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Classical prime subhypermodules and
related extensions

Mahdi Anbarloei

Abstract. In this paper, we extend the notion of prime subhypermodules
to n-ary classical prime, n-ary weakly classical prime and n-ary ϕ-classical
prime subhypermodules of an (m,n)-hypermodule over a commutative Kras-
ner (m,n)-hyperring. Many properties and characterizations of them are
introduced. Moreover, we investigate the behavior of these structures under
hypermodule homomorphisms, quotient hypermodules and cartesian prod-
uct. We think the knowledge gained in this setting provides a significant step
in the general investigation of subhypermodules.

1 Introduction and Preliminaries

To extend the notion of prime ideals from the category of rings to the
category of modules has excited several researchers to show that many, but
not all, of the results in the theory of rings are also valid for modules. The
concept of classical prime submodules as an extension of prime submodules
was introduced by Behboodi and Koohy in [6]. A proper submodule Q
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of M is said to be a classical prime submodule, if for each r, s ∈ R and
a ∈ M , rsm ∈ Q implies that ra ∈ Q or sa ∈ Q. Moreover, the notion
of weakly classical prime submodules, which is a generalization of classical
prime submodules was studied in [23].

The theory of algebraic hyperstructures playing an important role in the
classical algebraic theory was born in 1934 by a French mathematician, F.
Marty, at the 8th Congress of Scandinavian Mathematicians. A compre-
hensive review of the theory of hyperstructures appears in [8, 9, 21, 22].
The concept of n-ary algebras was introduced by Kasner in a lecture in an
annual meeting in 1904 [15]. The first paper on the theory of n-ary groups
was written by Dorente in 1928 [13]. Moreover, for the first time in [16] the
notion of Krasner hyperrings was introduced by Krasner. Some properties
on this hyperrings can be seen in [20, 24]. The concept of n-ary hypergroups
was defined in [11] as an extension of hypergroups in the sense of Marty.
After the introduction of the concept of (m,n)-hyperrings in [18], Davvaz et
al. extended (m,n)-rings to Krasner (m,n)- hyperrings and studied some
results in this context in [19]. Several classes of hyperideals namely maximal
hyperideal, n-ary prime hyperideal, n-ary primary hyperideal and the radi-
cal of a hyperideal in a Krasner (m,n)-hyperring were introduced in [1]. [19]
A commutative Krasner (m,n)-hyperring with a scalar identity 1 is an alge-
braic hyperstructure (R, f ′, g′) if the following hold: (1) (R, f ′) is a canonical
m-ary hypergroup, (2) (R, g′) is a commutative n-ary semigroup, (3) the n-
ary operation g′ is distributive with respect to the m-ary hyperoperation
f ′, i.e., g′(ai−1

1 , f ′(xm1 ), ani+1) = f ′(g′(ai−1
1 , x1, a

n
i+1), ..., g

′(ai−1
1 , xm, ani+1)),

for each ai−1
1 , ani+1, x

m
1 ∈ R, and 1 ≤ i ≤ n, (4) 0 is a zero element of the

n-ary operation g′, i.e., for every xn2 ∈ R we have g′(0, xn2 ) = g′(x2, 0, x
n
3 ) =

... = g′(xn2 , 0) = 0, (5) for all x ∈ R, g(x, 1(n−1)) = x.

The sequence xi, xi+1, ..., xj is denoted by xji . For j < i, xji is the
empty symbol. In this convention f ′(x1, ..., xi, yi+1, ..., yj , zj+1, ..., zn) will

be written as f ′(xi1, y
j
i+1, z

n
j+1). In the case when yi+1 = ... = yj = y the

last expression will be written in the form f ′(xi1, y
(j−i), znj+1). For non-empty

subsets A1, ..., An of R we define f ′(An
1 ) = f ′(A1, ..., An) =

⋃
{f ′(xn1 ) | xi ∈

Ai, i = 1, ..., n}. A non-empty subset S of R is called a subhyperring of R if
(S, f ′, g′) is a Krasner (m,n)-hyperring. Let I be a non-empty subset of R,
we say that I is a hyperideal of (R, f ′, g′) if (I, f ′) is anm-ary subhypergroup
of (R, f ′) and g′(xi−1

1 , I, xni+1) ⊆ I, for every xn1 ∈ R and 1 ≤ i ≤ n. For
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each element x ∈ R, the hyperideal generated by x is denoted by ⟨x⟩ and
defined as ⟨x⟩ = g(R, x, 1(n−2)) = {g(r, x, 1(n−2)) | r ∈ R}. Recall from [1]
that a proper hyperideal P of a Krasner (m,n)-hyperring (R, f ′, g′) is an
n-ary prime hyperideal if for hyperideals I1, ..., In of R, g′(In1 ) ⊆ P implies
that I1 ⊆ P or I2 ⊆ P or ...or In ⊆ P . Also, Lemma 4.5 in [1] shows that
a proper hyperideal P of a Krasner (m,n)-hyperring (R, f ′, g′) is an n-ary
prime hyperideal if for all xn1 ∈ R, g′(xn1 ) ∈ P implies that xi ∈ P for some
1 ≤ i ≤ n.

Hypermodules over a hyperring is a generalization of the classical mod-
ules over a ring. Several types of hypermodules were introduced by many
authors. The notion of (m,n)-hypermodules over (m,n)-hyperrings was de-
fined in [5]. After, some classes of the hypermodules were studied in [2, 4, 7].
Prime and primary subhypermodules of an (m,n)-hypermodule were dis-
cussed in [3].

Motivated and inspired by the above papers, the purpose of this re-
search work is to introduce and study generalizations of prime subhuper-
modules. We define the notions of classical prime, weakly classical prime
and ϕ-classical prime subhypermodules of an (m,n)-hypermodule over a
commutative Krasner (m,n)-hyperring with a scalar identity 1. Then a
number of major conclusions are given to explain the general framework of
these structures. Moreover, we give some characterizations of these concepts
on cartesian product of (m,n)-hypermodules.

2 Some basic definitions

In this section, we recall some basic terms and definitions concerning n-ary
hyperstructures which we need to develop our paper.

Definition 2.1. [5] Let M be a nonempty set. Then (M,f, g) is an (m,n)-
hypermodule over an (m,n)-hyperring (R, f ′, g′), simply R, if (M,f) is a
canonical m-ary hypergroup and the map

g : R× ...×R︸ ︷︷ ︸
n−1

×M −→ P ∗(M)

satisfies the following conditions:
(i) g(rn−1

1 , f(xm1 )) = f(g(rn−1
1 , x1), ..., g(r

n−1
1 , xm))
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(ii) g(ri−1
1 , f ′(sm1 ), rn−1

i+1 , x) = f(g(ri−1
1 , s1, r

n−1
i+1 , x), ..., g(r

i−1
1 sm, rn−1

i+1 , x))

(iii) g(ri−1
1 , g′(ri+n−1

i ), rn+m−2
i+m , x) = g(rn−1

1 , g(rn+m−2
m , x))

(iv) {0} = g(ri−1
1 , 0, rn−1

i+1 , x).

If g is an n-ary hyperoperation, A1, ..., An−1 are subsets of R and M ′ ⊆
M , we set

g(An−1
1 ,M ′) =

⋃
{g(rn−1

1 ,m) | ri ∈ Ai, 1 ≤ i ≤ n− 1,m ∈ M ′}.
Let 1 be a scalar identity in R. For every a ∈ M and rn−1

1 ∈ R we have

g(1(n−1), a) = {a}, g(0(n−1), a) = {0}, g(rn−1
1 , 0) = {0}.

Let (M,f, g) be an (m,n)-hypermodule over R. A non-empty subset
N of M is said to be an (m,n)-subhypermodule of M if (N, f) is a m-ary
subhypergroup of (M,f) and g(R(n−1), N) ∈ P ∗(N).

[2] Let (M,f, g) be an (m,n)-hypermodule, N a subhypermodule of M
and a an element of M . Then the hyperideals SN and Na are considered as
follows:

SN = {r ∈ R | g(r, 1(n−2),M) ⊆ N}

Na = {r ∈ R | g(r, 1(n−2), a) ⊆ N}

Definition 2.2. [3] Let M be an (m,n)-hypermodule over R. A proper
subhypermodule K of M is said to be maximal, if for N ≤ M with K ⊆
N ⊆ M , we have either K = N or N = M .

Definition 2.3. [3] Let M be an (m,n)-hypermodule over R. A proper
subhypermodule N of M is said to be n-ary prime, if g(rn−1

1 , a) ⊆ N with
rn−1
1 ∈ R and a ∈ M −N , implies that g(rn−1

1 ,M) ⊆ N .

In [2], there exists another definition of n-ary prime subhypermodules
which is equivalent to above definition. A proper subhypermodule N of M
is called n-ary prime, if g(rn−1

1 , a) ⊆ N with rn−1
1 ∈ R implies that a ∈ N

or ri ∈ SN for some 1 ≤ i ≤ n− 1.

Definition 2.4. [3] Let N be a subhypermodule of an (m,n)-
hypermodule (M,f, g) over R. Then the set

M/N = {f(xi−1
1 , N, xmi+1) | xi−1

1 , xmi+1 ∈ M}
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endowed with m-ary hyperoperation f which for all x1m11 , ..., xmm
m1 ∈ M ,

F (f(x
1(i−1)
11 , N, x1m1(i+1)), ..., f(x

m(i−1)
m1 , N, xmm

m(i+1)))

= {(f(ti−1
1 , N, tmi+1) | t1 ∈ f(xm1

11 ), ..., tm ∈ f(xmm
1m )}

and with n-ary hyperoperation G : R× ...×R︸ ︷︷ ︸
n−1

×M/N −→ P ∗(M/N) which

for all xi−1
1 , xmi+1 ∈ M and rn−1

1 ∈ R,

G(rn−1
1 , f(xi−1

1 , N, xmi+1))

= {f(zi−1
1 , N, zmi+1) | z1 ∈ g(rn−1

1 , x1), ..., zm ∈ g(rn−1
1 , xm)}

is an (m,n)-hypermodule over R, and (M/N,F,G) is called the quotient
(m,n)-hypermodule of M by N .

Definition 2.5. [2] For every nonzero element m of (m,n)-hypermodule
(M,f, g) over R, we define

Fm = {r ∈ R | 0 ∈ g(r, 1(n−2),m); r ̸= 0}.

It is clear that Fm is a hyperideal of (R, h, k). The (m,n)-hypermodule
(M,f, g) is said to be faithful, if Fm = {0} for all nonzero elements m ∈ M ,
that is 0 ∈ g(r, 1(n−2),m) implies that r = 0, for r ∈ R.

Definition 2.6. [3] Assume that (M1, f1, g1) andM2, f2, g2) are two (m,n)-
hypermodules over R. A mapping h : M1 −→ M2 is a homomorphism of
(m,n)-hypermodules if for all am1 , a ∈ M1 and rn−1

1 ∈ R:

h(f1(a
m
1 )) = f2(h(a1), · · · , h(am)),

h(g1(r
n−1
1 , a)) = g2(r

n−1
1 , h(a)).

3 n-ary classical prime subhypermodules

In this section, we want to consider the concept of an n-ary classical prime
subhypermodule which is a generalization of the concept of prime submod-
ules.
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Definition 3.1. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R. Q refers to an n-ary classical prime subhypermod-
ule if for rn−1

1 ∈ R and a ∈ M , g(rn−1
1 , a) ⊆ Q implies that g(ri, 1

(n−2), a) ⊆
Q for some 1 ≤ i ≤ n− 1.

Example 3.2. Every n-ary prime subhypermodule of an (m,n)-
hypermodule M over R is an n-ary classical prime subhypermodule.

Theorem 3.3. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R. Then Q is an n-ary classical prime subhypermod-
ule if and only if for hyperideals In−1

1 of R and subhypermodule N of M , if
g(In−1

1 , N) ⊆ Q, then g(Ii, 1
(n−2), N) ⊆ Q for some 1 ≤ i ≤ n− 1.

Proof. This can be proved by using an argument similar to that in the proof
of Theorem 2.14 in [10].

Theorem 3.4. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R and let S = M − Q. Then Q is an n-ary classical
prime subhypermodule of M if and only if for hyperideals In−1

1 of R and for
subhypermodules N1, N2 of M , f(N1, g(Ii, 1

(n−2), N2), 0
(m−2)) ∩ S ̸= ∅ for

all 1 ≤ i ≤ n− 1 implies that f(N1, g(I
n−1
1 , N2), 0

(m−2)) ∩ S ̸= ∅.

Proof. (=⇒) Let In−1
1 be hyperideals of R and let N1 and N2 be two sub-

hypermodules of an (m,n)-hypermodule M over R with

f(N1, g(Ii, 1
(n−2), N2), 0

(m−2)) ∩ S ̸= ∅

for all 1 ≤ i ≤ n − 1. Suppose that f(N1, g(I
n−1
1 , N2), 0

(m−2)) ∩ S = ∅.
This implies g(Ii−1

1 , N2) ⊆ Q. Then we get g(Ii, 1
(n−2), N2) ⊆ Q for some

1 ≤ i ≤ n − 1 since Q is an n-ary classical prime subhypermodule of M .
Thus we obtain

f(N1, g(Ii, 1
(n−2), N2), 0

(m−2)) ∩ S = ∅

which is a contradiction.
(⇐=) Let g(In−1

1 , N) ⊆ Q for hyperideals In−1
1 of R and for a subhy-

permodule N of an (m,n)-hypermodule M over R but g(Ii, 1
(n−2), N) ̸⊆ Q

for all 1 ≤ i ≤ n − 1. Then we conclude that g(Ii, 1
(n−2), N) ∩ S ̸= ∅ for

all 1 ≤ i ≤ n− 1 which means g(In−1
1 , N) ∩ S ̸= ∅ which is a contradiction.

Thus Q is an n-ary classical prime subhypermodule of M .
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Theorem 3.5. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R. Let S be a nonempty subset of M − {0} such
that for hyperideals In−1

1 of R and for subhypermodules N1, N2 of M ,

f(N1, g(Ii, 1
(n−2), N2), 0

(m−2)) ∩ S ̸= ∅

for all 1 ≤ i ≤ n − 1 implies that f(N1, g(I
n−1
1 , N2), 0

(m−2)) ∩ S ̸= ∅. If Q
is maximal with respect to the property that Q ∩ S = ∅, then Q is an n-ary
classical prime subhypermodule of M .

Proof. Assume that g(In−1
1 , N) ⊆ Q for some hyperideals In−1

1 of R and for
a subhypermodule N of M . Let g(Ii, 1

(n−2), N) ̸⊆ Q for all 1 ≤ i ≤ n − 1.
Then f(Q, g(Ii, 1

(n−2), N), 0(m−2)) ∩ S ̸= ∅ for all 1 ≤ i ≤ n − 1 by the
maximality of Q. This implies that f(Q, g(In−1

1 , N), 0(m−2)) ∩ S ̸= ∅ which
means Q ∩ S ̸= ∅ which is a contradiction. Consequently, Q is an n-ary
classical prime subhypermodule of M .

Recall from [7] that if N is a subhypermodule of (M,f, g) over R, then
we consider the set M/N as follows:

M/N = {f(a,N, 0(m−2)) | a ∈ M}.

Moreover, recall from [7] that an element a of an (m,n)-hypermodule M
over R is called torsion free if g(rn−1

1 , a) = 0, then there exists 1 ≤ i ≤ n−1
such that ri = 0. If all elements of M are torsion free, then M is called
torsion free.

Theorem 3.6. Suppose that M is an (m,n)-hypermodule over R such that
every classical prime subhypermodule of M is an intersection of maximal
subhypermodules of M and N is a subhypermodule of M . If M/N is a
torsion free (m,n)-hypermodule over R, then every classical prime subhy-
permodule of N is an intersection of maximal subhypermodules of N .

Proof. Assume that Q is a classical prime subhypermodule of N . Let
g(rn−1

1 ,m) ⊆ Q for some rn−1
1 ∈ R and m ∈ M . If m ∈ N , then Q is

a classical prime subhypermodule of M . So suppose that m /∈ N . Then we
have g(rn−1

1 ,m) ⊆ Q ⊆ N . Since m /∈ N and M/N is a torsion free (m,n)-
hypermodule over R, we obtain ri = 0 for some 1 ≤ i ≤ n − 1. Therefore
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we get g(ri, 1
(n−2),m) ⊆ Q. This means that Q is a classical prime sub-

hypermodule of M . By the hypothesis, we infer that Q is an intersection
of maximal subhypermodules of M . Put Q = ∩i∈IKi for the maximal
subhyperideals Ki of M . Consider Qi = Ki ∩ N for each i ∈ I. Clearly
Q = ∩i∈IQi, because Q ⊆ N . We assume that Qi ⊂ N for every i ∈ I. Let
x ∈ N − Qi for some i ∈ I. This means x /∈ Ki. By maximality Ki of M ,
we conclude that f(Ki, ⟨x⟩, 0(m−2)) = M . Assume that a ∈ N . Then there
exists some ai ∈ Ki and rn−1

i ∈ R such that a ∈ f(ai, g(r
n−1
1 , x), 0(m−2)).

Thus we have ai ∈ f(a,−g(rn−1
1 , x), 0(m−2)) ⊆ N which implies ai ∈ Qi. So

a ∈ f(ai, ⟨x⟩, 0(m−2)) ∈ f(Qi, ⟨x⟩, 0(m−2)) which means f(Qi, ⟨x⟩, 0(m−2)) =
N . Hence Qi is a maximal subhypermodule of N , as needed.

4 n-ary weakly classical prime subhypermodules

In this section, our study is inspired by the idea as in [12] and [14].

Definition 4.1. LetQ be a proper subhypermodule of an (m,n)-hypermodule
M over R. Q is called an n-ary weakly classical prime subhypermodule if
0 /∈ g(rn−1

1 , a) ⊆ Q for rn−1
1 ∈ R and a ∈ M , then g(ri, 1

(n−2), a) ⊆ Q for
some 1 ≤ i ≤ n− 1.

Example 4.2. Consider the commutative group (H = {0, x, y, z},⊕), where
⊕ is defined by

⊕ 0 x y z

0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

It is clear that H is a Z-module. Also, the ring of integers Z is a Krasner
(3, 3)-hyperring with 3-ary hyperoperation f ′(r31) = {r1+r2+r3} and 3-ary
operation g′(r31) = r1 · r2 · r3 for all r31 ∈ Z. Now, we have the canonical
(3, 3)-hypermodule (H, f, g) over (Z, f ′, g′) where 3-ary hyperoperation f
and 3-ary external hyperoperation g on H are defined as follows:

f(a, a, a) = {a}, for a ∈ H
f(0, a, a) = {0}, for a ∈ H
f(a, a, b) = {b}, for a, b ∈ H
f(a, b, c) = {d}, for a ̸= b ̸= c ̸= d ∈ H

and
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g(r21, a) = {a⊕ · · · ⊕ a︸ ︷︷ ︸
r1·r2

}, for r21 ∈ Z and a ∈ H.

The subhypermodule Q = {0, y} is a 3-ary weakly classical prime subhy-
permodule of H.

Theorem 4.3. Let Q be an n-ary weakly classical prime subhypermodule
of an (m,n)-hypermodule M over R and a ∈ M −Q such that Fa = {0}. If
0 ̸= g′(rn1 ) ∈ Qa for some rn1 ∈ R, then ri ∈ Qa for some 1 ≤ i ≤ n.

Proof. Assume that Q is an n-ary weakly classical prime subhypermodule
of an (m,n)-hypermodule M over R and a ∈ M − Q such that Fa = 0.
Suppose that 0 ̸= g′(rn1 ) ∈ Qa for some rn1 ∈ R such that rn2 /∈ Qa. We must
show that r1 ∈ Qa. By rn2 /∈ Qa we conclude that g(ri, 1

(n−2), a) ̸⊆ Q for
all 2 ≤ i ≤ n. From g′(rn1 ) ∈ Qa it follows that 0 /∈ g(g′(rn1 ), 1

(n−2), a) ⊆ Q
because Fa = {0}. This means

0 /∈ g(g′(rn−2
1 , g′(rnn−1, 1

(n−2))), 1(n−2), a)

= g(1(n−1), g(rn−2
1 , g′(rnn−1, 1

(n−2)), a)

= g(rn−2
1 , g′(rnn−1, 1

(n−2)), a)
⊆ Q.

Since Q is an n-ary weakly classical prime subhypermodule of M , we
get g(ri, 1

(n−2), a) ⊆ Q for some 1 ≤ i ≤ n− 2 or

g(g′(rnn−1, 1
(n−2)), 1(n−2), a) = g(rnn−1, 1

(n−3), a) ⊆ Q.

In the second possibilty, we obtain rn−1 ∈ Q or rn ∈ Q as 1 /∈ Q and the
proof is completed.

Theorem 4.4. Let P and Q be two subhypermodules of an (m,n)-hypermodule
M over R such that P ⊂ Q. If P is an n-ary weakly classical prime subhy-
permodule of M and Q/P is an n-ary weakly classical prime subhypermodule
of M/P , then Q is an n-ary weakly classical prime subhypermodule of M .

Proof. Assume that 0 /∈ g(rn−1
1 , a) ⊆ Q for rn−1

1 ∈ R and a ∈ M . If
g(rn−1

1 , a) ⊆ P , then we are done. Suppose that g(rn−1
1 , a) ̸⊆ P . So 0 ̸=

G(rn−1
1 , f(a, P, 0(m−2))) = {f(g(rn−1

1 , a), P, 0(m−2)} ⊆ Q/P . Since Q/P is
an n-ary weakly classical prime subhypermodule of M/P , then we conclude
that

G(ri, 1
(n−2), f(a, P, 0(m−2))) = {f(g(ri, 1(n−2), a), P, 0(m−2))} ⊆ Q/P
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for some 1 ≤ i ≤ n− 1 which implies g(ri, 1
(n−2), a) ⊆ Q, as needed.

Next, we observe that weakly classical prime subhypermodules behave
naturally under a homomorphism.

Theorem 4.5. Let (M1, f1, g1) and (M2, f2, g2) be two (m,n)-
hypermodules over (R, f ′, g′) and let Q1, Q2 be n-ary weakly classical prime
subhypermodules of M1,M2, respectively. If h : M1 −→ M2 is a homomor-
phism, then:

(1) If h is an epimorphism and Ker(h) ⊆ Q1, then h(Q1) is an n-ary
weakly classical prime subhypermodule of M2.

(2) If h is a monomorphism with h−1(Q2) ̸= M1, then h−1(Q2) is an
n-ary weakly classical prime subhypermodule of M1.

Proof. (1) Let 0 /∈ g2(r
n−1
1 , a2) ⊆ h(Q1) for r

n−1
1 ∈ R and a2 ∈ M2. Since h

is an epimorphism, then there exists a1 ∈ M1 such that h(a1) = a2. Hence
we get

h(g1(r
n−1
1 , a1)) = g2(r

n−1
1 , h(a1)) = g2(r

n−1
1 , a2) ⊆ h(Q1)

which means g1(r
n−1
1 , a1) ⊆ Q1. Since Q1 is an n-ary weakly classical prime

subhypermodules of M1 and 0 /∈ g1(r
n−1
1 , a1), it follows that

g1(ri, 1
(n−2), a1) ⊆ Q1 for some 1 ≤ i ≤ n− 1. Therefore

g2(ri, 1
(n−2), a2) = g2(ri, 1

(n−2), h(a1)) = h(g1(ri, 1
(n−2), a1)) ⊆ h(Q1).

Thus h(Q1) is an n-ary weakly classical prime subhypermodule of M2.
(2) Let Q2 be an n-ary weakly classical prime subhypermodules of M2.

Let 0 /∈ g1(r
n−1
1 , a1) ⊆ h−1(Q2) for rn−1

1 ∈ R and a2 ∈ M2. Since h is a
monomorphism, we conclude that 0 /∈ h(g1(r

n−1
1 , a1) = g2(r

n−1
1 , h(a1)) ⊆

Q2. Since Q2 is an n-ary weakly classical prime subhypermodules of M2,
we have g2(ri, 1

(n−2), h(a1)) ⊆ Q2 for some 1 ≤ i ≤ n − 1, and therefore
h(g1(ri, 1

(n−2), a1)) ⊆ Q2. Hence g1(ri, 1
(n−2), a1) ⊆ h−1(Q2) for some

1 ≤ i ≤ n − 1. Therefore h−1(Q2) is an n-ary weakly classical prime
subhypermodule of M1.

As an immediate consequence of the previous theorem, we have the
following result.
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Corollary 4.6. Let P and Q be two subhypermodules of an (m,n)-
hypermodule M over R such that P ⊂ Q. If Q is an n-ary weakly clas-
sical prime subhypermodule of M , then Q/P is an n-ary weakly classical
prime subhypermodule of M/P .

Proof. Consider the mapping π : M −→ M/P defined by a ; f(a, P, 0(n−2)).
Then π is an epimorphism by Theorem 3.2 in [3]. Suppose that Q is an n-
ary weakly classical prime subhypermodule of M . Since Ker(π) = P ⊂ Q
and π is onto, we conclude that π(Q) = Q/P is an n-ary weakly classical
prime subhypermodule of M/P by Theorem 4.5 (1).

Assume that Q is an n-ary weakly classical prime subhypermodule of an
(m,n)-hypermodule M over R. Then (rn−1

1 , X) for rn−1
1 ∈ R and some non

empty subsetX ofM is called a classical (m,n)-zero ofQ if 0 ∈ g(rn−1
1 , X) ⊆

Q and g(ri, 1, X) ̸⊆ Q for all 1 ≤ i ≤ n− 1.

Theorem 4.7. Let Q be an 3-ary weakly classical prime subhypermodule of
an (3, 3)-hypermodule M over R and let g(r21, P ) ⊆ Q for some subhyper-
module P of M and r21 ∈ R. If (r21, X) is not a classical (3, 3)-zero of Q for
every non empty subset X of P , then g(ri, 1, P ) ⊆ Q for some i ∈ {1, 2}.

Proof. Let g(r21, P ) ⊆ Q but g(ri, 1, P ) ̸⊆ Q for each i ∈ {1, 2}. This implies
that for each i ∈ {1, 2} there exists pi ∈ P such that g(ri, 1, pi) ̸⊆ Q. If
0 /∈ g(r21, p1) ⊆ Q, then g(r2, 1, p1) ⊆ Q since Q is an n-ary weakly classi-
cal prime subhypermodule of M and g(r1, 1, p1) ⊆ Q. If 0 ∈ g(r21, p1) ⊆
Q, then g(r2, 1, p1) ⊆ Q since g(r21, p1) is not a classical (3, 3)-zero of
Q. Similarly, we can conclude that g(r1, 1, p2) ⊆ Q. Therefore we have
g(r21, f(p

2
1, 0)) ⊆ Q. Then g(ri, 1, f(p

2
1, 0)) ⊆ Q for some i ∈ {1, 2} which

means f(g(ri, 1, p1), g(ri, 1, p2), 0) ⊆ Q. If i = 1, then we get g(r1, 1, p1) ⊆ Q
which is a contradiction. If i = 2, then we obtain g(r2, 1, p2) ⊆ Q, a contra-
diction. Hence g(ri, 1, P ) ⊆ Q for some i ∈ {1, 2}.

Suppose that Q is an n-ary weakly classical prime subhypermodule of
an (m,n)-hypermodule M over R. Let g(In−1

1 , P ) ⊆ Q for some hyperideals
In−1
1 of R and some subhypermodule P of M . Q is called a free classical
(m,n)-zero with respect to g(In−1

1 , P ) if g(rn−1
1 , X) is not classical (m,n)-

zero of Q for every ri ∈ Ii and for every non empty subset X of P .
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Corollary 4.8. Let Q be an 3-ary weakly classical prime subhypermodule of
an (3, 3)-hypermodule M over R and let g(I21 , P ) ⊆ Q for some hyperideals
I21 of R and some subhypermodule P of M . If Q is a free classical (3, 3)-zero
with respect to g(I21 , P ), then g(Ii, 1, P ) ⊆ Q for some i ∈ {1, 2}.

Proof. Let g(Ii, 1, P ) ̸⊆ Q for each i ∈ {1, 2}. Then there exists ri ∈ Ii for
each i ∈ {1, 2} such that g(ri, 1, P ) ̸⊆ Q. So we have g(r21, P ) ⊆ Q. By
Theorem 4.7, we get g(ri, 1, P ) ⊆ Q for some i ∈ {1, 2} since Q is a free
classical (3, 3)-zero with respect to g(I21 , P ). This is a contradiction. Thus
g(Ii, 1, P ) ⊆ Q for some i ∈ {1, 2}.

Theorem 4.9. Let Q be an n-ary weakly classical prime subhypermodule
of an (m,n)-hypermodule M over R. Then for all rn−1

1 ∈ R and a ∈ M we
have:

Qg(rn−1
1 ,a) ⊆ Fg(rn−1

1 ,a) ∪Qg(r1,1(n−2),a) ∪ · · · ∪Qg(rn−1,1(n−2),a).

Proof. Suppose that a ∈ M and rn−1
1 ∈ R. Assume that x ∈ Qg(rn−1

1 ,a).

Hence g(x, 1(n−2), g(rn−1
1 , a)) ⊆ Q. If 0 ∈ g(x, 1(n−2), g(rn−1

1 , a)), then x ∈
Fg(rn−1

1 ,a). If 0 /∈ g(x, 1(n−2), g(rn−1
1 , a)) = g(rn−1

1 , g(x, 1(n−2), a)), then we

conclude that

g(ri, 1
(n−2), g(x, 1(n−2), a) = g(x, 1(n−2), g(ri, 1

(n−2), a)) ⊆ Q

for some 1 ≤ i ≤ n − 1 since Q is an n-ary weakly classical prime sub-
hypermodule of M . This implies that x ∈ Qg(ri,1(n−2),a) which means
Qg(rn−1

1 ,a) ⊆ Fg(rn−1
1 ,a) ∪Qg(r1,1(n−2),a) ∪ · · · ∪Qg(rn−1,1(n−2),a) and the proof

is completed.

Recall from [2] that if (M1, f1, g1) and (M2, f2, g2) are two
(m,n)-hypermodules over R, then the (m,n)-hypermodule (M1 ×M2, f1 ×
f2, g1 × g2) over R is defined by m-ary hyperoperation f1 × f2 and n-ary
external hyperoperation g1 × g2, as follows:

f1 × f2((a1, b1), · · · , (am, bm)) = {(x1, x2) | x1 ∈ f1(a
m
1 ), x2 ∈ f2(b

m
1 )}

g1 × g2(r
n−1
1 , (a, b)) = {(y1, y2) | y1 ∈ g1(r

n−1
1 , a), y2 ∈ g2(r

n−1
1 , b)}



Classical prime subhypermodules 13

Theorem 4.10. Let (M1, f1, g1) and (M2, f2, g2) be (m,n)-hypermodules
over R and Q1 be a proper subhypermodule of M1. Then Q1 × M2 is an
n-ary weakly classical prime subhypermodule of M1×M2 if and only if Q1 is
an n-ary weakly classical prime subhypermodule of M1 and 0 ∈ g1(r

n−1
1 , a1)

for rn−1
1 ∈ R, a1 ∈ M1 such that g(ri, 1

(n−2), a1) ̸⊆ Q1 for all 1 ≤ i ≤ n− 1
imply that g′(rn−1

1 , 1) ∈ Fa2 for all a2 ∈ M2.

Proof. (=⇒) Let Q1×M2 be an n-ary weakly classical prime subhypermod-
ule of M1×M2. Suppose that 0 /∈ g1(r

n−1
1 , a1) ⊆ Q1 for some rn−1

1 ∈ R and
for some a1 ∈ M1. Then we have (0, 0) /∈ g1 × g2(r

n−1
1 , (a1, 0)) ⊆ Q1 ×M2.

Therefore g1 × g2(ri, 1
(n−1), (a1, 0)) = {(y1, y2) | y1 ∈ g1(ri, 1

(n−2), a1), y2 ∈
g2(ri, 1

(n−2), 0)} ⊆ Q1 × M2 for some 1 ≤ i ≤ n − 1 which means
g1(ri, 1

(n−2), a1) ⊆ Q1. Thus Q1 is an n-ary weakly classical prime sub-
hypermodule of M1. Suppose that 0 ∈ g1(r

n−1
1 , a1) for rn−1

1 ∈ R, a1 ∈ M1

with g(ri, 1
(n−2), a1) ̸⊆ Q1 for all 1 ≤ i ≤ n − 1. Assume on the con-

trary that g′(rn−1
1 , 1) /∈ Fa2 for some a2 ∈ M2. This implies that 0 /∈

g2(g
′(rn−1

1 , 1), 1(n−2), a2). It follows that (0, 0) /∈ g1 × g2(r
n−1
1 , (a1, a2)) ⊆

Q1 × M2. Since Q1 × M2 is an n-ary weakly classical prime subhyper-
module of M1 ×M2, we obtain g1 × g2(ri, 1

(n−2), (a1, a2)) = {(y1, y2)| y1 ∈
g1(ri, 1

(n−2), a1), y2 ∈ g2(ri, 1
(n−2), a2)} ⊆ Q1 × M2 which implies

g1(ri, 1
(n−2), a1) ⊆ Q1, a contradiction. Hence g′(rn−1

1 , 1) ∈ Fa2 for all
a2 ∈ M2.

(⇐=) Let

(0, 0) /∈ g1 × g2(r
n−1
1 , (a1, a2))

= {(y1, y2)| y1 ∈ g1(r
n−1
1 , a1), y2 ∈ g2(r

n−1
1 , a2)}

⊆ Q1 ×M2

for some rn−1
1 ∈ R and (a1, a2) ∈ Q1 × M2. If 0 /∈ g1(r

n−1
1 , a1), then

we get g1(ri, 1
(n−2), a1) ⊆ Q1 for some 1 ≤ i ≤ n − 1 which implies g1 ×

g2(ri, 1
(n−2), (a1, a2)) ⊆ Q1 × M2 for some 1 ≤ i ≤ n − 1, as needed. If

0 ∈ g1(r
n−1
1 , a1), we get 0 /∈ g2(r

n−1
1 , a2) which means g′(rn−1

1 , 1) /∈ Fa2 .
Then we conclude that g1(ri, 1

(n−2), a1) ⊆ Q1 for some 1 ≤ i ≤ n− 1 which
implies g1 × g2(ri, 1

(n−2), (a1, a2)) ⊆ Q1 × M2. Thus Q1 × M2 is an n-ary
weakly classical prime subhypermodule of M1 ×M2.

Let (M1, f1, g1) and (M2, f2, g2) are two (m,n)-hypermodules over
(R1, f

′
1, g

′
1) and (R2, f

′
2, g

′
2), respectively. Then the (m,n)-hypermodule
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(M1 × M2, f1 × f2, g1 × g2) over (R1 × R2, f
′
1 × f ′

2, g
′
1 × g′2) is defined by

m-ary hyperoperation f1× f2 and n-ary external hyperoperation g1× g2, as
follows:

f1 × f2((a1, b1), · · · , (am, bm)) = {(x1, x2) | x1 ∈ f1(a
m
1 ), x2 ∈ f2(b

m
1 )}

g1 × g2((r1, s1), · · · , (rn−1, sn−1), (a, b))

= {(y1, y2) | y1 ∈ g1(r
n−1
1 , a), y2 ∈ g2(s

n−1
1 , b)}

for all am1 , a ∈ M1, b
m
1 , b ∈ M2, r

n−1
1 ∈ R1 and sn−1

1 ∈ R2.

Theorem 4.11. Let (M1 ×M2, f1 × f2, g1 × g2) be an (m,n)-hypermodule
over (R1×R2, f

′
1×f ′

2, g
′
1×g′2) such that (M1, f1, g1) is an (m,n)-hypermodule

over (R1, f
′
1, g

′
1) and (M2, f2, g2) is an (m,n)-hypermodule over (R2, f

′
2, g

′
2).

Let Q1 ×M2 be a proper subhypermodule of M1 ×M2. Then the followings
are equivalent:

(1) Q1 is an n-ary classical prime subhypermodule of M1.

(2) Q1 ×M2 is an n-ary classical prime subhypermodule of M1 ×M2.

(3) Q1×M2 is an n-ary weakly classical prime subhypermodule of M1×M2.

Proof. (1) =⇒ (2) Assume that g1 × g2((r1, s1), · · · (rn−1, sn−1), (a, b)) =
{(y1, y2) | y1 ∈ g1(r

n−1
1 , a), y2 ∈ g2(s

n−1
1 , b)} ⊆ Q1 × M2 for some

(r1, s1), · · · , (rn−1, sn−1) ∈ R1×R2, (a, b) ∈ M1×M2. Therefore g1(r
n−1
1 , a) ⊆

Q1. Since Q1 is an n-ary classical prime subhypermodule of M1, we con-
clude that g1(ri, 1

(n−2), a) ⊆ Q1 for some 1 ≤ i ≤ n − 1 which implies
g1 × g2((ri, si), (1, 1)

n−2, (a, b)) ⊆ Q1 ×M2. This shows that Q1 ×M2 is an
n-ary classical prime subhypermodule of M1 ×M2.

(2) =⇒ (3) It is obvious.
(3) =⇒ (1) Assume that g1(r

n−1
1 , a) ⊆ Q1 for some rn−1

1 ∈ R1 and
a ∈ M1. Let us pick 0 ̸= b ∈ M2. Then

(0, 0) /∈ g1 × g2((r1, s1), · · · , (rn−1, sn−1), (a, b)) ⊆ Q1 ×M2.

Since Q1 ×M2 is an n-ary weakly classical prime subhypermodule of M1 ×
M2, we get g1×g2((ri, si), (1, 1)

(n−2), (a, b)) ⊆ Q1×M2 for some 1 ≤ i ≤ n−1
which shows g1(ri, 1

(n−2), a) ⊆ Q1. Consequently, Q1 is an n-ary classical
prime subhypermodule of M1.
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5 n-ary ϕ-classical prime subhypermodule

In this section, the concept of n-ary ϕ-classical prime subhypermodules of
an (m,n)-hypermodule over R is introduced. The results obtained in the
theorems seem to play an important role to study n-ary ϕ-classical prime
subhypermodules.

Definition 5.1. Let SH(M) be the set of all subhypermodules of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M) ∪ {∅} be a function.
A proper subhypermodule Q of M is said to be an n-ary ϕ-classical prime
subhypermodule if rn−1

1 ∈ R and a ∈ M , g(rn−1
1 , a) ⊆ Q − ϕ(Q) implies

that g(ri, 1
(n−2), a) ⊆ Q for some 1 ≤ i ≤ n− 1.

Example 5.2. Assume that Z is the ring of integers and (Z, f, g) is the
(m,n)-hypermodule over (Z, h, k) defined in Example 3.5 of [2]. Let for
ever subhypermodule N of Z, SN = {r ∈ Z | g(r, 1(n−2),Z) ⊆ N}. Consider
the function ϕ : SH(Z) −→ SH(Z)∪{∅} defined by ϕ(N) = g(SN , 1(n−2), N)
for ever subhypermodule N of Z. Then the subhypermodule g(Zn−1, p) of
Z is an n-ary ϕ-classical prime subhypermodule.

Suppose that N is a subhypermodule of an (m,n)-hypermodule M over
R and ϕ : SH(M) −→ SH(M) ∪ {∅} is a function. Define ϕN from
SH(M/N) into SH(M/N) ∪ {∅} by ϕN (K/N) = f(ϕ(K), N, 0(m−2))/N
for all K ∈ SH(M) such that N ⊆ K. If ϕN (K) = ∅, then we consider
ϕN (K/N) = ∅.

Theorem 5.3. Let N ⊆ Q be proper subhypermodules of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M) ∪ {∅} be a function.
If Q is an n-ary ϕ-classical prime subhypermodule of M , then Q/N is a
ϕN -classical prime subhypermodule of M/N .

Proof. Let G(rn−1
1 , f(a,N, 0(n−m))) ⊆ Q/N − ϕN (Q/N). Then we obtain

g(rn−1
1 , a) ⊆ Q − ϕ(Q) which implies g(ri, 1

(n−2), a) ⊆ Q for some 1 ≤ i ≤
n − 1 since Q is an n-ary ϕ-classical prime subhypermodule of M . Thus
G(ri, 1

(n−2), f(a,N, 0(m−2))) ⊆ Q/N . This shows that Q/N is a ϕN -classical
prime subhypermodule of M/N .

Theorem 5.4. Let N and Q be proper subhypermodules of an (m,n)-
hypermodule M over R such that N ⊆ Q. Suppose that ϕ : SH(M) −→
SH(M) ∪ {∅} is a function. Then the followings hold:
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(1) If Q is an n-ary ϕ-classical prime subhypermodule of M such that
ϕ(Q) ⊆ N , then Q/N is an n-ary weakly classical prime subhyper-
module of M/N .

(2) If Q/N is an n-ary ϕN -classical prime subhypermodule of M/N such
that N ⊆ ϕ(Q), then Q is an n-ary ϕ-classical prime subhypermodule
of M .

(3) If N is an n-ary ϕ-classical prime subhypermodule of M such that
ϕ(N) ⊆ ϕ(Q) and Q/N is an n-ary weakly classical prime subhyper-
module of M/N , then Q is an n-ary ϕ-classical prime subhypermodule
of M .

Proof. (1) Let 0 /∈ G(rn−1
1 , f(a,N, 0(m−2)) ⊆ Q/N for some rn−1

1 ∈ R and
a ∈ M . Since ϕ(Q) ⊆ N , we conclude that g(rn−1

1 , a) ⊆ Q−ϕ(Q). Since Q is
an n-ary ϕ-classical prime subhypermodule of M , we get g(ri, 1

(n−2), a) ⊆ Q
for some 1 ≤ i ≤ n− 1. It gives G(ri, 1

(n−2), f(a,N, 0(m−2))) ⊆ Q/N . Thus
Q/N is an n-ary weakly classical prime subhypermodule of M/N .

(2) Let g(rn−1
1 , a) ⊆ Q − ϕ(Q) for some rn−1

1 ∈ R and a ∈ M . Then
we conclude that G(rn−1

1 , f(a,N, 0(m−2))) ⊆ Q/N − ϕN (Q/N) = Q/N −
(ϕ(Q)/N). Since Q/N is an n-ary ϕN -classical prime subhypermodule of
M/N , we obtain G(ri, 1

(n−2), f(a,N, 0(m−2))) ⊆ Q/N for some 1 ≤ i ≤
n − 1. It follows that g(ri, 1

(n−2), a) ⊆ Q. Consequently, Q is an n-ary
ϕ-classical prime subhypermodule of M .

(3) Suppose that g(rn−1
1 , a) ⊆ Q− ϕ(Q) for some rn−1

1 ∈ R and a ∈ M .
From ϕ(N) ⊆ ϕ(Q), it follows that g(rn−1

1 , a) ̸⊆ ϕ(N). Let g(rn−1
1 , a) ⊆

N . Since N is an n-ary ϕ-classical prime subhypermodule of M , we get
g(ri, 1

(n−2), a) ⊆ N ⊆ Q for some 1 ≤ i ≤ n−1. Now, let g(rn−1
1 , a) ̸⊆ N . It

implies that 0 /∈ G(rn−1
1 , f(a,N, 0(m−2))) ⊆ Q/N and so

G(ri, 1
(n−2), f(a,N, 0(m−2))) ⊆ Q/N for some 1 ≤ i ≤ n − 1 since Q/N

is an n-ary weakly classical prime subhypermodule of M/N . It shows that
g(ri, 1

(n−2), a) ⊆ Q for some 1 ≤ i ≤ n− 1. Hence Q is an n-ary ϕ-classical
prime subhypermodule of M .

In view of Theorem 5.4, the following result is obtained.

Corollary 5.5. Assume that Q is a proper subhypermodule of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M) ∪ {∅} is a function.
Then the following conditions are equivalent:
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(1) Q is an n-ary ϕ-classical prime subhypermodule of M .

(2) Q/ϕ(Q) is an n-ary weakly classical prime subhypermodule of M/ϕ(Q).

Theorem 5.6. Suppose that Q is a proper subhypermodule of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M)∪{∅} and ϕ′ : HI(R) −→
HI(R)∪{∅} are two functions such that HI(R) is the set of all hyperideals
of R. Then the followings hold:

(1) Let Q be an n-ary ϕ-classical prime subhypermodule of M . Then
g′(rn1 ) ∈ Qa − ϕ′(Qa) for rn1 ∈ R and for all a ∈ M − Q with
ϕ(Q)a ⊆ ϕ′(Qa) implies that ri ∈ Qa for some 1 ≤ i ≤ n.

(2) If g′(rn1 ) ∈ Qa−ϕ(Qa) for some rn1 ∈ R and for every a ∈ M −Q with
ϕ′(Qa) ⊆ ϕ(Q)a implies that ri ∈ Qa for some 1 ≤ i ≤ n, then Q is
an n-ary ϕ-classical prime subhypermodule of M .

Proof. (1) Let Q be an n-ary ϕ-classical prime subhypermodule of M . Pick
a ∈ M − Q with ϕ(Q)a ⊆ ϕ′(Qa). Assume that g′(rn1 ) ∈ Qa − ϕ′(Qa) for
some rn1 ∈ R. This means

g(g′(rn1 ), 1
(n−2), a) = g(rn−2

1 , g′(rnn−1, 1
(n−2)), a) ⊆ Q− ϕ(Q).

Since Q is an n-ary ϕ-classical prime subhypermodule, g(ri, 1
(n−2), a) ⊆ Q

for some 1 ≤ i ≤ n− 2 or

g(g′(rnn−1, 1
(n−2)), 1(n−2), a) = g(rn−2, rn, 1

(n−2), a) ⊆ Q.

In the second possibility, we have g(ri, 1
(n−2), a) ⊆ Q for some i ∈ {n−1, n}.

Then we conclude that ri ∈ Qa for some 1 ≤ i ≤ n, as needed.
(2) Suppose that g(rn−1

1 , a) ⊆ Q− ϕ(Q) for some rn−1
1 ∈ R and a ∈ M .

Let a ∈ Q. Then the claim follows. If a /∈ Q. From g′(rn−1
1 , 1) ∈ Qa−ϕ′(Qa),

it follows that ri ∈ Qa for some 1 ≤ i ≤ n − 1. Hence g(ri, 1
(n−2), a) ⊆ Q.

Consequently, Q is an n-ary ϕ-classical prime subhypermodule of M .

Theorem 5.7. Let (M1, f1, g1) and (M2, f2, g2) be (m,n)-hypermodules over
R and h : M1 −→ M2 be an epimorphism. Let ϕ1 : SH(M1) −→ SH(M1)∪
{∅} and ϕ2 : SH(M2) −→ SH(M2) ∪ {∅} be two functions.

(1) If Q2 is an n-ary ϕ2-classical prime subhypermodule of M2 such that
ϕ1(h

−1(Q2)) = h−1(ϕ2(Q2)), then h−1(Q2) is an n-ary ϕ1-classical
prime subhypermodule of M1.
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(2) If Q1 is an n-ary ϕ1-classical prime subhypermodule of M1 such that
Ker(h) ⊆ Q1 and ϕ2(h(Q1)) = h(ϕ1(Q1)), then h(Q1) is an n-ary
ϕ2-classical prime subhypermodule of M2.

Proof. (1) Assume that g1(r
n−1
1 , a1) ⊆ h−1(Q2) − ϕ1(h

−1(Q2)) for some
rn−1
1 ∈ R and a1 ∈ M1. Hence h(g1(r

n−1
1 , a1) = g2(r

n−1
1 , h(a1)) ⊆ Q2. From

ϕ1(h
−1(Q2)) = h−1(ϕ2(Q2)), it follows that g2(r

n−1
1 , h(a1)) ̸⊆ ϕ2(Q2). Since

Q2 is an n-ary ϕ2-classical prime subhypermodule of M2 and
g2(r

n−1
1 , h(a1)) ⊆ Q2 − ϕ2(Q2), we get g2(ri, 1

(n−2), h(a1)) ⊆ Q2 for some
1 ≤ i ≤ i − 1. Then h(g1(ri, 1

(n−2), a1) ⊆ Q2 and so g1(ri, 1
(n−2), a1) ⊆

h−1(Q2). Thus h−1(Q2) is an n-ary ϕ1-classical prime subhypermodule of
M1.

(2) Suppose that g2(r
n−1
1 , a2) ⊆ h(Q1) − ϕ2(h(Q1)) for some rn−1

1 ∈
R and a2 ∈ M2. Since h is an epimorphism, we have h(a1) = a2 for
some a1 ∈ M1. Hence h(g1(r

n−1
1 , a1)) = g2(r

n−1
1 , h(a1)) = g2(r

n−1
1 , a2) ⊆

h(Q1) and so g1(r
n−1
1 , a1) ⊆ Q1. From ϕ2(h(Q1)) = h(ϕ1(Q1)), it follows

that g1(r
n−1
1 , a1) ⊆ Q1 − ϕ(Q1). Since Q1 is an n-ary ϕ1-classical prime

subhypermodule of M1, we conclude that g1(ri, 1
(n−2), a1) ⊆ Q1 for some

1 ≤ i ≤ n − 1. Thus we get h(g1(ri, 1
(n−2), a1)) = g2(ri, 1

(n−2), h(a1)) =
g2(ri, 1

(n−2), a2) ⊆ h(Q1). Consequently, h(Q1) is an n-ary ϕ2-classical
prime subhypermodule of M2.

Theorem 5.8. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M)∪ {∅} be a function. If
Q bis an n-ary ϕ-classical prime subhypermodule of M , then

Qg(rn−1
1 ,a) ⊆ ϕ(Q)g(rn−1

1 ,a) ∪Qg(r1,1(n−2),a) ∪ · · · ∪Qg(rn−1,1(n−2),a)

for all rn−1
1 ∈ R and a ∈ M .

Proof. Let x ∈ Qg(rn−1
1 ,a). This means that g(x, 1(n−2), g(rn−1

1 , a)) ⊆ Q.

Let g(x, 1(n−2), g(rn−1
1 , a)) ⊆ ϕ(Q). It implies that x ∈ ϕ(Q)g(rn−1

1 ,a), as

needed. So we consider g(x, 1(n−2), g(rn−1
1 , a)) ̸⊆ ϕ(Q). Since Q is an n-

ary ϕ-classical prime subhypermodule of M and g(x, 1(n−2), g(rn−1
1 , a)) =

g(rn−2
1 , g′(rn−1, x, 1

(n−2)), a) ⊆ Q − ϕ(Q), we get g(ri, 1
(n−2), a) ⊆ Q for

some 1 ≤ i ≤ n− 2 or

g(g′(rn−1, x, 1
(n−2)), 1(n−2), a) = g(x, 1(n−2), g(rn−1, 1

(n−2), a)) ⊆ Q.
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In the former case, we get g(x, 1(n−2), g(ri, 1
(n−1), a)) ⊆ Q which means

x ∈ Qg(ri,1(n−2),a) for some 1 ≤ i ≤ n − 2. In the second case, we obtain
x ∈ Qg(rn−1,1(n−2),a). Then the claim is proved.

The following theorem offers a characterization of n-ary ϕ-classical prime
subhypermodules of M .

Theorem 5.9. Let Q be a proper subhypermodule of an (m,n)-
hypermodule M over R and ϕ : SH(M) −→ SH(M) ∪ {∅} be a function.
Then Q is an n-ary ϕ-classical prime subhypermodule of M if and only if
for every hyperideals In−1

1 of R and a ∈ M , g(In−1
1 , a) ⊆ Q− ϕ(Q) implies

that g(Ii, 1
(n−2), a) ⊆ Q for some 1 ≤ i ≤ n− 1.

Proof. (=⇒) Assume that g(In−1
1 , a) ⊆ Q−ϕ(Q) for some hyperideals In−1

1

of R and a ∈ M but g(Ii, 1
(n−2), a) ̸⊆ Q for all 1 ≤ i ≤ n − 1. Then there

exists ri ∈ Ii for each 1 ≤ i ≤ n−1 such that g(ri, 1
(n−2), a) ̸⊆ Q. Since Q is

an n-ary ϕ-classical prime subhypermodule of M and g(rn−1
1 , a) ⊆ Q−ϕ(Q),

we conclude that g(ri, 1
(n−2), a) ⊆ Q for some 1 ≤ i ≤ n − 1 which is a

contradiction.

(⇐=) Suppose that g(rn−1
1 , a) ⊆ Q − ϕ(Q) for some rn−1

1 ∈ R and
a ∈ M . Then we have g(⟨r1⟩, · · · , ⟨rn−1⟩, a) ⊆ Q. Since g(rn−1

1 , a) ̸⊆ ϕ(Q),
then we conclude that g(⟨r1⟩, · · · , ⟨rn⟩, a) ̸⊆ ϕ(Q). By the hypothesis, we
have g(⟨ri⟩, 1(n−2), a) ⊆ Q for some 1 ≤ i ≤ n − 1. Therefore we get
g(ri, 1

(n−2), a) ⊆ Q which means Q is an n-ary ϕ-classical prime subhyper-
module of M .

Recall from [2] that an (m,n)-hypermodule M over R is a multiplication
(m,n)-hypermodule if for every subhypermodule K of M , there exists a hy-
perideal I of R with K = g(I, 1(n−2),M). Let Ki be a subhypermodule of a
multiplication (m,n)-hypermodule M for each 1 ≤ i ≤ n−1 such that Ki =
g(Ii, 1

(n−2),M) for some hyperideal Ii of R. Then the product ofK1, · · · ,Kn

denoted by g(Kn
1 ) is defined by g(Kn

1 ) = g(g′((In1 ), 1
(n−2),M). Also, we de-

fine g(Kn−1
1 , a) = g(In−1

1 , a) and g(Ki,M
(n−2), a) = g(Ii, 1

(n−2), a) for each
1 ≤ i ≤ n− 1 and for any a ∈ M .

Theorem 5.10. Let Q be a proper subhypermodule of a multiplication
(m,n)-hypermodule M over R and ϕ : SH(M) −→ SH(M) ∪ {∅} be a
function. Then Q is an n-ary ϕ-classical prime subhypermodule of M if
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and only if g(Qn−1
1 , a) ⊆ Q − ϕ(Q) for some subhypermodules Qn−1

1 of M
and a ∈ M implies that g(Qi,M

(n−2), a) ⊆ Q for some 1 ≤ i ≤ n− 1.

Proof. (=⇒) Assume that g(Qn−1
1 , a) ⊆ Q−ϕ(Q) for some subhypermodules

Qn−1
1 of M and a ∈ M . Since M is a multiplication (m,n)-hypermodule,

then there exist some hyperideals In−1
1 of R with Qi = g(Ii, 1

(n−2),M)
for each 1 ≤ i ≤ n − 1. Therefore we have g(Qn−1

1 , a) = g(In−1
1 , a) ⊆

Q − ϕ(Q). Since Q is an n-ary ϕ-classical prime subhypermodule of M ,
then g(Ii, 1

(n−1), a) ⊆ Q for some 1 ≤ i ≤ n − 1 by Theorem 5.9. This
means that g(Qi,M

(n−2), a) ⊆ Q, as needed.
(⇐=) Let g(In−1

1 , a) ⊆ Q − ϕ(Q) for some hyperideals In−1
1 of R and

a ∈ M . Now, we put Qi = g(Ii, 1
(n−2),M) for each 1 ≤ i ≤ n− 1. Then we

have g(Qn−1
1 , a) ⊆ Q − ϕ(Q) which implies g(Qi,M

(n−2), a) ⊆ Q for some
1 ≤ i ≤ n−1. Therefore g(Ii, 1

(n−2), a) ⊆ Q. Thus Q is an n-ary ϕ-classical
prime subhypermodule of M by Theorem 5.9.

Theorem 5.11. Assume that (M1 × M2, f1 × f2, g1 × g2) is an (m,n)-
hypermodule over (R1×R2, f

′
1×f ′

2, g
′
1×g′2) such that (M1, f1, g1) is an (m,n)-

hypermodule over (R1, f
′
1, g

′
1) and (M2, f2, g2) is an (m,n)-hypermodule over

(R2, f
′
2, g

′
2). Let ϕ : SH(M1×M2) −→ SH(M1×M2)∪{∅} be a function. If

Q1 is an n-ary weakly classical prime subhypermodule of M1 with {0}×M2 ⊆
ϕ(Q1×M2), then Q1×M2 is an n-ary ϕ-classical prime subhypermodule of
M1 ×M2.

Proof. Let

g1 × g2((r1, s1), · · · (rn−1, sn−1), (a, b)) =

{(y1, y2) | y1 ∈ g1(r
n−1
1 , a), y2 ∈ g2(s

n−1
1 , b)} ⊆ Q1 ×M2 − ϕ(Q1 ×M2)

for some (r1, s1), · · · , (rn−1, sn−1) ∈ R1 ×R2 and (a, b) ∈ M1 ×M2. There-
fore 0 /∈ g1(r

n−1
1 , a) ⊆ Q1. Since Q1 is an n-ary weakly classical prime

subhypermodule of M1, we conclude that g1(ri, 1
(n−2), a) ⊆ Q1 for some

1 ≤ i ≤ n − 1 which implies g1 × g2((ri, si), (1, 1)
n−2, (a, b)) ⊆ Q1 × M2.

This means that Q1 ×M2 is an n-ary ϕ-classical prime subhypermodule of
M1 ×M2.

Theorem 5.12. Suppose that (M1 × M2, f1 × f2, g1 × g2) is an (m,n)-
hypermodule over (R1×R2, f

′
1×f ′

2, g
′
1×g′2) such that (M1, f1, g1) is an (m,n)-

hypermodule over (R1, f
′
1, g

′
1) and (M2, f2, g2) is an (m,n)-hypermodule over
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(R2, f
′
2, g

′
2). Let ϕ1 : SH(M1) −→ SH(M1) ∪ {∅} and ϕ2 : SH(M2) −→

SH(M2) ∪ {∅} be two functions such that ϕ2(M2) = M2. Then Q1 ×M2 is
an n-ary ϕ1 × ϕ2-classical prime subhypermodule of M1 ×M2 if and only if
Q1 is an n-ary ϕ1-classical prime subhypermodule of M1.

Proof. (=⇒) Assume that Q1 × M2 is an n-ary ϕ1 × ϕ2-classical prime
subhypermodule of M1 × M2. Let g1(r

n−1
1 , a1) ⊆ Q1 − ϕ1(Q1) for some

rn−1
1 ∈ R and a1 ∈ M1. Therefore g1 × g2((r1, 1), · · · , (rn−1, 1)(a1, a2)) ⊆
Q1 × M2 − ϕ1 × ϕ2(Q1 × M2) = Q1 × M2 − (ϕ1(Q1) × ϕ2(M2)) for all
a2 ∈ M2. Since Q1 ×M2 is an n-ary ϕ1 × ϕ2-classical prime subhypermod-
ule of M1×M2, we obtain g1× g2((ri, 1), (1, 1)

(n−2), (a1, a2)) ⊆ Q1×M2 for
some 1 ≤ i ≤ n − 1 which means g1(ri, 1

(n−2), a1) ⊆ Q1. This shows that
Q1 is an n-ary ϕ1-classical prime subhypermodule of M1.

(⇐=) Let Q1 be an n-ary ϕ1-classical prime subhypermodule of M1.
Assume that g1 × g2((r1, s1), · · · , (rn−1, sn−1)(a1, a2)) ⊆ Q1 × M2 − ϕ1 ×
ϕ2(Q1×M2). From ϕ2(M2) = M2, it follows that g1(r

n−1
1 , a1) ⊆ Q1−ϕ1(Q1).

Then we have g1(ri, 1
(n−2), a1) ⊆ Q1 for some 1 ≤ i ≤ n−1. So we conclude

that g1× g2((ri, si), (1, 1)
(n−2), (a1, a2)) ⊆ Q1×M2. Consequently, Q1×M2

is an n-ary ϕ1 × ϕ2-classical prime subhypermodule of M1 ×M2.

Theorem 5.13. Let (M1 ×M2, f1 × f2, g1 × g2) be an (m,n)-hypermodule
over (R1×R2, f

′
1×f ′

2, g
′
1×g′2) such that (M1, f1, g1) is an (m,n)-hypermodule

over (R1, f
′
1, g

′
1) and (M2, f2, g2) is an (m,n)-hypermodule over (R2, f

′
2, g

′
2).

Assume that ϕ1 : SH(M1) −→ SH(M1) ∪ {∅} and ϕ2 : SH(M2) −→
SH(M2) ∪ {∅} be two functions. If Q1 × Q2 is an n-ary ϕ1 × ϕ2-classical
prime subhypermodule of M1 ×M2, then Q1 is an n-ary ϕ1-classical prime
subhypermodule of M1 and Q2 is an n-ary ϕ2-classical prime subhypermod-
ule of M2.

Proof. Let Q1 × Q2 be an n-ary ϕ1 × ϕ2-classical prime subhypermodule
of M1 ×M2. Assume that g1(r

n−1
1 , a1) ⊆ Q1 − ϕ1(Q1) for some rn−1

1 ∈ R
and a ∈ M1. Pick a2 ∈ Q2. So g1 × g2((r1, 1), · · · , (rn−1, 1)(a1, a2)) ⊆ Q1 ×
Q2−ϕ1×ϕ2(Q1×Q2). Hence g1× g2((ri, 1), (1, 1)

(n−2), (a1, a2)) ⊆ Q1×Q2

for some 1 ≤ i ≤ n − 1 which implies g1(ri, 1
(n−2), a1) ⊆ Q1. Thus Q1 is

an n-ary ϕ1-classical prime subhypermodule of M1. Similarly, we can show
that Q2 is an n-ary ϕ2-classical prime subhypermodule of M2.
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6 Conclusion

The notion of prime submodules has a significant place in the theory of
modules, and it is used to characterize certain classes of modules. In this
paper, we studied some generalizations on this issue in the context of (m,n)-
hypermodules. We introduced n-ary classical prime, n-ary weakly classical
prime and n-ary ϕ-classical prime subhypermodules. In this direction we
gave some characterizations of such subhypermodules. The future work can
be on defining the notions of classical primary, weakly classical primary
and ϕ-classical primary subhypermodules of an (m,n)-hypermodules over a
Krasner (m,n)-hyperring.
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