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Abstract. In this paper, we present a study of relatively connected sublo-
cales. The development of this study is subsequently utilized to characterize
what we call C-normal frames. Normal frames are C-normal, the converse
is not true. Some results concerning J-frames are presented; amongst other
things, we prove that regular continuous frames are rim-compact and that the
converse is true for J-frames. The latter is used to show that the least com-
pactification of a regular continuous J-frame coincides with its Freudenthal
compactification.

1 Introduction

In [8], Michael introduced the concept of a J-space as a Hausdorff space
X such that every binary closed cover with a compact intersection has a
compact member. In the same paper, he introduced the concept of rela-
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tively connected subsets, explored more in [12]. A localic view of relatively
connected subsets and the pointfree analog of J-spaces are presented in this
note. While relatively connected sublocales need not be connected, we show
that dense and open sublocales do not distinguish between connectedness
and relative connectedness. We introduce C-normal frames as a conserva-
tive extension of C-normal spaces and characterize them as frames with
the property that the join of any two closed connected disjoint sublocales
is not relatively connected. Furthermore, we show that the class of nor-
mal frames is properly contained in the class of C-normal frames and that
C-normality is a hereditary property with respect to closed sublocales. A
partition of a J-frame into complemented elements is always finite and has
exactly one compact member. The proof of the latter invokes the axiom of
countable dependent choice (CDC). We conclude the paper by character-
izing non-compact regular continuous J-frames via the perfectness of their
least compactification.

2 Preliminaries

We begin with a collection of the basic frame-theoretic definitions we shall
use in the sequel.

2.1 Basic frame theory A complete lattice L is called:
(i) a frame if it satisfies the infinite distributive law:

x ∧
∨

S =
∨

{x ∧ s : s ∈ S},

(ii) a co-frame if it satisfies the infinite distributive law:

x ∨
∧

S =
∧

{x ∨ s : s ∈ S},

for every x ∈ L and every S ⊆ L. The top element and the bottom element
of L will be denoted by 1 and 0, respectively. A frame homomorphism is
a map h : L −→ M, between the frames L and M, that preserves finite
meets (including 1) and arbitrary joins (including 0). Associated with such
a homomorphism is its right adjoint h∗ : M −→ L satisfying h(x) ≤ y if
and only if x ≤ h∗(y) for all x ∈ L and y ∈ M, where h∗(y) =

∨
{x ∈ L :

h(x) ≤ y}. A complete lattice L is called continuous if for each a ∈ L,
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a =
∨
{x ∈ L : x ≪ a}, where x ≪ a means that for any S ⊆ L with

a ≤
∨
S, there exists a finite F ⊆ S such that x ≤

∨
F. If x ≪ a we

say that x is well below a. For any a, b ∈ L, we say that a is rather below
b, written a ≺ b, if a ∧ c = 0 and c ∨ b = 1, for some c ∈ L. Note that
a ≺ b if and only if a∗ ∨ b = 1, where a∗ is the pseudocomplement of
a, that is, a∗ =

∨
{x ∈ L : x ∧ a = 0}. A frame L is called regular if

a =
∨
{x ∈ L : x ≺ a}, for all a ∈ L. An element a ∈ L is complemented

if a ∨ a∗ = 1. An element a ∈ L is compact if whenever a ≤
∨
S for some

S ⊆ L, then a ≤
∨

S0 for some finite S0 ⊆ S. A frame L is compact if the
top element is compact.

A frame L is normal if for any a, b ∈ L with a ∨ b = 1, there exist
u, v ∈ L such that u ∧ v = 0 and a ∨ v = 1 = b ∨ u. Equivalently, L is
normal if for any a, b ∈ L with a ∨ b = 1, there exists u ∈ L such that
a ∨ u∗ = 1 = b ∨ u. An element c ∈ L is connected if whenever c = a ∨ b
and a ∧ b = 0, then either a = 0 or b = 0. A frame L is connected if its top
element is connected. A partition of a frame L (complete lattice in general)
is a collection {ai}i∈I ⊆ L such that: ai ̸= 0 for each i ∈ I, ai ∧ aj = 0 for
i ̸= j, and 1 =

∨
i∈I

ai. For more details on the theory of frames, we refer the

reader to [3], [7] and [14].

2.2 Notes on sublocales Let L be a frame. We have the binary
operation → on L, called the Heyting operation, that satisfies the property
that for all a, b, c in a frame L, c ≤ a → b if and only if c∧a ≤ b. A sublocale
of a frame L is a subset S of L such that S is closed under arbitrary meets,
and for each x ∈ L and each s ∈ S, x → s ∈ S. Sublocales are frames in
their own right.

For any a ∈ L, the set cL(a) = {x ∈ L : a ≤ x} is a sublocale of frame L
that is called the closed sublocale associated with a. The set oL(a) = {a →
x : x ∈ L} is referred to as an open sublocale associated with a. When
we think frame-theoretically, we shall write ↑a for cL(a). We speak of the
trivial (or void) sublocale, 0 := {1}, and say that sublocales S and T are
disjoint if S ∩ T = 0. Note that 0 = {1} ⊆ S, so 1 ∈ S for any sublocale
S. A sublocale is compact if every cover by open sublocales of the ambient
frame (equivalently, of itself) can be reduced to a finite subcover. It is easy
to see that an element a ∈ L is compact if and only if oL(a) is compact.

The lattice S(L) of all sublocales of a frame L is a co-frame under inclu-
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sion (see [14, Theorem III.3.2.1]). Here, meets are precisely the intersections,
0 is the bottom element, and L is the top element of S(L). The joins are
defined by the formula: ∨

i∈I
Si = {

∧
A : A ⊆

⋃
i∈I

Si}

for any {Si}i∈I ⊆ S(L). In this paper, joins and meets of sublocales of L
with be taken in the co-frame S(L). The supplement of a sublocale S of the
frame L is

L \ S =
⋂

{R ∈ S(L) : R ∨ S = L} =
∨

{T ∈ S(L) : T ∩ S = 0}.

Note that S ∨ (L \ S) = L. We say that a sublocale S is complemented if
S ∩ (L \ S) = 0. In this case, L \ S is the lattice theoretic complement of S
in S(L).

We say that a sublocale S is connected if the top element of S (same as
the top element of L) is connected in S. Equivalently, a non-void sublocale
S of a frame L is connected if and only if whenever a, b ∈ L and S ⊆ oL(a)∨
oL(b) with S∩oL(a)∩oL(b) = 0, either S∩oL(a) = 0 or S∩oL(b) = 0. This
is true if and only if, whenever S ⊆ cL(a)∨ cL(b) with S ∩ cL(a)∩ cL(b) = 0,
either S ∩ cL(b) = 0 or S ∩ cL(b) = 0. It is not difficult to show that an
element a ∈ L is connected if and only if the associated open sublocale oL(a)
is connected.

Consider the inclusion map j : A ↪→ X of the subset A ⊆ X of a space
X. One has the frame homomorphism Oj : OX −→ OA, whose right
adjoint (Oj)∗ : OA −→ OX is given by:

(Oj)∗(U) = X \ clX(A \ U), for all U ∈ OA.

The sublocale Ã of the frame OX induced by A is the frame given by

Ã = (Oj)∗(OA) = {(Oj)∗(U) : U ∈ OA}.

For general details on sublocales, see Chapters III and VI in [14] and Section
2 of Chapter II in [7].
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3 Relatively connected sublocales

The notion of relatively connected subsets of topological spaces was first
introduced by Michael [8]. A subset A of a topological space X is called
relatively connected in X if no open U ⊇ A in X has a disjoint open cover
{U1, U2} with U1 ∩ A ̸= ∅ and U2 ∩ A ̸= ∅. In [12], Mthethwa and Taher-
ifar provided more insight and characterized relatively connected subsets
of space using various concepts. In particular, they showed that A is rela-
tively connected in X if and only if for any open sets U1, U2 in X such that
A ⊆ U1 ∪ U2 and U1 ∩ U2 = ∅, either A ⊆ U1 or A ⊆ U2 (see [12, Lemma
2.1]). Using the latter, we lift the notion of relatively connected subsets
from spaces to a localic setting as follows:

Definition 3.1. [11] A sublocale S of a frame L is relatively connected in
L if whenever S ⊆ U1 ∨U2 where U1, U2 are open sublocales of L such that
U1 ∩ U2 = 0, either S ∩ U1 = 0 or S ∩ U2 = 0.

Remark 3.2. Of course, in the conclusion part of the definition above,
we could equivalently use S ⊆ U1 or S ⊆ U2. An equivalent formulation
of relative connectedness in terms of elements may be formulated in the
following manner:

(1) A sublocale S of a frame L is relatively connected in L if and only if
whenever x, y ∈ L and S ⊆ o(x) ∨ o(y), with x ∧ y = 0, then S ∩ oL(x) = 0

or S ∩ oL(y) = 0.

(2) A sublocale S of a frame L is relatively connected in L if and only
if whenever x, y ∈ L and S ∩ cL(x) ∩ cL(y) = 0, with x ∧ y = 0, then
S ∩ cL(x) = 0 or S ∩ cL(y) = 0.

Recall that a TD-space is a topological space X with the property that,
for each x ∈ X, there is an open U ∋ x such that U \ {x} is also open. Let
us recall from [14] that A ⊆ B =⇒ Ã ⊆ B̃, and in a TD-space, A ⊆ B ⇐⇒
Ã ⊆ B̃. If K is a closed subset and U is an open in a space X, it is easy to
check that the induced sublocales K̃ and Ũ are given by: K̃ = cOX(X \K)
and Ũ = oOX(U).

Proposition 3.3. Let X be a TD-space, and A ⊆ X. Then A is relatively
connected in X if and only if Ã is relatively connected in OX.
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Proof. (=⇒) Suppose that A ⊆ X is relatively connected in X. Let Ã ⊆
oOX(U1) ∪ oOX(U2) with oOX(U1) ∩ oOX(U2) = 0, where U1, U2 ∈ OX.

From Ã ⊆ oOX(U1) ∪ oOX(U2), we get Ã ⊆ o(U1 ∪ U2) = Ũ1 ∪ U2. Since
X is a TD-space, A ⊆ U1 ∪ U2. Now, observe that oOX(U1) ∩ oOX(U2) =

0 ⇐⇒ oOX(U1 ∩ U2) = 0 ⇐⇒ Ũ1 ∩ U2 = ∅̃ ⇐⇒ U1 ∩ U2 = ∅, where the last
equivalence follows by the fact that X is a TD-space. Now, A ⊆ U1 ∪ U2,
and U1 ∩ U2 = ∅. Since A is relatively connected in X, then A ⊆ U1 or
A ⊆ U2. Thus, Ã ⊆ Ũ1 or Ã ⊆ Ũ2. That is, Ã ⊆ oOX(U1) or Ã ⊆ oOX(U2).
It follows that Ã ∩ oOX(U1) = 0 or Ã ∩ oOX(U2) = 0. Therefore, Ã is
relatively connected in OX.
(⇐=) Follows by an argument similar to the one provided for the forward
direction.

It follows by the proposition above and [8, Example 9.8] that relatively
connected sublocales need not be connected. Let 0S =

∧
S, where S is a

sublocale of L. Recall that the closure, denoted by S, of S in a frame L is
given by

S = cL(0S) = {x ∈ L : x ≥
∧

S} =
⋂

{cL(a) : S ⊆ cL(a), a ∈ L}.

The following statements are proved in [11, Proposition 3.8]:

Proposition 3.4. Let S ∈ S(L). The following statements are true:

1. If S is connected, then S is relatively connected in L.

2. If S is relatively connected, then S is relatively connected in L.

Next, we record some results concerning conditions under which rela-
tively connected sublocales are connected. Before we do so, note that, just
like in spaces, we have:

Lemma 3.5. A sublocale S is dense in a frame L if and only if S ∩ U ̸= 0

for any non-void open U ∈ S(L).

Proof. (=⇒) Let S be dense and U open with U ̸= 0. Then L \ U is closed
and if S ∩ U = 0, then S ⊆ L \ U. Hence, L = S ⊆ L \ U ⊆ L \ U. This
implies that U = 0, which is a contradiction. Therefore S ∩ U ̸= 0.

(⇐=) Let S ∈ S(L) be such that S ∩ U ̸= 0 for any non-void open
U ∈ S(L). Note that S is closed, so L \ S is open and S ∩ (L \ S) = 0. We
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have S ⊆ S, therefore S ∩ (L \ S) = 0. Hence, L \ S = 0, by the hypothesis.
Thus, L = S ∨ (L \ S) = S. That is, S is dense.

Proposition 3.6. A dense sublocale is relatively connected in a frame L if
and only if it is connected.

Proof. (=⇒): Suppose that S is dense and relative connected in L. We want
to show that S is connected. Suppose S ⊆ U1 ∨U2, where S ∩U1 ∩U2 = 0.
Since S is dense and U1 ∩ U2 is open, then U1 ∩ U2 = 0, by the lemma
above. Since S is relatively connected in L, then S ∩U1 = 0 or S ∩U2 = 0.
Therefore, S is connected.
(⇐=): This follows by Proposition 3.4(1).

Proposition 3.7. An open sublocale is relatively connected in a frame L if
and only if it is connected.

Proof. (⇐=): This follows by Proposition 3.4(1).

(=⇒): Let U ∈ S(L) be open and assume that U is relatively connected
in L. Suppose U ⊆ U1 ∨U2, where U ∩U1 ∩U2 = 0. From U ⊆ U1 ∨U2, we
get:

U = U ∩ (U1 ∨ U2) = (U ∩ U1) ∨ (U ∩ U2).

Now, U ∩ U1 and U ∩ U2 are disjoint open sublocales of L; indeed, (U ∩
U1) ∩ (U ∩ U2) = U ∩ U1 ∩ U2 = 0. Since U is relatively connected in L,
then U ∩ U1 = 0 or U ∩ U2 = 0. Thus, U is connected.

Proposition 3.8. If a frame L has a relatively connected dense sublocale,
then L is connected.

Proof. Let S be a relatively connected dense sublocale in L. We have that S
is relatively connected in L by Proposition 3.4(2). Therefore, S is relatively
connected and dense in L. Hence, S is connected by Proposition 3.6. But
S = L, so L is connected.

Before we close this section, let us remark that in a normal frame L, any
relatively connected closed sublocale of L is connected; the proof of this is
provided in [11, Proposition 3.10].
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4 C-normal frames

C-normal spaces were introduced in [12] as spaces X such that whenever A
and B are two disjoint closed connected subsets in X, there are two disjoint
open sets U, V in X with A ⊆ U and B ⊆ V . We give a pointfree extension
of this notion in terms of elements below:

Definition 4.1. A frame L is C-normal if whenever a, b ∈ L and cL(a)
and cL(b) are connected with a ∨ b = 1, then there exist u, v ∈ L such that
a ∨ u = 1 = b ∨ v and u ∧ v = 0.

From a localic viewpoint, C-normality can be formulated as follows (this
is equivalent to the definition presented in terms of elements above):

A frame L is C-normal if and only if whenever S, T ∈ S(L)
are connected and closed with S ∩ T = 0, then there exist opens
U, V ∈ S(L) such that S ⊆ U and T ⊆ V , with U ∩ V = 0.

The frame theoretic definition of C-normality is a conservative pointfree
extension of C-normality of spaces. The proof of this uses the fact that a
space is connected if and only if the frame of its open sets is connected:

Proposition 4.2. A topological space X is C-normal if and only if OX is
a C-normal frame.

Proof. (=⇒): Suppose X is C-normal. We prove that OX is a C-normal
frame. Take connected sublocales cOX(A) = ↑A and cOX(A) = ↑B with
A∪B = 1OX , where A,B ∈ OX. Since ↑A ∼= O(X \A) and ↑B ∼= O(X \B),
then O(X \A) and O(X \B) are connected frames, by conservativeness of
connectedness. Thus, X \ A and X \ B are closed connected subsets of X.
We also have that (X \ A) ∩ (X \ B) = ∅, since A ∪ B = X. Now, X is
C-normal, so (X \A) ⊆ U and (X \B) ⊆ V , for some open sets U, V ∈ X,
with U ∩ V = ∅. Note that X = (X \ A) ∪ A ⊆ U ∪ A = X. Similarly,
B ∪ V = X. Therefore, OX is a C-normal frame.

(⇐=): Suppose that OX is a C-normal frame. We want to show that
X is C-normal. Let A and B be closed connected subsets of X such that
A ∩ B = ∅. Therefore O(A) is connected. But O(A) = O(X \ (X \ A)) ∼=
↑(X \A). So ↑(X \A) is connected. Similarly, ↑(X \B) is connected. From
A ∩ B = ∅, we have that (X \ A) ∪ (X \ B) = X = 1OX . Since OX is
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C-normal, there exist U, V ∈ OX such that (X \A)∪U = X = (X \B)∪V
and U ∩ V = ∅. Finally, (X \ A) ∪ U = X implies that A ⊆ U . Similarly,
B ⊆ V . Hence X is C-normal.

Remark 4.3. It is clear from the definition that every normal frame is
C-normal. The converse is not true. It is observed in [12] that E × E is a
C-normal space, where E is the Sorgenfrey line. It is well-known that the
Sorgenfrey plane E × E is not a normal space, even though E is normal.
Since C-normality and normality in frames are conservative extensions of
the corresponding concepts in spaces, then O(E × E) is a C-normal frame
that is not a normal frame.

We do not know whether C-normality is hereditary in general, but closed
sublocales do inherit this property. To prove this, recall that for any sublo-
cale S of a frame L, we have the onto frame homomorphism νS : L −→ S
defined by νS(a) =

∧
{s ∈ S : a ≤ s}. In particular, νcL(x)(a) = a∨x for any

a, x ∈ L. Denote the finite joins in S by ⊔S and let cS(a) = {x ∈ S : x ≥ a}
denote the closed sublocale of S associated a ∈ S.

Proposition 4.4. A closed sublocale of a C-normal frame is C-normal.

Proof. Let L be a C-normal frame and x ∈ L. We must show that cL(x)
is C-normal when viewed as a frame. Let a, b ∈ cL(x) and suppose that
ccL(x)(a) and ccL(x)(b) are closed connected sublocales of cL(x) such that
a⊔cL(x)b = 1. We need to find u, v ∈ cL(x) such that a⊔cL(x)u = 1 = b⊔cL(x)v
and u∧ v = x. Now, observe that ccL(x)(a) = cL(a)∩ cL(x) = cL(x∨ a), and
ccL(x)(b) = cL(x∨ b). Notice that 1 = a⊔cL(x) b = νcL(x)(a∨ b) = a∨ b∨ x =
(a∨x)∨(b∨x). Since cL(x∨a) and cL(x∨b) are closed connected sublocales of
L and L is C-normal, then there exist c, d ∈ L such that a∨c = 1 = b∨d and
c∧d = 0. Let u = c∨x and v = d∨x. Then u, v ∈ cL(x). On the one hand,
a⊔cL(x)u = νcL(x)(a∨u) = a∨u∨x = a∨c∨x = 1, and similarly, b⊔cL(x)v = 1.
On the other hand, u ∧ v = (c ∨ x) ∧ (d ∨ x) = (c ∧ d) ∨ x = 0 ∨ x = x.
Therefore, cL(x) is C-normal.

We end this section by a characterization of C-normality via relatively
connected closed sublocales, the proof of which uses the fact that for a, b ∈ L,
a ∨ b = 1 ⇐⇒ cL(a) ⊆ oL(b):
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Proposition 4.5. A frame L is C-normal if and only if the join of any two
nontrivial closed connected disjoint sublocales is not relatively connected in
L.

Proof. (=⇒): Suppose that L is C-normal. Let cL(a) and cL(b) be nontrivial
connected with cL(a) ∩ cL(b) = 0. We need to show that cL(a) ∨ cL(b) is
not relatively connected in L. From cL(a) ∩ cL(b) = 0, we get a ∨ b = 1.
Since L is C-normal, then there exist u, v ∈ L such that a ∨ u = 1 = b ∨ v
and u ∧ v = 0. From a ∨ u = 1, we get cL(a) ⊆ oL(u), and from b ∨ u = 1,
we get cL(b) ⊆ oL(v). Since u ∧ v = 0, then oL(u) ∩ oL(v) = 0. We now
have, cL(a) ∨ cL(b) ⊆ oL(u) ∨ oL(v). However, (cL(a) ∨ cL(b)) ∩ oL(u) =
cL(a) ∨ (cL(b) ∩ oL(u)) ̸= 0. Similarly, (cL(a) ∨ cL(b)) ∩ oL(v) ̸= 0. Hence
cL(a) ∨ cL(b) is not relatively connected in L.
(⇐=): Suppose that cL(a) and cL(b) are nontrivial connected sublocales
of L and a ∨ b = 1. Since a ∨ b = 1, then cL(a) ∩ cL(b) = 0. By the
hypothesis, cL(a)∨ cL(b) is not relatively connected in L. Hence, there exist
oL(u), oL(v) such that cL(a) ∨ cL(b) ⊆ oL(u) ∨ oL(v) and oL(u) ∩ oL(v) = 0

with (cL(a) ∨ cL(b)) ∩ oL(u) ̸= 0 and (cL(a) ∨ cL(b)) ∩ oL(v) ̸= 0. We
now have cL(a) ⊆ oL(u) ∨ oL(v) and cL(a) ∩ oL(u) ∩ oL(v) = 0. Since
cL(a) is connected, then cL(a) ∩ oL(u) = 0 or cL(a) ∩ oL(v) = 0. Thus,
cL(a) ⊆ oL(u) or cL(a) ⊆ oL(v), i.e., a ∨ u = 1 or a ∨ v = 1. Similarly since
cL(b) is connected, either b ∨ u = 1 or b ∨ v = 1. We now have: a ∨ u = 1
and b ∨ v = 1, or a ∨ v = 1 and b ∨ u = 1. Thus, a ∨ u = 1 = b ∨ v, and
u ∧ v = 0, the latter follows from oL(u) ∩ oL(v) = 0.

5 More on J-frames

Let us begin this section by recalling the definition of the pointfree analog
of the notion of a J-space:

Definition 5.1. [11] We say that a frame L is a J-frame if for any a, b ∈ L
such that a ∧ b = 0 and cL(a) ∩ cL(b) is compact, either cL(a) or cL(b) is
compact.

Remark 5.2. Using the fact that for any space X and an open U in X,
↑U ∼= O(X \ U), it is not difficult to see that:

A Hausdorff space X is a J-space if and only if OX is a J-frame.
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Here is a neat characterization of J-frames:

Proposition 5.3. The following conditions are equivalent for a frame L:

(1) L is a J-frame.

(2) Whenever a ∈ L and cL(a) ∩ cL(a
∗) is compact, then either cL(a) or

cL(a
∗) is compact.

Proof. (1) =⇒ (2) This is clear from the definition of J-frame.
(2) =⇒ (1) Take a, b ∈ L such that a ∧ b = 0 and cL(a) ∩ cL(b) is compact.
We need to show that cL(a) or cL(b) is compact. Now, b ≤ a∗ implies that
cL(a

∗) ⊆ cL(b), therefore cL(a)∩cL(a
∗) ⊆ cL(a)∩cL(b), and so cL(a)∩cL(a

∗)
is compact. Thus, cL(a) or cL(a

∗) is compact, by the hypothesis. If cL(a) is
compact, then we are done. If cL(a

∗) is compact, then cL(a
∗)∨(cL(a)∩cL(b))

is compact. But cL(a
∗) ∨ (cL(a) ∩ cL(b)) = cL(a

∗) ∨ cL(b). Hence cL(b) is
compact.

The result below, whose proof requires the CDC principle, says that a
J-frame can only be partitioned by finitely many complemented elements;
and in such a partition, precisely one element is not compact. Since this
result is trivial for compact frames (indeed, all compact frames are J-frames
by [11, Proposition 4.7]), we exclude this case. Before we present the proof,
let us recall from [14, Proposition XIII.1.1] that: elements a and b are
mutual complements in L if and only if the closed sublocales cL(a) and
cL(b) are mutual complements in S(L), and this is true if and only if the
open sublocales oL(a) and oL(b) are mutual complements in S(L). If a is
complemented and we write ac for the complement of a, then the latter
implies that cL(a) and cL(a

c) are mutual complements in S(L), and oL(a)
and oL(a

c) are mutual complements in S(L).

Proposition 5.4. Let L be a non-compact J-frame and A be a partition
of L by complemented elements. Then there exists exactly one a0 ∈ A such
that a0 is non-compact. Furthermore, A is finite.

Proof. We start by showing that there exists an element a0 ∈ A such that
a0 is not compact. We proceed by contradiction, so to this end, assume
that ai is compact for every ai ∈ A. Note that in this case, A cannot be

finite: for if A has m elements for some m ∈ N, then 1 =
m∨
i=1

ai. The
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latter implies that L is compact, which is a contradiction. So, assume A
contains infinitely many distinct compact elements. Hence, under CDC, we
may select a countable set {an}n∈N containing distinct elements of A. Put
a =

∨
{a2n−1 : n ∈ N}. Since A is a partition,∨

A = a ∨
∨
i∈I

{ai ∈ A : ai ̸= a2n−1, n ∈ N} = 1,

and by repeated use of the frame law and by the disjointness of elements in
A, we get:

a ∧
∨
i∈I

{ai ∈ A : ai ̸= a2n−1, n ∈ N} =
∨
i∈I

{a ∧ ai : ai ̸= a2n−1, n ∈ N}

=0.

So, ac =
∨
i∈I

{ai ∈ A : ai ̸= a2n−1, n ∈ N}. Thus, both a and ac are

not compact elements of L since each is an infinite join of elements in L.
However, a ∨ ac = 1 implies that cL(a) ∩ cL(a

c) is compact. We also have
that a∧ac = 0, and since L is a J-frame, then cL(a) or cL(a

c) is compact, by
Proposition 5.3. Now, complementedness of a implies that cL(a) and cL(a

c)
are complements of each other in S(L). But S(L) is a distributive lattice,
so complements are unique, thus:

oL(a) = cL(a
c) =

∨
{oL(a2n−1) : n ∈ N},

and similarly,

cL(a) = oL(a
c) =

∨
i∈I

{oL(ai) ∈ A : ai ̸= a2n−1, n ∈ N}.

Hence, both cL(a
c) and cL(a) are not compact, as they are both infinite

joins of open sublocales. This is a contradiction. Therefore, there exists an
element in A which is non-compact. We now show that only one element in
A has this property. To this end, fix a0 ∈ A such that a0 is a non-compact
element. We will show that any element in A different from a0 is compact.
Start by recalling that a0∨ac0 = 1, therefore cL(a0)∩ cL(a

c
0) = 0 is compact.

Since a0 ∧ ac0 = 0, and L is a J-frame, then cL(a0) or cL(a
c
0) is compact.

However, since cL(a
c
0) = oL(a0) and a0 is non-compact, then cL(a

c
0) is non-

compact. Thus, cL(a0) must be compact. Now, take any ak ∈ A such
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that ak ̸= a0. Then ak ∧ a0 = 0, and this implies that a0 ≤ ack, whence
cL(a

c
k) ⊆ cL(a0). Therefore cL(a

c
k) is compact. But cL(a

c
k) = oL(ak), so ak

is compact. To see that A is finite, notice that ac0 is compact and ac0 ≤
∨
A,

so ac0 ≤
m∨
i=1

{ai : ai ∈ A}, for some m ∈ N. Hence 1 = a0 ∨
m∨
i=1

{ai : ai ∈ A},

and so A = {a0, a1, . . . , am}.

Definition 5.5. A frame L is rim-compact if it is regular and the set {x ∈
L : cL(x) ∩ cL(x

∗) is compact} is a basis for L.

Lemma 5.6. Any regular continuous frame is rim-compact.

Proof. Suppose that L is a regular continuous frame and let a ∈ L. Then
a =

∨
{x ∈ L : x ≪ a}. Now, x ≪ a and a ≤ 1 implies that x ≪ 1. So cL(x

∗)
is compact, by [2, Proposition 3.3]. Hence cL(x) ∩ cL(x

∗) is compact, and
so a =

∨
{x ∈ L : cL(x) ∩ cL(x

∗) is compact}. Thus L is rim-compact.

For J-frames, the converse of Lemma 5.6 holds true:

Proposition 5.7. A rim-compact J-frame is regular continuous.

Proof. Suppose that L is rim-compact and let a ∈ L such that a ≤
∨
S

for some S ⊆ L. Using regularity of L and the fact that BL = {x ∈ L :
cL(x) ∩ cL(x

∗) is compact} is a basis for L (see [1, Remark 4.4]) we may
write a =

∨
{b : b ≺ a, b ∈ BL}. Now, b ≺ a if and only if b∗ ∨ a = 1. It

follows that b∗ ∨
∨
S = 1. If L is compact, then b∗ ∨

∨
S0 = 1 for some

finite S0 ⊆ S. Hence b ≤
∨
S0, and so b ≪ a. So, suppose that L is a non-

compact frame. Note that b ∈ BL implies that b∗ ∈ BL, so cL(b
∗)∩cL(b

∗∗) is
compact. Thus, cL(b

∗) or cL(b
∗∗) is compact, by Proposition 5.3. If cL(b

∗) is
compact, then b∗∨

∨
S = 1 implies that b∗∨

∨
S1 = 1 for some finite S1 ⊆ S,

hence b ≤
∨

S1 and we are done. Now, suppose cL(b
∗∗) is compact. Since

b∗ ∨ a = 1 implies that b∗∗ ≤ a, then cL(a) is compact. The latter implies
that cL(

∨
S) is compact. Since b∗ ∨

∨
S =

∨
{b∗ ∨ s : s ∈ S} = 1, it follows

that
n∨

i=1
{b∗ ∨ si : si ∈ S} = 1, for some si ∈ S. Thus b ≤

n∨
i=1

{si : si ∈ S}, so

b ≪ a. Hence, L is regular continuous.
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6 Some compactifications of J-frames

The main goal of this section is to show that the least compactification is
identical to the Freudenthal compactification precisely when L is a J-frame.
Before we do this, let us recall some nomenclature. A compactification of
a frame L is a dense onto frame homomorphism h : M −→ L, where M
is compact regular. We say that a compactification h : M −→ L is perfect
if its right adjoint preserves disjoint binary joins. A strong inclusion on a
frame L is a binary relation ◁ on L such that: (1) if x ≤ a◁b ≤ y, then, x◁y,
(2) ◁ is a sublattice of L×L, (3) a◁b implies a ≺ b, (4) a◁b implies a◁c◁b,
for some c ∈ L (the interpolation property), (5) a◁b implies b∗ ◁a∗, and, (6)
a =

∨
{x ∈ L : x ◁ a}, for all a ∈ L. Compactifications of a frame L are in a

one-to-one correspondence with strong inclusions on L; see [4] for details. If
two strong inclusions are equal, so are the corresponding compactifications,
and conversely. For more on the theory of compactifications and perfect
compactifications of frames, we refer the reader to papers by Baboolal ( [1]
and [2]), Banaschewski [4], Mthethwa ( [9] and [10]).

Recall from Baboolal [1] that a regular frame L is rim-compact if it has
a basis B such that cL(b) ∩ cL(b

∗) is compact for every b ∈ B. It is shown
in [1] that a rim-compact frame possesses a compactification

∨
: γL −→ L

whose remainder is zero-dimensional (also see Ferreria et. al [5]) and its
corresponding strong inclusion ◁BL

is defined by: a ◁BL
b if and only if

a ≺ c ≺ b for some c ∈ BL, where BL is a totality of elements u ∈ L such that
cL(u) ∩ cL(u

∗) is compact. In [1], Baboolal called this compactification the
Freudenthal compactification. To further justify this terminology, Mthethwa
[10] proved that, just like in the classical case, the following statements are
true:

∨
: γL −→ L is a maximal compactification whose remainder is zero-

dimensional, and that
∨

: γL −→ L is a minimal perfect compactification
for the class of rim-compact frames.

Banaschewski [4] defined the strong inclusion � on a regular continuous
frame L as follows: a � b if and only if a ≺ b and either cL(a

∗) or cL(b) is
compact. It is shown in the proof of [4, Proposition 4] that � is the smallest
strong inclusion on L and therefore the compactification,

∨
: J�L −→ L,

corresponding to � is the least compactification for L. Here, J�L is the set
of all strongly regular ideals with respect to �. Baboolal established some
conditions under which this compactification is perfect in [2].

Now that we have seen that regular continuous frames are rim-compact,
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one can speak of the Freudenthal compactification for such frames. We end
our paper with the following result:

Proposition 6.1. A non-compact regular continuous frame L is a J-frame
if and only if γL ∼= J�L.

Proof. (=⇒) Let L be a non-compact regular continuous frame. Suppose L
is a J-frame. We always have � ⊆ �BL

, by [4, Proposition 4]. It remains
to show that �BL

⊆ �. Suppose a ◁BL
b, that is, suppose a ≺ c ≺ b for

some c ∈ BL. Clearly a ≺ b, and since c ∈ BL, cL(c) ∩ cL(c
∗) is compact.

Since L is a J-frame, cL(c) or cL(c
∗) is compact, by Proposition 5.3. If cL(c)

is compact, then cL(b) is compact since c ≤ b. If cL(c
∗) is compact, then

cL(a
∗) is compact since a ≤ c. Thus, a� b.
(⇐=) Suppose γL = J�L, where L is a non-compact regular continuous

frame. This implies that
∨

: J�L −→ L is perfect. Therefore, by (1)=⇒(3)
of [2, Theorem 4.2], whenever cL(u) ∩ cL(v) is compact, u, v ∈ L, u ∧ v = 0,
then either cL(u) or cL(v) is compact. That is, L is a J-frame.

Since the Freudenthal compactification is perfect (see [1, Proposition
4.10]), the result above asserts that a non-compact regular continuous frame
L is a J-frame precisely when its least compactification is perfect. This
contributes to the known conditions (provided in [2]) under which the least
compactification is perfect.
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