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Abstract. For a commutative semiring S, by an S-algebra we mean a
commutative semiring A equipped with a homomorphism S → A. We show
that the subvariety of S-algebras determined by the identities 1+2x = 1 and
x2 = x is closed under non-empty colimits. The (known) closedness of the
category of Boolean rings and of the category of distributive lattices under
non-empty colimits in the category of commutative semirings both follow
from this general statement.

1 Introduction

Let us recall:
1.1. A commutative semiring is an algebraic structure of the form S =

(S, 0,+, 1, ·) in which (S, 0,+) and (S, 1, ·) are commutative monoids with

x0 = 0, x(y + z) = xy + xz
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for all x, y, z ∈ S. Here and below we use standard notational agreements:
e.g. xy+ xz means (x · y) + (x · z). The category of commutative semirings
will be denoted by CSR; as expected, its morphisms are semiring homomor-
phisms, that is, maps f : S → S′ of (commutative) semirings with

f(0) = 0, f(s+ t) = f(s) + f(t), f(1) = 1, f(st) = f(s)f(t)

for all s, t ∈ S.
1.2. For a (commutative) semiring S, an S-module (or S-semimodule)

is an algebraic structure of the form A = (A, 0,+, h) in which (A, 0,+) is a
commutative monoid and h : S × A → A is a map written as (s, a) 7→ sa
that has

1a = a, s(ta) = (st)a, s0 = 0, s(a+ b) = sa+ sb,

0a = 0, (s+ t)a = sa+ ta

for all s, t ∈ S and a, b ∈ A. The category of S-modules will be denoted by
S-mod.

1.3. For S above, a commutative S-algebra is a pair (A, f) in which A
is a commutative semiring, and f : S → A is a semiring homomorphism.
Accordingly, the category of commutative S-algebras is just the comma
category (S ↓ CSR). Equivalently, a commutative S-algebra can be defined
as an algebraic structure of the form A = (A, 0,+, h, 1, ·) in which A =
(A, 0,+, h) is an S-module and A = (A, 0,+, 1, ·) is a commutative semiring
with s(ab) = (sa)b for all s ∈ S and a, b ∈ A; we will then have sa = f(s)a.

1.4. If S is a commutative ring, then (S ↓ CSR) is the ordinary category
of commutative (unital) S-algebras. In particular: if S = Z is the ring of
integers, then (S ↓ CSR) is the category CRings of commutative rings; if S =
{0, 1} with 1+1 = 0, then (S ↓ CSR) is the category CRings2 of commutative
rings of characteristic 2 (=the category of commutative algebras over the
two-element field). The category CRings2 contains the category BRings of
Boolean rings (=commutative rings satisfying the identity x2 = x).

1.5. If S = {0, 1} with 1+ 1 = 1, then (S ↓ CSR) is the category AICSR
of additively idempotent commutative semirings (=commutative semirings
satisfying the identity 2 = 1, or, equivalently, the identity 2x = x). This
category contains the category DLat of distributive lattices.

In this paper we present a general result (Corollary 2.3 in the next sec-
tion) on S-semialgebras, which implies (known) closedness of the categories
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of Boolean rings and of distributive lattices under non-empty colimits (or,
equivalently, just under binary coproducts) in the category of commutative
semirings.

2 The general case

Let us first mention an obvious general fact:

Lemma 1. Let V be a variety of universal algebras, W a subvariety of V,
and I the initial object of W (=the free algebra in W on the empty set). If
W ≈ (I ↓ W) is coreflective in (I ↓ V), then W is closed under non-empty
colimits in V.

Then we take:

• V = (S ↓ CSR);

• W = (S ↓ CSR)∗ to be the subvariety of (S ↓ CSR) consisting of
all S-algebras satisfying the identities 1 + 2x = 1 and x2 = x. This
makes I ≈ S/E, where E is the smallest congruence on S containing
(1 + 2s, 1) and (s2, s) for each s ∈ S.

Theorem 2.1. Let I ≈ S/E be as above. The variety

(S ↓ CSR)∗ ≈ (I ↓ (S ↓ CSR)∗)

of commutative S-algebras satisfying the identities 1 + 2x = 1 and x2 = x
is a coreflective subcategory of (I ↓ CSR) ≈ (I ↓ (S ↓ CSR)).

Proof. It suffices to show that, for each A ∈ (I ↓ V), the set

A′ = {a ∈ A | 1 + 2a = 1 & a2 = a}

is a subalgebra of A, that is, to show the following:

(i) a, b ∈ A′ ⇒ a+ b ∈ A′;

(ii) for each s ∈ S, a ∈ A′ ⇒ sa ∈ A′;

(iii) 1 ∈ A′;

(iv) a, b ∈ A′ ⇒ ab ∈ A′;
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Indeed, (i): Suppose a and b are in A′. Then 1 + 2(a+ b) = 1 + 2a+ 2b =
1+2b = 1 and (a+ b)2 = a2+2ab+ b2 = a+2ab+ b = a(1+2b)+ b = a+ b.

(iii): 1 + 2 · 1 = 1 since this equality holds in I.

(iv): Suppose a and b are in A′. Then

1 + 2ab = 1 + 2a+ 2ab = 1 + a+ a(1 + 2b) = 1 + a+ a = 1 + 2a = 1

and (ab)2 = a2b2 = ab.

(ii) follows from (iv) since sa = (s1)a and (s1) is in A′ (since s1 is the
image of class of s under the homomorphism I → A).

From Lemma 3.1 and Theorem 3.2 we obtain:

Corollary 2.2. The variety (S ↓ CSR)∗ of commutative S-algebras satisfy-
ing the identities 1+ 2x = 1 and x2 = x is closed under non-empty colimits
in the variety (S ↓ CSR) of all commutative S-algebras.

Taking S to be the ring of natural numbers, we obtain the following
special cases of Theorem 2.2 and Corollary 2.3:

Corollary 2.3. The variety CSR∗ of commutative semirings satisfying the
identities 1 + 2x = 1 and x2 = x is coreflective in the variety ({0, 1, 2} ↓
CSR), where 1 + 2 = 1 in {0, 1, 2}.

Corollary 2.4. The variety CSR∗ above is closed under non-empty colimits
in CSR.

3 Boolean rings and distributive lattices

If an object A of ({0, 1, 2} ↓ CSR) belongs to ({0, 1} ↓ CSR) with 1 + 1 = 0
in {0, 1} making ({0, 1} ↓ CSR) = CRings2, then

{a ∈ A | 1 + 2a = 1 & a2 = a} = {a ∈ A | 2a = 0 & a2 = a}.

But if it is the case with 1 + 1 = 1 making ({0, 1} ↓ CSR) = AICSR, then

{a ∈ A | 1 + 2a = 1 & a2 = a} = {a ∈ A | 1 + a = 1 & a2 = a}.
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Therefore we obtain the commutative diagram

CRings2

��

// ({0, 1, 2} ↓ CSR)

��

AICSRoo

��

BRings // CSR∗ DLatoo

where the horizontal arrows are inclusion functors while the left-hand and
right-hand vertical arrows are the coreflections induced by the coreflection
of Corollary 2.4 represented by the middle vertical arrow. Since CRings2
and AICSR both being of the form ({0, 1} ↓ CSR) (with different 1 + 1 in
{0, 1}) are closed in CSR under non-empty colimits, we conclude that both
BRings and DLat are also closed in CSR under non-empty colimits. That is,
as promised in our Introduction, these two known results follow from what
we have done in general (in Section 2).

4 Two additional remarks

4.1. The Reader might ask, what is special about (S ↓ CSR)? The answer
consists of the following observations:

• (S ↓ CSR) is the category of commutative monoids in the monoidal
category S-mod having therefore ‘good’ colimits; indeed, its binary
coproducts are given by tensor products.

• The monoidal category structure of S-mod is determined by the fact
that it is a commutative variety of universal algebras.

• A commutative variety of universal algebras is semi-additive if and
only if it is of the form S-mod for some commutative semiring S. This
immediately follows from the equivalence 1.⇔ 5. in Theorem 2.1 of [2],
which refers to [1] for the proof.

4.2. The coreflectivity of DLat in AICSR is a ‘finitary copy’ of the
coreflectivity of the category of frames in the category of quantales, see
Section C1.1 of [3]: in fact Af on Page 479 there is the same as our {a ∈
A | 1 + a = 1 & a2 = a}.
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