc).

Corollary 2.4. For z ∈ S, zS satisfies Condition (Psc) if and only if
zxt = zyt′, for x, y, t, t′ ∈ S, implies that there exist u, v, r, r′ ∈ S such that
ut = vt′, zxr = zur, zyr′ = zvr′, rt = t and r′t′ = t′.

Proof. Since zS ∼= S/kerλz, it suffices to put ρ = kerλz.

Theorem 2.5. The following statements are true:

(1) Condition (Psc) implies weak flatness.

(2) For a left PSF monoid S, Condition (Psc) and weak flatness property
are equivalent.

(3) If S is left PP , then for every S-act we have:

(PE)⇐⇒ (Psc)⇐⇒ weakly flat.

Proof. (1). Assume that A satisfies Condition (Psc) and as = a′t, for a, a′ ∈
A and s, t ∈ S. Then there exist a′′ ∈ A and u, v, r, r′ ∈ S, such that
ar = a′′ur, a′r′ = a′′vr′, rs = s, r′t = t and us = vt. This implies

a⊗ s = a⊗ rs = ar ⊗ s = a′′ur ⊗ s = a′′ ⊗ urs = a′′ ⊗ vr′t = a′′vr′ ⊗ t =
a′r′ ⊗ t = a′ ⊗ r′t = a′ ⊗ t,
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in AS ⊗ S(Ss ∪ St). Therefore, A is weakly flat by [11, Lemma 3.11.1].
(2). Let A is weakly flat and as = a′t, for a, a′ ∈ A and s, t ∈ S. The

last equality implies the existence of a′′ ∈ A and u′ ∈ Ss ∩ St such that
as = a′t = a′′u′, by [11, Theorem 3.11.4]. Let u′ = xs = yt. According
to [17, Lemma 1.3], the equality as = a′′xs implies the existence of r ∈ S,
such that rs = s and ar = a′′xr. Similarly, the equality a′t = a′′yt, implies
the existence of r′ ∈ S, such that r′t = t and a′r′ = a′′yr′. By setting u = x
and v = y, the result follows.

(3). Since left PP implies left PSF , it is straightforward by part (2)
and [7, Theorem 2.5].

It is well known that Condition (P )⇒ flat ⇒ weakly flat and it is clear
that Condition (P )⇒ Condition (Psc).

We recall from [11] that a right ideal K of S satisfies Condition (LU) if
for every k ∈ K, there exists l ∈ K such that lk = k.

In the following examples, we show that Condition (Psc) is incomparable
with flatness.

Example 2.6. [flatness ⇏ Condition (Psc)] For a proper right ideal I of
S, and any a, b, c ̸∈ S, we set A(I) := ({a, b} × (S \ I)) ∪ ({c} × I), and we
define a right S-action on A(I) by

(a, u)s =





(a, us), us /∈ I
,

(c, us), us ∈ I

(b, u)s =





(b, us), us /∈ I
,

(c, us), us ∈ I
(c, u)s = (c, us).

Then A(I) is a right S-act. According to [11, Proposition 3.12.19], A(I) is
flat if and only if I satisfies Condition (LU).
Let’s consider the monoid S with following multiplication table
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. 0 1 e x

0 0 0 0 0
1 0 1 e x
e 0 e e 0
x 0 x x 0

and let I = eS = {0, e}. It is straightforward to verify that A(I) is flat.
Next, we show that A(I) does not satisfy Condition (Psc). Since (a, x)x =
(b, x)x, there must exist w ∈ {a, b, c}, t ∈ S, and u, v, r, r′ ∈ S, such that
(a, x)r = (w, t)ur, (b, x)r′ = (w, t)vr′, rx = x, r′x = x and ux = vx. Hence
r = r′ = 1, implying w = a = b, which is a contradiction. Therefore, A(I)
does not satisfy Condition (Psc).

From the above example, we can deduce that weak flatness does not
imply Condition (Psc).

Example 2.7. [7, Example 2] [Condition (Psc)⇏ flatness] Let U = {a, b},
V = {c, d} be left zero semigroups and let S = U ∪̇V . Extend the multipli-
cations in U and V to S by defining a and b as left zero elements for S and
cU = {a}, dU = {b}. It has been demonstrated in [7] that all right S1-acts
satisfy Condition (PE) but not all right S

1-acts are flat. On the other hand,
Condition (PE) implies Condition (Psc). Consequently, all right S1-acts
satisfy Condition (Psc) but not all right S

1-acts are flat.

It is important to observe that Condition (Psc) does not imply Con-
dition (P ), as otherwise, Condition (Psc) would imply flatness, which is
contradicted by Example 2.7.

The following example illustrates that Condition (Psc) does not imply
Condition (PE).

Example 2.8. [Condition (Psc) ⇏ Condition (PE)] Consider the commu-
tative monoid S = {xmi |i ∈ R,m ∈ N} ∪ {1} such that

xmi x
n
j =

{
xnj i < j

xm+n
i i = j.

Let K = {xmi |i ∈ R,m ∈ N}. It is evident that K is an ideal of S. Let
xmi ∈ K and j < i. Then xmj x

m
i = xmi , and so K satisfies Condition (LU).
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Hence, by [11, Proposition 3.12.19], A = S
K∐
S is weakly flat. Since S is left

PSF (refer to [17, Example 1.6]), according to Theorem 2.5(2), A satisfies
Condition (Psc). Now, we proceed to show that A does not satisfy Condition
(PE). Since (1, x)x

m
i = (1, y)xmi and e = 1 is the only idempotent such that

exmi = xmi , there must exist a′′ ∈ A and u, u′ ∈ S such that (1, x) = a′′u,
(1, y) = a′′u′ and uxmi = u′xmi . Notice that (1, x) = a′′u implies a′′ = (1, x)
and u = 1, but there is no element u′ ∈ S such that (1, y) = (1, x)u′.

Now, in the following example, we show that Condition (PWPsc) does
not imply Condition (Psc).

Example 2.9. [Condition (PWPsc) ⇏ Condition (Psc)] Let S is not right
reversible (for example, consider free monoid generated by two elements).
Then ΘS does not satisfy Condition (Psc) according to Proposition 2.2(2),
but it satisfies Condition (PWPsc), as proven in [15, Theorem 2.2].

3 Classification of monoids by Condition (Psc)

In this section, we present some results on homological classifications. We
start with questions where some properties imply Condition (Psc) for finitely
generated, cyclic, and monocyclic acts. Additionally, we provide a classifi-
cation of monoids for which acts with this property have some other flatness
properties.

Theorem 3.1. The following statements are equivalent:

(1) All S-acts satisfy Condition (Psc).

(2) S is regular and satisfies Condition (R).
(R) : for any elements s, t ∈ S, there exists w ∈ Ss ∩ St such that
wρ(s, t)s.

Proof. (1) ⇒ (2). By part (1) of Theorem 2.5, all S-acts are weakly flat.
Consequently, based on [11, Theorem 4.7.5], it can be deduced that S is
regular and satisfies Condition (R).

(2)⇒ (1). The result follows from the fact that every regular monoid is
left PP , by [11, Theorem 4.7.5] and part (3) of Theorem 2.5.
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It is worth noting that the above theorem holds true for finitely gener-
ated (monocyclic) S-acts.

Theorem 3.2. The following statements are equivalent:

(1) All S-acts satisfying Condition (Psc) are projective generator.

(2) S = {1}.

Proof. (1) ⇒ (2). Since Condition (P ) implies Condition (Psc), by the as-
sumption, all right S-acts satisfying Condition (P ) are projective generator.
Therefore, by [11, Theorem 4.12.8], S = {1}.

(2) ⇒ (1). If S = {1}, then all S-acts are free, and so the result
follows.

It is noted that in the above theorem, “projective generator” can be
substituted with“free” without impacting the validity of the statement.

We recall from [3], [2], and [12] that:
The S-act A satisfies Condition (EP ), if for all a ∈ A, s, s′ ∈ S,

as = as′ ⇒ (∃a′ ∈ A)(∃u, u′ ∈ S)(a = a′u = a′u′ and us = u′s′),

A satisfies Condition (E′P ), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z)⇒ (∃a′ ∈ A)(∃u, u′ ∈ S)(a = a′u = a′u′ and us = u′s′),

and A satisfies Condition (E′), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z)⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u and us = us′).

Theorem 3.3. The following statements are equivalent:

(1) All S-acts satisfying Condition (E′P ) satisfy Condition (Psc).

(2) All S-acts satisfying Condition (E′) satisfy Condition (Psc).

(3) All S-acts satisfying Condition (EP ) satisfy Condition (Psc).

(4) All S-acts satisfying Condition (E) satisfy Condition (Psc).

(5) S is regular.
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Proof. The implications (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4) are obvious.

(4) ⇒ (5). Let s ∈ S. If sS = S, then there exists x ∈ S such that
sx = 1, which implies sxs = s and s is regular. On the other hand, if
sS ̸= S, then we can consider

A = S
sS∐
S =

{
(l, x)| l ∈ S \ sS

}
∪̇sS∪̇{(t, y)| t ∈ S \ sS}.

Indeed,

B = {(l, x)| l ∈ S \ sS
}
∪̇sS ∼= S ∼= {(t, y)| t ∈ S \ sS}∪̇sS = C.

B and C are subacts of A generated by (1, x) and (1, y) respectively, im-
plying that A is generated by (1, x) and (1, y), because A = B ∪ C. Con-
sequently, B and C satisfy Condition (E) through the isomorphisms, lead-
ing to A satisfies Condition (E) and subsequently Condition (Psc), by the
assumption. Thus (1, x)s = (1, y)s implies that there exist a ∈ A and
u, v, r, r ∈ S, such that (1, x)r = aur, (1, y)r = avr′, rs = s = r′s and
us = vs. From (1, x)r = aur and (1, y)r′ = avr′, we deduce that at least
one of r and r′ belongs to sS. If r ∈ sS, then there exists s′ ∈ S such that
r = ss′. Then s = rs = ss′s. Similarly, r′ ∈ sS implies there exists s′′ ∈ S
such that s = ss′′s and so, s is regular. Thus S is regular.

(5) ⇒ (1). Since S is regular, all S-acts satisfying Condition (E′P ) are
weakly flat, according to [2, Theorem 2.8]. Furthermore, S being left PP
due to its regularity implies that the result follows as per part (3) of Theorem
2.5.

It is important to note that based on the above theorem, if S is not
regular, there exists an S-act that satisfies Condition (E), but does not
satisfy Condition (Psc). Hence, it is evident that Condition (E) does not
imply Condition (Psc) generally. Similarly, Condition (Psc) does not imply
Condition (E). Otherwise, Condition (P ) implies Condition (E) and so
Condition (P ) implies strong flatness, which is not true in general.

The validity of the above theorem extends to finitely generated S-acts
and S-acts generated by at most two elements, as shown in the proof of The-
orem 3.3. Additionally, Condition (Psc) can be substituted with Condition
(PE).
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Condition (Psc) implies weak flatness and consequently torsion freeness.
However, it is important to note that the converse implication is not gen-
erally valid. If it were, flatness would imply Condition (Psc), which is not
true by Example 2.6.

Theorem 3.4. The following statements are equivalent:

(1) All S-acts satisfy Condition (Psc).

(2) All R-torsion free S-acts satisfy Condition (Psc).

(3) S is regular and satisfies Condition (R).

Proof. The implication (1)⇒ (2) is obvious.
(2)⇒ (3). According to [19, Proposition 1.2], every S-act satisfying Con-

dition (E) also satisfies Condition (Psc). Then by Theorem 3.3, S is regular.
Consequently, all S-acts are principally weakly flat, by [11, Theorem 4.6.6].
Since

principally weakly flat ⇒ torsion free ⇒ R-torsion free,

all S-acts are R-torsion free. Therefore, by the assumption, all S-acts sat-
isfy Condition (Psc), and so S is regular and satisfying Condition (R), by
Theorem 3.1.

(3)⇒ (1). It is straightforward, by Theorem 3.1.

By the proof of Theorem 3.4, we conclude that the above theorem is true
for finitely generated S-acts as well as for S-acts generated by at most two
elements. Additionally, Condition (Psc) can be replaced by Condition (PE),
by [4, Theorem 2.1] and this fact that Condition (PE) implies Condition
(Psc).

An S-act A is defined as strongly torsion free (STF ) if the equality
as = bs for any a, b ∈ A and any s ∈ S implies that a = b (see [18]).

It is obvious that STF ⇒ Condition (PWP ) ⇒ principally weakly
flat ⇒ torsion free. Since Condition (Psc) ((PE)) implies torsion free, and
SS satisfies Condition (Psc) ((PE)), so by [18, Theorem 3.1], we have the
following theorem.

Theorem 3.5. The following statements are equivalent:
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(1) All S-acts satisfying Condition (Psc) ((PE)) are STF .

(2) All finitely generated S-acts satisfying Condition (Psc) ((PE)) are STF .

(3) All cyclic S-acts satisfying Condition (Psc) ((PE)) are STF .

(4) S is right cancellative.

We recall from [11] that an act A is called divisible if Ac = A, for any
left cancellable element c ∈ S.

Theorem 3.6. The following statements are equivalent:

(1) All S-acts are divisible.

(2) All S-acts satisfying Condition (Psc) are divisible.

(3) All left cancellable elements of S are left invertible.

Proof. The implication (1)⇒ (2) is obvious.
(2) ⇒ (3). Since S/ρ(x, x) = S/∆S

∼= SS , for every x ∈ S and SS
satisfies Condition (Psc), by the assumption SS is divisible and so by [11,
Proposition 3.2.2], the result follows.

(3)⇒ (1). It is straightforward by [11, Proposition 3.2.2].

The conclusion reached by the proof of Theorem 3.6 affirms the validity
of the theorem for finitely generated S-acts and cyclic (monocyclic) S-acts.
Additionally, Condition (Psc) can be substituted with Condition (PE).

We recall from [11] that A is (strongly) faithful if for s, t ∈ S the equality
as = at for (some) all a ∈ A, implies s = t. It is straightforward that every
strongly faithful S-act is faithful, but the converse implication does not hold
in general.

Notation: Cl (Cr) is the set of all left (right) cancellable elements of S.
It is clear that Cl (Cr) is not empty, because 1 ∈ Cl (Cr)

Theorem 3.7. The following statements are equivalent:

(1) All strongly faithful S-acts satisfy Condition (Psc).

(2) All strongly faithful S-acts generated by exactly two elements satisfy
Condition (Psc).
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(3) S is not left cancellative or it is a group.

Proof. The implication (1)⇒ (2) is obvious.

(2)⇒ (3). If S is not left cancellative, then (3) is satisfied. Let S be left
cancellative and s ∈ S. If sS = S, then there exists x ∈ S such that sx = 1.
Consequently, sxs = s indicating s is regular. Now, consider the case where
sS ̸= S. Put

A = S
sS∐
S =

{
(l, x)| l ∈ S \ sS

}
∪̇sS∪̇{(t, y)| t ∈ S \ sS}.

We have

B = {(l, x)| l ∈ S \ sS
}
∪̇sS ∼= SS ∼= {(t, y)| t ∈ S \ sS}∪̇sS = C

and

A =< (1, x), (1, y) >= B ∪ C.
Since S is left cancellative, SS is strongly faithful, as shown in [10, Lemma
3.7]. Through the isomorphisms mentioned, B and C are also strongly
faithful as subacts of A. Consequently, A is strongly faithful. Since A
is generated by (1, x) and (1, y), by the assumption, it satisfies Condition
(Psc). Following the proof of part (4) ⇒ (5) of Theorem 3.3, s is regular,
implying S is regular. Thus, for every s ∈ S, there exists x ∈ S, such that
sxs = s. Since S is left cancellative, xs = 1. Therefore, every element in S
has a left inverse, making S a group.

(3)⇒ (1). If S is not left cancellative, then there is no strongly faithful
S-act, as stated in [10, Lemma 3.7], thus (1) is satisfied. On the other
hand, if S is left cancellative, then there is at least one strongly faithful
S-act, according to [10, Lemma 3.7]. Since S is group, all S-acts satisfy
Condition (P ), by [11, Theorem 4.9.10]. Consequently, all S-acts satisfy
Condition (Psc), leading to the desired outcome.

According to the proof of Theorem 3.7, we can affirm that the afore-
mentioned theorem holds true for finitely generated S-acts and for S-acts
generated by at most two elements. Furthermore, Condition (Psc) can be
substituted with Condition (PE).

In [16] and [11], it is mentioned that A is almost weakly flat if it is prin-
cipally weakly flat and satisfies Condition
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(W ′) If as = a′t, and Ss ∩ St ̸= ∅, for a, a′ ∈ A, s, t ∈ S, then there exists
a′′ ∈ A, u ∈ Ss ∩ St such that as = a′t = a′′u.
An objectG in category C is called a generator in C if the functorMorC(G,−)
is faithful, i.e, for any X,Y ∈ C and any f, g ∈ MorC(X,Y ) where f ̸= g,
there exists α ∈MorC(G,X) such that fα ̸= gα. By [11, Theorem 2.3.16],
G is a generator if and only if there exists an epimorphism π : G −→ S. Con-
sequently, S is a generator inAct-S. It has been established in [16, Theorem
3.4] that all generators are weakly flat if and only if all S-acts are almost
weakly flat.

Theorem 3.8. The following statements are equivalent:

(1) All generator S-acts satisfy Condition (Psc).

(2) S ×A satisfies Condition (Psc) for every S-act A.

(3) The S-act A satisfies Condition (Psc) if Hom(A,SS) ̸= ∅.
(4) All S-acts are almost weakly flat.

(5) S is regular and satisfies the following condition:

(∀s, t ∈ S)(Ss ∩ St ̸= ∅ ⇒ (∃w ∈ Ss ∩ St s.t 1(kerλs ∨ kerλt)w)).

Proof. (1) ⇒ (2). Since S × A is a generator, the conclusion is straightfor-
ward.

(2)⇒ (3). Let A be an S-act such thatHom(A,SS) ̸= ∅ and as = a′t, for
a, a′ ∈ A and s, t ∈ S. Since Hom(A,SS) ̸= ∅, there exists a homomorphism
f : A→ SS . Therefore, the equality as = a′t in A implies that (f(a), a)s =
(f(a′), a′)t in S × A⋆, where A⋆ = aS ∪ a′S. Consequently, there exists
(w, a′′) ∈ S ×A⋆ and u, v, r, r′ ∈ S such that

{
(f(a), a)r = (w, a′′)ur

(f(a′), a′)r′ = (w, a′′)vr′
, rs = s, r′t = t, us = vt.

Thus, ar = a′′ur, a′r′ = a′′vr′, rs = s, r′t = t and us = vt. This means
that A satisfies Condition (Psc). (3) ⇒ (1). Let A be a generator such
that as = a′t, for a, a′ ∈ A, s, t ∈ S and A⋆ = aS ∪ a′S. Since A⋆ is a
subact of A and A⋆ is a generator S-act, then by assumption, A⋆ satisfies
Condition (Psc). Therefore, the equality as = a′t in A⋆ implies that there
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exist a′′ ∈ A⋆ ⊆ A and u, v, r, r′ ∈ S such that ar = a′′ur, a′r′ = a′′vr′,
rs = s, r′t = t and us = vs. Thus, the result follows. (1)⇒ (4). According
to part (1) of Theorem 2.5, Condition (Psc) implies weakly flat. Therefore,
all generator S-acts are weakly flat, based on the assumption. Consequently,
by [16, Theorem 3.4], all S-acts are almost weakly flat.

(4) ⇒ (1). By [16, Theorem 3.4], all generator S-acts are weakly flat,
which implies that S is regular, according to [16, Theorem 3.8]. Therefore,
S is left PP , and the result follows from part (3) of Theorem 2.5.

(4)⇔ (5) It is straightforward, by [16, Theorem 3.8].

By the proof of Theorem 3.8, we conclude that the above theorem is
true for finitely generated (generator) S-acts as well as for (generator) S-
acts generated by at most (tree) two elements. Also, since every regular
monoid is left PP , by part (3) of Theorem 2.5, Conditions (Psc) and (PE)
are equivalent, and so Condition (Psc) can be replaced by Condition (PE)
in Theorem 3.8.

For fixed elements u, v ∈ S, a binary relation Pu,v can be defined as
follows:

(x, y) ∈ Pu,v ⇔ ux = vy (x, y ∈ S).
For s, t ∈ S, let µs,t = kerλs ∨ kerλt and for any right ideal I of S, let ρI
denote the right Rees congruence on S, i.e., for x, y ∈ S,

(x, y) ∈ ρI ⇔ (x = y) ∨ (x, y ∈ I).
For x, y ∈ S

L(x, y) = {(a, b) ∈ S × S| ax = by}

is either empty or a subact of S(S × S). Similarly, we define

R(x, y) = {(a, b) ∈ S × S| xa = yb} .

Therefore Pu,v = R(u, v), for every u, v ∈ S.

Recall from [11] that an act is called cofree if it is isomorphic to the act
XS = {f |f is a mapping from S to X}, for some nonempty set X, where
fs is defined by fs(t) = f(st), for f ∈ XS and s, t ∈ S.
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An S-act Q is called injective if for any homomorphism ι : A→ B and any
homomorphism f : A → Q there exists a homomorphism f̄ : B → Q such
that f = f̄ ι. It is called (fg-) weakly injective, if it is injective relative to
all embeddings of (finitely generated) right ideals into S.

Theorem 3.9. The following statements are equivalent:

(1) All fg-weakly injective S-acts satisfy Condition (Psc).

(2) All cofree S-acts satisfy Condition (Psc).

(3) For all s, t ∈ S, there exist u, v, r, r′ ∈ S such that rs = s, r′t = t,
(s, t) ∈ Pu,v (or (s, t) ∈ Pur,vr′) and the following conditions hold:

(i) Pur,vr′ ⊆ Pr,s ◦ µs,t ◦ Pt,r′
(ii) kerλu ∩ (rS × rS) ⊆ ρsS
(iii) kerλv ∩ (r′S × r′S) ⊆ ρtS.

Proof. The implication (1) ⇒ (2) is obvious, because cofree ⇒ fg-weakly
injective.

(2) ⇒ (3). Let s, t ∈ S, S1, S2 be two sets such that |S1| = |S2| = |S|
and α : S → S1, β : S → S2 are bijections. Put X = S/µs,t ∪̇ S1 ∪̇ S2.
Define the mappings f, g : S → X as follows:

f(x) =





[y]µs,t if there exists y ∈ S; x = sy

α(x) if x ∈ S \ sS

and

g(x) =





[y]µs,t if there exists y ∈ S; x = ty

β(x) if x ∈ S \ tS.

If there exist y1, y2 ∈ S, such that sy1 = sy2, then

(y1, y2) ∈ kerλs ⊆ kerλs ∨ kerλt = µs,t.

Thus f(sy1) = [y1]µs,t = [y2]µs,t = f(sy2), and so f is well- defined. Simi-
larly, it follows that g is well-defined. According to our definition of f and
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g, we clearly have fs = gt. By the assumption, the cofree S-act XS satisfies
Condition (Psc), and so, there exist u, v, r, r′ ∈ S and a map h : S → X, such
that fr = hur, gr′ = hvr′, rs = s, r′t = t, us = vt. Clearly from us = vt, we
have (s, t) ∈ Pu,v (or by rs = s, r′t = t, and us = vt we have (s, t) ∈ Pur,vr′).
Now we show that the statements (i), (ii) and (iii) are true.

(i): Let (l1, l2) ∈ Pur,vr′ , l1, l2 ∈ S. Then url1 = vr′l2 and so, f(rl1) =
(fr)(l1) = (hur)(l1) = h(url1) = h(vr′l2) = (hvr′)(l2) = (gr′)(l2) = g(r′l2).
By definition f and g, there exist y1, y2 ∈ S such that rl1 = sy1 and r′l2 =
ty2. Thus, [y1]µs,t = f(sy1) = f(rl1) = g(r′l2) = g(ty2) = [y2]µs,t . Now

rl1 = sy1, [y1]µs,t = [y2]µs,t and ty2 = r′l2 imply (l1, y1) ∈ Pr,s, (y1, y2) ∈ µs,t
and (y2, l2) ∈ Pt,r′ , respectively. Therefore, (l1, l2) ∈ Pr,s ◦ µs,t ◦ Pt,r′ . Thus
Pur,vr′ ⊆ Pr,s ◦ µs,t ◦ Pt,r′ and so, (i) is satisfied.

(ii): Let (t1, t2) ∈ kerλu ∩ (rS × rS), t1, t2 ∈ S. Then ut1 = ut2
and there exist w1, w2 ∈ S, such that t1 = rw1 and t2 = rw2. Thus
urw1 = ut1 = ut2 = urw2, which implies f(rw1) = (fr)(w1) = (hur)(w1) =
h(urw1) = h(urw2) = (hur)(w2) = (fr)(w2) = f(rw2). Having in mind the
definition of f , we consider two cases as follows.

Case 1. If rw1, rw2 ∈ S\sS, then f(rw1) = f(rw2) implies α(rw1) =
α(rw2). Then t1 = rw1 = rw2 = t2 and so, (t1, t2) ∈ ρsS .

Case 2. If rw1, rw2 ∈ sS, then there exist y1, y2 ∈ S such that
rw1 = sy1 and rw2 = sy2. Thus (t1, t2) = (rw1, rw2) = (sy1, sy2) ∈ (sS ×
sS) ∪∆S = ρsS . Hence kerλu ∩ (rS × rS) ⊆ ρsS and (ii) is satisfied.

The proof of (iii) is similar to that of (ii).

(3)⇒ (1). Suppose that A is fg-weakly injective, and that as = a′t, for
a, a′ ∈ A and s, t ∈ S. By the assumption, there exist u, v, r, r′ ∈ S such
that rs = s, r′t = t, us = vt and conditions (i), (ii), (iii) are true. Define a
mapping φ : urS ∪ vr′S → A by

φ(x) =





arp ∃p ∈ S : x = urp

a′r′q ∃q ∈ S : x = vr′q.

First, we show that φ is well-defined. If there exist p, q ∈ S such that
urp = vr′q, then (p, q) ∈ Pur,vr′ . By (i), there exist y1, y2 ∈ S such that
(p, y1) ∈ Pr,s, (y1, y2) ∈ µs,t, (y2, q) ∈ Pt,r′ . Thus, rp = sy1, (y1, y2) ∈ µs,t =
kerλs ∨ kerλt and ty2 = r′q. The relation (y1, y2) ∈ µs,t = kerλs ∨ kerλt
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implies that there exist z1, ..., zn ∈ S such that

sy1 = sz1 sz2 = sz3 ... szn−1 = szn

tz1 = tz2 ... tzn = ty2.

Then arp = asy1 = asz1 = a′tz1 = a′tz2 = ... = a′tzn = a′ty2 = a′r′q.
If there exist p1, p2 ∈ S such that urp1 = urp2, then (rp1, rp2) ∈ kerλu ∩
(rS × rS). Now, by (ii), rp1 = rp2 or there exist y1, y2 ∈ S such that
rp1 = sy1 and rp2 = sy2. If rp1 = rp2, then arp1 = arp2. If rp1 = sy1 and
rp2 = sy2, then usy1 = urp1 = urp2 = usy2 = vty2. Thus ursy1 = vr′ty2
and so, (sy1, ty2) ∈ Pur,vr′ . Therefore by (i), there exist l1, l2 ∈ S such that
(sy1, l1) ∈ Pr,s, (l1, l2) ∈ µs,t and (l2, ty2) ∈ Pt,r′ . Hence sy1 = rsy1 = sl1,
(l1, l2) ∈ µs,t = kerλs ∨ kerλt and tl2 = r′ty2 = ty2. The relation (l1, l2) ∈
µs,t = kerλs ∨ kerλt implies that there exist z′1, ..., z

′
m ∈ S such that

sl1 = sz′1 sz′2 = sz′3 ... sz′m−1 = sz′m
tz′1 = tz′2 ... tz′m = tl2,

and so, arp1 = asy1 = asl1 = asz′1 = a′tz′1 = a′tz′2 = ... = a′tz′m = a′tl2 =
a′ty2 = asy2 = arp2.
If there exist q1, q2 ∈ S such that vr′q1 = vr′q2, then, using a similar
argument as in the previous case, by (i) and (iii), we have a′r′q1 = a′r′q2.
Thus, φ is well-defined. It is clear that φ is an S-homomorphism. Since
A is fg-weakly injective, there exists an S-homomorphism ψ : SS → A
such that ψ|urS∪vr′S = φ. Put a′′ = ψ(1). Then ar = φ(ur) = ψ(ur) =
ψ(1)ur = a′′ur and a′r′ = φ(vr′) = ψ(vr′) = ψ(1)vr′ = a′′vr′, indicating
that A satisfies Condition (Psc).

Based on the proof of Theorem 3.9, we can deduce that the aforemen-
tioned theorem holds for (weakly) injective S-acts.
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