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Characterizing cogenerating and finitely
cogenerated S-acts

Roghaieh Khosravi∗, Xingliang Liang, and Mohammad Roueentan

Abstract. In this paper, we introduce cogenerating classes of S-acts as
those that can be used to cogenerate S-acts in an appropriate sense. Next,
finitely cogenerated S-acts are characterized by the property that their socle
is finitely cogenerated and large in the S-act. Further, we investigate the S-
acts cogenerating SS , or generating the injective envelope E(S) of SS . This
leads us to introduce the classes of cofaithful and subgenerator S-acts as
the dual notions of faithful S-acts, which lie strictly between the classes of
generator and faithful S-acts. Ultimately, we study relations between the
cogenerating classes, finitely cogenerated S-acts, and the recently introduced
new classes of S-acts.

1 Introduction and Preliminaries

The important, categorical concepts of generating and cogenerating objects
play a crucial role in every concrete category. The notion of a cogenerator,
as the dual concept of a generator, is of great importance in category theory.
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For instance, in most categories, each required injective object can be writ-
ten as a product of some cogenerator, or more generally, as a cogenerating
set of objects.

Many books have discussed categories and functors also covering the
concept of cogenerators. See [8, 9] for example. Moreover, several mono-
graphs, including [16], have investigated these concepts in the category of
modules over rings. In [14], Normak studied cogenerator S-acts in the cate-
gory of S-acts. Additionally, Knauer and Normak found a relation between
cogenerators and subdirectly irreducible S-acts in [12]. Such investigations
have been continued later, see [3, 13, 15] for more information. For basic
definitions and terminology related to acts over monoids, we refer the reader
to [9].

In this paper, we concentrate on the concepts of cogenerating S-acts and
finitely cogenerated S-acts. To do so, we begin with the definition of cogen-
erators in arbitrary categories. Then, we derive some special properties of
cogenerators in the category of S-acts.

Let C be a concrete category. Recall that an object C of C is called a
cogenerator (or a coseparator) in C if the functor MorC(−, C) is faithful.
This means that for any X,Y ∈ C and any f, g ∈ MorC(X,Y ) with f ̸= g,
there exists β ∈ MorC(Y,C) such that βf ̸= βg. Equivalently, an object
K is a cogenerator in C if and only if for every X ∈ C, there exists a
monomorphism X −→

∏
K.

Now, we define the categorically generalized notion, namely, cogenerator
in arbitrary categories. Let U be a non-empty set (class) of objects of
a category C. An object B in C is said to be cogenerated by U , or U-
cogenerated, if for every pair of distinct morphisms f, g : A −→ B in C,
there exists a morphism h : B −→ U with U ∈ U and hf ̸= hg. Then, U is
called a set (class) of cogenerators for B.

From now on, we focus on the category of S-acts. Throughout the paper,
AS are used to denote a right S-act over a monoid S. Let U be a class of
S-acts. An S-act AS is (finitely) cogenerated by U in case there is a (finite)
indexed set (Ui)i∈I in U and a monomorphism A −→

∏
i∈I Ui. If U = {U}

is a singleton, then we simply say that U (finitely) cogenerates A.

In the remainder of this section, we introduce the notion of socle for
S-acts. To do this, we need to recall some concepts of S-acts. An S-act
is called simple if it contains no subacts other than itself, and θ-simple if
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it contains no subacts other than itself and the one element subact Θ. An
equivalence relation ρ on an S-act A is called a congruence on AS , if aρa

′

implies (as)ρ(a′s) for a, a′ ∈ A, s ∈ S. The set of all congruences on AS is
denoted by Con(A). Clearly, ∆A = {(a, a) | a ∈ A},∇A = A×A ∈ Con(A).
Recall from [3] that a monomorphism f : A −→ B of S-acts is said to be
essential if for each homomorphism g : B −→ C, g is a monomorphism
whenever gf is. If f is an inclusion map, then B is said to be an essential
extension of A, or A is called large in B. In this situation, we write A ⊆′ B.
It follows from [9, Lemma 3.1.15] that A ⊆′ B if and only if for every non-
trivial θ ∈ Con(B), θ ∩ ρA ̸= ∆B. Recall from [6] that if S contains a zero,
a non-zero subact B of AS is called intersection large if for all non-zero
subacts C of AS , B ∩ C ̸= Θ, and will be denoted by B is ∩-large in AS .
It follows from [6, Proposition 4.7] that every large subact of AS is ∩-large,
but the converse is not true.

In module theory (see [2]), the socle of a module is defined to be the
sum of the minimal nonzero its submodules, equivalently, the intersection
of its essential submodules. For S-acts, we define two notions as follows.

Definition 1.1. Let A be an S-act.

(i) Soc(A) =
⋂
{L ⊆ A | L ⊆′ A}.

(ii) If a monoid S contains a zero, we define

S(A) =
⋂

{L ⊆ A | L is ∩ −large in A}.

If Soc(A) ̸= ∅, then Soc(A) is a subact of A. By an argument closely
resembling the proof in module theory, one can show that if S contains a
zero,

S(A) =
⋃

{L ⊆ A | L is a θ − simple subact of A}.

Obviously, S(A) ⊆ Soc(A). However, unlike the case of module theory, the
converse can not be valid in general. For instance, if S = (N,max) ∪ {∞},
it is not difficult to see that S(S) = {∞} ⊊ Soc(S) = S.

2 Cogenerating S-acts

In this section, we consider cogenerators for a class of S-acts as a common
generalization of cogenerators in the category of S-acts, and obtain some
characterizations of cogenerators.
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Definition 2.1. Let C be a class of S-acts. An S-act A is (finitely) cogen-
erated by C (or C (finitely) cogenerates A) in case there is a (finite) indexed
set (Ci)i∈I in C and a monomorphism A −→

∏
i∈I Ci.

We make the obvious adjustments in terminology if C = {C} is a single-
ton. The class of all S-acts cogenerated by C is denoted by Cog(C). Also,
FCog(C) denotes the class of all S-acts which are finitely cogenerated by
C. An S-act C is a cogenerator for Cog(C) in case Cog(C) = Cog(C). A
cogenerator for the class of all S-acts is simply called a cogenerator, without
any reference to the class.

The proof of the following proposition is similar to that of [9, Theorem
2.4.18].

Proposition 2.2. Let AS and BS be S-acts. The following are equivalent.

(i) BS (finitely) cogenerates AS.

(ii) There exists a (finite) subset H of Hom(A,B) with
⋂

h∈H kerh = ∆A.

(iii) For any S-act XS and any f, g ∈ Hom(X,A) with f ̸= g, there exists
β ∈ Hom(A,B) such that βf ̸= βg.

Now we give a definition of the cotrace of a class of S-acts which will be
useful to characterize cogenerators later on.

Definition 2.3. Let C be a class of S-acts. The cotrace of C in an S-act
AS is defined by

cotrAS
(C) =

⋂
{ker g | g : AS −→ C, for some C ∈ C} =

⋂
C∈C Cog(C).

In particular, when C = {C} is a singleton, Definition 2.3 is the definition
of the cotrace of C in A as mentioned in [9, Definition 2.4.16], which is
denoted by

cotrAS
(CS) =

⋂
g∈Hom(AS ,CS)

ker g.

Note that cotrAS
(C) is a subact of AS

∏
AS . By [9, Theorem 2.4.18], an

S-act C is a cogenerator in the category of S-acts if and only if for every
S-act AS , cotrAS

(CS) = ∆A.

Proposition 2.4. Let C be a class of S-acts, and let AS be an S-act. Then,
cotrAS

(C) is the unique smallest congruence ρ of AS such that A/ρ is co-
generated by C.
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Proof. Let {Ci}i∈I be an indexed set in C such that

ρ = cotrAS
(C) =

⋂
{ker gi | gi : AS −→ Ci, i ∈ I}.

Define g =
∏

i∈I gi : A −→
∏

i∈I Ci by g(a) = (gi(a))i∈I . It can be easily
checked that ρ = ker g. Using the homomorphism theorem for S-acts, we
find a monomorphism g′ : A/ρ −→

∏
i∈I Ci with g′([a]ρ) = g(a). Then

A/ρ ∈ Cog(C). Now, suppose that σ is a congruence on A such that A/σ ∈
Cog(C). Then, there exists a monomorphism f : A/σ −→

∏
j∈J Cj . So,

fπ : A −→
∏

j∈J Cj and σ = ker fπ. This implies fj = πjfπ : A −→ Cj ,
and that σ = ker fπ =

⋂
j∈J ker fj . Thus, ρ = cotrAS

(C) ⊆
⋂

j∈J ker fj = σ,
and the result follows.

Using the previous proposition, we obtain the following result.

Corollary 2.5. Let AS be an S-act, and C be a class of S-acts. The fol-
lowing hold.

(i) C cogenerates AS if and only if cotrAS
(C) = ∆A.

(ii) Let σ be a congruence on AS. Then, σ = cotrAS
(C) if and only if

σ ⊆ cotrAS
(C) and cotrAS/σ(C) = ∆A/σ.

Lemma 2.6. Let C and D be two classes of S-acts. If D ⊆ Cog(C), then
Cog(D) ⊆ Cog(C) and cotrAS

(C) ⊆ cotrAS
(D) for each S-act AS.

Proof. The first part is obvious. To prove the second part, suppose that
(a, a′) /∈ cotrAS

(D). Then there exists a homomorphism f : A −→ D with
(a, a′) /∈ ker f for some D ∈ D, that is, f(a) ̸= f(a′). Since D ∈ Cog(C),
there exists a homomorphism h : D −→ C with (f(a), f(a′)) /∈ kerh for
some C ∈ C. Now, we obtain hf : A −→ C with (a, a′) /∈ kerhf . So,
(a, a′) /∈ cotrAS

(C).

Proposition 2.7. Let C be a class of S-acts.

(i) If A ∈ Cog(C) (FCog(C)) and g : A′ −→ A is a monomorphism, then
A′ ∈ Cog(C) (FCog(C)).

(ii) If (Ai)i∈I ∈ Cog(C) (FCog(C)), then
∏

i∈I Ai is in Cog(C) (FCog(C)).
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Proof. (i). Let A ∈ Cog(C) and g : A′ −→ A be a monomorphism. Then
there exists a monomorphism f : A −→

∏
i∈I Ci, where Ci ∈ C for each

i ∈ I. So, fg : A′ −→
∏

i∈I Ci is a monomorphism.
(ii). Let (Ai)i∈I ∈ Cog(C). Then for each i ∈ I, there exists a monomor-

phism fi : Ai −→
∏

ji∈JI Cji , where Cji ∈ C for each ji ∈ JI . Therefore,∏
i∈I

fi :
∏
i∈I

Ai −→
∏
i∈I

(
∏
ji∈JI

Cji)

is a monomorphism, and the result follows.

The following results can be proved similar to Proposition 2.7.

Proposition 2.8. If C is the set {Ci | i ∈ I} of S-acts, then the following
hold.

(i) Cog(
∏

i∈I Ci) ⊆ Cog(C) ⊆ Cog(
∐

i∈I Ci).

(ii) If Hom(Ci, Cj) ̸= ∅ for any i, j ∈ I, then
∏

i∈I Ci and
∐

i∈I Ci are
cogenerators for Cog(C).

Proposition 2.9. Let C be a cogenerator for Cog(C). Then for each S-act
AS, cotrAS

(C) = cotrAS
(C). In particular, if (Ci)i∈I is an indexed set of S-

acts such that Hom(Ci, Cj) ̸= ∅, then cotrAS
(
∏

i∈I Ci) =
⋂

i∈I cotrAS
(Ci) =

cotrAS
(
∐

i∈I Ci).

3 Finitely cogenerated S-acts

In this section, we focus on finitely cogenerated S-acts. In [5], for a monoid
S with zero, an S-act AS is called finitely cogenerated provided that for
every non-empty collection {Ai | i ∈ I} of subacts of AS with

⋂
i∈I Ai = Θ,

there exists a finite subset J of I such that
⋂

j∈J Aj = Θ. As we know, the
importance of congruences is more than subacts in characterizing the struc-
ture of S-acts. So, on an arbitrary monoid S, we define finitely cogenerated
S-acts based on congruences and cogenerating sets.

Definition 3.1. An S-act AS is called finitely cogenerated if for every

monomorphism A
f−→

∏
i∈I Ai,

A
f−→

∏
i∈I

Ai
π−→

∏
j∈J

Aj
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is also a monomorphism for some finite subset J of I.

Clearly, if AS is finitely cogenerated, then every class C of S-acts that
cogenerates AS finitely cogenerates AS .

Proposition 3.2. For any S-act AS, the following are equivalent.

(i) AS is finitely cogenerated.

(ii) For every family of homomorphisms {fi : A −→ Ai} in S-acts with⋂
i∈I ker fi = ∆A, there is a finite subset J of I with

⋂
j∈J ker fj = ∆A.

(iii) For any family of congruences {ρi | i ∈ I} on AS, if
⋂

i∈I ρi = ∆A,
then

⋂
j∈J ρj = ∆A for some finite subset J of I.

(iv) Every subact of AS is finitely cogenerated.

Proof. (i)⇒(ii): Let {fi : A −→ Ai} be a family of homomorphisms in S-
acts with

⋂
i∈I ker fi = ∆A. Then, f =

∏
i∈I fi : A −→

∏
i∈I Ai is defined by

f(a) = (fi(a))i∈I and ker f =
⋂

i∈I ker fi = ∆A. So, f is a monomorphism,
and πf : A −→

∏
j∈J Aj is a monomorphism for some finite subset J of I,

by our assumption. Thus,
⋂

j∈J ker fj = kerπf = ∆A.
The implications (ii)⇒(iii) and (iii)⇒(i) can be proved in a similar way.

The implication (iv)⇒(i) is clear.
(ii)⇒(iv): Let BS be a subact of AS , and {ρi | i ∈ I} be a family of

congruences on BS such that
⋂

i∈I ρi = ∆B. It is clear that σi = ρi ∪∆A is
also a congruence on AS , for each i ∈ I. Since

⋂
i∈I σi =

⋂
i∈I ρi∪∆A = ∆A,

by our assumption,
⋂

j∈J σj = ∆A for some finite subset J of I. Thus⋂
j∈J ρj ⊆ ∆A ∩ (B ×B) = ∆B, and the result follows.

In the following definition, we use Rees congruences instead of congru-
ences to define a weaker notion. Recall that the Rees congruence ρB =
(B ×B) ∪∆A for any subact BS of AS .

Definition 3.3. An S-act AS is called finitely Rees cogenerated whenever
for any family of Rees congruences {ρBi | i ∈ I} on AS , if

⋂
i∈I ρBi = ∆A,

then
⋂

j∈J ρBj = ∆A for some finite subset J of I.

Clearly, AS is finitely Rees cogenerated if and only if for any family
{Bi | i ∈ I} of subacts of AS , if |

⋂
i∈I Bi| ≤ 1, then |

⋂
j∈J Bj | ≤ 1 for some

finite subset J of I. Also, for a monoid S with zero, this is equivalent to
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the following statement. If
⋂

i∈I Bi = Θ, then
⋂

j∈J Bj = Θ for some finite
subset J of I, as defined in [5]. Moreover, every subact of a finitely Rees
cogenerated S-act is finitely Rees cogenerated.

Note that every finitely cogenerated S-act is finitely Rees cogenerated,
but the following example shows that the converse is not true.

Example 3.4. Let S = (N,min)ε = (N,min)∪̇{ε}, where ε denotes the
externally adjoint identity, and denote min{m,n} by m ∗ n. Then, KS =
S \ {ε} is a right ideal of S. The subacts of KS are 1S ⊆ 2S ⊆ 3S ⊆ . . ..
Hence, KS is finitely Rees cogenerated. We claim that KS is not finitely
cogenerated. For each n ∈ KS , define fn : KS −→ KS by fn(m) = m ∗ n.
It can be easily checked that

⋂
n∈N ker fn = ∆K . But, for each finite subset

J of K,
⋂

n∈J ker fn ̸= ∆K . Therefore, K is not finitely cogenerated.

Using the Unique Decomposition Theorem (see [9, Theorem 1.5.10]), we
shall obtain the structure of finitely (Rees) cogenerated S-acts.

Proposition 3.5. Every finitely (Rees) cogenerated S-act is a finite coprod-
uct of indecomposable S-acts.

Proof. Suppose that AS is finitely cogenerated. As we know, AS has a
unique decomposition into indecomposable subacts {Ai | i ∈ I}, that is,
A =

∐
i∈I Ai. Let Bi =

∐
j ̸=iAj for each i ∈ I. Then, Bi is a proper subact

of A and
⋂

i∈I ρBi = ∆A. Now, since AS is finitely cogenerated, there exists
a finite subset J of I such that

⋂
j∈J ρBj = ∆A. If J ̸= I and i ∈ I \J , since

Ai ⊆ Bj for each j ∈ J , then Ai ×Ai ⊆
⋂

j∈J ρBj , which is a contradiction.
Therefore, A =

∐
j∈J Aj and we are done.

Recall from [9, Definition 2.5.31] that an S-act is called completely re-
ducible if it is a coproduct of simple subacts. Now, the previous proposition
allows us to deduce the following corollary.

Corollary 3.6. Every finitely (Rees) cogenerated, completely reducible S-
act is finitely generated.

Proposition 3.7. Every non-zero finitely cogenerated S-act contains a min-
imal congruence. In particular, every non-zero finitely Rees cogenerated
S-act contains a minimal subact.
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Proof. Let AS be a finitely cogenerated S-act, and A be the set of all non-
diagonal congruences on AS . Then, ∇A = (A×A) ∈ A and ⊇makes A into a
poset. Let {ρi | i ∈ I} be a chain in A. If

⋂
i∈I ρi = ∆A, then by Proposition

3.2,
⋂

j∈J ρj = ∆A for some finite subset J of I. Since {ρi | i ∈ I} is a chain,
ρk = ∆A for some k ∈ I, which is a contradiction. Thus, by Zorn’s Lemma,
A contains a minimal element.

Replacing congruence with Rees congruence in this proof, we obtain the
second part.

Proposition 3.8. Let f : A −→ B be an essential monomorphism. If
AS is finitely cogenerated, then so is B. In particular, every essential ex-
tension (injective envelope) of a finitely cogenerated S-act is again finitely
cogenerated.

Proof. LetAS be finitely cogenerated, and f : A −→ B an essential monomor-
phism. Suppose that g : B −→

∏
i∈I Ai is a monomorphism. Then,

gf : A −→
∏

i∈I Ai is a monomorphism, and since AS is finitely cogen-

erated, A
gf−→

∏
i∈I Ai

π−→
∏

j∈J Aj is a monomorphism for some finite
subset J of I. Now, we find that f is an essential monomorphism and πgf
is a monomorphism, implying that πg is a monomorphism. Thus, B is
finitely cogenerated.

Now, let’s consider finitely (Rees) cogenerated factor S-acts.

Proposition 3.9. Let AS be an S-act, and θ be a congruence on AS. Then,
A/θ is finitely ((Rees) cogenerated if and only if for any family of (Rees)
congruences {ρi | i ∈ I} on AS, if

⋂
i∈I ρi = θ, then

⋂
j∈J ρj = θ for some

finite subset J of I.

Proof. Necessity. Let θ be a congruence on an S-act AS such that A/θ is
finitely cogenerated. Let

⋂
i∈I ρi = θ, where ρi ∈ Con(A) for each i ∈ I,

define

ρi = {([a]θ, [b]θ) | (a, b) ∈ ρi}.

It can be easily checked that ρi ∈ Con(A/θ) and
⋂

i∈I ρi = ∆A/θ. By our
assumption,

⋂
j∈J ρj = ∆A/θ for some finite subset J of I. Thus,

⋂
j∈j ρj =

θ.
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Sufficiency. To show that A/θ is finitely cogenerated, suppose that⋂
i∈I σi = ∆A/θ, where σi ∈ Con(A/θ) for each i ∈ I. Define

ρi = {(a, b) | ([a]θ, [b]θ) ∈ σi}.

It can be easily checked that ρi ∈ Con(A) and
⋂

i∈I ρi = θ. By our assump-
tion,

⋂
j∈J ρj = θ for some finite subset J of I. Therefore,

⋂
j∈j σj = ∆A/θ,

and the result follows.
For the case of finitely Rees cogenerated, it is sufficient to restrict con-

gruences to Rees congruences.

Recall from [11] that Rad(A) is the intersection of all maximal subacts of
AS . If AS contains no maximal subacts, we let Rad(A) = A. If Rad(A) ̸= ∅,
then Rad(A) is a subact of AS . Now we further consider the factor act
A/Rad(A).

Proposition 3.10. If A/Rad(A) is finitely Rees cogenerated, then it is
cogenerated by finitely many θ-simple S-acts. Moreover, AS has only finitely
many maximal subacts.

Proof. If AS contains no maximal subacts, since Rad(A) = A, the result
follows. Otherwise, suppose that A/Rad(A) is finitely Rees cogenerated.
Let

Rad(A) =
⋂
i∈I

{Mi | Mi is a maximal subact ofA} .

Define f : A −→
∏

i∈I A/Mi by f(a) = ([ai]ρMi
). Then, f is an epimorphism

such that ker f = ρRad(A) =
⋂

i∈I ρMi . Using the homomorphism theorem,

f : A/Rad(A) ∼=
∏

i∈I A/Mi. Since A/Rad(A) is finitely Rees cogenerated,
we find that A/Rad(A) ∼=

∏
j∈J A/Mj for a finite subset J of I. Moreover,

since Mi is maximal, A/Mi is θ-simple and the result follows. To show the
second part, let B =

⋂
j∈J Mj , and so A/Rad(A) ∼= A/B. Then Rad(A) =

B =
⋂

j∈J Mj , and the set of maximal subacts of AS is finite.

Proposition 3.7 together with the fact that S(A) ⊆ Soc(A) yield that if
AS is finitely cogenerated, then Soc(A) ̸= ∅. Now, we use the concepts of
essentiality and socle to characterize finitely cogenerated S-acts.

Theorem 3.11. An S-act AS is finitely cogenerated if and only if Soc(A)
is a finitely cogenerated large subact of AS.
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Proof. If AS is finitely cogenerated, then the same is also true for each of its
subacts, and in particular for Soc(A). To prove Soc(A)⊆′ A, suppose that
θ ∈ Con(A) satisfies θ ∩ ρSoc(A) ̸= ∆A. It is clear that ρSoc(A) =

⋂
L⊆′A ρL.

So, (
⋂

L⊆′A ρL) ∩ θ = ∆A. Since AS is finitely cogenerated, there exist
L1, . . . , Ln ⊆′ A such that (

⋂n
i=1 ρLi) ∩ θ = ∆A. Then, the fact that each

Li is large implies θ = ∆A, and the result follows.
On the other hand, every essential extension of a finitely cogenerated

S-act is again finitely cogenerated.

Recall that an S-act AS is said to be a subdirect product of the family
{A/ρi | i ∈ I} if

⋂
i∈I ρi = ∆A. This means that the natural epimorphisms

πi : AS −→ A/ρi form a monomorphic family. An S-act AS is called
subdirectly irreducible if every set of congruences {ρi | i ∈ I} on AS with⋂

i∈I ρi = ∆A contains ∆A. Also, an S-act AS is called irreducible if any
intersection of a finite number of non-diagonal congruences is non-diagonal.
It is clear that every subdirectly irreducible S-act is finitely cogenerated.
The following result can be deduced from the definition of being subdirectly
irreducible.

Proposition 3.12. For any S-act AS, the following are equivalent.

(i) AS is subdirectly irreducible.

(ii) There exist distinct elements a and a′ of AS such that every morphism
f : A −→ B with (a, a′) /∈ ker f is a monomorphism.

(iii) There exist distinct elements a and a′ of AS such that ρ(a, a′) is the
minimum proper congruence of AS.

(iii) If f : A −→
∏

i∈I Ai is a monomorphism, then πf : A −→ Aj is
already a monomorphism for some j ∈ I.

(iv) Every subact of AS is subdirectly irreducible.

(v) AS is a finitely cogenerated irreducible S-act.

By Birkhoff’s theorem for acts, [7], any non-trivial S-act is a subdirect
product of subdirectly irreducible S-acts. Now, using part (iii) of Proposi-
tion 3.2, we obtain the following result.

Corollary 3.13. If AS is a finitely cogenerated S-act, then it is isomorphic
to a subdirect product of finitely many subdirectly irreducible S-acts.
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4 Characterization of the S-acts cogenerating S

From [10, Proposition 2.6] it follows that SS cogenerates an S-act AS if and
only if AS is torsionless, such acts are characterized in [10]. Let us turn to
the question of when an act cogenerates S. This section concerns with the
properties of S-acts which (finitely) cogenerate SS , or generate the injective
envelope E(S) of SS . We introduce the classes of (strongly) cofaithful S-
acts and give characterizations of monoids S such that all faithful acts are
cofaithful.

Let AS be an S-act and a ∈ AS . Then, λa : SS −→ AS is defined by
λa(s) = as for every s ∈ S. The kernel congruence kerλa on SS is called the
annihilator congruence of a ∈ AS . Recall from [1] that the right annihilator
of AS is defined by

RS(A) = {(s, t) ∈ S × S | as = at, for all a ∈ A},

which is a two-sided congruence on S. We call AS a faithful S-act if for
s, t ∈ S, the equality as = at for all a ∈ A implies s = t. Clearly, RS(A) =⋂

a∈A kerλa and AS is faithful in case RS(A) = ∆S . On the other hand, for
each S-act AS ,

cotrS(AS) =
⋂

g∈Hom(SS ,AS)

ker g =
⋂
a∈A

kerλa = RS(A).

The next theorem will be a useful description of faithful S-acts.

Theorem 4.1. For each S-act AS, the following are equivalent.

(i) AS is faithful.

(ii) AS cogenerates S.

(iii) AS cogenerates every projective S-act.

(iv) AS cogenerates every free S-act.

(v) AS cogenerates a generator S-act.

Proof. Since cotrS(AS) = RS(A), clearly (i) and (ii) are equivalent. It
suffices to show (ii) ⇒ (iii). Let S ↪→ AJ . Suppose that P =

∐
i∈I eiS is

a projective S-act. Since eiS is a retract of S and S ∈ Cog(A), we deduce
that eiS ∈ Cog(A). Using Proposition 2.8, since Hom(A,A) ̸= ∅,

∐
i∈I A
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is a cogenerator for Cog(A). If fi : eiS → AJ , then
∐

i∈I fi :
∐

i∈I eiS ↪→∐
i∈I A

J ↪→ (
∐

i∈I A)J . Therefore, P ∈ Cog(
∐

i∈I A) = Cog(A), as desired.

From the previous theorem, we know that faithful S-acts can be char-
acterized as those S-acts cogenerate SS or, equivalently, cogenerate every
projective S-act. In the category of modules, the concept of co-faithful is
the dual notion of faithful as the modules which generate every injective
module, which is equivalent to modules finitely cogenerate R, such modules
are also called subgenerators of Mod-R. Unlike the case for modules, these
properties are no longer valid for S-acts. This description allows us to define
the following dual notions:

Definition 4.2. Let AS be an S-act.

(i) AS is called cofaithful in case AS finitely cogenerates SS , i.e., there
exists a positive integer n such that SS can be embedded to An.

(ii) AS is called subgenerator in case it generates every injective S-act.

Lemma 4.3. Let AS be an S-act. The following are equivalent:

(i) AS is cofaithful.

(ii) There exists a finite subset B of elements of AS such that RS(B) =
∆S.

Proof. (i) ⇒ (ii). Let f : S → An be a monomorphism. Suppose f(1) =
(a1, ..., an), and set B = {a1, ..., an}. If (s, t) ∈ RS(B), then ais = ait for
each 1 ≤ i ≤ n. Clearly, f(s) = f(t), and thus s = t.

(ii) ⇒ (i). If RS({a1, ..., an}) = ∆S , then λ(a1,...,an) : S → An is a
monomorphism.

Corollary 4.4. A cofaithful S-act contains a finitely generated faithful sub-
act. Moreover, if S is a commutative monoid, the converse is valid.

Proof. Let AS be cofaithful. Then there exists a finite subset {a1, ..., an}
of AS with RS({a1, ..., an}) = ∆S . Set B =

⋃n
i=1 aiS. Clearly, RS(B) ⊆

RS({a1, ..., an}) = ∆S , and B is faithful. To show the second part, suppose
that a finitely generated subact B =

⋃n
i=1 aiS of AS is faithful. Since S is

commutative, RS({a1, ..., an}) = RS(B) = ∆S , and thus AS is cofaithful.
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As we know, the notion of AS finitely cogenerates SS means there exists
a positive integer n such that SS can be embedded to An. If n = 1, i.e.,
S ↪→ A, we say that AS cyclically cogenerates SS .

Proposition 4.5. Let AS be an S-act. The following are equivalent:

(i) AS is a subgenerator.

(ii) AS generates E(S).

(iii) AS cyclically cogenerates SS.

(iv) There exists an element a ∈ A such that RS({a}) = kerλa = ∆S.

(v) AS contains a cyclic generator subact.

Proof. By an argument similar to that of Lemma 4.3, one can prove (iii) ⇔
(iv). The implications (iv) ⇔ (v) and (i) ⇒ (ii) are clear.

(ii) ⇒ (iv). Let f :
∐

I A → E(S) be an epimorphism and ι : S ↪→ E(S).
For ι(1) ∈ E(S), f(a) = ι(1) for some a ∈ A. It is easy to see that
RS({a}) = ∆S .

(iii) ⇒ (i). Let E be an injective S-act and f : S ↪→ A be an monomor-
phism. For each b ∈ E, there exists a homomorphism gb : A → E such that
gbf = λb. So we have the homomorphism g =

∐
b∈E gb :

∐
b∈E A →

∐
b∈E E.

Hence
∐

b∈E A →
∐

b∈E E → E is an epimorphism, as desired.

It is easily checked that the following implications are valid,
generator =⇒ subgenerator =⇒ cofaithful =⇒ faithful.

The following example shows that these implications are strict.

Example 4.6. (i) The implication cofaithful =⇒ faithful is strict:
Let S = (N,min)∪̇{ε}, where ε denotes the externally adjoint identity,
and AS = S \ {ε}. Obviously, AS is faithful but not cofaithful.

(ii) The implication subgenerator =⇒ cofaithful is strict:
Let S = {1, 0, e, f} be the semilattice where ef = fe = 0, and take
AS = {e, f, 0}. Clearly, AS is not a subgenerator. But RS({e, f}) =
∆S , and so AS is cofaithful.

(iii) The implication generator =⇒ subgenerator is strict:
Let S = (N, .), and AS = N

∐2NN. By [15, Example 2.2], AS is not a
generator. But S ↪→ A, and so AS is a subgenerator.
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Concluding this section, we pointed out the conditions on a monoid S
under which the converses of implications are true. Recall that a monoid S
is said to be right self-injective if SS is injective.

Theorem 4.7. For a monoid S the following are equivalent:

(i) Every subgenerator S-act is a generator.

(ii) E(S) is a generator.

(iii) SS is right self-injective.

Proof. (i)⇒ (ii) is clear.
(ii)⇒(iii): Since E(S) is a generator, S is a retract of E(S), and so SS

is injective.
(iii)⇒(i): Let AS be a subgenerator S-act. Then there exists an S-

morphism f : S ↪→ A, and injectivity of SS implies that SS is a retract of
AS . Thus AS is a generator.

By an argument similar to that of Corollary 4.4, It is not difficult to
obtain the following result.

Proposition 4.8. If SS is irreducible, then every cofaithful S-act is a sub-
generator. Moreover, if S is a commutative monoid, the converse is true.

Using Theorem 4.1, the following result can be obtained.

Proposition 4.9. SS is finitely cogenerated if and only if every faithful
S-act is cofaithful.
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