

Special issue dedicated to Professor Themba Dube In press.

Primitive hyperideals and hyperstructure spaces of hyperrings

Bijan Davvaz, Amartya Goswami*, and Karin-Therese Howell

The author dedicates this article to Themba Dube in celebration of his 65th birthday

Abstract. We introduce primitive hyperideals of a hyperring R and show how they are related to R itself, and to maximal and prime hyperideals of R. We endow a Jacobson topology on the set of primitive hyperideals of R and study the topological properties of the corresponding hyperstructure space.

1 Introduction

The notion of *multi-valued* algebraic structures was first considered in [19], where *hypergroups* were introduced. A hypergroup is a generalization of a group created by allowing the binary operation to be multi-valued. Later, in [17], the concept of a *hyperring* was introduced. Since their inception, (mostly commutative) hyperrings have been extensively studied in algebraic and geometric contexts. In [7] (see also [6]), a comprehensive account of var-

 $[\]ast$ Corresponding author

 $Keywords\colon$ Hyperring, hypermodule, primitive hyperideal, Jacobson topology, generic point, Noetherian space.

Mathematics Subject Classification [2010]: 16Y99, 13E05, 16D60.

Received: 30 November, Accepted: 11 April 2024.

ISSN: Print 2345-5853, Online 2345-5861.

[©] Shahid Beheshti University

ious algebraic properties of hyperrings (as well as their generalizations) can be found. For applications of hyperrings in geometry, we refer the reader to [3–5, 16]. There have been extensive studies conducted on hypermodules (over commutative hyperrings) and their topological aspects. For example, [21] studied topological properties of second subhypermodules over commutative hyperrings. For a study of free and cyclic hypermodules, we refer to [20]. The role of supplements in Krasner hypermodules is examined in [25] (see also [1]) and related to normal π -projectivity. For other aspects of hypermodules, see [2, 9].

It is well known (see [11] and [12]) that for a noncommutative ring, the notion of primitive ideals plays a crucial role in determining its structure. Furthermore, in [12], a hull-kernel-type topology was endowed on the set of all primitive ideals of a ring, and representations of biregular rings were studied. Primitive ideals have also proven to be immensely important in understanding the structural aspects of modules [12, 23], Lie algebras [18], enveloping algebras [8, 14], PI-algebras [13], quantum groups [15], skew polynomial rings [10], and others.

The aim of this paper is to introduce primitive hyperideals of a (Krasner) hyperring and study some of their properties. We show the relations between prime, maximal, and primitive hyperideals of a hyperring and also characterize simple hypermodules. Similar to [12], we impose a Jacobson topology on the set of primitive hyperideals of a hyperring and investigate the topological properties of the corresponding hyperstructure space. We characterize irreducible closed subsets of a hyperstructure space and prove that every irreducible closed subset of a hyperstructure space has a unique generic point. We give a sufficient condition for the space to be Noetherian and study continuous maps between such spaces.

2 Preliminaries

Suppose R is a nonempty set and $\mathscr{P}^*(R)$ is the set of all nonempty subsets of R. A Krasner hyperring is a system $(R, +, \cdot, -, 0)$ such that

(I) (R, +, 0) is a canonical hypergroup, that is, $+: R \times R \to \mathcal{P}^*(R)$ is a hyperoperation on R satisfying the following properties for all $a, b, c \in R$:

(i) a + b = b + a;

- (ii) a + (b + c) = (a + b) + c;
- (iii) there exists $0 \in A$ such that $a + 0 = \{a\}$;
- (iv) for every a, there exists a unique $-a \in A$ such that $0 \in a a$;
- (v) if $a \in b + c$, then $c \in -b + a$ and $a \in c b$,
 - (II) (R, \cdot) is a semigroup, (III) $a \cdot 0 = 0 \cdot a = 0$, and (IV) $a \cdot (b + c) = a \cdot b + a \cdot c$, (V) $(a + b) \cdot c = a \cdot c + b \cdot c$, for all $a, b, c \in R$.

A hyperring R is called *unital* if R has a multiplicative identity, that is, there exists $1 \in R$ such that $a \cdot 1 = a = 1 \cdot a$ for all $a \in R$. For simplicity, we shall write $a \cdot b$ as ab. We will restrict our focus to Krasner hyperrings in this paper, so if we refer to a hyperring, it will be a Krasner hyperring.

A nonempty subset S of a hyperring R is said to be a subhyperring of R if $(S, +, \cdot)$ is itself a hyperring. A subhypergroup \mathfrak{a} of a hyperring R is called a *left (right) hyperideal* of R if $r \cdot a \in \mathfrak{a} (a \cdot r \in \mathfrak{a})$ for all $r \in R, a \in \mathfrak{a}$. If \mathfrak{a} is both a left and right hyperideal then \mathfrak{a} is called a *two-sided hyperideal* or simply a *hyperideal*. Unless otherwise stated, we assume all hyperideals are two-sided. If \mathfrak{a} is a hyperideal of R, then we can form the *quotient* hyperring $R/\mathfrak{a} = \{\mathfrak{a} + r \mid r \in R\}$ with the following two operations:

$$(\mathfrak{a}+r_1)+(\mathfrak{a}+r_2) = \{\mathfrak{a}+r \mid r \in r_1+r_2\};$$

$$(\mathfrak{a}+r_1)(\mathfrak{a}+r_2) = \mathfrak{a}+r_1r_2.$$

The following result is known, but the proof is included for completeness.

Proposition 2.1. If $\{\mathfrak{a}_{\lambda}\}_{\lambda \in \Lambda}$ is a nonempty family of hyperideals of a hyperring R, then the following are also hyperideals of R.

(i) $\bigcap_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$ (ii) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \{x \mid x \in \sum_{\lambda \in \Lambda} a_{\lambda}, a_{\lambda} \in \mathfrak{a}_{\lambda}\}$

Proof. (i) Suppose that $x, y \in \bigcap_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. Then $x, y \in \mathfrak{a}_{\lambda}$ for all $\lambda \in \Lambda$. Since each \mathfrak{a}_{λ} is a hyperideal, it follows that $x - y \in \mathfrak{a}_{\lambda}$ for all $\lambda \in \Lambda$. This implies that $x - y \subseteq \bigcap_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. Now let $r \in R$. For each $\lambda \in \Lambda$, since \mathfrak{a}_{λ} is a

hyperideal of R, it follows that $rx \in \mathfrak{a}_{\lambda}$ and $xr \in \mathfrak{a}_{\lambda}$, and hence we conclude that $rx \in \bigcap_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$ and $xr \in \bigcap_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. (ii) Suppose that $x, y \in \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. Then $x \in \sum_{\lambda \in \Lambda} a_{\lambda}$ for some $a_{\lambda} \in \mathfrak{a}_{\lambda}$

(ii) Suppose that $x, y \in \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. Then $x \in \sum_{\lambda \in \Lambda} a_{\lambda}$ for some $a_{\lambda} \in \mathfrak{a}_{\lambda}$ and $y \in \sum_{\lambda \in \Lambda} b_{\lambda}$ for some $b_{\lambda} \in \mathfrak{a}_{\lambda}$. Since each \mathfrak{a}_{λ} is a hyperideal, it follows that $a_{\lambda} - b_{\lambda} \subseteq \mathfrak{a}_{\lambda}$ for $\lambda \in \Lambda$. This implies that $x - y \subseteq \sum_{\lambda \in \Lambda} (a_{\lambda} - b_{\lambda})$, where $a_{\lambda} - b_{\lambda} \subseteq \mathfrak{a}_{\lambda}$, so $x - y \subseteq \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$. Now let $r \in R$. For each $\lambda \in \Lambda$, since \mathfrak{a}_{λ} is a hyperideal of R, it follows that $ra_{\lambda} \in \mathfrak{a}_{\lambda}$ and $a_{\lambda}r \in \mathfrak{a}_{\lambda}$, for each $\lambda \in \Lambda$ and hence we conclude that $rx \in \sum_{\lambda \in \Lambda} ra_{\lambda}$ and $xr \in \sum_{\lambda \in \Lambda} a_{\lambda}r$.

Recall that if \mathfrak{a} and \mathfrak{b} are nonempty subsets of a hyperring R, then the product \mathfrak{ab} is defined by

$$\mathfrak{ab} = \left\{ x \mid x \in \sum_{i=1}^{n} a_i b_i, a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, n \in \mathbb{Z}^+ \right\}.$$

Moreover, if \mathfrak{a} and \mathfrak{b} are hyperideals, \mathfrak{ab} is also a hyperideal of R (see [7, p. 87]). Let X be a subset of a hyperring R. Let $\{\mathfrak{a}_i \mid i \in I\}$ be the family of all hyperideals in R which contain X. Then $\bigcap_{i \in I} \mathfrak{a}_i$, is called the hyperideal generated by X and we denoted it by $\langle X \rangle$. A proper hyperideal \mathfrak{m} of a hyperring R is called maximal if the only hyperideals of R that contain \mathfrak{m} are \mathfrak{m} itself and R. A proper hyperideal \mathfrak{p} of a hyperring R is called prime if for every pair of hyperideals \mathfrak{a} and \mathfrak{b} of R, $\mathfrak{ab} \subseteq \mathfrak{p}$ implies either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.

Lemma 2.2. Every proper right hyperideal \mathfrak{a} of a unital hyperring R is contained in a right maximal hyperideal of R.

Proof. Suppose $\mathcal{U} = \{\mathfrak{u} \mid \mathfrak{u} \supseteq \mathfrak{a}, \mathfrak{u} \text{ is a proper hyperideal of } R\}$. Since $\mathfrak{a} \in \mathcal{U}$, the set \mathcal{U} is nonempty. Consider a chain $\{\mathfrak{c}_{\lambda}\}_{\lambda \in \Lambda}$ in \mathcal{U} . Then $\mathfrak{c} = \bigcup_{\lambda \in \Lambda} \mathfrak{c}_{\lambda}$ is a proper hyperideal of R which is an upper bound of the chain $\{\mathfrak{c}_{\lambda}\}_{\lambda \in \Lambda}$. Moreover, $\mathfrak{c} \neq R$ because $1 \notin \mathfrak{c}$. Hence by Zorn's lemma \mathcal{U} contains a maximal element \mathfrak{m} , which is a maximal hyperideal of R containing \mathfrak{a} . \Box

3 Primitive hyperideals

As for rings, in order to define primitive hyperideals of a hyperring, we require the notion of simple hypermodules. In the next subsection we first study simple hypermodules and their annihilators. **3.1** Simple hypermodules Recall from [20] that a (*right*) Krasner R-hypermodule M is a canonical hypergroup M endowed with an external composition $M \times R \to M$ (defined by $(m, r) \mapsto mr$) satisfying the conditions:

- (i) (m+m')r = mr + m'r;
- (ii) m(r+r') = mr + mr';
- (iii) m(rr') = (mr)r';
- (iv) m0 = 0;

for all $m, m' \in M$ and $r, r' \in R$. If, moreover, R has a multiplicative identity 1 and m1 = m for all $m \in M$, then M is called *unital*. We shall only consider right Krasner R-hypermodules and hence from now on we drop the adjective "right Krasner" and simply say R-hypermodule.

If an *R*-hypermodule *M* is generated by a single element *m* of *M*, then *M* is called *cyclic*, and we denote it by $\langle m \rangle$ or *Rm*. The proof of the following property of an *R*-hypermodule can be found in [24].

Lemma 3.1. If M is an R-hypermodule then (-m)r = -(mr) = m(-r)for all $r \in R$ and $m \in M$.

A subhypermodule S of a hypermodule M is a subcanonical hypergroup of M such that $sr \subseteq S$, for all $r \in R$ and for all $s \in S$. If M, N are R-hypermodules, then a (strong) R-hypermodule homomorphism from M into N is a map $\mu: M \to N$ such that $\mu(m + m') = \mu(m) + \mu(m')$ and $\mu(mr) = \mu(m)r$ for all $r \in R$ and for all $m, m' \in M$. A hypermodule homomorphism μ is called an *isomorphism* if μ is also a bijection on the underlying sets.

If M is a R-hypermodule and K is a subhypermodule of M, then the set $M/K = \{K + a \mid a \in M\}$ endowed with a hyperoperation $+ : M/K \times M/K \to \mathscr{P}^*(M/K)$ and an R-action $\cdot : M/K \times R \to M/K$ respectively defined as:

$$(K+a) + (K+a') = \{K+b \mid b \in a + a'\};\$$
$$(K+a) \cdot r = \{K+b \mid b \in ar\},\$$

for every $a, a', b \in M$ and $r \in R$, is called the *quotient hypermodule* of M. It is easy to show (see [24, Corollary 2.2.8]) that $\ker(\mu)$ is a subhypermodule of M and $\operatorname{im}(\mu)$ is a subhypermodule of N. As for modules over rings, we also have the fundamental theorem of homomorphisms for hypermodules.

Proposition 3.2. [24, Theorem 2.2.14] If $\mu: M \to M'$ is a hypermodule homomorphism, then $M/\ker(\mu)$ is isomorphic to $\operatorname{im}(\mu)$.

An *R*-hypermodule M is called *simple* if $RM \neq 0$ and M has no subhypermodules other than 0 and M. The following proposition characterizes a simple hypermodule as a cyclic hypermodule generated by a nonzero element.

Proposition 3.3. A nonzero *R*-hypermodule *M* is simple if and only if M = mR for every nonzero $m \in M$.

Proof. If M is simple, there exists a $0 \neq m \in M$ such that mR is a nonzero subhypermodule of M and we have that mR = M. Conversely, if $N \neq 0$ is a subhypermodule of M, then N must contain a nonzero element, say m of M. Then we have that $M = mR \subseteq N$, showing that N = M. \Box

The following example of subhypermodule is going to play an important role in studying properties of primitive hyperideals.

Lemma 3.4. If M is a R-hypermodule and \mathfrak{a} a hyperideal of R, then

$$M\mathfrak{a} = \left\{ \sum_{i=1}^{k} m_{i}a_{i} \mid m_{i} \in M, a_{i} \in \mathfrak{a}, k \in \mathbb{Z}^{+} \right\}$$

is a subhypermodule of M.

Proof. Let $\sum_{i=1}^{k} m_i a_i$ and $\sum_{j=1}^{l} m_j a_j$ be two elements of $M\mathfrak{a}$. Then

$$\sum_{i=1}^{k} m_i a_i - \sum_{j=i}^{l} m_j a_j = \sum_{i=1}^{k} m_i a_i + \sum_{j=1}^{l} (-m_j) a_j$$

where $-m_j \in M$ since (M, +) is a canonical hypergroup. Hence, $\sum_{i=1}^k m_i a_i - \sum_{i=1}^l m_j a_j \subseteq M\mathfrak{a}$. Now let $r \in R$. Then

$$\left(\sum_{i=1}^{k} m_i a_i\right) r = \sum_{i=1}^{k} m_i(a_i r)$$

where $a_i r \in R$ since \mathfrak{a} is a hyperideal of R. Thus $\left(\sum_{i=1}^k m_i a_i\right) r \in M\mathfrak{a}$. \Box

If M is a R-hypermodule then the additive subhypergroup Mr of M generated by the elements of the form $\{mr \mid m \in M, r \in R\}$ is a subhypermodule of M. The (*right*) annihilator of a R-hypermodule M is defined by

$$\operatorname{Ann}_R(M) = \{ r \in R \mid mr = 0 \text{ for all } m \in M \}.$$

When $M = \{m\}$, we write $\operatorname{Ann}_R(m)$ for $\operatorname{Ann}_R(\{m\})$. If $\operatorname{Ann}_R(M) = \{0\}$ then M is said to be a *faithful* R-hypermodule. Like in rings, we have the following.

Lemma 3.5. An annihilator $\operatorname{Ann}_R(M)$ is a hyperideal of R.

Proof. Let $x, x' \in \operatorname{Ann}_R(M), r \in R$, and $m \in M$. Then

$$m(x - x') = mx + m(-x') = mx - mx' = 0 + 0 = 0,$$

where the second equality follows from Lemma 3.1. Furthermore, m(xr) = (mx)r = 0r = 0 and m(rx) = (mr)x = 0. Thus, $\operatorname{Ann}_R(M)$ is a hyperideal of R.

3.2 Primitivity A proper hyperideal of a hyperring R is called *primi*tive if it is the annihilator of a simple R-hypermodule. We shall denote the set of all primitive hyperideals of R by Prim(R). A hyperring R is said to be *primitive* if $\{0\}$ is a primitive hyperideal of R. The next two propositions show some implications between maximal, prime, and primitive hyperideals.

Proposition 3.6. Every primitive hyperideal is a prime hyperideal.

Proof. Suppose that $\mathfrak{p} = \operatorname{Ann}_R(M)$ for some simple *R*-hypermodule *M*, and that \mathfrak{b} is a hyperideal of *R* such that $M\mathfrak{b} \neq 0$, that is, $\mathfrak{b} \not\subseteq \mathfrak{p}$. Since *M* is simple, we must have that $M\mathfrak{b} = M$. If \mathfrak{a} is a nonzero hyperideal of *R*, then

$$M(\mathfrak{ba}) = (M\mathfrak{b})\mathfrak{a} = M\mathfrak{a} = M, \tag{3.1}$$

which implies that $M\mathfrak{a} \neq 0$, that is, $\mathfrak{a} \not\subseteq \mathfrak{p}$. Therefore, from (3.1) it follows that $\mathfrak{ba} \not\subseteq \mathfrak{p}$.

Proposition 3.7. Every maximal hyperideal of a unital hyperring is a primitive hyperideal. *Proof.* Suppose \mathfrak{a} is maximal hyperideal of a hyperring R. Then by Lemma 2.2, \mathfrak{a} is contained in a maximal right hyperideal \mathfrak{b} of R and $\mathfrak{a} \subseteq \operatorname{Ann}(R/\mathfrak{b})$. Since \mathfrak{a} is a maximal hyperideal of R, we must have that $\mathfrak{a} = \operatorname{Ann}(R/\mathfrak{b})$, and thus \mathfrak{a} is the annihilator of a simple R-hypermodule R/\mathfrak{b} .

Example 3.8. Let $R = \{a, b, c, d, e, f\}$ be a set with the hyperoperation \oplus and the multiplication \odot defined as follows:

\oplus	a	b	С	d	e	f
a	a	b	С	d	e	f
b	b	$\{a,b\}$	d	$\{c,d\}$	f	$\{e, f\}$
c	c	d	c	d	$\{a, c, e\}$	$\{b, d, f\}$
d	d	$\{c,d\}$	d	$\{c,d\}$	$\{b, d, f\}$	R
e	e	f	$\{a, c, e\}$	$\{b, d, f\}$	e	f
f	f	$\{e, f\}$	$\{b, d, f\}$	R	f	$\{e, f\}$

and

\odot	a	b	c	d	e	f
a	a	a	a	a	a	a
b	a	b	a	b	a	b
c	a	a	c	c	e	e
d	a	b	c	d	e	f
e	a	a	e	e	c	c
$\begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix}$	a	b	e	f	С	d

Then, (R, \oplus, \odot) is a Krasner hyperring []. Since

$$\begin{aligned} d \cdot a &= a, & a \cdot d = a, \\ d \cdot b &= b, & b \cdot d = b, \\ d \cdot c &= c, & c \cdot d = c, \\ d \cdot d &= d. \\ d \cdot e &= e, & e \cdot d = e, \\ d \cdot f &= f, & f \cdot d = f, \end{aligned}$$

it follows that R is a unital hyperring. It is easy to check that $M_1 = \{a, b\}$ and $M_2 = \{a, c, e\}$ are maximal hyperideals of R. Hence, by Proposition 3.7, we conclude that M_1 and M_2 are primitive hyperideals.

From the definition at the start of this subsection, we have that a hyperring R is primitive if and only if the zero hyperideal of R is a primitive

hyperideal. This equivalence can further be generalized for an arbitrary primitive hyperideal of R.

Proposition 3.9. A hyperideal \mathfrak{p} of a hyperring R is primitive if and only if R/\mathfrak{p} is a primitive hyperring.

Proof. Suppose \mathfrak{p} is primitive hyperideal of R and let M be a simple R-hypermodule such that $\mathfrak{p} = \operatorname{Ann}(M)$. If we define $m(\mathfrak{p} + r) = mr$, for all $r \in R, m \in M$, then the additive canonical hypergroup of M is also a simple R/\mathfrak{p} -hypermodule. On the other hand, since $\operatorname{Ann}(M) \subseteq \mathfrak{p}$, we have that M is a faithful R/\mathfrak{p} -hypermodule. Conversely, suppose that N is a faithful simple R/\mathfrak{p} -hypermodule and for all $r \in R, n \in N$, define $nr = n(\mathfrak{p} + r)$. Then the additive canonical hypergroup of N becomes a simple R-hypermodule with $\operatorname{Ann}(N) = \mathfrak{p}$.

Primitive hyperideals are also related to right maximal hyperideals, as we will see in the next proposition. We will need the following result.

Lemma 3.10. Let R be a hyperring. An R-hypermodule M is simple if and only if M is isomorphic to R/\mathfrak{m} for some maximal right hyperideal \mathfrak{m} of R.

Proof. Let M be a simple R-hypermodule. Choose $0 \neq m \in M$. Then mR = M and hence $\psi : R \to M$, defined by $\psi(r) = mr$, is a surjective R-hypermodule homomorphism. Its kernel \mathfrak{m} is a right hyperideal of R and by Proposition 3.2, we have $R/\mathfrak{m} \cong M$. To show that \mathfrak{m} is maximal, let \mathfrak{b} be a right hyperideal of R such that $\mathfrak{m} \subseteq \mathfrak{b} \subseteq R$. Then $\mathfrak{b}/\mathfrak{a}$ is a subhypermodule of R/\mathfrak{m} . Now since R/\mathfrak{m} is isomorphic to M and M is simple, we must have either $\mathfrak{b}/\mathfrak{m} = 0$ or $\mathfrak{b}/\mathfrak{a} = R/\mathfrak{a}$, and thus, either $\mathfrak{b} = \mathfrak{a}$ or $\mathfrak{b} = R$, which implies that \mathfrak{m} is maximal. Conversely, let \mathfrak{m} be a maximal hyperideal of R and consider a subhypermodule N of R/\mathfrak{m} . It is easy to see that $\mathfrak{b} = \{r \in R \mid \mathfrak{m} + r \in N\}$ is a right hyperideal of R containing \mathfrak{m} . Thus $\mathfrak{b} = \mathfrak{a}$ or $\mathfrak{b} = R$, giving that N = 0 or $N = R/\mathfrak{m}$. Thus R/\mathfrak{m} is a simple R-hypermodule.

Proposition 3.11. If \mathfrak{p} is a primitive hyperideal of a hyperring R then there exists a maximal right hyperideal \mathfrak{m} of R such that

$$\mathfrak{p} = \{ r \in R \mid Rr \subseteq \mathfrak{m} \}. \tag{3.2}$$

Conversely, if \mathfrak{m} is a maximal right hyperideal of R and if $R^2 \nsubseteq \mathfrak{m}$, then the hyperideal \mathfrak{p} defined in (3.2) is primitive.

Proof. If $\mathfrak{p} = \operatorname{Ann}_R(M)$, for some simple *R*-hypermodule *M*, then by Lemma 3.10, there exists a maximal right hyperideal \mathfrak{m} of *R* such that $M \cong R/\mathfrak{m}$. This implies $\mathfrak{p} = \operatorname{Ann}_R(R/\mathfrak{m})$ and hence condition (3.2) is satisfied. Conversely, if we assume that \mathfrak{m} is a maximal right hyperideal of *R*, then again by Lemma 3.10, R/\mathfrak{m} is a simple *R*-hypermodule, and therefore, $\operatorname{Ann}_R(R/\mathfrak{m}) = \mathfrak{p}$, a primitive hyperideal of *R*.

Corollary 3.12. Every maximal right hyperideal of a unital hyperring contains a primitive hyperideal.

4 Hyperstructure spaces

We shall introduce Jacobson topology in Prim(R), the set of primitive hyperideals of a hyperring R, by defining a closure operator for the subsets of Prim(R). Once we have a closure operator, closed sets are defined as sets which are invariant under this closure operator.

Suppose S is a subset of Prim(R). Set $\mathcal{H}_S = \bigcap_{\mathfrak{q} \in S} \mathfrak{q}$. We define the closure of the set S as

$$Cl(S) = \{ \mathfrak{p} \in Prim(R) \mid \mathfrak{p} \supseteq \mathcal{K}_S \}.$$

$$(4.1)$$

If $S = \{\mathfrak{s}\}$, we will write $Cl(\{\mathfrak{s}\})$ as $Cl(\mathfrak{s})$. We wish to verify that the closure operation defined in (4.1) satisfies Kuratowski's closure conditions.

Proposition 4.1. The sets $\{Cl(S)\}_{S \subseteq Prim(R)}$ satisfy the following conditions for all subsets S and T of the hyperstructure space Prim(R):

- (i) $Cl(\emptyset) = \emptyset;$
- (ii) $\operatorname{Cl}(S) \supseteq S;$
- (iii) $\operatorname{Cl}(\operatorname{Cl}(S)) = \operatorname{Cl}(S);$
- (iv) $\operatorname{Cl}(S \cup T) = \operatorname{Cl}(S) \cup \operatorname{Cl}(T)$.

Proof. The proofs of ((i))-((iii)) are straightforward, whereas for ((iv)), it is easy to see that $\operatorname{Cl}(S \cup T) \supseteq \operatorname{Cl}(S) \cup \operatorname{Cl}(T)$. To obtain the other inclusion, let $\mathfrak{p} \in \operatorname{Cl}(S \cup T)$. Then

$$\mathfrak{p} \supseteq \mathscr{K}_{S \cup T} = \mathscr{K}_S \cap \mathscr{K}_T.$$

Since \mathcal{K}_S and \mathcal{K}_T are hyperideals of the hyperring R, it follows that

$$\mathscr{K}_S\mathscr{K}_T\subseteq \mathscr{K}_S\cap \mathscr{K}_T\subseteq \mathfrak{p}.$$

Since by Proposition 3.6, \mathfrak{p} is prime, either $\mathcal{K}_S \subseteq \mathfrak{p}$ or $\mathcal{K}_T \subseteq \mathfrak{p}$. This means either $\mathfrak{p} \in \mathsf{Cl}(S)$ or $\mathfrak{p} \in \mathsf{Cl}(T)$. Thus $\mathsf{Cl}(S \cup T) \subseteq \mathsf{Cl}(S) \cup \mathsf{Cl}(T)$.

The set Prim(R) of primitive hyperideals of a hyperring R topologized (the Jacobson topology) by the closure operator defined in (4.1) is called the *hyperstructure space* of the hyperring R. If S is a subset of a hyperring R, then

$$\mathfrak{O}(S) = \{\mathfrak{p} \in \mathtt{Prim}(R) \mid \mathfrak{p} \not\supseteq \mathcal{K}_S\}$$

is a typical open subset of this topology. It is evident from (4.1) that if $\mathfrak{p} \neq \mathfrak{p}'$ for any two $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Prim}(R)$, then $\operatorname{Cl}(\mathfrak{p}) \neq \operatorname{Cl}(\mathfrak{p}')$. Thus we have the following.

Proposition 4.2. Every hyperstructure space Prim(R) is a T_0 -space.

Using the finite intersection property, we can obtain compactness of the hyperstructure space.

Theorem 4.3. If R is a unital hyperring then the hyperstructure space Prim(R) is compact.

Proof. Let $\{C_{\lambda}\}_{\lambda\in\Lambda}$ be a family of closed sets of a hyperstructure space $\operatorname{Prim}(R)$ such that $\bigcap_{\lambda\in\Lambda} C_{\lambda} = \emptyset$. Then a primitive hyperideal $\mathfrak{p} \in \bigcap_{\lambda\in\Lambda} C_{\lambda}$ if and only if $\mathfrak{p} \supseteq \sum_{\lambda\in\Lambda} \mathcal{K}_{C_{\lambda}}$. Since $\bigcap_{\lambda\in\Lambda} C_{\lambda} = \emptyset$, we must have that $\sum_{\lambda\in\Lambda} \mathcal{K}_{C_{\lambda}} = R$. In particular, we obtain that $1 = \sum_{i=1}^{n} \mathcal{K}_{C_{\lambda_{i}}}$ for a suitable finite subset $\{\lambda_{1}, \ldots, \lambda_{n}\}$ of Λ . This in turn implies that $\bigcap_{i=1}^{n} C_{\lambda_{i}} = \emptyset$, and hence $\operatorname{Prim}(R)$ is compact. \Box

Recall that a nonempty closed subset C of a topological space X is *irreducible* if $C \neq C_1 \cup C_2$ for any two proper closed subsets C_1, C_2 of C. A maximal irreducible subset of a topological space X is called an *irreducible* component of X. A point x in a closed subset C is called a *generic point* of C if C = Cl(x).

Lemma 4.4. $\{Cl(\mathfrak{p})\}_{\mathfrak{p}\in Prim(R)}$ are the only irreducible closed subsets of a hyperstructure space Prim(R).

Proof. Since $\{\mathfrak{p}\}$ is irreducible, so is $Cl(\mathfrak{p})$. Suppose $Cl(\mathfrak{a})$ is an irreducible closed subset of Prim(R) and $\mathfrak{a} \notin Prim(R)$. This implies there exist hyperideals \mathfrak{b} and \mathfrak{c} of R such that $\mathfrak{b} \not\subseteq \mathfrak{a}$ and $\mathfrak{c} \not\subseteq \mathfrak{a}$, but $\mathfrak{b}\mathfrak{c} \subseteq \mathfrak{a}$. Then

$$\operatorname{Cl}(\langle \mathfrak{a}, \mathfrak{b} \rangle) \cup \operatorname{Cl}(\langle \mathfrak{a}, \mathfrak{c} \rangle) = \operatorname{Cl}(\langle \mathfrak{a}, \mathfrak{bc} \rangle) = \operatorname{Cl}(\mathfrak{a}).$$

But $Cl(\langle \mathfrak{a}, \mathfrak{b} \rangle) \neq Cl(\mathfrak{a})$ and $Cl(\langle \mathfrak{a}, \mathfrak{c} \rangle) \neq Cl(\mathfrak{a})$, and hence $Cl(\mathfrak{a})$ is not irreducible.

Proposition 4.5. Every irreducible closed subset of Prim(R) has a unique generic point.

Proof. The existence of a generic point follows from Lemma 4.4, and the uniqueness of such a point follows from Proposition 4.2. \Box

The irreducible components of a hyperstructure space can be characterised in terms of minimal primitive hyperideals, as shown in the following result.

Proposition 4.6. The irreducible components of a hyperstructure space Prim(R) are the closed sets $Cl(\mathfrak{p})$, where \mathfrak{p} is a minimal primitive hyperideal of R.

Proof. If \mathfrak{p} is a minimal primitive hyperideal, then by Lemma 4.4, $Cl(\mathfrak{p})$ is irreducible. If $Cl(\mathfrak{p})$ is not a maximal irreducible subset of Prim(S), then there exists a maximal irreducible subset $Cl(\mathfrak{p}')$ with $\mathfrak{p}' \in Prim(S)$ such that $Cl(\mathfrak{p}) \subsetneq Cl(\mathfrak{p}')$. This implies that $\mathfrak{p} \in Cl(\mathfrak{p}')$ and hence $\mathfrak{p}' \subsetneq \mathfrak{p}$, contradicting the minimality property of \mathfrak{p} .

Recall that a hyperring is called *Noetherian* if it satisfies the ascending chain condition, whereas a topological space X is called *Noetherian* if the descending chain condition holds for closed subsets of X. A relation between these two notions is shown in the following.

Proposition 4.7. If a hyperring R is Noetherian, then Prim(R) is a Noetherian hyperstructure space.

Proof. It suffices to show that a collection of closed sets in Prim(R) satisfy the descending chain condition. Let $Cl(\mathfrak{a}_1) \supseteq Cl(\mathfrak{a}_2) \supseteq \cdots$ be a descending chain of closed sets in Prim(R). Then, $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots$ is an ascending chain of

hyperideals in R. Since the hyperring R is Noetherian, the chain stabilizes at some $n \in \mathbb{N}$. Hence, $Cl(\mathfrak{a}_n) = Cl(\mathfrak{a}_{n+k})$ for any k. Thus Prim(R) is Noetherian.

Corollary 4.8. The set of minimal primitive hyperideals in a Noetherian hyperring is finite.

Proof. By Proposition 4.7, Prim(R) is Noetherian, thus Prim(R) has finitely many irreducible components. By Proposition 4.6, every irreducible closed subset of Prim(R) is of the form $Cl(\mathfrak{p})$, where \mathfrak{p} is a minimal primitive hyperideal. Thus $Cl(\mathfrak{p})$ is an irreducible component if and only if \mathfrak{p} is a minimal primitive hyperideal. Hence, R has only finitely many minimal primitive hyperideals.

In general, a hyperstructure space is not T_1 . However, with an added restriction we can characterize such spaces.

Theorem 4.9. An hyperstructure space Prim(R) is a T_1 -hyperstructure space if and only if Prim(R) coincides with the set Max(R) of maximal hyperideals of R.

Proof. By Proposition 3.7, $Max(R) \subseteq Prim(R)$. So, it is sufficient to prove the result for the other inclusion. Let $\mathfrak{a} \in Prim(R)$. Then $\mathfrak{a} \in Cl(\mathfrak{a})$. Let \mathfrak{m} be a maximal hyperideal with $\mathfrak{a} \subseteq \mathfrak{m}$. Then

$$\mathfrak{m} \in \mathtt{Cl}(\mathfrak{a}) = \{\mathfrak{a}\},\$$

where the equality follows from $\operatorname{Prim}(R)$ being a T_1 -space. Therefore $\mathfrak{m} = \mathfrak{a}$, showing that $\operatorname{Prim}(R) \subseteq \operatorname{Max}(R)$. Conversely, in $\operatorname{Max}(R)$, $\operatorname{Cl}(\mathfrak{m}) = \{\mathfrak{m}\}$ for every maximal hyperideal \mathfrak{m} , so that $\mathfrak{m} \in \operatorname{Cl}(\mathfrak{m})$, showing that the hyperstructure space is T_1 .

A strong hyperring homomorphism induces a continuous map between corresponding hyperstructure spaces. We now study this continuity and homeomorphisms between such spaces.

Proposition 4.10. Suppose $\phi: R \to R'$ is a strong hyperring homomorphism and define the map $\phi_*: \operatorname{Prim}(R') \to \operatorname{Prim}(R)$ by $\phi_*(\mathfrak{p}) = \phi(^{-1}\mathfrak{p})$, where $\mathfrak{p} \in \operatorname{Prim}(R')$. Then ϕ_* is a continuous map.

Proof. To show ϕ_* is continuous, we first show that $\phi({}^{-1}\mathfrak{p}) \in \operatorname{Prim}(R)$, whenever $\mathfrak{p} \in \operatorname{Prim}(R')$. Note that $\phi({}^{-1}\mathfrak{p})$ is a hyperideal of R. Suppose $\mathfrak{p} = \operatorname{Ann}_{R'}(M)$ for some simple R'-hypermodule. Then by the "change of hyperrings" property of hypermodules, $\phi({}^{-1}\mathfrak{p})$ is the annihilator of the simple R'-hypermodule M obtained by defining $sm = \phi(s)m$. Therefore $\phi({}^{-1}\mathfrak{p}) \in \operatorname{Prim}(R)$. Now consider a closed subset $\operatorname{Cl}(\mathfrak{a})$ of $\operatorname{Prim}(R)$. Then for any $\mathfrak{q} \in \operatorname{Prim}(R')$, we have the following sequence of equivalent statements:

$$\mathfrak{q} \in \phi_*(^{-1}\mathrm{Cl}(\mathfrak{a})) \Leftrightarrow \phi(^{-1}\mathfrak{q}) \in \mathrm{Cl}(\mathfrak{a}) \Leftrightarrow \mathfrak{a} \subseteq \phi(^{-1}\mathfrak{q}) \Leftrightarrow \mathfrak{q} \in \mathrm{Cl}(\langle \phi(\mathfrak{a}) \rangle).$$

These prove the desired continuity of ϕ_* .

Proposition 4.11. If \mathfrak{a} is a hyperideal of the hyperring R, then $Cl(\mathfrak{a})$ is homeomorphic to the hyperstructure space $Prim(R/\mathfrak{a})$.

Proof. We shall in fact prove more, i.e., if $\phi: R \to R'$ is a strong hyperring homomorphism and if ϕ is surjective, then the hyperstructure space Prim(R') is homeomorphic to the closed subset $Cl(ker(\phi))$ of the hyperstructure space Prim(R). The desired result will then follow by taking the quotient map $R \to R/\mathfrak{a}$.

Since $\mathfrak{o} \subseteq \mathfrak{b}$ for all $\mathfrak{b} \in \operatorname{Prim}(R')$, we have that $\operatorname{ker}(\phi) \subseteq \phi(^{-1}\mathfrak{b})$, or, in other words $f^*(\mathfrak{b}) \in \operatorname{Cl}(\operatorname{ker}(\phi))$. This implies that $\operatorname{im}(\phi^*) = \operatorname{Cl}(\operatorname{ker}(\phi))$. Since for all $\mathfrak{b} \in \operatorname{Prim}(R')$, $\phi(\phi^*(\mathfrak{b})) = \phi(\phi(^{-1}\mathfrak{b})) = \mathfrak{b}$, the map ϕ^* is injective. To show that ϕ^* is a closed map, first we observe that for any closed subset $\operatorname{Cl}(\mathfrak{a})$ of $\operatorname{Prim}(R')$, we have that:

$$\phi^*(\operatorname{Cl}(\mathfrak{a})) = \phi(^{-1}\operatorname{Cl}(\mathfrak{a})) = \phi\{^{-1}\mathfrak{i}' \in \operatorname{Prim}(R') \mid \mathfrak{a} \subseteq \mathfrak{i}'\} = \operatorname{Cl}(\phi(^{-1}\mathfrak{a})).$$

Now if C is a closed subset of Prim(R') and $C = Cl(\mathfrak{a})$, then $\phi^*(C) = \phi(^{-1}Cl(\mathfrak{a})) = Cl(\phi(^{-1}\mathfrak{a}))$, a closed subset of Prim(R). Since by Proposition 4.10, ϕ^* is continuous, we have the desired claim.

Corollary 4.12. The hyperstructure spaces Prim(R) and $Prim(R)/\sqrt{\mathfrak{o}}$ are homeomorphic, where $\sqrt{\mathfrak{o}}$ is the nil radical of R.

Proposition 4.13. Let ϕ^* be as in Proposition 4.10. Then $\phi^*(\text{Prim}(R'))$ is dense in Prim(R) if and only if $\ker(\phi) \subseteq \sqrt{\mathfrak{o}}$.

Proof. We first show that $Cl(\phi^*(Cl(\mathfrak{b}))) = Cl(\phi(^{-1}\mathfrak{b}))$, for all hyperideals \mathfrak{b} of R'. To this end, let $\mathfrak{s} \in \phi^*(Cl(\mathfrak{b}))$. This implies that $\phi(\mathfrak{s}) \in Cl(\mathfrak{b})$, which means $\mathfrak{b} \subseteq \phi(\mathfrak{s})$. In other words, $\mathfrak{s} \in Cl(\phi(^{-1}\mathfrak{b}))$. The other inclusion follows from the fact that $\phi(^{-1}Cl(\mathfrak{b})) = Cl(\phi(^{-1}\mathfrak{b}))$. Since

$$\mathtt{Cl}(\phi^*(\mathtt{Prim}(R'))) = \phi^*(\mathtt{Cl}(\mathfrak{o})) = \mathtt{Cl}(\phi(^{-1}\mathfrak{o})) = \mathtt{Cl}(\mathtt{ker}(\phi)),$$

we see that $Cl(ker(\phi))$ is equal to Prim(R)) if and only if $ker(\phi) \subseteq \sqrt{\mathfrak{o}}$. \Box

5 Conclusion

This paper had two main aims. The first was to introduce the notion of primitive hyperideals of a (Krasner) hyperring and study their properties. The second was to impose a Jacobson topology on the set of primitive hyperideals of a hyperring and investigate the topological properties of the corresponding hyperstructure space.

As part of the first aim we showed the relation between prime, maximal, and primitive hyperideals of a hyperring and also characterized simple hypermodules. We showed how the hyperideal is related to R itself, and to maximal and prime hyperideals of R.

As part of the second aim, we investigated the topological properties of the corresponding hyperstructure space. We characterized irreducible closed subsets of a hyperstructure space and proved that every irreducible closed subset of a hyperstructure space has a unique generic point. Finally we close with a sufficient condition for the space to be Noetherian and looked at continuous maps between such spaces.

As a continuation of this work, one may consider the following. Using the primitive hyperideals of hyperrings that have been introduced here, it would be interesting to investigate a structure theory of hyperrings as developed in [12] for rings.

Acknowledgement

The authors wishes to extend appreciation to the anonymous reviewer for his/her thorough examination and invaluable input, which greatly contributed to enhancing the paper's presentation. K-T Howell is grateful for funding by the National Research Fund (South Africa) (Grant number: 96056).

References

- Bordbar, H. and Cristea, I., About the normal projectivity and injectivity of Krasner hypermodules, Axioms 10(2) (2021), 83.
- [2] Bordbar, H., Novak, M., and Cristea, I., A note on the support of a hypermodule, J. Algebra Appl. 19 (2020) 2050019.
- [3] Connes, A. and Consani, C., The hyperring of adéle classes, J. Number Theory 131(2) (2011), 159-194.
- [4] Connes, A. and Consani, C., From monoids to hyperstructures: in search of an absolute arithmetic, in: Casimir Force, "Casimir Operators and the Riemann Hypothesis", de Gruyter, (2010), 147-198.
- [5] Corsini, P. and Leoreanu-Fotea, V., "Applications of Hyperstructure Theory", Vol. 5, Springer, 2003.
- [6] Davvaz, B. and Salasi, A., A realization of hyperrings, Comm. Algebra 34(12) (2006), 4389-4400.
- [7] Davvaz, B. and Leoreanu-Fotea, V., "Hyperring Theory and Applications", International Academic Press, 2007.
- [8] Dixmier, J., "Enveloping Algebras", Amer. Math. Soc., 1996.
- [9] Hamzekolaee, A.R.M., Norouzi, M., and Leoreanu-Fotea, V., A new approach to smallness in hypermodules, Algebr. Struct. their Appl., 8(1) (2021), 131-145.
- [10] Irving, R.S., Prime Ideals of Ore extensions over commutative rings, J. Algebra 56 (1979), 315-342.
- [11] Jacobson, N., A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sei. U.S.A. 31 (1945), 333-338.
- [12] Jacobson, N., "Structure of Rings", Amer. Math. Soc. Colloquium Publications, Vol. 37, Providence, 1956.
- [13] Jacobson, N., "PI-algebras. An Introduction", Springer-Verlag, 1975.
- [14] Joseph, A., Primitive ideals in enveloping algebras, Proc. ICM Warsaw (1983), 403-414.
- [15] Joseph, A., "Quantum Groups and their Primitive Ideals", Springer, 1995.

- [16] Jun, J., Algebraic geometry over hyperrings, Adv. Math., 323 (2018), 142-192.
- [17] Krasner, M., A class of hyperrings and hyperfields, Internat. J. Math. Math. Sci. 6(2) (1983), 307-311.
- [18] Kucherov, A.A., Pikhtilkova, O.A., and PIKHTILKOV, S.A., On primitive Lie algebras, J. Math. Sci. 186(4) (2012), 651-654.
- [19] Marty, F., Sur une généralization de la notion de groupe, in: 8th Congress Math. Scandinaves (1934), 45-49.
- [20] Massouros, Ch.G., Free and cyclic hypermodules, Ann. Mat. Pura Appl. 150(4) (1988), 153-66.
- [21] Mahjoob, R. and Ghaffari, V., Zariski topology for second subhypermodules, Ital. J. Pure Appl. Math. 39 (2018), 554-568.
- [22] Omidi, S. and Davvaz, B., Hyperideal theory in ordered Krasner hyperrings, Analele Univ. "Ovidius" din Constanta, Math. Series 27(1) (2019), 193-210.
- [23] Rowen, L.H., "Ring Theory", Vol. I, Academic Press, 1988.
- [24] Siraworakun, A, "Some Properties of Hypermodules over Krasner Hyperrings", Chulalongkorn University, 2007.
- [25] Türkmen, B. N., Bordbar, H., and Cristea, I., Supplements related to normal π -projective hypermodules, Mathematics 10, 1945 (2022), (15 pages).

Bijan Davvaz Department of Mathematical Sciences, Yazd University, Yazd, Iran. Email: davvaz@yazd.ac.ir

Amartya Goswami Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa.

National Institute for Theoretical and Computational Sciences (NITheCS), South Africa. Email: agoswami@uj.ac.za

Karin-Therese Howell Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.

National Institute for Theoretical and Computational Sciences (NITheCS), South Africa. Email: kthowell@sun.ac.za