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Abstract. In [6] we developed a k-theory for the category of hyperbolic
hyperfields (a category that contains a copy of the category of (pre)special
groups): this construction extends, simultaneously, Milnor’s k-theory ([20])
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Introduction

It can be said that the Algebraic Theory of Quadratic Forms (ATQF) was
founded in 1937 by E. Witt, with the introduction of the concept of the Witt
ring of a given field, constructed from the quadratic forms with coefficients
in the field: given F , an arbitrary field of characteristic ̸= 2, W (F ), the
Witt ring of F , classifies the quadratic forms over F that are regular and
anisotropic, being in one-to-one correspondence with them; thus the focus of
the theory is the quadratic forms defined on the ground field where all their
coefficients are invertible. In this way, the set of orders in F is in one-to-one
correspondence with the set of minimal prime ideals of the Witt ring of F ,
and more, the set of orders in F provided with the Harrison’s topology is a
Boolean topological space that, by the bijection above, is identified with a
subspace of the Zariski spectrum of the Witt ring of F .

Questions about the structure of Witt rings W (F ) could only be solved
about three decades after Witt’s original idea, through the introduction and
analysis of concept of Pfister form. The Pfister forms of degree n ∈ N, in
turn, are generators of the power In(F ) of the fundamental ideal I(F ) ⊆
W (F ) (the ideal determined by the anisotropic forms of even dimension).

Other finer questions about the powers of the fundamental ideal arose in
the early 1970s: J. Milnor, in a seminal article from 1970 ([20]), determines
a graduated ring k∗(F ) (from K-theory, reduced mod 2) associated with the
field F , which interpolates, through graded ring morphisms

h∗(F ) : k∗(F ) −→ H∗(F ) and s∗(F ) : k∗(F ) −→W∗(F ),

the graded Witt ring

W∗(F ) :=
⊕

n∈N
In(F )/In+1(F )

and the graded cohomology ring

H∗(F ) :=
⊕

n∈N
Hn(Gal(F s|F ), {±1}).

From Voevodski’s proof of Milnor’s conjectures, and the development
of special groups theory (SG) – an abstract (and first-order) theory of Al-
gebraic Theory of Quadratic Forms (ATFQ), introduced by M. Dickmann,
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and developed by him in partnership with F. Miraglia since the 1990s – it
has been possible to demonstrate conjectures about signatures put by M.
Marshall by T. Lam in the mid-1970s ([10], [9], [12]).

The SG theory, which faithfully codifies both the classical theory of
quadratic forms over fields and the reduced theory of quadratic forms de-
veloped from the 1980s ([17]), allows us to naturally extend the construction
of graded ring functors to all the special groups G: W (G), W∗(G), k∗(G)
([10], [13]).

The key points in the demonstration of these conjectures for (pre-ordered)
fields was a combination of methods: (i) the introduction of Boolean meth-
ods in the theory of quadratic forms through the SG theory -especially
the Boolean hull functor ([10], [11]); (ii) the encoding of the original prob-
lems posed on signatures in questions on graded Witt rings; (iii) the use of
Milnor’s isomorphisms to transpose these questions to the graded ring of k-
theory and the graded ring of cohomology; (iv) the use of Galois cohomology
methods to finalize the resolution of the encoded problem.

In [6] we developed a k-theory for the category of hyperbolic hyperfields
(a category that contains a copy of the category of (pre)special groups): this
construction extends, simultaneously, Milnor’s k-theory ([20]) and Dickmann-
Miraglia’s k-theory ([13]). An abstract environment that encapsulate all
them, and of course, provide an axiomatic approach to guide new exten-
sions of the concept of K-theory in the context of the algebraic and abstract
theories of quadratic forms is given by the concept of inductive graded rings
a concept introduced in [9] in order to provide a solution of Marshall’s
signature conjecture in realm the algebraic theory of quadratic forms for
Pythagorean fields.

The goal of this work is twofold: (i) to provide a detailed analysis of
some categories of inductive graded ring; (ii) apply this analysis to deepen
the connections between the category of special hyperfields ([6]) - equivalent
t groups ([10]) and the categories of inductive graded rings.

Outline of the work: Section 2 exposes the fundamental definitions
and results that will be analysed in the present work: multirings/hyperfields,
the K-theory of hyperfields and special groups. In Section 3 we introduce
the concept of Inductive Graded Ring (IGR), that provides an axiomatic
approach to guide new extensions of the concept of K-theory in the context
of the algebraic and abstract theories of quadratic forms, and Section 4
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establishes a more detailed analysis of the IGR category. In Section 5 we
define subcategories of Igr that mimetize the following two central aspects
of K-theories: i) the K-theory graded ring is “generated” by K1; ii) the
K-theory graded ring is defined by some convenient quotient of a graded
tensor algebra. Section 6 provides some examples of functors of quadratic
interest and Section 7 deals with the adjunction between PSG and Igrh. We
finish the work in Section 8 considering a general setting for “Marshall’s
Conjectures”, that includes the previous case of the Igr’s W∗(F ), k∗(F ) for
special hyperfields F .

We assume that the reader is familiar with some categorical results con-
cerning adjunctions: mostly are based on [3], but the reader could also con-
sult [18]. But for the benefit of the reader, we have included an appendix
where we present some categorical results needed in this work.

1 Preliminaries: special groups, hyperbolic hyperfields and
k-theory

1.1 Special Groups Firstly, we make a brief summary on special
groups. Let A be a set and ≡ a binary relation on A × A. We extend
≡ to a binary relation ≡n on An, by induction on n ≥ 1, as follows:

i) ≡1 is the diagonal relation ∆A ⊆ A×A.
ii) ≡2=≡.
iii) If n ≥ 3,

⟨a1, ..., an⟩ ≡n ⟨b1, ..., bn⟩ iff there exists x, y, z3, ..., zn ∈ A such that

⟨a1, x⟩ ≡ ⟨b1, y⟩, ⟨a2, ..., an⟩ ≡n−1 ⟨x, z3, ..., zn⟩ and
⟨b2, ..., bn⟩ ≡n−1 ⟨y, z3, ..., zn⟩

Whenever clear from the context, we frequently abuse notation and in-
dicate the afore-described extension ≡ by the same symbol.

Definition 1.1 (Special Group, 1.2 of [10]). A special group is a tuple
(G,−1,≡), where G is a group of exponent 2, i.e, g2 = 1 for all g ∈ G; −1
is a distinguished element of G, and ≡⊆ G × G × G × G is a relation (the
special relation), satisfying the following axioms for all a, b, c, d, x ∈ G:
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SG 0 ≡ is an equivalence relation on G2;

SG 1 ⟨a, b⟩ ≡ ⟨b, a⟩;
SG 2 ⟨a,−a⟩ ≡ ⟨1,−1⟩;
SG 3 ⟨a, b⟩ ≡ ⟨c, d⟩ ⇒ ab = cd;

SG 4 ⟨a, b⟩ ≡ ⟨c, d⟩ ⇒ ⟨a,−c⟩ ≡ ⟨−b, d⟩;
SG 5 ⟨a, b⟩ ≡ ⟨c, d⟩ ⇒ ⟨ga, gb⟩ ≡ ⟨gc, gd⟩, for all g ∈ G.
SG 6 (3-transitivity) the extension of ≡ for a binary relation on G3 is a

transitive relation.

A group of exponent 2, with a distinguished element −1, satisfying the
axioms SG0-SG3 and SG5 is called a proto special group; a pre special
group is a proto special group that also satisfy SG4. Thus a special group
is a pre-special group that satisfies SG6 (or, equivalently, for each n ≥ 1,
≡n is an equivalence relation on Gn).

A n-form (or form of dimension n ≥ 1) is an n-tuple of elements of
a pre-SG G. An element b ∈ G is represented on G by the form φ =
⟨a1, ..., an⟩, in symbols b ∈ DG(φ), if there exists b2, ..., bn ∈ G such that
⟨b, b2, ..., bn⟩ ≡ φ.

A pre-special group (or special group) (G,−1,≡) is:
• formally real if −1 /∈ ⋃n∈NDG(n⟨1⟩)1 ;
• reduced if it is formally real and, for each a ∈ G, a ∈ DG(⟨1, 1⟩) iff
a = 1.

Definition 1.2 (1.1 of [10]). A map (G,≡G,−1)
f
// (H,≡H ,−1) be-

tween pre-special groups is a morphism of pre-special groups or PSG-
morphism if f : G → H is a homomorphism of groups, f(−1) = −1 and
for all a, b, c, d ∈ G

⟨a, b⟩ ≡G ⟨c, d⟩ ⇒ ⟨f(a), f(b)⟩ ≡H ⟨f(c), f(d)⟩

A morphism of special groups or SG-morphism is a pSG-morphism
between the corresponding pre-special groups. The morphism f will be an
isomorphism if is bijective and f, f−1 are PSG-morphisms.

1Here the notation n⟨1⟩ means the form ⟨a1, ..., an⟩ where aj = 1 for all j = 1, ..., n.
In other words, n⟨1⟩ is the form ⟨1, ..., 1⟩ with n entries equal to 1.
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It can be verified that a special group G is formally real iff it admits
some SG-morphism f : G → 2. The category of special groups (respec-
tively reduced special groups) and their morphisms will be denoted by SG
(respectively RSG).

Definition 1.3 (2.4 [13]).

a) A reduced special group is [MC] if for all n ≥ 1 and all forms φ over G,

For all σ ∈ XG, if σ(φ) ≡ 0mod 2n then φ ∈ InG.

b) A reduced special group is [SMC] if for all n ≥ 1, the multiplication by
λ(−1) is an injection of knG in kn+1G.

1.2 Multifields/Hyperfields Roughly speaking, a multiring is a “ring”
with a multivalued addition, a notion introduced in the 1950s by Krasner’s
works. The notion of multiring was joined to the quadratic forms tools by
the hands of M. Marshall in the last decade ([19]). We gather the basic
information about multirings/hyperfields and expand some details that we
use in the context of K-theories. For more detailed calculations involving
multirings/hyperfields and quadratic forms we indicate to the reader the
reference [8] (or even [15] and [5]). Of course, multi-structures is an entire
subject of research (which escapes from the “quadratic context”), and in
this sense, we indicate the references [22], [23], [2].

Definition 1.4 (Adapted from Definition 2.1 in [19]). A multiring is a
sextuple (R,+, ·,−, 0, 1) whereR is a non-empty set, + : R×R→ P(R)\{∅},
· : R × R → R and − : R → R are functions, 0 and 1 are elements of R
satisfying:

i) (R,+,−, 0) is a commutative multigroup;

ii) (R, ·, 1) is a monoid;

iii) a0 = 0 for all a ∈ R;
iv) If c ∈ a + b, then cd ∈ ad + bd and dc ∈ da + db. Or equivalently,

(a+ b)d ⊆ ab+ bd and d(a+ b) ⊆ da+ db.

v) If the equalities holds, i.e, (a + b)d = ab + bd and d(a + b) = da + db,
we said that R is a hyperring.
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A multiring is commutative if (R, ·, 1) is a commutative monoid. A
zero-divisor of a multiring R is a non-zero element a ∈ R such that ab =
0 for another non-zero element b ∈ R. The multiring R is said to be a
multidomain if do not have zero divisors, and R will be a multifield if 1 ̸= 0
and every non-zero element of R has multiplicative inverse.

Example 1.5.

a) Suppose that (G,+, 0) is an abelian group. Defining a + b = {a + b}
and r(g) = −g, we have that (G,+, r, 0) is an abelian multigroup. In
this way, every ring, domain and field is a multiring, multidomain and
hyperfield, respectively.

b) Q2 = {−1, 0, 1} is hyperfield with the usual product (in Z) and the
multivalued sum defined by relations





0 + x = x+ 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1
1 + (−1) = (−1) + 1 = {−1, 0, 1}

c) Let K = {0, 1} with the usual product and the sum defined by relations
x+ 0 = 0 + x = x, x ∈ K and 1 + 1 = {0, 1}. This is a hyperfield called
Krasner’s hyperfield [16].

Now, another example that generalizes Q2 = {−1, 0, 1}. Since this is a
new one, we will provide the entire verification that it is a multiring:

Example 1.6 (Kaleidoscope, Example 2.7 in [8]). Let n ∈ N and define

Xn = {−n, ..., 0, ..., n} ⊆ Z.

We define the n-kaleidoscope multiring by (Xn,+, ·,−, 0, 1), where − :
Xn → Xn is restriction of the opposite map in Z, + : Xn×Xn → P(Xn)\{∅}
is given by the rules:

a+ b =





{a}, if b ̸= −a and |b| ≤ |a|
{b}, if b ̸= −a and |a| ≤ |b|
{−a, ..., 0, ..., a} if b = −a

,
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and · : Xn ×Xn → Xn is given by the rules:

a · b =
{
sgn(ab)max{|a|, |b|} if a, b ̸= 0

0 if a = 0 or b = 0
.

With the above rules we have that (Xn,+, ·,−, 0, 1) is a multiring.

Now, another example that generalizes K = {0, 1}.

Example 1.7 (H-hyperfield, Example 2.8 in [8]). Let p ≥ 1 be a prime in-
teger and Hp := {0, 1, ..., p−1} ⊆ N. Now, define the binary multioperation
and operation in Hp as follows:

a+ b =





Hp if a = b, a, b ̸= 0

{a, b} if a ̸= b, a, b ̸= 0

{a} if b = 0

{b} if a = 0

a · b = k where 0 ≤ k < p and k ≡ ab mod p.

(Hp,+, ·,−, 0, 1) is a hyperfield such that for all a ∈ Hp, −a = a. In fact,
these Hp are a kind of generalization of K, in the sense that H2 = K.

There are many natural constructions on the category of multirings as:
products, directed inductive limits, quotients by an ideal, localizations by
multiplicative subsets and quotients by ideals. Now, we present some con-
structions that will be used further. For the first one, we need to restrict
our category:

Definition 1.8 (Definition 3.1 of [5]). An hyperbolic multiring is a mul-
tiring R such that 1 − 1 = R. The category of hyperbolic multirings and
hyperbolic hyperfields will be denoted by HMR and HMF respectively.

Let F1 and F2 be two hyperbolic hyperfields. We define a new hyperbolic
hyperfield (F1 ×h F2,+,−, ·, (0, 0), (1, 1)) by the following: the underlying
set of this structure is

F1 ×h F2 := (Ḟ1 × Ḟ2) ∪ {(0, 0)}.
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For (a, b), (c, d) ∈ F1 ×h F2 we define

−(a, b) = (−a,−b),
(a, b) · (c, d) = (a · c, b · d),
(a, b) + (c, d) = {(e, f) ∈ F1 × F2 : e ∈ a+ c and f ∈ b+ d} ∩ (F1 ×h F2).

(1.1)

In other words, (a, b)+(c, d) is defined in order to avoid elements of F1×F2

of type (x, 0), (0, y), x, y ̸= 0.

Theorem 1.9 (Product of Hyperbolic Hyperfields). Let F1, F2 be hyperbolic
hyperfields and F1 ×h F2 as above. Then F1 ×h F2 is a hyperbolic hyperfield
and satisfy the Universal Property of product for F1 and F2.

In order to avoid confusion and mistakes, we denote the binary product
in HMF by F1×hF2. For hyperfields {Fi}i∈I , we denote the product of this
family by

h∏

i∈I
Fi,

with underlying set defined by

h∏

i∈I
Fi :=

(∏

i∈I
Ḟi

)
∪ {(0i)i∈I}

and operations defined by rules similar to the ones defined in 1.1. If I =
{1, ...n}, we denote

h∏

i∈I
Fi =

n∏

i=1
[h]

Fi.

Example 1.10. Note that if F1 (or F2) is not hyperbolic, then F1 ×h F2 is
not a hyperfield in general. Let F1 be a field (considered as a hyperfield),
for example F1 = R and F2 be another hyperfield. Then if a, b ∈ F1, we
have 1− 1 = {0}, so (1, a) + (−1, b) = {0} × (a− b), and

[{0} × (a− b)] ∩ (F1 ×h F2) = ∅.
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Proposition 1.11 (3.13 of [8]). Let (G,≡,−1) be a special group and define
M(G) = G∪{0} where 0 := {G}2. Then (M(G),+,−, ·, 0, 1) is a hyperfield,
where

• a · b =
{
0 if a = 0 or b = 0

a · b otherwise
• −(a) = (−1) · a

• a+ b =





{b} if a = 0

{a} if b = 0

M(G) if a = −b, and a ̸= 0

DG(a, b) otherwise

Corollary 1.12 (3.14-3.19 of [8]). The correspondence G 7→M(G) extends
to an equivalence of categoriesM : SG→ SMF , from the category of special
groups onto the category of special multifields.

Definition 1.13 (Definition 3.2 of [5]). ADickmann-Miraglia multiring
(or DM-multiring for short) 3 is a pair (R, T ) such that R is a multiring,
T ⊆ R is a multiplicative subset of R\{0}, and (R, T ) satisfies the following
properties:

DM0 R/mT is hyperbolic.

DM1 If a ̸= 0 in R/mT , then a2 = 1 in R/mT . In other words, for all
a ∈ R \ {0}, there are r, s ∈ T such that ar = s.

DM2 For all a ∈ R, (1− a)(1− a) ⊆ (1− a) in R/mT
DM3 For all a, b, x, y, z ∈ R \ {0}, if

{
a ∈ x+ b

b ∈ y + z
in R/mT,

then exist v ∈ x+ z such that a ∈ y + v and vb ∈ xy + az in R/mT .

2Here, the choice of the zero element was ad hoc. Indeed, we can define 0 := {x} for
any x /∈ G.

3The name “Dickmann-Miraglia” is given in honor to professors Maximo Dickmann
and Francisco Miraglia, the creators of the special group theory.



Inductive graded rings 11

If R is a ring, we just say that (R, T ) is a DM-ring, or R is a DM-ring.
A Dickmann-Miraglia hyperfield (or DM-hyperfield) F is a hyperfield such
that (F, {1}) is a DM-multiring (satisfies DM0-DM3). In other words, F is
a DM-hyperfield if F is hyperbolic and for all a, b, v, x, y, z ∈ F ∗,

i) a2 = 1.

ii) (1− a)(1− a) ⊆ (1− a).

iii) If

{
a ∈ x+ b

b ∈ y + z
then there exists v ∈ x+z such that a ∈ y+v and vb ∈

xy + az.

Theorem 1.14 (Theorem 3.4 of [5]). Let (R, T ) be a DM-multiring and
denote

Sm(R, T ) = (R/mT ).

Then Sm(R) is a special hyperfield (thus Sm(R, T )× is a special group).

Theorem 1.15 (Theorem 3.9 of [5]). Let F be a hyperfield satisfying DM0-
DM2. Then F satisfies DM3 if and only if satisfies SMF4. In other words,
F is a DM-hyperfield if and only if it is a special hyperfield.

In this sense, we define the following category:

Definition 1.16. A pre-special hyperfield is a hyperfield satisfying DM0,
DM1 and DM2. In other words, a pre-special hyperfield is a hyperbolic hy-
perfield F such that for all a ∈ Ḟ , a2 = 1 and (1− a)(1− a) ⊆ 1− a.

The category of pre-special hyperfields will be denoted by PSMF .

Theorem 1.17. Let G be a pre-special group and consider (M(G),+,−, 0, 1),
with operations defined by

• a · b =
{
0 if a = 0 or b = 0

a · b otherwise

• −(a) = (−1) · a

• a+b =





{b} if a = 0

{a} if b = 0

M(G) if a = −b, and a ̸= 0

DG(a, b) otherwise

Then M(G) is a pre-special multifield. Conversely, if F is a pre-special
multifield then (Ḟ ,≡F ,−1) is a pre-special group, where

⟨a, b⟩ ≡F ⟨c, d⟩ iff ab = cd and a ∈ c+ d.
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We finish this section stating the following result established in [4]

Theorem 1.18 (Arason-Pfister Hauptsatz). Let F be a special hyperfield,
then it holds APF (n), for all n ≥ 0. In more details: for each n ≥ 0 and
For each φ = ⟨a1, · · · , ak⟩, a non-empty (k ≥ 1), regular (ai ∈ Ḟ ) and
anisotropic form, if φ ∈ In(F ), then dim(φ) ≥ 2n φ ∈ In(F ), if φ ̸= ∅ is
anisotropic, then dimW,F (φ) ≥ 2n.

1.3 The K-theory for Hyperfields In this section we describe the
notion of K-theory of a hyperfield, introduced in [6] by essentially repeat-
ing the construction in [20] replacing the word “field” by “hyperfield” and
explore some of this basic properties. Apart from the obvious resemblance,
more technical aspects of this new theory can be developed (but with other
proofs) in multistructure setting in parallel with classical K-theory.

Definition 1.19 (The K-theory of a Hyperfield (3.1 of [6])). For a hyperfield
F , K∗F is the graded ring

K∗F = (K0F,K1F,K2F, ...)

defined by the following rules: K0F := Z. K1F is the multiplicative group
Ḟ written additively. With this purpose, we fix the canonical “logarithm”
isomorphism

ρ : Ḟ → K1F,

where ρ(ab) = ρ(a) + ρ(b). Then KnF is defined to be the quotient of the
tensor algebra

K1F ⊗K1F ⊗ ...⊗K1F (n times)

by the (homogeneous) ideal generated by all ρ(a)⊗ ρ(b), with a, b ̸= 0 and
b ∈ 1− a.

In other words, for each n ≥ 2,

KnF := Tn(K1F )/Q
n(K1(F )),

where
Tn(K1F ) := K1F ⊗Z K1F ⊗Z ...⊗Z K1F

and Qn(K1(F )) is the subgroup generated by all expressions of type ρ(a1)⊗
ρ(a2)⊗ ...⊗ ρ(an) such that ai+1 ∈ 1− ai for some i with 1 ≤ i ≤ n− 1.
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To avoid carrying the overline symbol, we will adopt all the conventions
used in Dickmann-Miraglia’s K-theory ([13]). Just as it happens with the
previous K-theories, a generic element η ∈ KnF has the pattern

η = ρ(a1)⊗ ρ(a2)⊗ ...⊗ ρ(an)
for some a1, ..., an ∈ Ḟ , with ai+1 ∈ 1− ai for some 1 ≤ i < n. Note that if
F is a field, then “b ∈ 1− a” just means b = 1− a, and the hyperfield and
Milnor’s K-theory for F coincide.

Lemma 1.20 (Basic Properties I (3.2 of [6])). Let F be an hyperbolic hy-
perfield. Then

a) ρ(1) = 0.

b) For all a ∈ Ḟ , ρ(a)ρ(−a) = 0 in K2F .

c) For all a, b ∈ Ḟ , ρ(a)ρ(b) = −ρ(b)ρ(a) in K2F .

d) For every a1, ..., an ∈ Ḟ and every permutation σ ∈ Sn,
ρ(aσ1)...ρ(aσi)...ρ(aσn) = sgn(σ)ρ(a1)...ρ(an) in KnF.

e) For every ξ ∈ KmF and η ∈ KnF , ηξ = (−1)mnξη in Km+nF .

f) For all a ∈ Ḟ , ρ(a)2 = −ρ(a)ρ(−1).
An element a ∈ Ḟ induces a morphism of graded rings

ωa = {ωan}n≥1 : K∗F → K∗F

of degree 1, where ωan : KnF → Kn+1F is the multiplication by ρ(a). When
a = −1, we write

ω = {ωn}n≥1 = {ω−1
n }n≥1 = ω−1.

Proposition 1.21 (Adapted from 3.3 of [13]). Let F,K be hyperbolic hy-
perfields and φ : F → L be a morphism. Then φ induces a morphism of
graded rings

φ∗ = {φn : n ≥ 0} : K∗F → K∗L,

where φ0 = IdZ and for all n ≥ 1, φn is given by the following rule on
generators

φn(ρ(a1)...ρ(an)) = ρ(φ(a1))...ρ(φ(an)).

Moreover if φ is surjective then φ∗ is also surjective, and if ψ : L → M is
another morphism then



14 K. Roberto, H. Mariano

a) (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ and Id∗ = Id.

b) For all a ∈ Ḟ the following diagram commute:

KnF

φn

��

ωan // Kn+1F

φn+1

��

KnL
ω
φ(a)
n

// Kn+1L

c) For all n ≥ 1 the following diagram commute:

KnF

φn

��

ω−1
n // Kn+1F

φn+1

��

KnL
ω−1
n

// Kn+1L

In the hyperfield context we also have the reduced K-theory graded
ring k∗F = (k0F, k1F, ..., knF, ...), which is defined by the rule knF :=
KnF/2KnF for all n ≥ 0. Of course for all n ≥ 0 we have an epimorphism
q : KnF → knF simply denoted by q(a) := [a], a ∈ KnF . It is immedi-
ate that knF is additively generated by {[ρ(a1)]..[ρ(an)] : a1, ..., an ∈ Ḟ}.
We simply denote such a generator by ρ̃(a1)...ρ̃(an) or even ρ(a1)...ρ(an)
whenever the context allows it.

We also have some basic properties of the reduced K-theory, which proof
is just a translation of 2.1 of [13]:

Lemma 1.22 (Adapted from 2.1 [13]). Let F be a hyperbolic hyperfield,
x, y, a1, ..., an ∈ Ḟ and σ be a permutation on n elements.

a) In k2F , ρ(a)
2 = ρ(a)ρ(−1). Hence in kmF , ρ(a)

m = ρ(a)ρ(−1)m−1,
m ≥ 2;
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b) In k2F , ρ(a)ρ(b) = ρ(b)ρ(a);

c) In knF , ρ(a1)ρ(a2)...ρ(an) = ρ(aσ1)ρ(aσ2)...ρ(aσn);

d) For n ≥ 1 and ξ ∈ knF , ξ2 = ρ(−1)nξ;
e) If F is a real reduced hyperfield, then x ∈ 1+y and ρ(y)ρ(a1)...ρ(an) = 0

implies
ρ(x)ρ(a1)ρ(a2)...ρ(an) = 0.

Moreover the results in Proposition 1.21 continue to hold if we took
φ∗ = {φn : n ≥ 0} : k∗F → k∗L.

Proposition 1.23 (3.5 of [6]). Let F be a (hyperbolic) hyperfield and T ⊆ F
be a multiplicative subset such that F 2 ⊆ T . Then, for each n ≥ 1

Kn(F/mT
∗) ∼= kn(F/mT

∗).

Theorem 1.24 (3.6 of [6]). Let F be a hyperbolic hyperfield and T ⊆ F be a
multiplicative subset such that F 2 ⊆ T . Then there is an induced surjective
morphism

k(F )→ k(F/mT
∗).

Moreover, if T = F 2, then

k(F )
∼=→ k(F/mḞ

2).

2 Inductive graded rings: An abstract approach

After the three K-theories defined in the above sections, it is desirable (or,
at least, suggestive) the rise of an abstract environment that encapsule all
them, and of course, provide an axiomatic approach to guide new extensions
of the concept of K-theory in the context of the algebraic and abstract
theories of quadratic forms. The inductive graded rings fits this purpose.
Here we will present two versions. The first one is:

Definition 2.1 (Inductive Graded Rings First Version (adapted from Def-
inition 9.7 of [10])). An inductive graded ring (or Igr for short) is a
structure R = ((Rn)n≥0, (hn)n≥0, ∗nm) where

i) R0
∼= F2.
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ii) Rn has a group structure (Rn,+, 0,⊤n) of exponent 2 with a distin-
guished element ⊤n.

iii) hn : Rn → Rn+1 is a group homomorphism such that hn(⊤n) = ⊤n+1.

iv) For all n ≥ 1, hn = ∗1n(⊤1, ).

v) The binary operations ∗nm : Rn × Rm → Rn+m, n,m ∈ N induces a
commutative ring structure on the abelian group

R =
⊕

n≥0

Rn

with 1 = ⊤0.

vi) For 0 ≤ s ≤ t define

hts =

{
IdRs if s = t

ht−1 ◦ ... ◦ hs+1 ◦ hs if s < t.

Then if p ≥ n and q ≥ m, for all x ∈ Rn and y ∈ Rm,

hpn(x) ∗ hqm(y) = hp+qn+m(x ∗ y).

A morphism between Igr’s R and S is a pair f = (f, (fn)n≥0) where
fn : Rn → Sn is a morphism of pointed groups and

f =
⊕

n≥0

fn : R→ S

is a morphism of commutative rings with unity. The category of inductive
graded rings (in first version) and their morphisms will be denoted by Igr.

A first consequence of these definitions is that: if

f : ((Rn)n≥0, (hn)n≥0, ∗nm)→ ((Sn)n≥0, (ln)n≥0, ∗nm)

is a morphism of Igr’s then fn+1 ◦ hn = ln ◦ fn.

R0
h0 //

f0

��

R1
h1 //

f1

��

R2
h2 //

f2

��

...
hn−1

// Rn
hn //

fn

��

Rn+1
hn+1

//

fn+1

��

...

S0
l0 // S1

l1 // S2
l2 // ...

ln−1
// Sn

ln // Sn+1
ln+1

// ...
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In fact, since R0
∼= F2 ∼= S0 and f(1) = 1, then f0 : R0 → S0 is the unique

abelian group isomorphism and f1 ◦ h0 = l0 ◦ f0. If n ≥ 1, for all an ∈ Rn
holds

fn+1 ◦ hn(an) = fn+1 ◦ (∗1n(⊤1, an)) = f1(⊤1) ∗1n fn(an)
= ⊤1 ∗1n fn(an) = ln(fn(an)) = ln ◦ fn(an).

Example 2.2.

a) Let F be a field of characteristic not 2. The main actors here areWF , the
Witt ring of F and IF , the fundamental ideal of WF . Is well know that
InF , the n-th power of IF is additively generated by n-fold Pfister forms
over F . Now, let R0 =WF/IF ∼= F2 and Rn = InF/In+1F . Finally, let
hn = ⊗ ⟨1, 1⟩. With these prescriptions we have an inductive graded
ring R associated to F .

b) The previous example still works if we change the Witt ring of a field F
for the Witt ring of a (formally real) special group G.

Concerning k-theories, we register the followings:

Theorem 2.3.

a) Let F be a field. Then kmil∗ F (the reduced Milnor K-theory) is an induc-
tive graded ring.

b) Let G be a special group. Then kdm∗ G (the Dickmann-Miraglia K-theory
of G) is an inductive graded ring.

c) Let F be a hyperbolic hyperfield. Then kmult∗ F (our reduced K-theory) is
an inductive graded ring.

Theorem 2.4 (Theorem 2.5 in [12]). Let F be a field. The functor G :
Field2 → SG provides a functor k′dm∗ : Field2 → Igr (the special group
K-theory functor) given on the objects by k′dm∗ (F ) := kdm∗ (G(F )) and on the
morphisms f : F → K by k′dm∗ (f) := G(f)∗ (in the sense of Lemma 3.3
of [13]). Moreover, this functor commutes with the functors G and k, i.e,
for all F ∈ Field, k′dm∗ (F ) = kdm∗ (G(F )) ∼= kmil∗ (F ).

Theorem 2.5. Let G be a special group. The equivalence of categories
M : SG→ SMF induces a functor k′mult∗ : SG→ Igr given on the objects by
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k′mult∗ (G) := kmult∗ (M(G)) and on the morphisms f : G→ H by k′mult∗ (f) :=
kmult∗ (M(f)). Moreover, this functor commutes with M and kdm, i.e, for
all G ∈ SG, k′mult∗ (G) = kmult∗ (M(G)) ∼= kdm∗ (G).

Theorem 2.6 (Interchanging K-theories Formulas). Let F ∈ Field2. Then

kmil(F ) ∼= kdm(G(F )) ∼= kmult(M(G(F ))).

If F is formally real and T is a preordering of F , then

kdm(GT (F )) ∼= kmult(M(GT (F ))).

Moreover, since M(G(F )) ∼= F/mḞ
2 and M(GT (F )) ∼= F/mT

∗, we get

kmil(F ) ∼= kdm(G(F )) ∼= kmult(F/mḞ
2) and

kdm(GT (F )) ∼= kmult(F/mT
∗).

There is an alternative Definition for Igr with a first-order theoretic fla-
vor. It is a technical framework that allows achieving some model-theoretic
results.

Before define it, we need some preparation. First of all, we set up the
language. Here, we will work with the poli-sorted framework (as established
in Chapter 5 of [1]), which means the following:

Let S be a set (of sorts). For each s ∈ S assume a countable set Vars
of variables of sort s (with the convention if s ̸= t then Vars ∩Vart = ∅).
For each sort s ∈ S an equality symbol =s (or just =); the connectives
¬,∧,∨,→ (not, and, or, implies); the quantifiers ∀, ∃ (for all, there exists).

A finitary S-sorted language (or signature) is a set L = (C,F ,R)
where:

i) C is the set of constant symbols. For each c ∈ C we assign an element
s ∈ S, the sort of c;

ii) F is the set of functional symbols. For each f ∈ F we assign elements
s, s1, ..., sn ∈ S, we say that f has arity s1 × ...× sn and s is the value
sort of f ; and we use the notation f : s1 × ...× sn → s.

iii) R is the set of relation symbols. c ∈ C we assign elements s1, ..., sn ∈ S,
the arity of R; and we say that R has arity s1 × ...× sn.

A L-structureM is, in this sense, prescribed by the following data:
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i) The domain or universe of M, which is an S-sorted set |M| :=
(Ms)s∈S .

ii) For each constant symbol c ∈ C of arity s, an element cM ∈Ms.

iii) For each functional symbol f ∈ F , f : s1 × ... × sn → s, a function
fM :Ms1 × ...×Msn →Ms.

iv) For each relation symbol R ∈ R of arity s1 × ... × sn a relation, i.e. a
subset RM ⊆Ms1 × ...×Msn .

A L-morphism φ :M→ N is a sequence of functions φ = (φs)s : |M| →
|N | such that

i) for all c ∈ C of arity s, φs(c
M) = cN ;

ii) for all f : s1 × ... × sn → s, if (a1, ..., an) ∈: Ms1 × ... × Msn , then
φs(f

M(a1, ..., an)) = fN (φs1(a1), ..., φsn(an));

iii) for allR of arity s1×...×sn, if (a1, ..., an) ∈ RM then (φ(a1), ..., φ(an)) ∈
RN .

The category of L-structures and L-morphism in the poli-sorted language
L will be denoted by Strs(L).

The terms, formulas, occurrence and free variables definitions for the
poli-sorted case are similar to the usual (single-sorted) first order ones. For
example, the terms are defined as follows:

i) variables x ∈ Vars and constants c ∈ Cs are terms of value sort s;

ii) if s⃗ = ⟨s1, ..., sn, s⟩ ∈ Sn+1, f ∈ F with f : s1 × ... × sn → s, and
τ1, ..., τn are terms of value sorts s1, ..., sn respectively, then f(τ1, ..., τn)
is a term of sort s.

As usual, we may write τ : s to indicate that the term τ has value sort s.

For the formulas:

i) if x, y ∈ Vars then x = y is a formula; if s⃗ = ⟨s1, ..., sn⟩ ∈ Sn, R ∈ R of
arity s1 × ...× sn and τ1, ..., τn are terms of sort s1, ..., sn respectively,
then R(τ1, ..., τn) is a formula. These are the atomic formulas.

ii) If φ1, φ2 are formulas, then ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 and φ1 → φ2 are
formulas.
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iii) If φ is a formula and x ∈ Vars (s ∈ S), then ∀xφ and ∃xφ are formulas.

In our particular case, the set of sorts will be just N. Then, for each
n,m ≥ 0, we set the following data:

i) 0n,⊤n are constant symbols of arity n. We use 00 = 0 and ⊤0 = 1.

ii) +n : n× n→ n is a binary operation symbol.

iii) hn : n→ (n+ 1) and ∗n,m : n×m→ (n+m) are functional symbols.

The (first order) language of inductive graded rings Ligr is just
the following language (in the poli-sorted sense):

Ligr := {0n,⊤n,+n, hn, ∗nm : n,m ≥ 0}.
The (first order) theory of inductive graded rings T (Ligr) is the

Ligr-theory axiomatized by the following Ligr-sentences, where we use ·n :
0× n→ n as an abbreviation for ∗0n:
i) For n ≥ 0, sentences saying that “+n, 0n,⊤n induces a pointed left
F2-module”:

∀x : n∀ y : n∀ z : n((x+n y) +n z = x+n (y +n z))

∀x : n(x+n 0n = x)

∀x : n∀ y : n(x+n y = y +n x)

∀x : n(x+n x = 0n)

∀x : n(1 ·n x = x)

∀x : n∀ y : n∀ a : 0(a ·n (x+n y) = a ·n x+n a ·n y)
∀x : n∀ a : 0∀ b : 0((a+0 b) ·n x = a ·n x+n b ·n x)

ii) For n ≥ 0, sentences saying that “hn is a pointed F2-morphism”:

∀x : n∀ y : n(hn(x+n y) = hn(x) +n+1 hn(y))

∀x : n∀ a : 0(hn(a ·n x) = a ·n hn(x))
hn(⊤n) = ⊤n+1

iii) Sentences saying that “R0
∼= F2”:

00 ̸= ⊤0

∀x : 0(x = 00 ∨ x = ⊤0)
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iv) Using the abbreviation ∗n,m(x, y) = x ∗n,m y, we write for n,m ≥ 0
sentences saying that “∗n,m is a biadditive function compatible with
hn”:

∀x : n∀ y : n∀ z : m(((x+n y) ∗nm z) = (x ∗mn z +n+m y ∗nm z))

∀x : n∀ y : m∀ z : m((x ∗mn (y +m z)) = (x ∗nm y +n+m x ∗nm z))

∀x : n∀ y : m(hn+m(x ∗nm y) = hn(x) ∗nm hm(y))

v) Sentences describing “the induced ring with product induced by ∗n,m,
n,m ≥ 0”:

∀x : n∀ y : m∀ z : p((x ∗n,m y) ∗(m+n),p z = x ∗n,(m+p) (y ∗m,p z))
∀x : n∀ y : m(x ∗n,m y = y ∗m,n x)

vi) For n ≥ 1, sentences saying that “hn = ⊤1 ∗1n ”:

∀x : n(hn(x) = ⊤1 ∗1n x)

Now we are in a position to define another version of Igr:

Definition 2.7 (Inductive Graded Rings Second Version). An inductive
graded ring (or (Igr) for short) is a model for T (Ligr), or in other words, a
Ligr-structureR such thatR |=Ligr T (Ligr). We denote by Igr2 the category
of Ligr-structures and Ligr-morphisms.

Again, after some straightforward calculations we can check:

Theorem 2.8. The categories Igr, Igr2 are equivalent.

Remark 2.9. Following a well-known procedure, it is possible to correspond
theories on poly-sorted first-order languages with theories on traditional
(single-sorted) first-order languages in such a way that the corresponding
categories of models are equivalent. This allows a useful interchanging be-
tween model-theoretic results, in both directions. In particular, in the fol-
lowing, we will freely interchange the two notions of Igr indicated in this
Section.

Theorem 2.6 gives a hint that the category of Igr is a good abstract
environment for studying questions of “quadratic flavour”. So a better
understanding of categories of Igr’s and its applications to quadratic forms
theories is the main purpose of the next Sections in this work.
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3 The first properties of Igr

In this section we discuss the theory of Igr’s. Constructions like products,
limits, colimits, ideals, quotients, kernel and image are not new and are
obtained in a very straightforward manner (basically, putting those struc-
tures available for rings in a “coordinatewise” fashion), then in order to gain
speed, we will present these facts leaving more detailed proofs to the reader.

Denote: PModF2 the category of pointed F2-modules, Ring the category
of commutative rings with unity and morphism that preserves these units
and Ring2 the full subcategory of the associative F2-algebras. We have a
functorial correspondence Ring2 → Igr, given by the following diagram:

A

7→f

��

F2
! //

id

��

A
id //

f

��

A
id //

f

��

...
id // A

id //

f

��

...

B F2
! // B

id // B
id // ...

id // B
id // ...

Here A is a PModF2 where ⊤n = 1, n ≥ 1 and ⊤0 = 1 ∈ F2.

Definition 3.1. The trivial graded ring functor T : Ring2 → Igr is the
functor defined for f : A → B by T (A)0 := F2, T (f)0 := idF2 and for all
n ≥ 1 we set T (A)n = A and T (f)n := f .

Definition 3.2. We define the associated F2-algebra functor A : Igr→
Ring2 is the functor defined for f : R→ S by

A(R) := RA = lim−→
n≥0

Rn and A(f) = fA := lim−→
n≥0

fn.

More explicitly, A(R) = (RA, 0, 1,+A, ·), where

i) RA = lim−→
n≥0

Rn,

ii) 0 = [(0, 0)] and 1 = [(1, 0)],

iii) given [(an, n)], [(bm,m)] ∈ RA and setting d ≥ m,n we have

[(an, n)] + [(bm,m)] = [(hnd(an) + hmd(bm), d)]
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iv) given [(an, n)], [(bm,m)] ∈ RA, we have

[(an, n)] · [(bm,m)] = [(an ∗nm bm, n+m)].

Proposition 3.3.

i) The functor A is the left adjunct to T.
ii) The functor T is full and faithful.

iii) The composite functor A ◦ T is naturally isomorphic to the functor
1Ring2

.

Proof. Let R ∈ Igr. We have

T(A(R)) = T

(
lim−→
m≥0

Rm

)
.

In other words, for all n ≥ 1

T

(
lim−→
m≥0

Rm

)

n

:= lim−→
m≥0

Rm.

Then, for all n ≥ 1 we have a canonical embedding

η(R)n : Rn → lim−→
m≥0

Rm = T

(
lim−→
m≥0

Rm

)

n

,

providing a morphism

η(R) : R→ lim−→
m≥0

Rm = T

(
lim−→
m≥0

Rm

)
.

For f ∈ Igr(R,S), taking n ≥ 1 we have a commutative diagram

Rn
fn

//

η(R)n

��

Sn

η(S)n

��

lim−→
m≥0

Rm
lim−→
m≥0

fm
// lim−→
m≥0

Sm
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with the convention that η(R)0 = idF2 . Then it is legitimate the definition
of a natural transformation η : 1Igr → T ◦ A given by the rule R 7→ η(R).

Now let A ∈ Ring2 and g ∈ Ring2(R,T(A)). Then for each n ≥ 0,
there is a morphism gn : Rn → T(A)n = A and by the universal property of
inductive limit we get a morphism

lim−→
m≥0

gn : lim−→
m≥0

Rm → A.

In fact, lim−→
m≥0

gn = A(g).

Now, using the fact that η(R)n is the morphism induced by the inductive
limit we have for all n ≥ 0 the following commutative diagram

Rn

gn

��

η(B)n
// lim−→
m≥0

Rm

lim−→
m≥0

gn

��

A

In other words, η(B)n is the canonical morphism commuting the diagram

Rn

gn

��

η(B)n
// T(A(R))

T(A(gn))

��

T(A)

and hence, A is the left adjoint of T, proving item (i). By the very Definition
of A and T we get item (iii), and using Proposition 7.13 we get item (ii).

Using Proposition 7.13 (and its dual version) we get the following Corol-
lary.
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Corollary 3.4.

i) T : Ring2 → Igr preserves all projective limits.

ii) If I is such that Igr is I-inductively complete then for {Ai}i∈I in Igr
we have

lim−→
i∈I

Ai ∼= A
(
lim−→
i∈I
T(Ai)

)
.

iii) F2 ∈ Ring2 is the initial object in Ring2.

iv) 0 ∈ Ring2 is the terminal object in Ring2.

v) T(F2) is the initial object in Igr.

vi) T(0) is the terminal object in Igr.

Now we discuss (essentially) the limits and colimits in Igr. Fix a non-
empty set I and let {(Ri,⊤i, hi)}i∈I be a family of Igr’s. We start with the
construction of the Igr-product

R =
∏

i∈I
Ri.

For this, we define R0
∼= F2 and for all n ≥ 1, we define

Rn :=
∏

i∈I
(Ri)n and ⊤n :=

∏

i∈I
(⊤i)n.

In the sequel, we define h0 : F2 → R1 as the only possible morphism and
for n ≥ 1, we define hn : Rn → Rn+1 by

hn :=
∏

i∈I
(hi)n.

Definition 3.5.

i) The space of orderings, XR, of the Igr R, is the set of Igr-morphisms
Igr(R,T(F2). By the Proposition 3.3.(i), we have a natural bijection
Igr(R,T(F2) ∼= Ring2(A(R),F2), thus considering the discrete topolo-
gies on the F2-algebras A(R),F2 and transporting the boolean topology
in Ring2(A(R),F2), we obtain a boolean topology on the space of or-
derings XR = Igr(R,T(F2)).



26 K. Roberto, H. Mariano

ii) The boolean hull, B(R), of the Igr R, is the boolean ring canonically
associated to the space of orderings of R by Stone duality: B(R) :=
C(XR,F2).

iii) A Igr R is called formally real if XR ̸= ∅ (or, equivalently, if B(R) ̸=
0).

Proposition 3.6. Let I be a non-empty set and {(Ri, hi)}i∈I be a family
of Igr’s. Then

R =
∏

i∈I
Ri

with the above rules is an Igr. Moreover it is the product in the category
Igr.

Proof. Using Definition 2.1 is straightforward to verify that (R,⊤n, hn) is
an Igr. Note that for each i ∈ I, we have an epimorphism πi : R→ Ri given
by the following rules: for each n ≥ 0 and each (xi)i∈I ∈ Rn, we define

(πi)n((xi)i∈I) := xi.

Now, let (Q, {qi}i∈I) be another pair with Q being an Igr and qi : Q → Ri
being a morphism for each i ∈ I. Given i ∈ I and n ≥ 0, since Rn :=∏
i∈I(Ri)n is the product in the category of pointed F2-modules, we have

an unique morphism (q)n : (Q)n → (R)n such that (πi)n ◦ (q)n = (qi)n. Set
qn := ((qi)i∈I)n. By construction, q is the unique Igr-morphism such that
πi◦q = qi, completing the proof that R is in fact the product in the category
Igr.

Proposition 3.7.

i) Let R be an Igr and let X ⊆ R =
⊕
n∈N

Rn. Then there exists the

inductive graded subring generated by X (notation : [X]
iX
↪→

R): this is the least inductive graded subring of R such that ∀n ∈ N,
X ∩Rn ⊆ [X]n.

ii) Let I be a small category and R : R → Igr be a diagram. Then there
exists lim←−i∈I Ri in the category Igr.

Proof.
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i) It is enough consider SX , the F2-subalgebra of (
⊕

n∈NRn, ∗) generated
by X ∪ {⊤1} ⊆

⊕
n∈NRn and set ∀n ∈ N, [X]n := sx ∩Rn.

ii) Just define lim←−i∈I Ri as the inductive graded subring of
∏
i∈obj(I)Ri

generated by XD =
⊕

n∈NXn and Xn := lim←−i∈I(Ri)n (projective limit

of pointed F2-algebras).

Now we construct the Igr-tensor product of a finite family of Igr’s, {Ri :
i ∈ I}

R =
⊗

i∈I
Ri.

For this, we define R0
∼= F2 and for all n ≥ 1, we define

Rn :=
⊗

i∈I
(Ri)n,

(⊗i∈Iai) ∗n,k (⊗i∈Ibi) := ⊗i∈I(ai ∗in,k bi)

and ⊤n := ⊗i∈I(⊤i)n.
In particular, if I = ∅, then Rn = {0}, n ≥ 1. In the sequel, we define
h0 : F2 → R1 as the only possible morphism and for n ≥ 1, we define
hn : Rn → Rn+1 by

hn :=
⊗

i∈I
(hi)n.

In other words, for a generator
⊗

i∈I xi ∈ Rn, we have

hn (⊗i∈Ixi) :=
⊗

i∈I
(hi)n(xi).

Proposition 3.8. Let I be a finite set and {(Ri, hi)}i∈I be a family of Igr’s.
Then

R =
⊗

i∈I
Ri

with the above rules is an Igr. Moreover it is the coproduct in the category
Igr.
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Now suppose that (I,≤) is an upward directed poset and that ((Ri, hi), φij)i≤j∈I
is an inductive system of Igr’s. We define the inductive limit

R = lim−→
i∈I

Ri

by the following: for all n ≥ 0 define

Rn := lim−→
i∈I

(Ri)n.

Note that
R0 := lim−→

i∈I
(Ri)0 ∼= lim−→

i∈I
F2 ∼= F2.

In the sequel, for n ≥ 1 we define hn : Rn → Rn+1 by

hn := lim−→
i∈I

(hi)n.

Proposition 3.9. Let (I,≤) is an upward directed poset and ((Ri, hi), φij)i∈I
be a directed family of Igr’s. Then

R = lim−→
i∈I

Ri

with the above rules is an Igr. Moreover, it is the inductive limit in the
category Igr.

Proposition 3.10. The general coproduct (general tensor product) of a
family {Ri : i ∈ I} in the category Igr is given by the combination of
constructions: ⊗

i∈I
Ri := lim−→

I′∈Pfin(I)

⊗

i∈I′
Ri.

After discussing directed inductive colimits and coproducts, we will deal
with ideals, quotients, and coequalizers.

Definition 3.11. Given R ∈ Igr and (Jn)n≥0 where Jn ⊆ Rn for all n ≥ 0.
We say that J is a graded ideal of R where

J :=
⊕

n≥0

Jn ⊆
⊕

n≥0

Rn

is an ideal of (R, ∗).
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In particular, for all n ≥ 0, Jn ⊆ Rn is a graded F2-submodule of
(Rn,+n, 0n). For each X ⊆ R, there exists the ideal generated by X,
denoted by ⟨X⟩. It is the smaller graded ideal of R such that for all n ≥ 0,
(X ∩Rn) ⊆ [X]n. For this, just consider ⟨X⟩, the ideal of (R, ∗) generated
by X ⊆ R and define ⟨X⟩n := ⟨X⟩ ∩Rn.
Definition 3.12. Let R,S be Igr’s and f : R → S be a morphism. We
define the kernel of f , notation Ker(f) by

Ker(f)n := {x ∈ Rn : fn(x) = 0}

and image of f , notation Im(f) by

Im(f)n := {fn(x) ∈ Sn : x ∈ Rn} .

Of course, Ker(f) ⊆ R is an ideal and Im(f) ⊆ S is an Igr.
Given R ∈ Igr and J = (Jn)n≥0 a graded ideal of R, we define R/J ∈ Igr,

the quotient inductive graded ring of R by J : for all n ≥ 0, (R/J)n :=
Rn/Jn, where the distinguished element is ⊤n +n Jn. We have a canonical
projection qJ : R → R/J , “coordinatewise surjective” and therefore, an
Igr-epimorphism.

Proposition 3.13 (Homomorphism Theorem). Let R,S be Igr’s and f :
R → S be a morphism. Then there exist an unique monomorphism f :
R/Ker(f)→ S commuting the following diagram:

R
f

//

q

��

S

R/Ker(f)

f

??

where q is the canonical projection. In particular R/Ker(f) ∼= Im(f).

Proposition 3.14. Let R
f

⇒
g
S be Igr-morphisms and consider qJ : S →

S/J the quotient morphism where J := ⟨X⟩ is the graded ideal generated by
Xn := {fn(a)− gn(a) : a ∈ Rn}, n ∈ N. Then qJ is the coequalizer of f, g.
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Proposition 3.15. Given R,S ∈ Igr and f ∈ Igr(R,S).

i) f is a Igr-monomorphism whenever for all n ≥ 0 fn : Rn → Sn is a
monomorphism of pointed F2-modules iff for all n ≥ 0, fn : Rn → Sn
is an injective homomorphism of pointed F2-modules.

ii) f is a Igr-epimorphism whenever for all n ≥ 0 fn : Rn → Sn is a
epimorphism of pointed F2-modules iff for all n ≥ 0, fn : Rn → Sn is a
surjective homomorphism of pointed F2-modules.

iii) f is a Igr-isomorphism iff for all n ≥ 0 fn : Rn → Sn is a isomorphism
of pointed F2-modules iff for all n ≥ 0, fn : Rn → Sn is a bijective
homomorphism of pointed F2-modules.

Definition 3.16. We denote Igrfin the full subcategory of Igr such that

Obj(Igrfin) = {R ∈ Obj(Igr) : |Rn| < ω for all n ≥ 1} .

Remark 3.17. Of course,



R ∈ Obj(Igr) :

∣∣∣∣∣∣
⊕

n≥1

Rn

∣∣∣∣∣∣
< ω



 ̸= Obj(Igrfin),

for example, in 2.6(a), if F is a Euclidian field (for instance, any real closed
field), then

⊕
n∈N

InF/In+1F ∼= F2[x], thus the graded Witt ring of F (see

definition 5.9) W∗(F ) ∈ Obj(Igrfin) but F2[x] is not finite.

4 Relevant subcategories of Igr

The aim of this section is to define subcategories of Igr that mimetize the
following two central aspects of K-theories:

1. The K-theory graded ring is “generated” by K1;

2. The K-theory graded ring is defined by some convenient quotient of a
graded tensor algebra.
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Our desired category will be the intersection of two subcategories. The first
one is obtained after we define the graded subring generated by the
level 1 functor

1 : Igr→ Igr.

We define it as follow: for an object R = ((Rn)n≥0, (hn)n≥0, ∗nm),

i) 1(R)0 := R0
∼= F2,

ii) 1(R)1 := R1,

iii) for n ≥ 2,

1(R)n := {x ∈ Rn : x =

r∑

j=1

a1j ∗11 ... ∗11 anj ,

with aij ∈ R1, 1 ≤ i ≤ n, 1 ≤ j ≤ r for some r ≥ 1}.

Note that for all n ≥ 2, Rn is generated by the expressions of type

d1 ∗11 d2 ∗11 ... ∗11 dn, di ∈ R1, i = 1, ..., n.

Of course, 1(R) provides an inclusion ι1(R) : 1(R) → R in the obvious
way.

On the morphisms, for f ∈ Igr(R,S), we define 1(f) ∈ Igr(1(R),1(S))
by the restriction 1(f) = f ↿1(R). In other words, 1(f) is the only Igr-
morphisms that makes the following diagram commute:

1(R)
ι1(R)

//

1(f)

��

R

f

��

1(S) ι1(S)
// S

Definition 4.1. We denote Igr1 the full subcategory of Igr such that

Obj(Igr1) = {R ∈ Igr : ι1(R) : 1(R)→ R is an isomorphism}.
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Example 4.2.

i) If A is a F2-algebra, then T(A) ∈ obj(Igr1).
ii) If F is an hyperbolic hyperfield, then k∗(F ) ∈ obj(Igr1).
iii) If F is a special hyperfield (equivalently, G = F \ {0} is a special

group), then the graduate Witt ring of F (see Definition 5.9) W∗(F ) ∈
obj(Igr1).

iv) If F is a field with char(F ) ̸= 2, then, by a known result of Vladimir
Voevodski,

H∗(Gal(F s|F ), {±1}) ∈ obj(Igr1).

Proposition 4.3.

i) For each R ∈ Igr we have that ι1(1(R)) : 1(1(R))→ 1(R) is the identity
arrow.

ii) 1 ◦ 1 = 1.

iii) The functor 1 : Igr→ Igr1 is the right adjoint of the inclusion functor
j1 : Igr1 → Igr.

iv) j1 : Igr1 → Igr creates inductive limits and to obtain the projective
limits in Igr1 is sufficient restrict the projective limits obtained in Igr:

lim←−
i∈I

Ri ∼=
(
lim←−
i∈I

j1(Ri)

)

1

lim←−
i∈I

j1(Ri)

−−−−−−→ lim←−
i∈I

j1(Ri).

Proof. Similar to Proposition 3.3.

Now we define the second subcategory. We define the quotient graded
ring functor

Q : Igr→ Igr

as follow: for a object R = ((Rn)n≥0, (hn)n≥0, ∗nm), Q(R) := R/T , where
T = (Tn)n≥0 is the ideal generated by {(⊤1+1 a)∗11 a ∈ R2 : a ∈ R1}. More
explicit,

i) T0 := {00} ⊆ R0,

ii) T1 := {01} ⊆ R1,
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iii) for n ≥ 2, Tn ⊆ Rn is the pointed F2-submodule generated by

{x ∈ Rn : x = yl ∗l1 (⊤1 +1 a1) ∗11 a1 ∗1r zr,
with a1 ∈ R1, yl ∈ Rl, zr ∈ Rr, l + r = n− 2}.

Of course, Q(R) provides a projection πR : R → Q(R) in the obvious
way.

On the morphisms, for f ∈ Igr(R,S), we define Q(f) ∈ Igr(Q(R),Q(S))
by the only Igr-morphisms that makes the following diagram commute:

R
πR //

f

��

Q(R)

Q(f)

��

S πS
// Q(S)

Definition 4.4. We denote Igrh the full subcategory of Igr such that

Obj(Igrh) = {R ∈ Igr : πR : R→ Q(R) is an isomorphism}.

Remark 4.5. Note that R ∈ obj(Igrh) iff for each a ∈ R1, a ∗11 ⊤1 =
a∗11a ∈ R2. Each R satisfying this condition is, in some sense, “hyperbolic”
(see Proposition 6.2): this is the motivation of the index “h”.

Example 4.6. i) Let A be a F2-algebra. Then T(A) ∈ obj(Igrh) iff A is
a boolean ring (i.e., ∀a ∈ A, a2 = a).

ii) If F is an hyperbolic hyperfield, then k∗(F ) ∈ obj(Igrh).
iii) If F is a special hyperfield (equivalently, G = F \{0} is a special group),

then W∗(F ) ∈ obj(Igrh).
iv) If F is a field with char(F ) ̸= 2, thenH∗(Gal(F s|F ), {±1}) ∈ obj(Igrh).
Proposition 4.7.

i) For each R ∈ Igr we have that πQ(R) : Q(R)→ Q(Q(R)) is an isomor-
phism.
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ii) Q ◦ Q = Q.
iii) The functor Q : Igr → Igrh is the left adjoint of the inclusion functor

jq : IgrQ → Igr.

iv) jq : Igrh → Igr creates projective limits and to obtain the inductive
limits in Igrh is sufficient restrict the inductive limits obtained in Igr:

lim−→
i∈I

jq(Ri)

lim−→
i∈I

jq(Ri)

−−−−−−→
(
lim−→
i∈I

jq(Ri)

)

Q

∼= lim−→
i∈I

Ri.

Moreover, jq : Igrh → Igr creates filtered inductive limits and quotients
by graded ideals.

Example 4.8. Are examples of inductive graded rings in Igr+:

i) T(A), where A is a boolean ring;

ii) k∗(F ), where F is an hyperbolic hyperfield;

iii) W∗(F ), where F is an special hyperfield;

iv) H∗(Gal(F s|F ), {±1}), where F is a field with char(F ) ̸= 2.

Definition 4.9 (The Category Igr+). We denote by Igr+ the full subcate-
gory of Igr such that

Obj(Igr+) = Obj(Igr1) ∩Obj(Igrh).

We denote by j+ : Igr+ → Igr the inclusion functor.

Remark 4.10.

i) Note that the notion of an Igr, R, be in the subcategory Igrh can be
axiomatized by a first-order (finitary) sentence in L, the polysorted
language for Igr’s described earlier:

∀a : 1, a ∗11 a = ⊤1 ∗11 a

On the other hand, the concepts R ∈ Igr1 and R ∈ Igr+ are axioma-
tized by Lω1,ω-sentences.

ii) Note that the subcategory Igr+ ↪→ Igr is closed by filtered inductive
limits.
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In order to think of an object in Igr+ as a graded ring of “K-theoretic
type”, we make the following convention.

Definition 4.11 (Exponential and Logarithm of an Igr). Let R ∈ Igr+
and write R1 multiplicatively by (Γ(R), ·, 1,−1), i.e, fix an isomorphism
eR : R1 → Γ(R) in order that eR(⊤) = −1 and eR(a+ b) = a · b. Such iso-
morphism eR is called exponential of R and lR = e−1

R is called logarithm
of R. In this sense, we can write R1 = {l(a) : a ∈ Γ(R)}. We also denote
l(a) ∗11 l(b) simply by l(a)l(b), a, b ∈ Γ(R). We drop the superscript and
write just e, l when the context allows it.

Using Definitions 4.9, 4.11 (and of course, Definitions 4.1 and 4.4 with
an argument similar to the used in Lemma 1.20) we have the following
properties.

Lemma 4.12 (First Properties). Let R ∈ Igr+.

i) l(1) = 0.

ii) For all n ≥ 1, η ∈ Rn is generated by l(a1)...l(an) with a1, ..., an ∈ Γ(R).

iii) l(a)l(−a) = 0 and l(a)l(a) = l(−1)l(a) for all a ∈ Γ(R).

iv) l(a)l(b) = l(b)l(a) for all a, b ∈ Γ(R).

v) For every a1, ..., an ∈ Γ(R) and every permutation σ ∈ Sn,

l(a1)...l(ai)...l(an) = sgn(σ)l(aσ1)...l(aσn) in Rn.

vi) For all ξ ∈ Rn, η ∈ Rn,
ξη = ηξ.

vii) For all n ≥ 1,

hn(l(a1)...l(an)) = l(−1)l(a1)...l(an).

Proposition 4.13. Let R ∈ Igr+

i) For each n ∈ N and each x ∈ Rn, x ∗n,n x = ⊤n ∗n,n x ∈ R2n.

ii) A(R) = lim−→n∈NRn is a boolean ring (or, equivalently, T(A(R)) ∈ Igr+).

Proof.
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i) The property is clear if n = 0. If n ≥ 1, then the property can be verified
by induction on the number of generators k ≥ 1, x =

∑k
i=1 a1,i ∗1,1

a2,i ∗1,1 · · · ∗1,1 an,i ∈ Rn: if k = 1, then note that

x ∗n,n x = (a1 ∗ a2 ∗ · · · ∗ an) ∗ (a1 ∗ a2 ∗ · · · ∗ an)
= (a1 ∗ a1) ∗ (a2 ∗ a2) ∗ · · · (an ∗ an)
= (⊤1 ∗ a1) ∗ (⊤1 ∗ a2) ∗ · · · ∗ (⊤1 ∗ an)
= (⊤n) ∗ (a1 ∗ a2 ∗ · · · ∗ an);

if k > 1, write x = y + z, where y, z ∈ Rn are have < k generator and
then, by induction,

x ∗n,n x = (y + z) ∗n,n (y + z) = y ∗n,n y + y ∗n,n z + z ∗n,n y + z ∗n,n z
= y ∗n,n y + z ∗n,n z = ⊤n ∗n,n y +⊤n ∗n,n z
= ⊤n ∗n,n (y + z) = ⊤n ∗n,n x

ii) This follows directly from item (i) and the definition of the ring struc-
ture in A(R) = lim−→n∈NRn.

By the previous Proposition and the universal property of the boolean
hull of an Igr (Definition 3.5.(ii)), we obtain:

Corollary 4.14. Let R ∈ Igr+. Then:

i) XT(A(R)) ≈ XR.

ii) A(R) ∼= B(R).

Lemma 4.15.

i) Given R ∈ Igr1, S ∈ Igr and f : S → j1(R), we have: f is coordi-
natewise surjective iff f1 : S1 → R1 is a surjective morphism of pointed
F2-modules.

ii) Given R ∈ Igr1, S ∈ Igr and f, h ∈ Igr(j1(R), S), we have f = h if and
only if f1 = h1.
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Let R,S ∈ Igr. The inclusion function ιR : 1(R) → R and projection
function πR : R → Q(R) induces respective natural transformations ι :
1 ⇒ 1Igr and π : 1Igr ⇒ Q. Moreover, we have a natural transformation
can : Q1⇒ 1Q given by the rule

cann(l(a1)...l(an)) := l(a1)...l(an), n ≥ 1.

In fact, cann is well defined and is an isomorphism basically because both
Q1(R) and 1Q(R) are generated in level 1 by R1 and both graded rings
satisfies the relation l(a)l(−a) = 0. We have another immediate consequence
of the previous results (and adjunctions):

Lemma 4.16.

i) For all R ∈ Igrh, 1(R) ∈ Igr+ and canR is an isomorphism.

ii) For all R ∈ Igr1, Q(R) ∈ Igr+ and canR is an isomorphism.

iii) To get projective limits in Igr+ is enough to restrict the projective limits
obtained in Igr:

lim←−
i∈I

Ri ∼= 1

(
lim←−
i∈I

j+(Ri)

)
.

iv) To get inductive limits in Igr+ is enough to restrict the inductive limits
obtained in Igr:

lim−→
i∈I

Ri ∼= Q
(
lim−→
i∈I

j+(Ri)

)
.

5 Examples and constructions of quadratic interest

Definition 5.1. A filtered ring is a tuple A = (A, (Jn)n≥0,+, ·, 0, 1)
where:

i) (A,+, ·, 0, 1) is a commutative ring with unit.

ii) J0 = A and for all n ≥ 1, Jn ⊆ A is an ideal.

iii) For all n,m ≥ 0, n ≤ m⇒ Jn ⊇ Jm.
iv) For all n,m ≥ 0, Jn · Jm ⊆ Jn+m.
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v) J0/J1 ∼= F2 (then 2 = 1 + 1 ∈ J1).
vi) For all n ≥ 0, Jn/Jn+1 is a group of exponent 2 (then 2 ·Jn ⊆ Jn+1 and

2n ∈ Jn).
A morphism f : A → A′ of filtered rings is a ring homomorphism such
that f(Jn) ⊆ J ′

n. The category of filtered rings will be denoted by FRing.

Definition 5.2. We define the inductive graded ring associated func-
tor

Grad : FRing→ Igr

for f ∈ FRing(A,B) as follow:

Grad(A) := ((Grad(A)n)n≥0, (tn)n≥0, ∗)
is the inductive graded ring where

i) For all n ≥ 0, Grad(A)n := (Jn/Jn+1,+n, 0n,⊤n) is the exponent 2
group with distinguished element ⊤n := 2n + Jn+1.

ii) For all n ≥ 0, tn : Grad(A)n → Grad(A)n+1 is defined by tn := 2 · ,
i.e, For all a+ Jn+1 ∈ Jn/Jn+1,,

tn(a+ Jn+1) := 2 · a+ Jn+2 ∈ Jn+1/Jn+2.

Observe that tn(⊤n) = ⊤n+1, i.e, tn is a morphism of pointed F2-
modules.

iii) For all n,m ≥ 0 the biadditive function ∗nm : Grad(A)n×Grad(A)m →
Grad(A)n+m is defined by the rule

(an + Jn+1) ∗mn (bm + Jm+1) = an · bm + Jn+m+1 ∈ Jn+m/Jn+m+1.

The group Ag :=
⊕

n≥0Grad(A)n of exponent 2 and the induced ap-
plication ∗ : Ag ×Ag → Ag are such that (Ag, ∗) is a commutative ring
with unit ⊤1 = (2 + J2) ∈ J1/J2.

iv) For all n ≥ 1, tn = ⊤1 ∗1n .

The morphism Grad(f) ∈ Igr(Grad(A), Grad(A′)) is defined by the fol-
lowing rules: for all n ≥ 0, fn : Grad(A)n → Grad(A′)n is given by

fn(a+ Jn+1) := fn(a) + J ′
n+1.

Note that fn a homomorphism of F2-pointed modules and
⊕

n≥0 fn : (Ag, ∗)→
(A′

g, ∗) is a homomorphism of graded rings with unit.
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Definition 5.3. The functor of graded ring of continuous functions
over a space X

C(X, ) : Igr→ Igr

is the functor defined for f : R→ S by

i) C(X,R)0 := R0
∼= F2,

ii) for all n ≥ 1, C(X,R)n := C(X,Rn) as a pointed F2-module,

iii) for all n,m ≥ 0, ∗Xnm : C(X,Rn)×C(X,Rm)→ C(X,Rn+m) is given by
(αn, βm) 7→ αn ∗Xnm βm, where for x ∈ X,

αn ∗Xnm βm(x) = αn(x) ∗nm βm(x) ∈ Rn+m.

iv) C(X, f)0 := f0 as an homomorphism of pointed F2-modules R0 → S0.

v) for all n ≥ 1,

C(X, f)n := C(X, fn) := fn ◦ ∈ PModF2(C(X,Rn), C(X,Sn)).

Remark 5.4. Let X be a topological space and let R ∈ Igr1. Note that if
X is compact or R ∈ Igrfin, then C(X,R) ∈ Igr1.

Definition 5.5. We define the continuous function filtered ring func-
tor

C : SG→ FRing

as follow: first, consider the functor C(X ,Z) : SG → Ring, composition of
the (contravariant) functors “associated ordering space” X : SG → Topop

and “continuous functions in Z ring” C( ,Z) : Topop → Ring (here Z is
endowed with the discrete topology).

Now we define the functor C : SG → FRing: given a special group
G ∈ SG, we define

C(G) := (R(G), (Jn(G))n≥0,+, ·, 0, 1)

where

i) (R(G),+, ·, 0, 1) is the subring of C(XG,Z) of continuous functions of

constant parity, i.e, R(G) := J0(G)
i0(G)−−−→ C(XG,Z) is the image of the

monomorphism of rings with unit

j0(G) : C(XG, 2Z) ∪ C(XG, 2Z+ 1)→ C(XG,Z).
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ii) For all n ≥ 1, Jn(G)
in(G)−−−→ J0(G) is the ideal of R(G) (and also of

C(XG,Z)) that is the image of the monomorphism of abelian groups

jn(G) : C(XG, 2
nZ)→ C(XG, 2Z) ∪ C(XG, 2Z+ 1).

We also have J0(G)/J1(G) ∼= F2 and for all n,m ≥ 0:

a) If n ≥ m then Jn(G) ⊇ Jm(G);
b) Jn(G) · Jm(G) ⊆ Jn+m(G);
c) 2Jn(G) = Jn+1(G)⇒ Jn(G)/Jn+1(G) is an exponent 2 group.

On the morphisms, for f ∈ SG(G,G′), we define C(f) ∈ FRing(C(G), C(G′))
by

C(f)(h) = C(Xf ,Z)(h)

for h ∈ C(G). C(f) is well-defined because C(f) ∈ Ring(C(G), C(G′)) and
for all n ≥ 0,

C(f)(Jn(G)) ⊆ Jn(G′).

Definition 5.6. We define the continuous function graded ring func-
tor by

Grad ◦ C : SG→ Igr.

For convenience, we describe this functor now: given G ∈ SG,

Grad(C(G)) := ((Grad(C(G))n)n≥0, (tn)n≥0, ·)

where:

i) Grad(C(G))n := (Jn(G)/Jn+1(G), ·, 0 ·Jn+1(G), 2
nJn+1(G)), where 2 ∈

C(XG,Z) is the constant function of value 2 ∈ 2Z ⊆ Z.
ii) For all n ≥ 0, Jn(G)/Jn+1(G)

t2=2·−−−−→ Jn+1(G)/Jn+2(G).

iii) For all n,m ≥ 0,

∗nm : Jn(G)/Jn+1(G)× Jm(G)/Jm+1(G)→ Jn+m(G)/Jn+m+1(G)

is given by

(hn + Jn+1(G)) ∗nm (km + Jm+1(G)) = hnkm + Jn+m+1(G).
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On the morphisms, given f ∈ SG(G,G′), we have that

Grad(C(f)) = (Grad(C(f))n)n≥0 ∈ Igr(Grad(C(G), Grad(C(G′)),

where for all n ≥ 0, Grad(C(f))n : Grad(C(G))n → Grad(C(G′))n is such
that

Grad(C(f))n(h+ Jn+1(G)) = C(f)(h) + J ′
n+1(G

′).

Proposition 5.7.

a) There is a natural isomorphism θ : Grad ◦ C ∼=−→ T ◦ C(X ,F2). In partic-
ular, for all G ∈ SG, Grad(C(G)) ∈ Igr+.

b) For all 0 < n ≤ m < ω, 2m−n · : Jn(G)/Jn+1(G)→ Jm/Jm+1(G) is an
isomorphism of groups of exponent 2.

c) For all n ≥ 1, there is an isomorphism of groups of exponent 2

θn(G) : Jn(G)/Jn+1(G)
∼=−→ C(XG,F2),

given by the rule

θn(h+ Jn(G))(σ) := hn(σ)/2
n ∈ C(XG,Z/2Z).

d) For all 0 < n ≤ m < ω the following diagram commute:

Jn(G)/Jn+1(G)
2m−n· //

θn(G)

��

Jm(G)/Jm+1(G)

θm(G)

��

C(XG,F2)

Definition 5.8. We define the filtered Witt ring functor

W : SG→ FRing

for f ∈ SG(G,H) as follow: given a special group G ∈ SG, we define

W (G) := (W (G), In(G)n≥0,⊕,⊗, ⟨⟩, ⟨1⟩)
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where for all n ≥ 0, In(G) is the n-th power of the fundamental ideal

I(G) := {φ ∈W (G) : dim2(φ) = 0}.

We define W (f) ∈ FRing(W (G),W (H)) by the rule W (f)(φ) := f ⋆ φ.

W (G) is a filtered commutative ring with unit because:

i) (W (G),⊕,⊗, ⟨⟩, ⟨1⟩) ∈ Ring.

ii) For all n ≥ 0, In(G) ⊆W (G) is an ideal.

iii) For all n,m ≥ 0, n ≤ m⇒ In(G) ⊇ Im(G).
iv) For all n,m ≥ 0, In(G)⊗ I(G) ⊆ In+m(G).
v) I0(G) :=W (G).

vi) I0(G)/I1(G) ∼= F2.
vii) For all n ≥ 0, (In(G)/In+1(G),⊕, ⟨⟩) is a group of exponent 2 with

distinguished element 2n + In+1(G), where 2n = ⊗i<n⟨1, 1⟩.

Definition 5.9. We define the graded Witt ring functor

Grad ◦W : SG→ Igr.

We register, again, the following result:

Proposition 5.10. For each G ∈ SG we have Grad(W (G)) ∈ Igr+.

For each commutative ring with unit A, we have

t(A) = {a ∈ A : exists n ≥ 0 with n · a = 0} ⊆ A

is an ideal (the torsion ideal of A). The association A 7→ A/t(A) is the
component on the objects of an endofunctor of Ring.

For each G ∈ SG we have a ring homomorphism with unit sgnG :
W (G)→ C(XG,Z) given by the rule

sgnG(⟨a0, ..., an−1⟩)(σ) :=
n−1∑

i=0

σ(ai).
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The Pfister’s Local-Global principle says that sgnG induces a monomor-
phism

rsgnG :W (G)/t(W (G))→ C(XG,Z).

For each G ∈ SG we have sgnG(W (G)) ⊆ C(XG, 2Z) ∪ C(XG, 2Z + 1)
(since the signatures of classes of forms has the same parity of its dimension)
and for all n ≥ 1, sgnG(I

n(G)) ⊆ C(XG, 2
nZ) (since In(G) is the abelian

subgroup of W (G) generated by classes of Pfister forms of dimension 2n).
sgn : W → C (respectively rsgn : W/t(W ) → C) is the natural transfor-

mation between functors

SG
W //

C
// FRing

that provide natural transformations between functors SG //
// Igr :

Grad · sgn : Grad ◦W → Grad ◦ C, respectively
Grad · rsgn : Grad ◦ (W/t(W ))→ Grad ◦ C.

Remember that [MC] ([LC]) and [WMC] ([WLC]) are conjectures about
these natural transformations.
C is a particular case of W in the following sense: C : SG → FRing is

naturally isomorphic to the composition of functors SG
γ◦β−−→ SG

W−→ FRing.

6 The adjunction between PSG and Igrh

By the very Definition of the K-theory of hyperfields (with the notations in
Theorem 1.21) we define the following functor4.

Definition 6.1 (K-theories Functors). With the notations of Theorem 1.21
we have a functors k : HMF → Igr+, k : PSMF → Igr+ induced by the
reduced K-theory for hyperfields.

Now, let R ∈ Igrh. We define a hyperfield (Γ(R),+,−.·, 0, 1) by the
following: firstly, fix an exponential isomorphism eR : (R1,+1, 01,⊤1) →

4Here we will improve the adjunction presented in [6] with a more detailed proof, in
order to motivate the k-stability (Definition 6.5), since it is central in the context of Galois
group for special groups [7].
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(G(R), ·, 1,−1) (in agreement with Definition 4.11). This isomorphism makes,
for example, an element a ∗11 (⊤1 + b) ∈ R2, a, b ∈ R1 take the form
(lR(x)) ∗11 (lR((−1) · y)) ∈ R2, x, y ∈ G(R). By an abuse of notation, we
simply write lR(x)lR(−y) ∈ R2, x, y ∈ G(R). In this sense, an element in Q2

has the form lR(x)lR(−x), x ∈ Γ(R), and we can extend this terminology
for all Qn, n ≥ 2 (see Definition 4.4, and Lemma 4.12).

Now, let Γ(R) := G(R) ∪ {0} and for a, b ∈ Γ(R) we define

−a := (−1) · a,
a · 0 = 0 · a := 0,

a+ 0 = 0 + a = {a},
a+ (−a) = Γ(R),

for a, b ̸= 0, a ̸= −b define
a+ b := {c ∈ Γ(R) : there exist d ∈ G(R) such that

a · b = c · d ∈ G(R) and lR(a)lR(b) = lR(c)lR(d) ∈ R2}. (6.1)

Proposition 6.2. With the above rules, (Γ(R),+,−.·, 0, 1) is a pre-special
hyperfield.

Proof. We will verify the conditions of Definition 1.4. Note that by the
definition of multivalued sum once we proof that Γ(R) is an hyperfield, it
will be hyperbolic. In order to prove that (Γ(R),+,−.·, 0, 1) is a multigroup
we follow the steps below. Here we use freely the properties in Lemma 4.12.

i) Commutativity and (a ∈ b + 0) ⇔ (a = b) are direct consequence
of the definition of multivaluated sum and the fact that lR(a)lR(b) =
lR(b)lR(a).

ii) We will prove that if c ∈ a+ b, then a ∈ c− b and b ∈ c− a.
If a = 0 (or b = 0) or a = −b, then c ∈ a+ b means c = a or c ∈ a− a.
In both cases we get a ∈ c− b and b ∈ c− a.
Now suppose a, b ̸= 0 with a ̸= −b. Let c ∈ a + b. Then a · b = c · d
and lR(a)lR(b) = lR(c)lR(d) ∈ R2 for some d ∈ G(R). Since G(R) is
a multiplicative group of exponent 2, we have a · d = b · c (and hence
a · (−d) = c · (−b)). Note that

lR(a)lR(−d) = lR(a)lR(−abc) = lR(a)lR(bc) = lR(a)lR(b) + lR(a)lR(c)
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= lR(c)lR(d) + lR(a)lR(c) = lR(c)lR(d) + lR(c)lR(a)

= lR(c)lR(ad).

Similarly,

lR(b)lR(−c) = lR(b)lR(−abd) = lR(b)lR(ad) = lR(b)lR(a) + lR(b)lR(d)

= lR(a)lR(b) + lR(b)lR(d) = lR(c)lR(d) + lR(b)lR(d)

= lR(bc)lR(d) = lR(ad)lR(d).

Then

lR(a)lR(−d)− lR(b)lR(−c) = lR(c)lR(ad)− lR(ad)lR(d) =
= lR(c)lR(ad)− lR(d)lR(ad) = lR(−cd)lR(ad).

But

lR(−cd)lR(ad) = lR(−cd)lR(a) + lR(−cd)lR(d) =
= lR(−cd)lR(a) + lR(c)lR(d) = lR(a)lR(−cd) + lR(a)lR(b)

= lR(a)lR(−bcd) = lR(a)lR(−a) = 0.

Then
lR(a)lR(−d) = lR(b)lR(−c),

proving that a ∈ b− c. Similarly we prove that b ∈ −c+ a.

iii) Since (G(R), ·, 1) is an abelian group, we conclude that (Γ(R), ·, 1) is a
commutative monoid. Beyond this, every nonzero element a ∈ Γ(R) is
such that a2 = 1.

iv) a · 0 = 0 for all a ∈ Γ(R) is direct from definition.

v) For the distributive property, let a, b, d ∈ Γ(R) and consider x ∈ d(a+b).
We need to prove that

x ∈ d · a+ d · b. (*)

It is the case if 0 ∈ {a, b, d} or if b = −a. Now suppose a, b, d ̸= 0
with b ̸= −a. Then there exist y ∈ G(R) such that x = dy and
y ∈ a + b. Moreover, there exist some z ∈ G(R) such that y · z = a · b
and lR(y)lR(z) = lR(a)lR(b).
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If 0 ∈ {a, b, d} or if b = −a there is nothing to prove. Now suppose
a, b, d ̸= 0 with b ̸= −a. Therefore (dy) · (dz) = (da) · (db) and

lR(dy)lR(dz) = lR(d)lR(d) + lR(d)lR(z) + lR(d)lR(y) + lR(y)lR(z)

= lR(d)lR(d) + lR(d)[lR(z) + lR(y)] + lR(y)lR(z)

= lR(d)lR(d) + lR(d)lR(yz) + lR(y)lR(z)

= lR(d)lR(d) + lR(d)lR(ab) + lR(a)lR(b)

= lR(d)lR(d) + lR(d)lR(a) + lR(d)lR(b) + lR(a)lR(b)

= lR(da)lR(db),

so lR(dy)lR(dz) = lR(da)lR(db). Hence we have x = dy ∈ d · a+ d · b.
vi) Using distributivity we have that for all a, b, c, d ∈ Γ(R)

d[(a+ b) + c] = (da+ db) + dc and d[a+ (b+ c)] = da+ (db+ dc).

In fact, if x ∈ (a+ b) + c, then x ∈ y + c for y ∈ a+ b. Hence

dx ∈ dy + dc ⊆ d(a+ b) + dc = (da+ db) + dc.

Conversely, if z ∈ (da+db)+dc, then z = w+dc, for some w ∈ da+db =
d(a+ b). But in this case, w = dt for some t ∈ a+ b. Then

z ∈ dt+ dc = d[t+ c] ⊆ d[(a+ b) + c].

Similarly we prove that d[a+ (b+ c)] = da+ (db+ dc).

vii) Let a ∈ Γ(R) and x, y ∈ 1− a. If a = 0 or a = 1 then we automatically
have x · y ∈ 1− a, so let a ̸= 0 and a ̸= 1. Then x, y ∈ G(R) and there
exist p, q ∈ Γ(R) such that

x · p = 1 · a and lR(x)lR(p) = lR(1)lR(a) = 0

y · q = 1 · a and lR(y)lR(q) = lR(1)lR(a) = 0.

Then (xy) · (pqa) = 1 · a and

lR(xy)lR(pqa) = lR(xy)lR(p) + lR(xy)lR(q) + lR(xy)lR(a)

= lR(y)lR(p) + lR(x)lR(q) + lR(x)lR(a) + lR(y)lR(a)

= lR(y)lR(pa) + lR(x)lR(qa)
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= lR(y)lR(x) + lR(x)lR(y) = 0.

Then xy ∈ 1− a, proving that (1− a)(1− a) ⊆ (1− a). In particular,
since 1 ∈ 1− a, we have (1− a)(1− a) = (1− a).

viii) Finally, to prove associativity, we use Theorem 1.17. Let ⟨a, b⟩ ≡ ⟨c, d⟩
the relation defined for a, b, c, d ∈ Γ(R) \ {0} by

⟨a, b⟩ ≡ ⟨c, d⟩ iff ab = cd and lR(a)lR(b) = lR(c)lR(d).

For 0 /∈ {a, b, c, d}, a ̸= −b and ab = cd, we have

a+ b = c+ d iff ⟨a, b⟩ ≡ ⟨c, d⟩.

Using items (i)-(vii) we get that (Γ(R) \ {0},≡, 1,−1) is a pre-special
group. Then by Theorem 1.17 we have that M(Γ(R) \ {0}) ∼= Γ(R) is
a pre-special hyperfield, and in particular, Γ(R) is associative.

Definition 6.3. With the notations of Proposition 6.2 we have a functor
Γ : Igr+ → PSMF defined by the following rules: for R ∈ Igr+, Γ(R) is
the special hyperfield obtained in Proposition 6.2 and for f ∈ Igr+(R,S),
Γ(f) : Γ(R)→ Γ(S) is the unique morphism such that the following diagram
commute

R

f1

��

eR // Γ(R)

Γ(f)

��

S eS
// Γ(S)

In other words, for x ∈ R we have

Γ(f)(x) = (eS ◦ f1 ◦ lR)(x) = eS(f1(lR(x))).

Theorem 6.4. The functor k : PSMF → Igr+ is the left adjoint of Γ :
Igr+ → PSMF. The unity of the adjoint is the natural transformation
ϕ : 1PSMF → Γ ◦ k defined for F ∈ PSMF by ϕF = ek(F ) ◦ ρF .
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Proof. We show that for all f ∈ PSMF(F,Γ(R)) there is an unique f ♯ :
Igr+(k(F ), R) such that Γ(f ♯) ◦ ϕF = f . Note that ϕF = ek(F ) ◦ ρF is a
group isomorphism (because ek(F ) and ρF are group isomorphisms).

Let f ♯0 : 1F2 : F2 → F2 and f ♯1 := lR ◦ f ◦ (ϕF )−1 ◦ ek(F ) : k1(F ) → R1.
For n ≥ 2, define hn :

∏n
i=1 k1(F )→ Rn by the rule

hn(ρ(a1), ..., ρ(an)) := lR(f(a1)) ∗ ... ∗ lR(f(an)).

We have that hn is multilinear and by the Universal Property of tensor
products we have an induced morphism

⊗n
i=1 kn(F ) → Rn defined on the

generators by

hn(ρ(a1)⊗ ...⊗ ρ(an)) := lR(f(a1)) ∗ ... ∗ lR(f(an)).

Now let η ∈ Qn(F ). Suppose without loss of generalities that η = ρ(a1) ⊗
...⊗ρ(an) with a1 ∈ 1−a2. Then f(a1) ∈ 1−f(a2) which imply lR(f(a1)) ∈
1− lR(f(a2)). Since Rn ∈ Igr+,

hn(η) := hn(ρ(a1)⊗ ...⊗ ρ(an)) = lR(f(a1)) ∗ ... ∗ lR(f(an)) = 0 ∈ Rn.

Then hn factors through Qn, and we have an induced morphism hn :
kn(F ) → Rn. We set f ♯n := hn. In other words, f ♯n is defined on the
generators by

f ♯n(ρ(a1)...ρ(an)) := lR(f(a1)) ∗ ... ∗ lR(f(an).

Finally, we have

Γ(f ♯) ◦ ϕF = [eR ◦ (f ♯1) ◦ e−1
k(F )] ◦ [ek(F ) ◦ ρF ] = eR ◦ (f ♯1) ◦ ρF

= eR ◦ [lR ◦ f ◦ (ϕF )−1 ◦ ek(F )] ◦ ρF
= f ◦ (ϕF )−1 ◦ [ek(F ) ◦ ρF ]
= f ◦ (ϕF )−1 ◦ ϕF = f.

For the unicity, let u, v ∈ Igr+(k(F ), R) such that Γ(u)◦ϕF = Γ(v)◦ϕF .
Since ϕF is an isomorphism we have u1 = v1 and since k(F ) ∈ Igr+ we have
u = v.
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As we have already seen in Theorem 6.4, there natural transformation
ϕF : F → Γ(k(F )) is a group isomorphism. Now let a, c, d ∈ F with a ∈ c+d.
Then ϕF (a) ∈ ϕF (c) + ϕF (d), i.e, ϕF is a morphism of hyperfields. In fact,
if 0 ∈ {a, c, d} there is nothing to prove. Let 0 /∈ {a, c, d}. To prove that
ϕF (a) ∈ ϕF (c) + ϕF (d) we need to show that ρF (a)ρF (acd) = ρF (c)ρF (d).
In fact, from a ∈ c + d we get ac ∈ 1 + ad, and then ρF (ac)ρF (ad) = 0.
Moreover

ρF (a)ρF (acd) + ρF (c)ρF (d) =

ρF (a)ρF (acd) + ρF (c)ρF (d) + ρF (ac)ρF (ad) =

ρF (a)ρF (ac) + ρF (a)ρF (d) + ρF (c)ρF (d) + ρF (ac)ρF (ad) =

[ρF (a)ρF (ac) + ρF (ac)ρF (ad)] + [ρF (a)ρF (d) + ρF (c)ρF (d)] =

ρF (d)ρF (ac) + ρF (d)ρF (ac) = 0,

proving that ϕF (a) ∈ ϕF (c) + ϕF (d). Unfortunately we do not now if or
where ϕF is a strong morphism. Then we propose the following definition.

Definition 6.5 (The k stability). Let F be a pre-special hyperfield. We say
that F is k-stable if ϕF : F → Γ(k(F )) is a strong morphism. Alternatively,
F is k-stable if for all a, b, c, d ∈ Ḟ , if ab = cd then

ρF (a)ρf (b) = ρF (c)ρF (d) imply ac ∈ 1 + cd.

We emphasize that if G is AP (3) special group, then G is k-stable. In
particular, every reduced special group is k-stable, and if F is a field of
characteristic not 2, then G(F ) is also k-stable.

In the ongoing paper [4], it is established the Arason-Pfister Hauptsatz
for every special group G, i.e., G satisfies AP (n) for each n ∈ N (Theorem
1.18).

Proposition 6.6.

i) For each special group G we have a PSG-isomorphism

Γ(sG) : Γ(k(G))→ Γ(Grad(W (G))).

ii) For each reduced special group G we have a PSG-isomorphism

κG : G→ Γ(k(G)).
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iii) For each reduced special group G we have a PSG-isomorphism

ωG : G→ Γ(Grad(W (G))).

Proposition 6.7. Let G be a pre-special group. Then the following are
equivalent:

i) G ∈ PSGfin.

ii) k(G) ∈ Igrfin.

Proposition 6.8. Let G be a special group. Then the following are equiv-
alent:

i) G ∈ SGfin.
ii) k(G) ∈ Igrfin.

iii) (Grad ◦W )(G) ∈ Igrfin.

Proposition 6.9. The canonical arrow

can : lim−→
i∈I

k(Gi)→ k

(
lim−→
i∈I

Gi

)

is an Igr+-isomorphism as long as the I-colimits above exists.

Proposition 6.10. The canonical arrow

can : k

(
lim←−
i∈I

Gi

)
→ lim←−

i∈I
k(Gi)

is an Igr+-morphism pointwise surjective, as long as the I-colimits above
exists.

Remark 6.11. In [9] there is an interesting analysis identifying the boolean
hull of a special group G (or special hyperfield F = G ∪ {0}) with the
boolean hull of the inductive graded rings k∗(F ),W∗(F ) ∈ Igr+ (see the
above Corollary 4.14). It could be interesting to compare the space of
orderings of R ∈ Igrh and of Γ(R) ∈ PSMF.
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7 Igr and Marshall’s conjecture

Using the Boolean hull functor, M. Dickmann and F. Miraglia provide an en-
coding of Marshall’s signature conjecture ([MC]) for reduced special groups
by the condition

⟨1, 1⟩ ⊗ − : In(G)/In+1(G)→ In+1(G)/In+2(G)

to be injective, for each n ∈ N. In fact they introduce the notion of a [SMC]
reduced special group:

l(−1)⊗− : kn(G)→ kn+1(G)

is injective, for each n ∈ N. They establish that, [SMC] imply [MC], for
every reduced special group G. Moreover (see 5.1 and 5.4 in [13]):

• The inductive limit of [SMC] groups is [SMC].

• The finite product of [SMC] groups is [SMC].

• G(F ) is [SMC], for every Pythagorean field F (with (char(F ) ̸= 2).

Proposition 7.1.

i) s : k → Grad ◦W is a “surjective” natural transformation, where for
each G ∈ SG and all n ≥ 1, sn(G) : Kn(G)→ In(G)/In+1(G) is given
by the rule

sn(G)

(
s−1∑

i=0

l(g1,i)⊗ ...⊗ l(gn,i) +Qn(G)
)

:=

⊗s−1

i=0
[⟨1,−g1,i⟩]⊗...⊗[⟨1,−gn,i⟩]⊗In+1(G).

ii) r : Grad ◦W → k is a natural transformation, where for each G ∈ SG
and all n ≥ 1, rnG : In(G)/In+2(G)→ k2n−1(G) is given by the rule

rn(G)

(⊗s−1

i=0
[⟨1,−g1,i⟩]⊗...⊗[⟨1,−gn,i⟩]⊗In+1(G)

)
:=

s−1∑

i=0

l(−1)2n−1−nl(g1,i)⊗ ...⊗ l(gn,i) +Q2n−1(G)
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iii) For all n ≥ 1, rn(G) ◦ sn(G) = l(−1)2n−1−n⊗ .

iv) We have an isomorphism of pointed F2-modules:

s1G : k1(G)
∼=−→ I1(G)/I2(G)

s2G : k2(G)
∼=−→ I2(G)/I3(G).

v) If G is [SMC] Then sG : k(G)→ Grad ◦W (G) is an isomorphism.

We finish this work considering a general setting for “Marshall’s Conjec-
tures”, that includes the previous case of the Igr’s W∗(F ), k∗(F ) for special
hyperfields F .

Let R ∈ Igr+. The ideal, nil(R), in the ring
⊕
n∈N

Rn, formed by all of its

nilpotent elements, determines N(R) an Igr-ideal of R, where for all n ∈ N,

(N(R))n := nil(R) ∩Rn.

Note that, by Proposition 4.13, for all n ≥ N,

(nil(R))n = {a ∈ Rn : exists k ≥ 1 with ⊤kn ∗kn,n a = 0(k+1)n}.

Remark 7.2. Let ρ : N→ N be an increasing function and for n ∈ N define

(Nρ(R))n = {a ∈ Rn : exists k ≥ 1 with ⊤ρ(n) ∗ρ(n),n a = 0ρ(n)+n}.

Then (Nρ(R))n is a subgroup of Rn and, since ρ(n + k) ≥ ρ(n), we have
(Nρ(R))n∗n,kRk ⊆ (Nρ(R))n+k. Summing up, (Nρ(R))n)n∈N is an Igr-ideal.

The following result is straightforward consequence of the Definitions
and 3.3, 4.14.

Proposition 7.3. For each R ∈ Igr+ the following are equivalent:

i) For all n ≤ m ∈ N, ker(hnm) = {0n} ∈ Rn.
ii) The canonical morphism R→ T(A(R)) is pointwise injective.

iii) There exists a boolean ring B and a pointwise injective Igr-morphism
R→ T(B).

Moreover, if R ∈ Igrfin, these are equivalent to
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iv) N(R) ∼= T(0) ∈ Igr.

Motivated by item (i), we use the abbreviation MC(R) to say that R satisfies
one (and hence all) of the above conditions.

In the following, we fix a category of L-structures A that is closed under
directed inductive limits and a functor F∗ : A → Igr+ be a functor that
preserves directed inductive limits. Examples of such kind of functors are
k∗ : HMF → Igr+ and W∗ : HMF → Igr+, since such hyperfields can be
conveniently described in the first-order relational language for multirings
and it is closed under directed inductive limits. Related examples are the
functors k∗ : SG → Igr+ and W∗ : SG → Igr+; note that SG is a full
subcategory of LSG−Str that is closed under directed inductive limits and
under arbitrary products.

Proposition 7.4. Let (I,≤) be an upward directed poset and consider a
functor Γ : (I,≤)→ A such that MC(F∗(Γ(i))), for all i ∈ I. Then

MC

(
F∗

(
lim−→
i∈I

Γ(i)

))
.

Proof. The hypothesis on F∗ and the fact that the directed inductive lim-
its in Igr+ are pointwise, give us immediately that for each n ∈ N, the
mappings

hn : Fn

(
lim−→
i∈I

Γ(i)

)
→ Fn+1

(
lim−→
i∈I

Γ(i)

)

are isomorphic to the injective maps

lim−→
i∈I

hin : lim−→
i∈I

Fn(Γ(i))→ lim−→
i∈I

Fn+1(Γ(i)).

Therefore it holds

MC

(
F∗

(
lim−→
i∈I

Γ(i)

))
.

Corollary 7.5. Let F ⊆ P (I) be a filter and let {Mi : i ∈ I} be a family
of (non-empty) L-structures in A. Suppose that A is closed under products
and suppose that holds MC(F∗(

∏
i∈JMi)), for each J ∈ F . Then holds

MC(F∗(
∏
i∈JMi/F )).
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Proof. This follows from the preceding result since, by a well-known model-
theoretic result due to D. Ellerman ([14]), any reduced product of a family
of (non-empty) L-structures, {Mi : i ∈ I}, module a filter F ⊆ P (I), is
canonically isomorphic to an upward directed inductive limit,

lim−→
J∈F

(∏

i∈J
Mi

)
∼=
(∏

i∈I
Mi

)
/F.

Proposition 7.6. Let F∗ : A → Igr+ be a functor preserving pure embed-
dings. More precisely, we require that if M,M ′ ∈ A and j : M → M ′ is
a pure L-embedding, then F∗(j) : F∗(M) → F∗(M ′) is a pure morphism of
Igr’s (described in the first-order polysorted language for Igr’s).

Proof. This follows from the well known characterization result:
Fact: Let L′ be a first-order language and f : A → B be an L′-

homomorphism. Then are equivalent

• f : A→ B is a pure L′-embedding.

• There exists an elementary L′-embedding e : A → C and a L′-
homomorphism h : B → C, such that e = h ◦ f .

• There exists an ultrapower AI/U and a L′-homomorphism g : B →
AI/U , such that δ

(I,U)
A = g ◦ f , where δ

(I,U)
A : A → AI/U is the

diagonal (elementary) L′-embedding.

Since the morphism j :M →M ′ is a pure embedding, by the Fact there
exists an ultrapower M I/U and a L-homomorphism g :M ′ →M I/U , such

that δM(I,U) = g ◦ j, where δ(I,U)
M : M → M I/U is the diagonal (elementary)

L-embedding.
Since we have a canonical isomorphism

can : lim−→
J∈U

MJ ∼=→M I/U,

applying the functor F∗, we obtain

F∗(M I/U) ∼= F∗

(
lim−→
J∈U

MJ

)
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∼= lim−→
J∈U

F ∗(MJ)→ lim−→
J∈U

(F ∗(M))J

∼= (F∗(M))I/U.

Keeping track, we obtain that the above morphism

t : F∗(M I/U)→ (F∗(M))I/U

establishes a comparison between F∗(δM(I,U)) : F∗(M) → F∗(M I/U) and

δ
F∗(M)
(I,U) ) : F∗(M)→ F∗(M)I/U

δ
F∗(M)
(I,U) ) = t ◦ F∗(δM(I,U)).

Since F∗(δM(I,U)) = F∗(g) ◦ F∗(j), combining the equations we obtain

δ
F∗(M)
(I,U) ) = t ◦ F∗(g) ◦ F∗(j).

Applying again the Fact, we conclude that F∗(j) : F∗(M) → F∗(M ′) is
a pure morphism of Igr’s.

Corollary 7.7. For each n ∈ N, the functor Fn : A → PModF2 preserves
pure embeddings. More precisely, if M,M ′ ∈ A and j : M → M ′ is a pure
L-embedding, then Fn(j) : Fn(M)→ kn(M

′) is a pure morphism of pointed
F2-modules (described in the first-order single sorted language adequate).
In particular Fn(j) : Fn(M)→ Fn(M

′) is an injective morphism of pointed
F2-modules.

Corollary 7.8. Let M,M ′ ∈ A and j :M →M ′ is a pure L-embedding. If
MC(F∗(M ′)), then MC(F∗(M)).

Proof. This follows directly from the previous Corollary. Indeed, suppose
that holds MC(F∗(M ′)). Since h′n : Fn(M

′) → Fn+1(M
′) and Fn(j) :

Fn(M) → Fn(M
′) are injective morphisms, then, by a diagram chase, hn :
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Fn(M)→ Fn+1(M) is an injective morphism too, thus holds MC(F∗(M)).

FnM

Fn(j)

��

hn // Fn+1M

Fn+1(j)

��

Fn(M
′)

h′n
// Fn+1(M

′)

The Igr’s functorsW∗, k∗ were extended by M. Dickmann and F.Miraglia
from the category of fields of characteristic ̸= 2 to the category of special
groups (equivalently, the category of special hyperfields). Another relevant
Igr functor, the graded cohomology ring, H∗(Gal(F s|F ), {±1}) remains de-
fined only on the field setting. The ongoing work [7] constitutes an attempt
to provide an Igr functor associated to a (Galois) cohomology theory for
special groups, based on the work of J. Minac and M. Spira [21]: we will
define - by “generator and relations”, Gal(G), the Galois Group of a special
group G, and provide some properties of this construction, as the encoding
of the orderings on G.

Appendix: Some Categorical Facts

For the reader’s convenience, we provide here some categorical results con-
cerning adjunctions. Most of them are based on [3], but the reader could
also consult [18].

Definition 7.9 (3.1.1 of [3]). Let F : A → B be a functor and B an object
of B. A reflection of B along F is a pair (RB, ηB) where

1) RB is an object of A and ηB : B → F (RB) is a morphism of B.
2) If A ∈ A is another object and b : B → F (A) is a morphism of B, there

exists a unique morphism a : RB → A in A such that F (a) ◦ ηB = b.
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Proposition 7.10 (3.1.2 of [3]). Let F : A → B be a functor and B an
object of B. When the reflection of B along F exists, it is unique up to
isomorphism.

Definition 7.11 (3.1.4 of [3]). A functor R : B → A is left adjoint to the
functor F : A → B when there exists a natural transformation

η : 1B ⇒ F ◦R

such that for every B ∈ B, (R(B), ηB) is a reflection of B along F .

Theorem 7.12 (3.1.5 of [3]). Consider two functors F : A → B and G :
B → A. The following conditions are equivalent.

1) G is left adjoint of F .

2) There exist a natural transformation η : 1B ⇒ F ◦G and ε : G→ F ⇒ 1A
such that

(F ∗ ε) ◦ (η ∗ F ) = 1F , (ε ∗G) ◦ (G ∗ η) = 1G.

3) There exist bijections

θAB : A(G(B), A) ∼= B(B,F (A))

for every objects A and B, and those bijections are natural both in A and
B.

4) F is right adjoint of G.

Proposition 7.13 (3.2.2 of [3]). If the functor F : A → B has a left adjoint
then F preserves all limits which turn out to exist in A.

Proposition 7.14 (3.4.1 of [3]). Consider two functors F : A → B, G :
B → A with G left adjoint to F with η : 1B ⇒ F ◦ G and ε : G ◦ F ⇒ 1A
the two corresponding natural transformations. The following conditions are
equivalent.

1) F is full and faithfull.

2) ε is an isomorphism.

Under these conditions, η ∗ F and G ∗ η are isomorphisms as well.
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Proposition 7.15 (3.4.3 of [3]). Given a functor F : A → B, the following
conditions are equivalent:

1) F is full and faithfull and has a full and faithfull left adjoint G.

2) F has a left adjoint G and the two canonical natural transformations of
the adjunction η : 1B ⇒ F ◦G and ε : G→ F ⇒ 1A are isomorphisms.

3) There exists a functor G : B → A and two arbitrary natural isomor-
phisms 1B ∼= F ◦G, G ◦ F ∼= 1A.

4) F is full and faitful and each object B ∈ B is isomorphic to an object of
the form F (A), for some A ∈ A.

5) The dual condition of (1).

6) The dual condition of (2).

Definition 7.16 (3.4.4 of [3]). The categories A,B are equivalent if there
exist a functor F : A → B satisfying the conditions of Proposition 7.15.
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