[1] Adamek, J. and Rosicky, J., On injectivity in locally presentable categories, Trans. Amer. Math. Soc. 41(3) (1999), 155-175.
[2] Adamek, J. and Rosicky, J., “Locally Presentable and Accessible Categories”, Cambridge University Press, 1994.
[3] Adamek, J., Rosicky, J., and Borceux, F., More on injectivity in locally presentable categories, Theory Appl. Categ. 10(7) (2002), 148-161.
[4] Albu, T. and Nastasescu, C., “Relative Finiteness in Module Theory”, Marcel Dekker, 1984.
[5] Baer, R., Abelian groups that are direct summands of every containing abelian group, Bull. Amer. Math. Soc. 46(10) (1940), 800-807.
[6] Banaschewski, B. and Bruns, G., Categorical characterization of MacNeille completion, Arch. Math. 18 (1967), 369-377.
[7] Banaschewski, B. and Bruns, G., Injective hulls in the category of distributive lattices, J. Reine Angew. Math. 232 (1968), 102-109.
[8] Banaschewski, B. and Nelson, E., On the non-existence of injective near-ring modules, Canad. Math. Bull. 20(1) (1977), 17-23.
[9] Beke, T., Sheafifable homotopy model categories., Math. Proc. Cambridge Phil. Soc. 129(3) (2000), 447-475.
[10] Berthiaume, P., The injective envelope of S-sets, Canad. Math. Bull. 10(2) (1967), 261-273.
[11] Burris, S. and Sankapanavar, H.P., “A Course in Universal Algebra”, Springer-Verlag, 1981.
[12] Crivei, S., N˘ast˘asescu, C., and N˘ast˘asescu, L., A generalization of the Mitchell lemma: the Ulmer theorem and the Gabriel-Popescu theorem revisited, J. Pure Appl. Algebra 216(10) (2012), 2126-2129.
[13] Day, A., Injectivity in equational classes of algebras, Canad. J. Math. 24(2) (1972), 209-220.
[14] Ebrahimi, M.M, Internal completeness and injectivity of Boolean algebras in the topos of M-sets, Bull. Austral. Math. 41(2) (1990), 323-332.
[15] Ebrahimi, M.M and Mahmoudi, M., Baer Criterion for injectivity of projection algebras, Semigroup Forum 71(2) (2005), 332-335.
[16] Ebrahimi, M.M, Mahmoudi, M., and Moghaddasi, Gh., On the Baer criterion for acts over semigroups, Comm. Algebra 35(12) (2007), 3912-3918.
[17] Foster, A.L. Generalized Boolean theory of universal algebras, Part I: subdirect sums and normal representation theorem, Math. Z. 58(1953), 306-336.
[18] Freyd, J.P, “Abelian Categories”, Harper and Row, 1964.
[19] Fuchs, L., “Infinite Abelian Group I”, Academic Press, 1970.
[20] Gratzer, G., “Universal Algebra”, Van Nostrand, 1968.
[21] Gould, V., The characterisation of monoids by properties of their S-systems, Semigroup Forum 32(3) (1985), 251-265.
[22] Hebert, M., ¸λ-presentable morphisms, injectivity and (weak) factorization systems, Theory Appl. categ. 232 (2000), 102-109.
[23] Kashiwara, M. and Schapira, P., “Categories and Sheaves”, Grundlehren der Mathematischen Wissenschaften 332, Springer, 2006.
[24] Kilp, M., Knauer, U., and Mikhalef, A., “Monoids, Acts and Categories”, Walter de Gruyter, 2000.
[25] Skornjakov, L.A. On homological classification of monoids, Sib. Math. J. 12(1971).
[26] Mahmoudi, M., Internal injectivity of Boolean algebras in MSet, Algebra Universalis 41(3) (1999), 155-175.
[27] Mahmoudi, M. and Mehdizadeh, A., Baer criterion for injectivity in abelian categories, Asian-Eur. J. Math. 17(1) (2024), 1-15.