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Abstract. Recently, quasisymmetric functions have been widely studied
due to their big connection to enumerative combinatorics, combinatorial Hopf
algebra and number theory. The Bayer filter mosaic, named due to Bryce
Bayer (1929-2012), is a color filter array used to arrange RGB color filters
on a square grid of photosensors. It is the most common pattern of filters,
and almost all professional digital cameras are applications of this filter. We
use this filter to introduce the Bayer Noise quasisymmetric functions, and
we study some combinatorial algebraic and coalgebraic structures on Quasi-
Bayer Noise modules and on Quasi-Bayer GB-Noise modules. We explicitly
describe the primitive basis elements for each comultiplication defined on
Quasi-Bayer Noise modules, and we calculate different kinds of comultiplica-
tions defined on Quasi-Bayer Noises module over a fixed commutative ring
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1 Introduction and Preliminaries

1.1 Introduction Quasisymmetric functions have been recently largely
and interestingly studied due to their big relevant role to important theo-
ries, such as enumerative combinatorics, combinatorial Hopf algebra, num-
ber theory, representation theory, and graph theory. Their applications
have been quickly extended to include Stanley’s P-partition theory, Lyn-
don words, polynomial freeness, permutations, chains of posets, Schubert
polynomials, Coxeter groups, Kazhdan–Lusztig polynomials, Shuffle alge-
bra, and peak algebra. As a graded Hopf algebras with a single character,
the algebra Qsymk of quasisymmetric functions is the terminal object in
category Hk of graded Hopf algebras with a single character. Thus, for any
object A in Hk, there exists exactly one morphism A→ Qsymk.
The Bayer filter pattern is the most common color filter array widely used
in most digital “single chip” machine vision color camera. The Bayer filter
mosaic, invented by Bryce Bayer (1929-2012) at Kodak, is a color filter array
for arranging RGB color filters over each individual square grid of photo-
sensors. This technique requires only one sensor and allows all the RGB
color information to be recorded simultaneously. Consequently, with this
technology, the cameras can be smaller, cheaper, and useful in performing
high-quality part inspection. In this filter, 50% of the filter elements are
green and the rest are comprised of blue and red (25% red and 25% blue).
This gives an approximation for human photopic vision where the M and L
cones amalgamate to produce a bias in the green spectral region [3, p. 124].
Basically, there are four patterns of this filter: GBRG, GRBG, BGGR and
RGGB. A Bayer pattern array can be shown in the following figure.

B G B G B
G R G R G
B G B G B
G R G R G
B G B G B

Bayer Filter Mosaic (in terms of colors) Bayer Filter Mosaic (in
terms of letters).

There are basically four patterns of this filter: GBRG, GRBG, BGGR
and RGGB.
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GBRG Pattern GRBG Pattern BGGR Pattern RGGB
Pattern

Every BGGR-Bayer Young diagram of shape α corresponds to a unique
quasisymmetric monomial function whose degree equals to the number of its
pixels. This monomial function (which we call the Quasi-Bayer Noise mial
function) can be visualized as splitting an image into three parts GB-part,
G-part and R-part. While the GB-part can be thought of as a full-size (free
color (G, B)) image (the original image), the other parts can be seen as full-
sizes (free color G) and (free color R) images respectively. We consider the
set of all such monomial functions as a basis for (graded) modules called the
Quasi-Bayer Noise module over a fixed commutative ring k, and we study
various kinds of combinatorial algebraic and coalgebraic structures on such
modules. We also stress the imporatance of the (free color (G, B)) images to
introduce and study a special kind of modules called Quasi-Bayer GB-Noise
modules.
This paper has four sections. In section 1, the basic notions of quasisym-
metric functions are recalled. Section 2 is concerned with introducing Noise
Bayer Young composition diagrams and Quasi-Bayer Noise monomial func-
tions. Section 3 and section 4 are devoted for studying some algebraic and
coalgebraic structures on various kinds of Quasi-Bayer Noise modules.
Throughout this paper, k is a commutative ring, and ⊗ and ⊕ are the usual
tensor products and direct sum respectively over k.

1.2 Symmetric functions Following [5], we recall some basic con-
cepts of symmetric functions. For the basic notions of symmetric functions,
the reader is referred to [5], [6], [11], [8], [14], [13], [7] or [12]. Given an
infinite variable set x = (x1, x2, . . .), a monomial xα := xα1

1 xα2
2 · · · is in-

dexed by a sequence α = (α1, α2, . . .) in N∞ having finite support; such se-
quences α are called weak compositions. The nonzero entries of the sequence
α = (α1, α2, . . .) are called the parts of the weak composition α. The sum
α1+α2+α3+· · · of all entries of a weak composition α = (α1, α2, α3, . . .) (or,
equivalently, the sum of all parts of α) is called the size of α and denoted by
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|α|. A composition is a finite tuple α = (α1, α2, . . . , αm) of positive integers.
In other words, it is a weak composition with no zero entries. We write ∅ or
(0) for the empty composition (). Its length is defined to be m and denoted
by ℓ(α); its size is defined to be α1 + α2 + · · ·+ αm and denoted by |α|; its
parts are its entries α1, α2, . . . , αm. The compositions of size n are called
the compositions of n. Clearly, any partition of n is a composition of n. Let
Compn denote the set of all compositions of n, and let Comp denote the
set of all compositions. Let α in Compn. Define the reverse (composition)
of a composition α = (α1, α2, . . . , αℓ) to be α∗ = (αℓ, αℓ−1, . . . , α1) [4]. We
may define a partial order on the compositions of the integer m by defining
the covering relation to be

(α1, . . . αi + αi+1, . . . , αm) ≺ (α1, . . . αi, αi+1, . . . , αm).

This makes Compn into a poset. In this order the composition (1, 1, ..., 1)
is the maximum element, and (n) the minimum element [4]. The concate-
nation α ⊙ β of two compositions α = (α1, . . . , αl) and β = (β1, . . . , βm) is
defined to be the composition (α1, . . . , αl, β1, . . . , βm). For α, β in Compn,
say that α refines β or β coarsens α if, informally, one can obtain β from α
by combining some of its adjacent parts. Alternatively, this can be defined as
follows: One has a bijection Compn → 2[n−1] where [n−1] := {1, 2, . . . , n−1}
which sends α = (α1, . . . , αℓ) having length ℓ(α) = ℓ to its subset of partial
sums

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ αℓ−1} ,
and this sends the refinement ordering to the inclusion ordering on the
Boolean algebra 2[n−1] (to be more precise: a composition α ∈ Compn
refines a composition β ∈ Compn if and only if D(α) ⊃ D(β)).
Consider the k-algebra k [[x]] := k [[x1, x2, x3, . . .]] of all formal power series
in the indeterminates x1, x2, x3, . . . over k; these series are infinite k-linear
combinations

∑
α cαx

α (with cα in k) of the monomials xα where α ranges
over all weak compositions. The product of two such formal power series is
well-defined by the usual multiplication rule. The degree of a monomial xα

is defined to be the number deg(xα) :=
∑

i αi ∈ N. Given a number d ∈ N,
we say that a formal power series f(x) =

∑
α cαx

α ∈ k [[x]] (with cα in k) is
homogeneous of degree d if every weak composition α satisfying deg(xα) ̸= d
must satisfy cα = 0. In other words, a formal power series is homogeneous
of degree d if it is an infinite k-linear combination of monomials of degree
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d. Every formal power series f ∈ k [[x]] can be uniquely represented as an
infinite sum f0 + f1 + f2 + · · · , where each fd is homogeneous of degree
d; in this case, we refer to each fd as the d-th homogeneous component
of f . Note that this does not make k [[x]] into a graded k-module, since
these sums f0 + f1 + f2 + · · · can have infinitely many nonzero addends.
Nevertheless, if f and g are homogeneous power series of degrees d and e,
then fg is homogeneous of degree d + e. A formal power series f(x) =∑

α cαx
α ∈ k [[x]] (with cα in k) is said to be of bounded degree if there

exists some bound d = d(f) ∈ N such that every weak composition α =
(α1, α2, α3, . . .) satisfying deg(xα) > d must satisfy cα = 0. Equivalently, a
formal power series f ∈ k [[x]] is of bounded degree if all but finitely many of
its homogeneous components are zero. (For example, x21+x

2
2+x

2
3+ · · · and

1+x1+x2+x3+ · · · are of bounded degree, while x1+x1x2+x1x2x3+ · · ·
and 1 + x1 + x21 + x31 + · · · are not.) It is easy to see that the sum and the
product of two power series of bounded degree also have bounded degree.
Thus, the formal power series of bounded degree form a k-subalgebra of
k [[x]], which we call R(x). This subalgebra R(x) is graded (by degree).
The symmetric group Sn permuting the first n variables x1, . . . , xn acts as
a group of automorphisms on R(x), as does the union S(∞) =

⋃
n≥0Sn

of the infinite ascending chain S0 ⊂ S1 ⊂ S2 ⊂ · · · of symmetric groups.
This group S(∞) can also be described as the group of all permutations of
the set {1, 2, 3, . . .} which leave all but finitely many elements invariant. It
is known as the finitary symmetric group on {1, 2, 3, . . .}. The group S(∞)

also acts on the set of all weak compositions by permuting their entries:

σ (α1, α2, α3, . . .) =
(
ασ−1(1), ασ−1(2), ασ−1(3), . . .

)

for any weak composition (α1, α2, α3, . . .) and any σ ∈ S(∞). These two
actions are connected by the equality σ (xα) = xσα for any weak composition
α and any σ ∈ S(∞). The ring of symmetric functions in x with coefficients
in k, denoted α = α(k) = α(x) = α(k)(x), is the S(∞)-invariant subalgebra

R(x)S(∞) of R(x):

α :=
{
f ∈ R(x) : σ (f) = f for all σ ∈ S(∞)

}

=

{
f =

∑

α

cαx
α ∈ R(x) : cα = cβ if α, β lie in the same S(∞)-orbit

}
.
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We refer to the elements of α as symmetric functions (over k); however,
despite this terminology, they are not functions in the usual sense.

Note that Λ is a graded k-algebra, since Λ =
⊕

n≥0 Λn where Λn are
the symmetric functions f =

∑
α cαx

α which are homogeneous of degree n,
meaning deg(xα) = n for all cα ̸= 0. A partition λ = (λ1, λ2, . . . , λℓ, 0, 0, . . .)
is a weak composition whose entries weakly decrease: λ1 ≥ · · · ≥ λℓ > 0.
The (uniquely defined) ℓ is said to be the length of the partition λ and
denoted by ℓ (λ). Thus, ℓ (λ) is the number of parts of λ. One sometimes
omits trailing zeroes from a partition: e.g., one can write the partition
(3, 1, 0, 0, 0, . . .) as (3, 1). We will often (but not always) write λi for the
i-th entry of the partition λ (for instance, if λ = (5, 3, 1, 1), then λ2 = 3
and λ5 = 0). If λi is nonzero, we will also call it the i-th part of λ. The
sum λ1 + λ2 + · · ·+ λℓ = λ1 + λ2 + · · · (where ℓ = ℓ (λ)) of all entries of λ
(or, equivalently, of all parts of λ) is the size |λ| of λ. For a given integer
n, the partitions of size n are referred to as the partitions of n. The empty
partition () = (0, 0, 0, . . .) is denoted by ∅. Every weak composition α lies
in the S(∞)-orbit of a unique partition α = (α1, α2, . . . , αℓ, 0, 0, . . .) with
α1 ≥ · · · ≥ αℓ > 0. For any partition λ, define the monomial symmetric
function

mλ :=
∑

α∈S(∞)λ

xα. (1.1)

Letting λ run through the set Par of all partitions, this gives the monomial
k-basis {mλ} of Λ. Letting λ run only through the set Parn of partitions
of n gives the monomial k-basis for Λn.
It is straightforward to check that (Λ, η̂, û, ∆̂, ϵ̂) is a connected graded k-
bialgebra of finite type, and hence also a Hopf algebra, where

• The multiplication is the map

Λ⊗ Λ
η̂−→ Λ, mµ ⊗mν 7→ mµmν .

• The unit is the inclusion map

k = Λ0
û−→ Λ.
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• The comultiplication is the map

Λ
∆̂−→ Λ⊗ Λ, mλ 7→

∑

(µ,ν):
µ⊔ν=λ

mµ ⊗mν ,

in which µ⊔ν is the partition obtained by taking the multiset union of
the parts of µ and ν, and then reordering them to make them weakly
decreasing.

• The counit is the k-linear map

k = Λ0
ϵ̂−→ Λ

with ϵ̂|Λ0=k = idk and ϵ̂|I=⊕
n>0 Λn

= 0.

1.3 Quasisymmetric functions To define quasisymmetric functions,
we need a totally ordered variable set. Following [5], we usually use a
variable set denoted x = (x1, x2, . . .) with the usual ordering x1 < x2 < · · · .
However, it is good to have some flexibility in changing the ordering, which
is why we make the following definition. Given any totally ordered set
I, create a totally ordered variable set {xi}i∈I , and then let R({xi}i∈I)
denote the power series of bounded degree in {xi}i∈I having coefficients in
k. The ring of quasisymmetric functions Qsym({xi}i∈I) over the alphabet
{xi}i∈I will be the k-submodule consisting of the elements f in R({xi}i∈I)
that have the same coefficient on the monomials xα1

i1
· · ·xαℓ

iℓ
and xα1

j1
· · ·xαℓ

jℓ
whenever both i1 < · · · < iℓ and j1 < · · · < jℓ in the total order on I. We
write Qsymk({xi}i∈I) instead of Qsym({xi}i∈I) to stress the choice of base
ring k. It immediately follows from this definition that Qsym({xi}i∈I) is a
free k-submodule of R({xi}i∈I), having as k-basis elements the monomial
quasisymmetric functions

Mα({xi}i∈I) :=
∑

i1<···<iℓ in I

xα1
i1
· · ·xαℓ

iℓ
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for all compositions α satisfying ℓ(α) ≤ |I|. Taking the variable set x =
(x1 < x2 < · · · ), for example, to define Qsym(x), for n = 0, 1, 2, 3, one has

M() =M∅ = 1

M(1) = x1 + x2 + x3 + · · · = m(1)

M(2) = x21 + x22 + x23 + · · · = m(2)

M(1,1) = x1x2 + x1x3 + x2x3 + · · · = m(1,1)

M(3) = x31 + x32 + x33 + · · · = m(3)

M(2,1) = x21x2 + x21x3 + x22x3 + · · ·
M(1,2) = x1x

2
2 + x1x

2
3 + x2x

2
3 + · · ·

M(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + · · · = m(1,1,1)

When I is infinite, this means that theMα for all compositions α form a
basis ofQsym({xi}i∈I). Note thatQsym({xi}i∈I) =

⊕
n≥0Qsymn({xi}i∈I)

is a graded k-module of finite type, where Qsymn({xi}i∈I) is the k-
submodule of quasisymmetric functions which are homogeneous of degree
n. Letting Comp denote the set of all compositions α, and Compn the com-
positions α of n (that is, compositions whose parts sum to n), the subset
{Mα}α∈Compn; ℓ(α)≤|I| gives a k-basis for Qsymn({xi}i∈I).

Recall that α is a weak composition if it can include parts equal to
zero. An expansion of a composition α is a weak composition ᾱ such that
removing the zeros from ᾱ one obtains α. If α, β, γ ∈ Comp, then we say
γ is a shuffle sum of the other two compositions if there are expansions ᾱ
and β̄ of α and β, respectively, which have length ℓ(γ) such that γ = ᾱ+ β̄.
Here, addition is componentwise [10].

Proposition 1.1. [5], [10] For any infinite totally ordered set I, the k-
module Qsym is a k-algebra with multiplication

η : Qsym⊗Qsym→ Qsym, η(Mα ⊗Mβ) =
∑

γ

cγα,β Mγ (1.2)

where cγα,β is the number of ways of writing γ as a shuffle sum of α and β.

The multiplication rule (1.2) shows that the k-algebra Qsym({xi}i∈I)
does not depend much on I, as long as I is infinite. More precisely, all such
k-algebras are mutually isomorphic. We can use this to define a k-algebra
of quasisymmetric functions without any reference to I:
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Let Qsym be the k-algebra defined as having k-basis {Mα}α∈Comp and
with multiplication defined k-linearly by (1.2). This is called the k-algebra
of quasisymmetric functions. We write Qsymk instead of Qsym to stress
the choice of base ring k.

The k-algebra Qsym is graded, and its n-th graded component Qsymn

has k-basis {Mα}α∈Compn , and hence dimk(Qsymn) = 2n−1 [10].
For every infinite totally ordered set I, there is a k-algebra isomorphism

Θ : Qsym→ Qsym({xi}i∈I), Mα 7−→Mα({xi}i∈I).

In particular, we obtain the isomorphism Qsym ∼= Qsym (x) for x being
the infinite chain

(x1 < x2 < x3 < · · · ) .
We will identify Qsym with Qsym (x) along this isomorphism. This allows
us to regard quasisymmetric functions either as power series in a specific
set of variables (“alphabet”), or as formal linear combinations of Mα’s,
whatever is more convenient. For any infinite alphabet {xi}i∈I and any
f ∈ Qsym, we denote by f

(
{xi}i∈I

)
the image of f under the algebra

isomorphism Θ. One has the following description of the comultiplication
in the {Mα} basis.

Theorem 1.2. [5] The quasisymmetric functions Qsym form a connected
graded Hopf algebra (Qsym, η, u,∆, ϵ, S) of finite type, which is commuta-
tive, and contains the symmetric functions Λ as a Hopf subalgebra, where

• The map η is the multiplication map defined in Proposition (1.1); that
is the map

Qsym⊗Qsym
η
−→ Qsym, Mα ⊗Mβ 7→

∑

γ

cγα,β Mγ ,

where cγα,β is the number of ways of writing γ as a shuffle sum of α
and β.

• The the inclusion map

k = Qsym0
u−→ Qsym

is the unit map.
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• The map

Qsym
∆−→ Qsym⊗Qsym, Mα 7→

∑

(µ,ν):
µ⊙ν=α

Mµ ⊗Mν

is the comultiplication map.

• The k-linear map

k = Qsym0
ϵ−→ Qsym

with ϵ|Qsym0=k = idk and ϵ|⊕
n>0 Qsymn

= 0 is the counit map.

• The k-linear map

S : Qsym→ Qsym, Mα 7→ (−1)ℓ(α)
∑

γ∈Comp:
γ coarsens α∗

Mγ

is the antipode map.

2 Bayer composition Young diagrams

It is well-known that every partition corresponds to a unique Young di-
agram. Analogously, one might extend this to get a more general ap-
proach compatible to the compositions. For example, the composition
α = (1, 1, 5, 2, 4, 1) corresponds to a unique diagram T (α) given by

T (α)

We call the diagram T (α) as the composition Young diagram of shape
α. This gives rise to a 1− 1 correspondence between compositions and such
diagrams.

Definition 2.1. Let α be a composition.
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1. A colored Young composition diagram of shape α is a composition
Young diagram of shape α whose cells are colored with green, blue
or red. In other words, colored Young composition diagram corre-
spond can be seen (in the sense of [1]) as a particular kind of 3-color
compositions whose colors are restricted to the set {green, blue, red}.

2. A Young composition diagram of shape α is called a BGGR-Bayer
Young composition diagram of shape α if the corresponding Young
composition diagram of α has a BGGR pattern. Similarly, GBRG-
Bayer Young composition diagram, GRBG-Bayer Young composition
diagram and RGGB-Bayer Young composition diagram can be de-
fined.

Remark 2.2.

1. Clearly, Bayer Young composition diagrams are colored Young com-
position diagrams. The converse, however, needs not be true.

2. By Bayer Young composition Diagrams, we will simply mean the
BGGR-Bayer Young composition Diagrams (since the other Bayer
Young Diagrams can be characterized similarly).

Let Comp be the set of all compositions, and let YD be the set of all
Young composition diagrams. Let T : Comp → YD be the bijective map
that takes any composition α to its corresponding Young composition dia-
gram T (α). Let BYD be the set of all Bayer Young composition diagrams.
There is a bijective map B : Comp → BYD, α 7→ B(α). For example, if
α = (1, 1, 1, 5, 1, 4, 10, 3), we have

B((1, 1, 1, 5, 1, 4, 10, 3))

Let B(α) be a Bayer Young composition diagram of shape α. Let
C(1)(α,GBR) be the (colored) Young composition diagram obtained by re-
arranging the colored cells of B(α) using the order G < B < R as follows.
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First, we rearrange the colored cells of B(α) to be weakly increasing left-
to-right in rows, and then we rearrange the colored cells of the resulting
colored Young composition diagram to be weakly increasing top-to-bottom
in columns. For any positive integer i, let C(i)(α,GBR) denote the (colored)
Young composition diagram obtained by applying the above rearrange-
ment process i-times. It will be convenient to write C(0)(α,GBR) = B(α).
Analogously, one could define C(i)(α,RBG), C(i)(α,RGB), C(i)(α,BRG),
C(i)(α,BGR) and C(i)(α,GRB) for any positive integer i.

Definition 2.3. Let α be a composition. Then C(α,GBR) =
C(m)(α,GBR), wherem is the least positive integer with C(m+1)(α,GBR) =
C(m)(α,GBR). The diagram C(α,GBR) is called the (GBR) Noise Bayer
Young composition diagram of α while such m is called the GBR-order of
α. In this case, we write m = |α|GBR . Analogously, one could define GRB,
BGR, BRG, RGB and RBG Noise Bayer Young composition diagrams.

Proposition 2.4. Let α ∈ Comp and m = |α|GBR . Then we have the
following:

(i) C(m+t)(α,GBR) = C(m)(α,GBR) for any t ∈ N.

(ii) m ≤ 2.

(iii) C(m+2)(α,GBR) = C(m)(α,GBR).

Proof. The proof of (i) is obvious, and (iii) is a direct consequence of part
(i). To prove (ii), let α = (α1, α2, . . . , αℓ) be a composition. If ℓ = 0 or 1,
then it is clear that m = 1. Otherwise, we have two cases:

Case 1: There are positive numbers t and k such that t and αt are
even, and k is the largest odd number with t < k and αt < αk. Write
T (C(1)(α,GBR)) = (β1, · · · , βℓ). It follows that βk has a red pixel, and the
color of the last pixel of βk (in C(1)(α,GBR)) must be blue. Consequently,
the colored cells of each row of C(2)(α,GBR) are ordered using the order
G < B < R. Thus, m = 2.

Case 2: There are no such positive numbers t and k. Then the colored
cells of each row of C(1)(α,GBR) are ordered using the order G < B < R,
and hence m = 1.

Remark 2.5.
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(i) Obviously, there is a 1-1 correspondence between compositions and
their corresponding Noise Bayer Young composition diagrams

(ii) One might note that the green part of C(α,GBR) forms a col-
ored Young composition subdiagram, denoted by C(α,GBR,G), of
C(α,GBR) (of shape αG) while the region of both the green part and
the blue part of C(α,GBR) forms a colored Young composition subdi-
agram, denoted by C(α,GBR,GB), of C(α,GBR) (of shape αGB ).
Here, αG and αGB are the shapes of the colored Young diagrams
C(α,GBR,G) and C(α,GBR,GB) respectively.

(iii) Clearly, if α is a partition, then C(α,E) = C(1)(α,E).

(iv) For any α ∈ Comp, we have αGB = ∅ if and only if α = ∅.

Example 2.6. Consider α = (1, 1, 1, 4, 1, 1, 7, 3, 1), we have

B(α) C(1)(α,GBR)

C(2)(α,GBR)

Notably, C(α,GBR) = C(2)(α,GBR), and hence we have
On the other hand, we have
We observe that C(α,RGB) = C(3)(α,RGB). So, we have

Remark 2.7. The color channels for a color image are represented by three
distinct 2D arrays with dimension m× n for an image with m rows and n
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B(α) C(α,GBR) C(α,GBR,GB) C(α,GBR,G)

B(α) C(1)(α,RGB)

C(2)(α,RGB)

C(α,RGB,RG) C(α,RGB,R)

columns, with one array for each color, red (color channel 1), green (color
channel 2), blue (color channel 3). A pixel color is modeled as 1 × 3 ar-
ray [9]. It is also well-known that the spatial domain of each RGB image
can be represented as a 3D vector of 2D arrays. In MATLAB, the syntax
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C(α,RGB,RG) C(α,RGB,R)

A = imread(filename) reads the image from the file specified by filename,
inferring the format of the file from its contents. The Bayer Noise Young
works as a machinery that provides us by an approach by which every Bayer
Young diagram can be represented by three special types of colored (noise)
diagrams RG, G and R diagrams. This can be visualized in the following
example.

Example 2.8. We consider the following image.

Original RGB Image

Note that this image corresponding to the composition α =
(1, 1, 1, 4, 1, 1, 7, 3). We have

The following proposition is an obvious consequence.

Proposition 2.9.

(i) The colored Young composition diagrams C(α,GBR,G) and
C(α,GRB,G) have the same shape αG. Analogously, C(α,BGR,B)
and C(α,BRG,B) have the same shape αB while C(α,RGB,R) and
C(α,RBG,R) have the same shape αR .

(ii) We have αGB = αBG, αGR = αRG and αBR = αRB .

Definition 2.10.
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3 RGB Channels

Bayer Noise Young Channels

1. For any composition α ∈ Comp, the Quasi-Bayer Noise monomial is
defined to be the monomial

ξα(x, y, z) =Mα
GB

(x)⊗Mα
G
(y)⊗Mα

R
(z).

2. Let Ωn(k) be the free k-module with the basis {ξα}α∈Compn , where
Compn is the set of compositions of n. We have Ωn(k) ∼= Qsymn (as
vector spaces over k) for any n ∈ N, and hence dimk(Qsymn(k)) =
2n−1. Let Ω(k) =

⊕
n≥0Ωn(k). Then the set {ξα}α∈Comp forms a

basis for Ω(k) over k, and hence Ωn(k) ∼= Qsymk (as vector spaces).
The k-module Ω(k) is called the Quasi-Bayer Noise module.

3. Let Comp
(1)
n = Compn

⋂
Comp(1), and let Compe = {α ∈ Comp(1) :
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all α- parts are even}. Let Ω(e,n)(k) be the free k-module with the
basis {ξα}α∈Comp(e,n) , where

Comp(e,n) = Comp(1)n

⋂
Compe.

Consider the k-vector space Ωe(k) =
⊕

n≥0Ω
(e,n)(k). Obviously, the

set {ξα}α∈Compe forms a basis for Ωe(k) over k.

Example 2.11. We have

ξ = M ⊗ M∅ ⊗ M∅,

ξ = M ⊗ M ⊗ M∅,

ξ = M ⊗ M ⊗ M∅,

ξ = M ⊗ M ⊗ M ,

ξ = M ⊗ M ⊗ M ,

ξ = M ⊗ M ⊗ M∅,

and

ξ = M ⊗ M ⊗ M .

Remark 2.12.

(i) When no confusion is possible, we will simply write Ωn and Ω instead
of Ωn(k) and Ω(k) respectively.
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(ii) Let α, α′ ∈ Comp. Then, in general, (αGB + α′
GB
, αG + α′

G
, αR + α′

R
)

need not be in DGBR(Comp), and hence ξα ξ
′
α need not be in Ω.

For example, if α = (1, 1) = α′, then αGB = α′
GB

= (1, 1), αG =
α′
G

= (1) and αR = α′
R

= (0) (the empty composition). However,
(αGB +α′

GB
, αG +α′

G
, αR +α′

R
) = ((2, 2), (2), (0)) which is clearly not in

DGBR(Comp). It turns out that the operation (ξα, ξ
′
α) 7→ ξα ξ

′
α does

not define an algebra structure on Ω.

(iii) One might notice that in general if (α, α′) ∈ Comp×Comp, then ((α⊙
α′)GB , ((α⊙α′)G , (α⊙α′)R) ̸= (αGB⊙α′

GB
, αG⊙α′

G
, αR⊙α′

R
) and (αGB⊙

α′
GB
, αG ⊙ α′

G
, αR ⊙ α′

R
) need not be in DGBR(Comp). For example,

if α = (2, 3, 2), α′ = (2, 1), then ((α ⊙ α′)GB , (α ⊙ α′)R) ̸= (αGB ⊙
α′
GB
, αR ⊙ α′

R
) and (αGB ⊙ α′

GB
, αR ⊙ α′

R
) /∈ DGBR(Comp). Explicitly,

we have the following:

B(α) C(α,GBR,GB) C(α,GBR,G) C(α,GBR,R)

∅

B(α′) C(α′, GBR,GB) C(α′, GBR,G) C(α′, GBR,R)

B((α⊙ α′)) C((α⊙ α′), GBR,GB)

C((α⊙ α′), GBR,G) C((α⊙ α′), GBR,R)
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T ((α⊙ α′)GB ) T (αGB ⊙ α′
GB

) T ((α⊙ α′)G)

T (αG ⊙ α′
G
) T ((α⊙ α′)R) T (αR ⊙ α′

R
)

3 Algebraic structures

Recall that for any n,m1, · · · ,mt ∈ N with
∑t

i=1mi = n and t ≥ 2 , the
multinomial coefficient, denoted by

(
n

m1,··· ,mt

)
, is defined by

(
n

m1, · · · ,mt

)
=

(
∑t

i=1mi)!

(m1)! · · · (mt)!

One can easily verify the following.

Proposition 3.1. Let k = Ω0
u−→ Ω be the inclusion map. We have the

following:

1. The triple (Ω, η, u) is a k-algebra with a multiplication

η : Ω⊗ Ω→ Ω, η(ξα ⊗ ξβ) =
∑

γ

cγα,β ξγ ,

where cγα,β is the number of ways of writing γ as a shuffle sum of α
and β.

2.
(|α|+|α′|
|α|, |α′|

) (|α|+|α′|+|α′′|
|α⊙α′|, |α′′|

)
=

(|α|+|α′|+|α′′|
|α|, |α′|, |α′′|

)
for every α, α′ ∈ Comp.

3. The triple (Ω, η̂, u) is a k-algebra, where η is the map

η̂ : Ω⊗ Ω→ Ω, ξα ⊗ ξα′ 7→
(|α|+ |α′|
|α|, |α′|

)
ξα+α′ .
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The proof of the following lemma is clear and left to the reader.

Lemma 3.2. We have (α + α′)GB = αGB + α′
GB

and (α + α′)R = αR + α′
R

for every α, α′ ∈ Compe.

The proof of the following theorem follows directly from Lemma 3.2.

Theorem 3.3. We have the following:

(i)
( |(α+α′)

GB
|

|α
GB

|, |α′
GB

|
)
=

(|α
GB

|+|α′
GB

|
|α

GB
|, |α′

GB
|
)
for any α, α′ ∈ Compe.

(ii)
( |(2(α+α′))

GB
|

|2α
GB

|, |2α′
GB

|
)
=

(2(|α
GB

|+|α′
GB

|)
2|α

GB
|, 2|α′

GB
|
)
for any α, α′ ∈ Comp(1).

(iii)
( |(α+α′)

GB
|

|α
GB

|, |α′
GB

|
) ( |((α+α′+α′′)

GB
|

|(α+α′)
GB

|, |α′′
GB

|
)

=
(|α

GB
|+|α′

GB
|+|α′′

GB
|

|α
GB

|, |α′
GB

|, |α′′
GB

|
)

for any

α, α′, α′′ ∈ Compe.

(iv) More generally, we have

(|(α(1) + α(2) + . . .+ α(t))GB|
|α(1)

GB|, |α
(2)
GB|, . . . , |α

(t)
GB|

)
=

(|α(1)
GB|+ |α

(2)
GB|+ . . .+ |α(t)

GB|
|α(1)

GB|, |α
(2)
GB|, . . . , |α

(t)
GB|

)

for every (α(1), α(2), ..., α(t)) ∈ Compe, and
(|(2(α(1) + α(2) + . . .+ α(t)))GB|
|2α(1)

GB|, |2α
(2)
GB|, . . . , |2α

(t)
GB|

)
=

(
2|α(1)

GB|+ 2|α(2)
GB|+ . . .+ 2|α(t)

GB|
2|α(1)

GB|, 2|α
(2)
GB|, . . . , 2|α

(t)
GB|

)

for every (α(1), α(2), ..., α(t)) ∈ Comp(1).

(v) The triple (Ωe(k), ηe, ue) is a k-algebra, where ηe is the map

ηe : Ωe(k)⊗ Ωe(k)→ Ωe(k), ξα ⊗ ξα′ 7→
(|(2(α+ α′))GB |
|2αGB |, |2α′

GB
|

)
ξα⊙α′

and
k = Ω(e,0)(k)

ue−→ Ωe(k)

is the inclusion map.
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Definition 3.4.

(i) Define the sets

Compn
GB

= {α ∈ Compn : α = αGB}

and
CompGB = {α ∈ Comp : α = αGB}.

Since α = αGB if and only if αR = ∅, the sets Compn
GB

and CompGB can
be respectively given by the following equivalent forms: Compn

GB
=

{α ∈ Compn : αR = ∅} and CompGB = {α ∈ Comp : αR = ∅}.
Clearly, the elements of CompGB are precisely the empty composition
∅ and the compositions of the form α = (α1, · · · , αt) with αi = 1 if i
is even.

(ii) Let Ωn
GB

(k) be the free k-module with the basis {ξα}α∈Compn
GB

, and

let ΩGB (k) =
⊕

n≥0Ω
n
GB

(k). Then the set {ξα}α∈Comp
GB

forms a basis
for ΩGB (k) over k and is called the Quasi-Bayer GB-Noise module.

(iii) Let α = (α1, . . . , αℓ(α)), β = (β1, . . . , βℓ(β)) ∈ CompGB . The GB-
concatenation of α and β is the composition α� β defined by

α� β =

{
α⊙ β if ℓ(α) is even or β = ∅
(α1, . . . , αℓ(α), 1, β1, . . . , βℓ(β)) if ℓ(α) is odd and β ̸= ∅

Consequently, we have the following proposition.

Proposition 3.5. Let uGB : k = Ω0
GB

↪→ ΩGB be the obvious inclusion map.
Then

(i) We have α� β ∈ CompGB for every α, β ∈ CompGB .

(ii) The triple (ΩGB , ηGB , uGB ) is a k-algebra with a multiplication

ηGB : ΩGB ⊗ ΩGB → ΩGB , ηGB (ξα ⊗ ξβ) =
(|(α+ α′)GB |
|αGB |, |α′

GB
|

)
ξα�β.

Proof. The proof of (i) follows immediately from Definition (3.4). We
prove part (ii). Let α = (α1, . . . , αℓ(α)), α

′ = (α′
1, . . . , α

′
ℓ(α′)), α

′′ =
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(α′′
1, . . . , α

′′
ℓ(α′′)) ∈ CompGB . To prove the associativity axiom, by using part

(2) of proposition, (3.1), it suffices to show that (α�α′)�α′′ = α�(α′�α′′)
for any α, α′, α′′ ∈ CompGB . If α, α

′ or α′′ is ∅ (the empty composition), then
we obviously have (α�α′)�α′′ = α� (α′ �α′′) for any α, α′, α′′ ∈ CompGB .
If none of them is ∅, then we have

ℓ(α) ℓ(α′) ℓ(α′′) ℓ(α� α′) ℓ(α′ � α′′)
even even even even even

odd odd odd odd odd

even even odd even odd

even odd even odd even

odd even even even even

odd odd even odd even

odd even odd even odd

even odd odd odd odd

(α� α′) � α′′ α� (α′ � α′′)
(α⊙ α′)⊙ α′′ α⊙ (α′ ⊙ α′′)
α⊙ (1)⊙ α′ ⊙ (1)⊙ α′′ α⊙ (1)⊙ α′ ⊙ (1)⊙ α′′

(α⊙ α′)⊙ α′′ α⊙ (α′ ⊙ α′′)
α⊙ α′ ⊙ (1)⊙ α′′ α⊙ α′ ⊙ (1)⊙ α′′

α⊙ (1)⊙ α′ ⊙ α′′ α⊙ (1)⊙ α′ ⊙ α′′

α⊙ (1)⊙ α′ ⊙ (1)⊙ α′′ α⊙ (1)⊙ α′ ⊙ (1)⊙ α′′

α⊙ (1)⊙ α′ ⊙ α′′ α⊙ (1)⊙ α′ ⊙ α′′

α⊙ α′ ⊙ (1)⊙ α′′ α⊙ α′ ⊙ (1)⊙ α′′

Thus, (α � α′) � α′′ = α � (α′ � α′′) for any α, α′, α′′ ∈ CompGB . One
can easily show that the unity axiom holds.

Example 3.6. Let α = (3, 2), β = (4, 5, 3), µ = (2, 1, 4, 1, 5) and ν = (3, 1).
We have

B(α) C(α,GBR) C(α,GBR,GB)
C(α,GBR,R)
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One could similarly show that the corresponding diagrams for β are

B(β) C(β,GBR) C(β,GBR,GB)
C(β,GBR,R)

One can calculate η(ξα ⊗ ξβ), η̂(ξα ⊗ ξβ) and ηGB (ξµ ⊗ ξν) as follows:

η(ξ ⊗ ξ ) = ξ + ξ + ξ

+ ξ + ξ + ξ

+ ξ + ξ + ξ

+ ξ + ξ + ξ

+ ξ + ξ + ξ

+ ξ + ξ + ξ + ξ
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+ ξ + ξ + ξ + ξ

+ ξ + ξ .

One might calculate η̂(ξα ⊗ ξβ) as follows:

η̂(ξ ⊗ ξ ) = 6188 ξ

Similarly, one could easily calculate ηGB (ξµ ⊗ ξν) as follows:

ηGB (ξ ⊗ ξ ) = 2380 ξ

4 Coalgebraic structures

Naturally, one might dually think of breaking a basis element ξα into tensors
of basis elements in such a compatible way. Consider the map

∆ξα =
∑

(µ,ν)∈Comp×Comp:
µ⊙ν=α

ξµ ⊗ ξν , (4.1)

Interestingly, one might define the map ∆̃ : Ω → Ω ⊗ Ω defined k-linearly
by

∆̃ξα =
∑

(µ,ν)∈Comp×Comp:
µ
U
⊙ν

U
=α

U
,∀U∈{GB,R}

(|µ+ ν|
|µ|, |ν

)
ξµ ⊗ ξν , (4.2)
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We have the following theorem.

Theorem 4.1. Let Ω
ϵ→ k be the map defined k-linearly by

ϵ|Ω0=k = idk and ϵ|I=⊕
n>0 Ωn

= 0.

Then

(i) The triple (Ω,∆, ϵ) is a k-coalgebra.

(ii) The triple (Ω, ∆̃, ϵ) is a k-coalgebra.

Proof. The proof of (i) is obvious. To prove part (ii), we have to show that
the following diagrams are commutative.

Ω⊗ Ω⊗ Ω

Ω⊗ Ω

∆̃⊗id
88

Ω⊗ Ω

id⊗∆̃
ff

Ω
∆̃

88

∆̃

ff

Ω⊗ k
Ψ // Ω k⊗ Ω

Φoo

Ω⊗ Ω

id⊗ϵ

OO

Ω
∆̃

oo

id

OO

∆̃

// Ω⊗ Ω

ϵ⊗id

OO

(4.3)
Here Ψ and Φ are the isomorphisms Ψ : Ω ⊗ k → Ω, ξα ⊗ 1 7→ ξα and

Φ : k⊗ Ω→ Ω, 1⊗ ξα 7→ ξα. For any α ∈ Par, we have

(∆̃⊗ id)∆̃ξα = (∆̃⊗ id)(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ+ µ′|
|µ|, |µ′|

)
ξµ ⊗ ξµ′)

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ+ µ′|
|µ|, |µ′|

)
∆̃ξµ ⊗ ξµ′

= (
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ+ µ′|
|µ|, |µ′|

)

∑

(ν,ν′)∈Comp×Comp:
ν
W

⊙ν′
W

=µ
W

,∀W∈{GB,R}

(|ν + ν ′|
|ν|, |ν ′|

)
(ξν ⊗ ξν′))⊗ ξµ′
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=
∑

(ν,ν′,µ′)∈Comp×Comp:
ν
U
⊙ν′

U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ+ µ′|
|µ|, |µ′|

) (|ν + ν ′|
|ν|, |ν ′|

)
ξν ⊗ ξν′ ⊗ ξµ′

One can easily check the following:

|α| = |αGB |+ |αR | = |µGB |+ |µ′GB|+ |µR |+ |µ′R| = |µ|+ |µ′|

and

|µ| = |µGB |+ |µR | = |νGB |+ |ν ′GB|+ |νR |+ |ν ′R| = |ν|+ |ν ′|.
As a consequence, we have

(|µ|+ |µ′|
|µ|, |µ′|

) (|ν|+ |ν ′|
|ν|, |ν ′|

)
=

(|ν|+ |ν ′|+ |µ′|
|ν|+ |ν ′|, |µ′|

) (|ν|+ |ν ′|
|ν|, |ν ′|

)

=

(|ν|+ |ν ′|+ |µ′|
|ν|, |ν ′|, |µ′|

)
(by part (2) of proposition (3.1)).

Thus, we have

(∆̃⊗ id)∆̃ξα =
∑

(ν,ν′,µ′)∈Comp×Comp:
ν
U
⊙ν′

U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|ν|+ |ν ′|+ |µ′|
|ν|, |ν ′|, |µ′|

)
ξν ⊗ ξν′ ⊗ ξµ′

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)

∑

(ν,ν′)∈Comp×Comp:
ν
W

⊙ν′
W

=µ′
W

,∀W∈{GB,R}

(|ν|+ |ν ′|
|ν|, |ν ′|

)
ξµ ⊗ (ξν ⊗ ξν′)

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
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ξµ ⊗
∑

(ν,ν′)∈Comp×Comp:
ν
W

⊙ν′
W

=µ′
W

,∀W∈{GB,R}

(|ν|+ |ν ′|
|ν|, |ν ′|

)
(ξν ⊗ ξν′)

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ⊗ ∆̃ξµ′

= (id⊗ ∆̃)(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ⊗ ξµ′)

= (id⊗ ∆̃)∆̃ξα.

Therefore, the commutativity of the associativity diagram follows. Checking
the commutativity of the unity diagram can be done as follows:

Φ(ϵ⊗ id)∆̃ξα = Φ(ϵ⊗ id)(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ⊗ ξµ′)

= Φ(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ϵ(ξµ)⊗ ξµ′)

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ϵ(ξµ) ξµ′

= ξα ( since ϵ|k = idk and ϵ|I=⊕
n>0 Ωn

= 0).

= id(ξα)

=
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ϵ(ξµ′)

= Ψ(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ⊗ ϵ(ξµ′))
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= Ψ(id⊗ ϵ)(
∑

(µ,µ′)∈Comp×Comp:
µ
U
⊙µ′

U
=α

U
,∀U∈{GB,R}

(|µ|+ |µ′|
|µ|, |µ′|

)
ξµ ⊗ ξµ′)

= Ψ(id⊗ ϵ)∆̃ξα.

It follows that (Ω, ∆̃, ϵ) is a k-coalgebra.

We call the k-coalgebra (Ω, ∆̃, ϵ) as the Bayer coalgebra over k. The
following proposition gives an explicit description for primitive with respect
to the comultiplication ∆̃.

Proposition 4.2. The primitive basis elements for Ω (with respect to the
comultiplication ∆̃) are precisely of the form ξα, where α = (m) for some
non-negative integer m.

Proof. It is clear that ∆̃ξλ = ξλ⊗ 1+ 1⊗ ξλ if and only if λ = (m) for some
non-negative integer m. Thus, ξα is primitive if and only if λ = (m) for
some non-negative integer m.

Let ∆̂ : Ωe(k)→ Ωe(k)⊗ Ωe(k) be the map defined k-linearly by

∆̂ξα =
∑

(µ,ν)∈Compe×Compe:
µ
U
⊙ν

U
=λ

U
,∀U∈{GB,R}

(|µ+ ν|
|µ|, |ν|

)
ξµ ⊗ ξν , (4.4)

Using part (3) of Theorem (3.3), the following theorem can be proved sim-
ilarly to the proof of Theorem (4.1).

Theorem 4.3. The triple (Ωe(k), ∆̂, ϵ̂) is a k-coalgebra, where Ωe(k)
ϵ̂→ k

is the map defined k-linearly by

ϵ̂|Ω(e,0)=k = idk and ϵ̂|I=⊕
n>0 Ω

(e,n) = 0.

The primitive elements in Ωe(k) (with respect to the comultiplication
∆̂) can be explicitly described as follows:

Proposition 4.4. The primitive basis elements for Ωe(k) (with respect to
the comultiplication ∆̂) are precisely of the form ξα, where α = (m) for
some m ∈ 2N = {0, 2, 4, . . .}.
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Proof. The proof is very similar to the proof of Proposition 4.2.

Definition 4.5.

1. Let Ω
(1)
n (k) be the free k-module with the basis {ξα}α∈Comp

(1)
n
. Con-

sider the k-module

Ω(1)(k) =
⊕

n≥0

Ω(1)
n (k).

Clearly, the set {ξα}α∈Comp(1) forms a basis for the free k-module

Ω(1)(k).

2. Consider the map ∆(e) : Ω(1)(k)→ Ω(1)(k)⊗Ω(1)(k) defined k-linearly
by

∆(e)ξα =
∑

(µ,ν)∈Comp(1)×Comp(1):
µ
U
⊙ν

U
=α

U
,∀U∈{GB,R}

(
2|µ+ ν|
2|µ|, 2|ν|

)
ξµ ⊗ ξν . (4.5)

The following are analogous consequences to those of Theorem 4.3 and
Proposition 4.4, respectively.

Theorem 4.6. The triple (Ω(1)(k),∆(e), ϵ(e)) is a k-coalgebra, where

Ω(1)(k)
ϵ(e)→ k is the map defined k-linearly by

ϵ(e)|
Ω

(1)
0 (k)=k

= idk and ϵ(e)|
I=

⊕
n>0 Ω

(1)
n (k)

= 0.

Proposition 4.7. The primitive basis elements for Ω(1) (with respect to the
comultiplication ∆(e)) are precisely of the form ξα, where α = (m) for some
m ∈ 2N = {0, 2, 4, . . .}.

Define the k-linear map

∆GB : ΩGB → ΩGB⊗ΩGB , ∆GBξα =
∑

(µ,ν)∈Comp
GB

×Comp
GB

:
µ�ν=α

(|µ+ ν|
|µ|, |ν|

)
ξµ⊗ξν .

The proof of the following proposition is obvious and left to the reader.
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Proposition 4.8. Let ΩGB

ϵ
GB−−→ k be the k-linear map defined by

ϵGB |Ω0
GB

=k = idk and ϵGB |I=⊕
n>0 Ω

n
GB

= 0.

Then (ΩGB ,∆GB , ϵGB ) is a k-coalgebra.

The following proposition gives an explicit description of the primitive
basis elements of {ξα}α∈Comp

GB
(with respect to the comultiplication ∆GB ).

Proposition 4.9. The primitive basis elements of {ξα}α∈Comp
GB

(with
respect to the comultiplication ∆GB) are precisely of the form ξθ, where
θ ∈ CompGB with ℓ(θ) ≤ 2.

Proof. For any θ ∈ CompGB , we have ∆GBξθ = ξθ ⊗ 1 + 1⊗ ξθ if and only if
ℓ(θ) ≤ 2 which completes the proof.

Example 4.10.

1. Let α = (3, 2). One can easily verify that

∆ξα = ∆ξ(3,2)

= ξ(3,2) ⊗ ξ∅ + ξ(3) ⊗ ξ(2) + ξ∅ ⊗ ξ(3,2)
= (M(3,1) ⊗M(1,1) ⊗M(1))⊗ 1 + (M(3) ⊗M(1) ⊗M∅)⊗ (M(2) ⊗M(1) ⊗M∅)

+ 1⊗ (M(3,1) ⊗M(1,1) ⊗M(1)).

This can be pictured as

∆ξ = (ξ ⊗ ξ∅) + ξ ⊗ ξ + ξ∅ ⊗ ξ

= (M ⊗M ⊗M ) ⊗ 1

+ (M ⊗M ⊗M∅)⊗ (M ⊗M ⊗M∅)

+ 1 ⊗ (M ⊗M ⊗M ) .
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On the other hand, we have

∆̃ξα = ∆̃ξ(3,2)

= ξ(3,2) ⊗ ξ∅ + ξ∅ ⊗ ξ(3,2)
= (M(3,1) ⊗M(1,1) ⊗M(1))⊗ 1 + 1⊗ (M(3,1) ⊗M(1,1) ⊗M(1)).

This can be visualized as

∆̃ξ = (ξ ⊗ ξ∅) + ξ∅ ⊗ ξ

= (M ⊗M ⊗M )⊗ 1 + 1⊗ (M ⊗M ⊗M ) .

2. To see the difference between ∆ and ∆̃ more clearly, let α = (4, 5, 3).
Clearly, we have

∆ξα = ∆ξ(4,5,3)

= ξ(4,5,3) ⊗ ξ∅ + ξ(4,5) ⊗ ξ(3) + ξ(4) ⊗ ξ(5,3) + ξ∅ ⊗ ξ(4,5,3)
= (M(4,3,3) ⊗M(3,2,1) ⊗M(2))⊗ 1

+ (M(4,3) ⊗M(3,2) ⊗M(2))⊗ (M(3) ⊗M(1) ⊗ 1)

+ (M(4) ⊗M(2) ⊗ 1)⊗ (M(5,2) ⊗M(2,2) ⊗M(1))

+ 1⊗ (M(4,3,3) ⊗M(3,2,1) ⊗M(2)).

One might visualize it as

∆ξ = ξ ⊗ ξ∅ + ξ ⊗ ξ

+ ξ ⊗ ξ + ξ∅ ⊗ ξ
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= (M ⊗M ⊗M ) ⊗ 1

+ (M ⊗M ⊗M )⊗ (M ⊗M ⊗ 1)

+ (M ⊗M ⊗ 1) ⊗ (M ⊗M ⊗M )

+ 1 ⊗ (M ⊗M ⊗M ) .

It is easy to check that ∆̃ξα is given by

∆̃ξα = ∆̃ξ(4,5,3)

= ξ(4,5,3) ⊗ ξ∅ + 220 ξ(4,5) ⊗ ξ(3) + ξ∅ ⊗ ξ(4,5,3)
= (M(4,3,3) ⊗ (M(3,2,1) ⊗M(2))⊗ 1

+ (M(4,3) ⊗ (M(3,2) ⊗M(2))⊗ (M(3) ⊗ (M(1) ⊗ 1)

+ 1⊗ (M(4,3,3) ⊗ (M(3,2,1) ⊗M(2)),

which can be visualized as the following.

∆̃ξ = ξ ⊗ ξ∅ + 220 ξ ⊗ ξ + ξ∅ ⊗ ξ

= (M ⊗M ⊗M )⊗ 1

+ 220 (M ⊗M ⊗M )⊗ (M M ⊗ 1)
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+ 1⊗ (M ⊗M ⊗ M ) .

3. Let α = (4, 6, 2) and β = (3, 6, 2). A direct calculation shows that

∆̂ξα = ∆̂ξ(4,6,2)

= ξ(4,6,2) ⊗ ξ∅ + 36 ξ(4,6) ⊗ ξ(2) + ξ∅ ⊗ ξ(4,6,2)
= (M(4,3,2) ⊗M(3,2,1) ⊗M(2))⊗ 1

+ 36 (M(4,3) ⊗M(3,2) ⊗M(3))⊗ (M(2) ⊗M(1) ⊗ 1)

+ 1⊗ (M(4,3,2) ⊗M(3,2,1) ⊗M(2)),

One can be picture this as follows:

∆̂ξ = ξ ⊗ ξ∅ + 36 ξ ⊗ ξ

+ ξ∅ ⊗ ξ

= (M ⊗ M ⊗ M ) ⊗ 1

+ 36(M ⊗M ⊗M )⊗ (M ⊗M ⊗ 1)

+ 1 ⊗ (M ⊗ M ⊗ M ) .

A similar calculation shows that

∆(e)ξβ = ∆(e)ξ(3,6,2)

= ξ(3,6,2) ⊗ ξ∅ + 1820 ξ(3,6) ⊗ ξ(2) + ξ∅ ⊗ ξ(3,6,2)
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= (M(3,3,2) ⊗M(3,1,1) ⊗M(3))⊗ 1

+ 1820 (M(3,3) ⊗M(3,1) ⊗M(3))⊗ (M(2) ⊗M(1) ⊗ 1)

+ 1⊗ (M(3,3,2) ⊗M(3,1,1) ⊗M(3)).

One can visualize this calculation as the following:

∆(e)ξ = ξ ⊗ ξ∅ + 1820 ξ ⊗ ξ

+ ξ∅ ⊗ ξ

= (M ⊗M ⊗ M ) ⊗ 1

+ 1820 (M ⊗ M ⊗ M )

=

⊗ (M ⊗ M ⊗ 1)

+ 1 ⊗ (M ⊗ M ⊗ M ) .

4. Let σ = (5, 1, 3, 1, 2). Clearly, we have

∆GBξσ = ∆GBξ(5,1,3,1,2)

= ξ(5,1,3,1,2) ⊗ ξ∅ + 462 ξ(5) ⊗ ξ(3,1,2) + 924 ξ(5,1) ⊗ ξ(3,1,2)
+ 55 ξ(5,1,3) ⊗ ξ(2) + 66 ξ(5,1,3,1) ⊗ ξ(2) + ξ∅ ⊗ ξ(5,1,3,1,2)

= (M(5,1,3,1,2) ⊗M(2,1,1,1,1) ⊗ 1)⊗ 1

+ 462 (M(5) ⊗M(2) ⊗ 1)⊗ (M(3,1,2) ⊗M(1,1,1) ⊗ 1)

+ 924 (M(5,1) ⊗M(2,1) ⊗ 1)⊗ (M(3,1,2) ⊗M(1,1,1) ⊗ 1)
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+ 55 (M(5,1,3) ⊗M(2,1,1) ⊗ 1)⊗ (M(2) ⊗M(1) ⊗ 1)

+ 66 (M(5,1,3,1) ⊗M(2,1,1,1) ⊗ 1)⊗ (M(2) ⊗M(1) ⊗ 1)

+ 1⊗ (M(5,1,3,1,2) ⊗M(2,1,1,1,1) ⊗ 1).

One might visualize it as

∆GBξ = ξ ⊗ ξ∅ + 462 ξ ⊗ ξ

+ 924 ξ ⊗ ξ + 55 ξ ⊗ ξ

+ 66 ξ ⊗ ξ + ξ∅ ⊗ ξ

= (M ⊗M ⊗ 1)⊗ 1

+ 462 (M ⊗ M ⊗ 1) ⊗ (M ⊗M ⊗ 1)

+ 924(M ⊗M ⊗ 1)⊗ (M ⊗M ⊗ 1)

+ 55 (M ⊗M ⊗ 1)⊗ (M ⊗M ⊗ 1)
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+ 66(M ⊗M ⊗ 1) ⊗ (M ⊗M ⊗ 1)

+ 1⊗ (M ⊗M ⊗ 1).

Definition 4.11. Let α ∈ Comp.

1. Write α(GB,0) = α, α(GB,1) = αGB , and α(GB,2) = (αGB )GB =
(α(GB,1))GB. Inductively, we define

α(GB,t) = (α(GB,t−1))GB

for any t ∈ N with t ≥ 1. Similarly, one could define α(R,t).

2. The GB-order of α, denoted by |α|GB, is the least positive integer t
with α(GB,t) = (α(GB,t−1))GB. Note that |α|GB ≥ 1.

3. Let t = |α|GB. Define the sets

Comp(GB)t = {α ∈ Comp : |α|GB ≤ t}

and
Comp(GB,n)t = {α ∈ Compn : |α|GB ≤ t}.

Example 4.12.

1. To find (6, 6, 6, 6, 6, 6)(GB, we calculate

Thus, |(6, 6, 6, 6, 6, 6)|GB = 8.

2. One could check that

Therefore, |(1, 4, 2, 2)|GB = 4. Similarly, one might verify that
|(2, 4, 2, 4)|GB = 4.

Remark 4.13. Let α ∈ Comp and t ∈ N with t ≥ 2.
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(6, 6, 6, 6, 6, 6)(GB,0) (6, 6, 6, 6, 6, 6)

(6, 6, 6, 6, 6, 6)(GB,1) (6, 6, 6, 3, 3, 3)

(6, 6, 6, 6, 6, 6)(GB,2) (6, 6, 3, 3, 2, 2)

(6, 6, 6, 6, 6, 6)(GB,3) (6, 3, 3, 2, 2, 1)

(6, 6, 6, 6, 6, 6)(GB,4) (6, 3, 2, 2, 1, 1)

(6, 6, 6, 6, 6, 6)(GB,5) (6, 2, 2, 1, 1, 1)

(6, 6, 6, 6, 6, 6)(GB,6) (6, 2, 1, 1, 1, 1)

(6, 6, 6, 6, 6, 6)(GB,7) (6, 1, 1, 1, 1, 1)

(1, 4, 2, 2)(GB,0) (1, 4, 2, 2)

(1, 4, 2, 2)(GB,1) (1, 2, 2, 1)

(1, 4, 2, 2)(GB,2) (1, 2, 1, 1)

(1, 4, 2, 2)(GB,3) (1, 1, 1, 1)

1. Clearly, |α|GB ≤ |α| for α ∈ Comp with |α| ≥ 1.

2. If α ∈ Comp(GB)t , then αGB ∈ Comp(GB)(t−1)
.

3. If α ∈ Comp(GB)t , then (α(GB,t−1))R = ∅. In particular, if α ∈
Comp(GB)2 , then (α(GB,2))R = ∅, α(R,2) = ∅ and (α(GB,1))R = ∅.

Consider the map

Ω(k)
∆
GB

// Ω(k)⊗ Ω(k) (4.6)

defined k-linearly by

∆
GB
ξα =

{
1⊗ 1 if α = ∅
ξ
α(GB,|α|GB−1) ⊗ 1 + 1⊗ ξ

α(GB,|α|GB−1) if α ̸= ∅

We have the following proposition.

Proposition 4.14. (Ω(k),∆
GB

) is a nonunital k-coalgebra.
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Proof. We have to show that the following diagram is satisfied.

(Ω(k))⊗3

(Ω(k))⊗2

∆
GB⊗id

88

(Ω(k))⊗2

id⊗∆
GB

ff

Ω(k)
∆
GB

88

∆
GB

ff

(4.7)

(∆
GB ⊗ id)∆GB

ξα = (∆
GB ⊗ id)(ξ

α(GB,|α|GB−1) ⊗ 1 + 1⊗ ξ
α(GB,|α|GB−1))

= ∆
GB

(ξ
α(GB,|α|GB−1))⊗ 1 + ∆

GB
(1)⊗ ξ

α(GB,|α|GB−1)

= (ξ
α(GB,|α|GB) ⊗ 1 + 1⊗ ξ

α(GB,|α|GB))⊗ 1 + 1⊗ 1⊗ ξ
α(GB,|α|GB−1)

= ξ
α(GB,|α|GB) ⊗ 1⊗ 1 + 1⊗ ξ

α(GB,|α|GB) ⊗ 1 + 1⊗ 1⊗ ξ
α(GB,|α|GB−1)

(id⊗∆
GB

)∆
GB
ξα = (id⊗∆

GB
)(ξ

α(GB,|α|GB−1) ⊗ 1 + 1⊗ ξ
α(GB,|α|GB−1))

= ξ
α(GB,|α|GB−1) ⊗∆

GB
(1) + 1⊗∆

GB
(ξ

α(GB,|α|GB−1))

= ξ
α(GB,|α|GB−1) ⊗ (1⊗ 1) + 1⊗ (ξ

α(GB,|α|GB) ⊗ 1⊗ 1 + 1⊗ ξ
α(GB,|α|GB))

= ξ
α(GB,|α|GB) ⊗ 1⊗ 1 + 1⊗ ξ

α(GB,|α|GB) ⊗ 1 + 1⊗ 1⊗ ξ
α(GB,|α|GB)

For any α ∈ Comp, α(GB,|α|GB) = α(GB,|α|GB−1) (by the definition of

|α|GB). It follows that (∆
GB ⊗ id)∆GB

= (id⊗∆
GB

)∆
GB

. Thus, the diagram

(4.7) is commutative, and hence (Ω(k),∆
GB

) is a nonunital k-coalgebra.

Definition 4.15. Fix t ∈ N with t ≥ 1. Let Ω(GB,n)t(k) be
the free k-module with the basis {ξα}α∈Comp(GB,n)t . Let Ω(GB)t(k) =
⊕

n≥0Ω
(GB,n)t(k). Then the set {ξα}α∈Comp(GB)t forms a basis for Ω(GB)t(k)

over k, and Ω(GB)t(k) is called the (GB, t)-Bayer Noise module over k.
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Now consider the map

Ω(GB)t(k)
∆(GB)t

// Ω(GB)t(k)⊗ Ω(GB)t(k) (4.8)

defined k-linearly by

∆(GB)tξα =

{
1⊗ 1 if α = ∅
ξα(GB,t−1) ⊗ 1 + 1⊗ ξα(GB,t−1) if α ̸= ∅.

We have the following proposition.

Proposition 4.16. (Ω(GB)t(k),∆(GB)t) is a nonunital k-coalgebra.

Proof. The proof is very similar to the proof of Proposition 4.14.

It is well known that the nonunital k-coalgebras (Ω(k),∆
GB

) can be

extended for a unital k-coalgebra (Ω(k),∆GB , ϵGB), where Ω(k) = Ω(k)⊕k,

and ϵGB : Ω(k) = Ω(k)⊕k→ k is the projection map, and ∆GB is the map

Ω(k)
∆GB

// Ω(k)⊗ Ω(k) (4.9)

defined by

∆GB (f + a) = ∆
GB

(f) + f ⊗ 1 + 1⊗ f + a(1⊗ 1)

for any f ∈ Ω(k) and a ∈ k. Similarly, the nonunital (Ω(GB)t(k),∆(GB)t)

can be extended for a unital k-coalgebra (Ω(GB)t(k),∆(GB)t , ϵ(GB)t), where

Ω(GB)t(k) = Ω(GB)t(k)⊕k, and ϵ(GB)t : Ω(GB)t(k) = Ω(GB)t(k)⊕k→ k is

the projection map, and ∆(GB)t is the map

Ω(GB)t(k)
∆(GB)t

// Ω(GB)t(k)⊗ Ω(GB)t(k) (4.10)

defined by

∆(GB)t(f + a) = ∆(GB)t(f) + f ⊗ 1 + 1⊗ f + a(1⊗ 1)

for any f ∈ Ω(GB)t(k) and a ∈ k. Consequently, we have the following.
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Proposition 4.17. (Ω(k),∆GB , ϵGB) and (Ω(GB)t(k),∆(GB)t , ϵ(GB)t) are
(unital) k-coalgebras.

Example 4.18.

1. A direct Calculation for ∆
GB

ξ(1,4,2,2) gives the following:

∆
GB

ξ = ξ ⊗ 1 + 1 ⊗ ξ .

2. Calculating ∆(GB)8 ξ(6,6,6,6,6,6) gives the following:

∆(GB)8 ξ = ξ ⊗ 1 + 1 ⊗ ξ .

3. One could calculate ∆(GB)5 ξ(2,4,2,4) as follows:

∆(GB)5 ξ = ξ ⊗ 1 + 1 ⊗ ξ .

Fix a commutative ring k. We end the paper with a few things as
suggestions to the reader. The interested reader could think of the following:

• Establishing other bases for the Quasi-Bayer Noise module over k.

• Defining noise quasisymmetric functions using other filters.

• Defining quasisymmetric functions based on the denoising concept.

• Studying Stanley’s P -partition theory
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