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A correspondence between proximity
homomorphisms and certain frame maps

via a comonad

Ando Razafindrakoto

To Themba Dube on his 65th Birthday.

Abstract. We exhibit the proximity frames and proximity homomorphisms
as a Kleisli category of a comonad whose underlying functor takes a proximity
frame to its frame of round ideals. This construction is known in the literature
as stable compactification ([6]). We show that the frame of round ideals
naturally carries with it two proximities of interest from which two comonads
are induced.

1 Introduction

The interest in proximities or strong inclusions for topological spaces lies in
the fact that they allow a description of compactifications through binary re-
lations on the powerset lattice. To our knowledge, this particular approach
was pioneered by Smirnov in [23]. Early studies on proximities include the
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work of V.A. Efremovič ([11]) and C.H. Dowker ([10]), and their use have
become important in understanding the property of compactness and total
boundedness in the theory of (quasi-) uniform spaces. The transfer of this
concept to the pointfree setting - hence replacing the powerset lattice with
the lattice of open sets - has been investigated by A. Pultr and J. Picado
in [21], J. Frith ([12]) - who cites the work of S.A. Naimpally and B.D.
Warrack ([19]) among others, B. Banaschewski ([2]) and de Vries ([9]). The
study of compactifications of frames or locales has led to two noticeable con-
structions: the use of strong inclusions on frames by B. Banaschewski ([2])
and the introduction of proximities on Boolean Algebras by de Vries ([9]).
There appear two possible candidates for the morphisms to be considered
between frames with such structures: one is that of a frame homomorphism
that preserves the proximity relation and the relation as in [12], and another
one is that of a subadditive meet-semilattice homomorphism that preserves
the bottom element, as used by G. Bezhanishvili and J. Harding in [5, 6].
The salient difference is that the latter may fail to be a frame map.

The present paper provides a convenient bridge between the two types
of morphisms. Thus each proximity homomorphism f : L→M in the sense
of [5, 6] is shown to be equivalent to a frame homomorphism ψ : RL→M
that preserves proximities. Here RL is the frame of round ideals on L
endowed with the way below relation. This equivalence is presented on a
categorical level and represents the frames with proximities and proximity
homomorphisms as the Kleisli category of an idempotent comonad whose
underlying functor is given by R. The description of R as a comonad also
provides a functorial basis for the stable compactification of proximity frames
introduced by G. Bezhanishvili and J. Harding ([6, 7]).

The main results of the paper are in Section 3 and Section 4. While the
bijection between the proximity morphisms f : L→M and special frame
homomorphisms ψ : RL→M , as mentioned in the previous paragraph, is
shown in Section 3, it is in Section 4 that this correspondence is proved to
be natural in the category theoretic sense. In particular, the functoriality
of R, as well as the study of the natural transformations that make it a
comonad, are discussed in Section 4. We further show in this section that
each RL carries with it a proximity that is maximally compatible with the
proximity on L, and that this yields a comonad (generally non-idempotent)
admitting R as a sub-comonad. Generalities concerning proximity frames
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and monads are introduced in Section 2 in order to articulate those results
in a convenient manner. The last section discusses classical and familiar
compactifications in connection with the stable compactification. We wish
to express the fact that the consideration of the relationship between RL
and RRL, which is central to the paper, and which may be confusing on
a superficial level, has been inspired by Lawvere’s article [16] which uses a
“cylinder” B //

// I ×B // B as a model to “capture” the dialectical
principle of unity and identity of opposites. Where this may become relevant
in Topology is when a pointed endofunctor R with a universal property fails
to be idempotent ([22]). In such a case, the action of R on the unit 1→ R
still provides some useful information on R and this is the case for a monad
where we have such a cylindric model.

2 Preliminaries

Proximities. A frame L is a complete lattice with the equational identity

∧a
∨

i∈I
bi =

∨

i∈I
(∧abi)

for all a ∈ L and for any index set I. Frame homomorphisms or frame
maps are functions f : L→M that preserve finite meets (including the top
element 1) and arbitrary joins (including the bottom element 0). Frames
and their homomorphisms form a category denoted by Frm. An example
of a frame is the lattice of open sets OX of a topological space X. In
this case, any continuous function f : X → Y gives rise to a frame homo-
morphism f−1 : OY → OX defined as the restriction of the inverse image
map on the open sets. The abstract spaces for which the frames constitute
formal open sets are called locales. They are the objects of the category
Loc = Frmop. Thus we have a functor O : Top→ Loc. For each frame
L, one can assign the space ΣL = {f : L→ 2 | f is a frame map} with the
topology {Σa | a ∈ L}, where Σa = {f : L→ 2 | f(a) = 1} consists of all
points contained in a ∈ L. This induces a functor Σ : Loc→ Top by assign-
ing Σ(f)(p) = pf for any frame map f : L→M and any point p :M → 2.
This gives an adjunction O ⊣ Σ.

We refer to [14] and [20] for a general background.
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Definition 2.1. [5] A proximity ≺ on a frame L is a binary relation
satisfying the following:

1. ≺ is finer than ≤ and is a sublattice of L× L;
2. If a ≤ b≺ c ≤ d, then a≺ d;

3. ≺ is interpolative;

4. a =
∨ {b | b≺ a} for any a ∈ L.

The pair (L,≺) is called a proximity frame. Note that the difference
with this definition and that of a strong inclusion ([2]) is in the following
two axioms:

• If a≺ b, then a is “well inside” b, that is, ∨a∗b = 1;

• If a≺ b, then b∗≺ a∗.

Thus a proximity frame is not necessarily regular. One such example is
given by stably continuous frames ([3]). These are the frames endowed with
the relation ≪ defined by

a≪ b if for any arbitrary S ⊆ L, when b ≤ ∨S then a ≤ ∨F where F is
finite and F ⊆ S.

The pair (L,≪) is a proximity frame that is not regular. The frame
maps that preserve ≪ are called proper or perfect. This gives the category
StKFrm. There is a full embedding from StKFrm to PrFrm ([5, Proposi-
tion 4.2]) and we directly use the order≪ when we refer to those proximity
frames that are in the range of this embedding.

Definition 2.2. [5] A proximity homomorphism from (L,≺) to (M,≺) is
a meet-semilattice homomorphism f : L→M satisfying:

1. f(0) = 0;

2. If a1≺ b1 and a2≺ b2, then f(∨a1a2)≺ ∨ f(b1)f(b2);
3. f(a) =

∨ {f(b) | b≺ a}.

Proximity frames and proximity homomorphisms form a categoryPrFrm
with the composition given by

(g ∗ f)(a) = ∨ {g(f(b)) | b≺ a}.
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As shown in [5, Example 3.5], proximity homomorphisms do not need to be
frame homomorphisms. In general, we have (g ∗ f)(a) ≤ (gf)(a). We are
naturally interested in the category C of proximity frames and frame maps
that preserve proximities.

Lemma 2.3. ([5, Lemma 3.7]) If g preserves joins, then g ∗ f = gf .

Monads. A monad T on a category C is a triple (T, µ, η), where T is an
endofunctor on C, µ : TT → T and η : 1→ T are natural transformations
satisfying the identities

µ◦Tµ = µ◦µT and µ◦ηT = µ◦Tη = 1T .

A T-algebra (or an Eilenberg-Moore algebra) is a pair (X, a), where X ∈ C
and a : TX → X a morphism such that

a◦Ta = a◦µX and a◦ηX = 1X .

Note that (TX, µX) is the free T-algebra over X. If (X, a) and (Y, b) are
T-algebras, then a T-algebra homomorphism f : (X, a)→ (Y, b) is a mor-
phism f : X → Y in C such that f◦a = b · Tf . The category of T-algebras
and T-algebra homomorphisms are denoted by CT. The forgetful functor
GT : CT → C : (X, a) 7→ X admits a left adjoint FT : C→ CT : X 7→
(TX, µX), f 7→ Tf . The unit of this adjunction is given by ηX : X →
GTFTX and the co-unit is provided by structure maps ε(X,a) : F

TGT(X, a)→
(X, a).

The Kleisli category CT associated to T consists of the same objects
as those of C, and arrows X ⇀ Y are morphisms X → TY in C. The
composition g • f of f : X → TY and g : Y → TZ is given by the mor-
phism µZ · Tg · f . The functor FT : C→ CT defined by FT(X) = X and
FT(f : X → Y ) = Tf · ηX admits a right adjoint GT : CT → C which takes
f : X → TY to µY · Tf : TX → TY . The dual notion of a monad is called
comonad and that of an algebra is coalgebra; we will however use the same
term Kleisli to refer to the “co-Kleisli category” of a comonad. For further
generalities on monads, we refer the reader to the texts [8], [17] and [18].

In particular, they do not necessarily preserve finite joins.
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3 The frame of round ideals

The feature of a proximity morphism f : L→M , namely the identity f(a) =∨ {f(b) | b≺ a}, allows us to decompose it as follows

a 7→ {b | b≺ a} 7→ {f(b) | b≺ a} 7→ ∨ {f(b) | b≺ a}.

This necessitates that we concentrate on round ideals.

Definition 3.1. A subset J ⊆ L is called an ideal if J is a downset and
closed under the formation of finite joins. The set of all ideals on a frame
L is denoted by IL. IL is a frame with the following operations: meets are
given by set-intersections and joins given by

∨
J =

⋃ {I1 ∨ I2 ∨ · · · ∨ In | I1, I2, . . . , In ∈J and n ∈ N},

where I1 ∨ I2 ∨ · · · ∨ In = {i1 ∨ i2 ∨ · · · ∨ in | ik ∈ Ik for 1 ≤ k ≤ n}. Thus,
if J is a directed set, then

∨
J =

⋃
J .

Definition 3.2. On a proximity frame L, an ideal I is said to be round if
for any a ∈ I, there is b ∈ I such that a≺ b. The collection of round ideals
in L is denoted by RL.

Lemma 3.3. RL is a subframe of the frame of ideals IL. The composi-
tion ςL : RL→ L of the frame inclusion m : RL → IL and the join map∨

: IL→ L is then a frame homomorphism.

Lemma 3.3 can be directly seen in [5, Proposition 4.6 (1)]. In particular
we mention that RL is stably compact ([5, Proposition 4.8]) with I ≪ J if
and only if m(I)≪ m(J).

Proposition 3.4. If f : L→M is a meet-semilattice homomorphism be-
tween two proximity frames, then the function Rf : RL→ RM given by

Rf(I) = {a | a≺ f(b) for some b ∈ I},

is a meet-semilattice homomorphism.

Proof. Let us first show that Rf is well-defined. Notice that Rf(I) is a
downset. Now, let us take a, b ∈ Rf(I). For some c, d ∈ I, a≺ f(c) and
b≺ f(d). Since f is monotone, we have
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∨ab≺ ∨ f(c)f(d) ≤ f(∨cd),
showing that ∨ab ∈ Rf(I). Now let a ∈ Rf(I) and b ∈ I with a≺ f(b).
Since ≺ is interpolative, there is c ∈M such that a≺ c≺ f(b), showing that
Rf(I) is round. Thus Rf is well-defined.

Now let us show that Rf preserves finite meets. Let a ∈ Rf(I)∩Rf(J).
We have a≺ ∧ f(c)f(d) = f(∧cd) for some c ∈ I and d ∈ J . Hence
a ∈ Rf(I ∩ J). It is straightforward to check that Rf(L) =M .

Remark 3.5. As can be noticed above, if f preserves ≺ , then f(I) ⊆
Rf(I) ⊆ If(I). However, even if this is not true, the difference cannot be
detected by joins:

∨
f(I) =

∨
{a | a ≤ f(b) for some b ∈ I} =

∨
Rf(I).

Proposition 3.6. If L and M are two frames and f : L→M is a meet-
semilattice homomorphism that preserves ≺ , then the function Rf : RL→ RM
is a proper frame homomorphism.

Proof. Let us show that Rf preserves finite and directed joins. Let a ∈
Rf(∨IJ) and let c ∈ I and d ∈ J such that a≺ f(∨cd). There are c′ ∈ I and
d′ ∈ J such that c≺ c′ and d≺ d′. We then have a≺ f(∨cd)≺ ∨ f(c′)f(d′)
and so a ∈ ∨Rf(I)Rf(J). On the other hand, R(f)({0}) = {0}.

Let J be a directed subset and let a ∈ Rf(
⋃

J ). There are K ∈ J
and b ∈ K such that a≺ f(b). Thus

a ∈ Rf(K) ⊆ ⋃ {Rf(K) | K ∈J } = ∨ {Rf(K) | K ∈J }.
Now suppose that I ≪ J and let J be a directed subset such that

Rf(J) ⊆ ⋃J . There is a ∈ J such that I ⊆↓ a. Since f preserves ≺ , we
have f(a) ∈ Rf(J) ⊆ ⋃J . There is K ∈J such that for all i ∈ I, f(i) ≤
f(a) ∈ K. Therefore Rf(I) ⊆ K. This shows that Rf(I)≪ Rf(J).

Corollary 3.7. For any given proximity homomorphism f : L→M , the
function Rf : RL→ RM is a proper frame homomorphism.

Now, consider the map κL : L→ RL where κL(a) = {b | b≺ a} for each
frame L. κL(a) is the largest round ideal such that ςL(κL(a)) = a and is in
fact the right adjoint of ςL (See [5] and [6, Theorem 4.20]). From [5, Propo-
sition 4.6.], we know that κ is a proximity homomorphism that takes ≺
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to ≪. On the other hand, the join ςL : RL→ L is a frame homomorphism
that takes ≪ to the proximity ≺ . We shall only use the notations ς and κ
when there is no risk of confusion.

Lemma 3.8. For any meet-semilattice homomorphism f : L→M between
proximity frames satisfying the property f(a) =

∨ {f(b) | b≺ a}, we have
f = ςMRfκL.

Proof. Let a ∈ L. We have

ςM (Rf(κL(a))) =
∨
{c | c≺ f(b) for some b≺ a}

=
∨
{
∨
{c | c≺ f(b)} | for some b≺ a}

=
∨
{f(b) | for some b≺ a}

= f(a).

As a is arbitrary, the result follows.

Remark 3.9. Note that we can write g ∗ f = ς◦R(gf) · κ. This is only
equal to gf when the latter is a proximity homomorphism.

Proposition 3.10. If L is a stably compact proximity frame, then ς admits
a left adjoint α : L→ RL such that α(a) ⊆ κ(a) for all a ∈ L.

Proof. Define α(a) = {b | b≪ a}. We have α(a) ⊆ κ(a) because a =
ς(κ(a)). This shows that α(a) is round. Since L is stably compact, we
have a = ς(α(a)). On the other hand, if a ≤ ς(J), then α(a) ⊆ J and so
α(ς(J)) ⊆ J .

The above result shows that if we consider RL as an object of PrFrm
or C by taking ≪ as a proximity, then RRL ∼= RL both in PrFrm ([5,
Proposition 4.9]) and C. This is due to the fact that the left and right
adjoint of ςRL coincide. On the other hand if we take IL, the frame of
≤-round ideals ([6]), and if we consider the natural proximity ⊆ on IL,
(I(IL,⊆),⊆) is not isomorphic to (IL,⊆).

Lemma 3.11. For each proximity homomorphism f : L→M , the frame
homomorphism ςMRf : RL→M takes ≪ to ≺ .
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Lemma 3.12. For each frame homomorphism ψ : RL→M that takes ≪
to ≺ , the composition f = ψκL is a proximity homomorphism.

Proof. Straightforward verification ([5]).

We have shown that the assignments

θL,M : PrFrm(L;M) −→ C(RL;M)

f 7−→ ςMRf

and

ρL,M : C(RL;M) −→ PrFrm(L;M)

φ 7−→ φκL

are well-defined. They are in fact inverse to each other.

Lemma 3.13. If ψ : RL→M is a frame homomorphism, then ψ = ςMR(ψκL).

Proof. Note that for any round ideal I, ψ(I) =
∨ {ψκL(b) | b ∈ I}. We

have that

ςMR(ψκL)(I) =
∨
{b | b≺ ψκL(c) for some c ∈ I}

=
∨
{
∨
{b | b≺ ψκL(c)} | c ∈ I}

=
∨
{ψκL(c) | c ∈ I}

= ψ(I),

showing the equality.

Theorem 3.14. θL,M ◦ρL,M = 1 and ρL,M ◦θL,M = 1.

Proof. Lemma 3.8 and Lemma 3.13.

The problem of determining whether the bijection in Theorem 3.14 is
natural in the category theoretic sense requires an understanding of either
κL or ςM . G. Bezhanishvili and J. Harding have shown in [5] that κL ∗ ςL =
1RL and ςL ∗ κL = 1L, thereby showing that RL ∼= L in PrFrm. In Lemma
3.13, we actually have ψκ = ςR(ψκ)κ as in Lemma 3.8. In light of the
previous identities that imply that κ is an epimorphism in PrFrm, this
reduces to the result ψ = ςR(ψκ).

We shall show in the next section that this isomorphism is the concrete
realisation of the representation of proximity frames as coalgebras.
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4 Functorial constructions

We first consider the structure (RL,≪) - that we shall simply denote by
RL. The structure RL is known as the stable compactification of (L,≺) and
it is shown in [6] that this generalises the results of Banaschewski ([2]) on
the equivalence between frame compactifications and strong inclusions to
the context of proximity frames.

4.1 Stable compactification

Lemma 4.1. For a proximity morphism f : L→M , we have If◦mL =
mM ◦Rf , where m is the frame inclusion from Lemma 3.3.

Proof. Let I be a round ideal. Since f preserves ≺, f(I) ⊆ Rf(I) ⊆
If(I), that is (mM ◦Rf)(I) ⊆ (If◦mL)(I). Now, if a ≤ f(c) for some
c ∈ I, then f(c)≺ f(d) for some d ∈ I. This shows that (If◦mL)(I) ⊆
(mM ◦Rf)(I).

Lemma 4.2. For a frame homomorphism f : L→M that preserves the
relation ≺, f · ςL = ςM ·Rf .

Proof. Consider the composition ς =
∨
◦m. Since f is a frame homomor-

phism, we have f · ςL = f◦
∨

L
◦mL =

∨
M
◦If◦mL. The result follows from

Lemma 4.1 above.

Corollary 4.3. R is an endofunctor on C.

Proof. For a composable pair f, g in C, it is clear that (Rg◦Rf)(I) ⊆
R(gf)(I) for any round ideal I. Now, since I is round, the reverse inclusion
holds and for a proximity frame L, we have R(1L)(I) = 1RL(I).

Remark 4.4. If g ∗ f = gf , then R(g ∗ f) = R(gf) = RgRf . The last
equality is in fact always true for meet-semilattice homomorphisms that
preserve ≺.

Corollary 4.5. ς : R→ 1 is a natural transformation.

We now consider the assignments rL = R(κL). We have

R(κL)(I) = {K ∈ RL | K ≪ κL(a) for some a ∈ I}
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= {K ∈ RL | ςL(K)≺ a for some a ∈ I}
= {K ∈ RL | ςL(K) ∈ I} (Since I is round)

= {K ∈ RL | K ≪ I} (I is round)

By Proposition 3.10, rL : RL→ RRL is an isomorphism. r is in fact a
natural isomorphism:

Proposition 4.6. For each proximity morphism f : L→M , we have RRf ·
rL = rM ·Rf .

Proof. Note that for each I ∈ RL,

rM (Rf(I)) = {J | ςM (J)≺ f(a) for some a ∈ I}.
Thus we have

RRf(rL(I)) = {K | K ≪ Rf(J) for some J ∈ rL(I)}
= {K | ςM (K) ∈ Rf(J) for some J ∈ rL(I)}
= {K | ςM (K)≺ f(b) for some b ∈ J and for some J ≪ I}
⊆ rM (Rf(I)).

The reverse inclusion in the last step holds since I is a round ideal.

Theorem 4.7. The triple (R, r, ς) forms an idempotent comonad, i.e. (R, ς)
is essentially a coreflector from C to StKFrm.

4.1.1 Kleisli category associated to the stable compactification

The Kleisli category CR associated to (R, r, ς) is formed with the same
objects as in C but with morphisms L ⇀ M which are morphisms RL→M
in C. The composition of u : RL→M and v : RM → N is then given by

v • u = v ·Ru · rL.

Let us define a functor F : PrFrm→ CR. Since each proximity homomor-
phism f : L→M can be expressed as f = ςMR(f)κL, let F (f) = ςMRf =
θL,M (f). Beside the straightforward identity F (1L) = ςL = 1L : L ⇀ L, we
need to show that

F (g ∗ f) = F (g) • F (f) = θM,N (g) • θL,M (f),
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for any g, f in PrFrm. This is given in the following proposition.

Proposition 4.8. Given g, f in PrFrm, we have

ςN ◦Rg ·R(ςM ·Rf) · rL = ςN ·R(gf).

Proof. Consider the diagram below where each rectangle commutes.

RL
Rf

// RM
Rg

// RN
ςN // N

RL rL
// RRL

ςRL

OO

RRf
// RRM

ςRM

OO

RRg
//

R(ςM )
��

RRN

ςRN

OO

R(ςN )
��

RM
Rg

// RN
1
// RN

ςN

OO

The rectangle at the bottom commutes from the facts that R(ς) · r = 1
and that rM is an isomorphism, hence an epimorphism. The outer diagram,
with Remark 4.4, gives the desired identity.

Theorem 4.9. F is an isomorphism, i.e. PrFrm appears as the Kleisli
category associated to the comonad (R, r, ς) on the category C.

Proof. Theorem 3.14.

We have the result ([5]) by G. Bezhanishvili and J. Harding that Prfrm
is equivalent to StkFrm. Indeed, since R is idempotent, CR and CR es-
sentially coincide. Consequently, as the Kleisli category is equivalent to
the subcategory of free coalgebras in general, PrFrm is equivalent to the
subcategory of coalgebras RL.

4.2 Maximal proximity associated to the stable compacti-
fication We consider the structure CL = (RL,⊑ ) where ⊑ is defined
below.

Proposition 4.10. The relation ⊑ defined by I⊑ J if and only if I ⊆ J
and I ≪ κ(ς(J)) is a proximity relation on RL. The relation ⊑ is maximal
in a sense that I⊑ J if and only if I ⊆ J and ς(I)≺ ς(J).
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Proof. Clearly {0}⊑ {0}, L⊑ L and ⊑ is finer than ⊆. If we have K ⊆
I⊑ J ⊆ L, then K ⊆ I and I ≪ κ(ς(J)) ≪ κ(ς(L)) so that K⊑ L. If
I, J⊑ L and I⊑ M,N , then I ∨ J ≪ κ(ς(L)) and since κ preserves finite
meets I ≪ κ(ς(M))∩κ(ς(N)) = κ(ς(M ∩N)). Suppose now that I⊑ J . Let
a be such that ς(I)≺ a≺ ς(J) and let C = κ(a) ∩ J . We have I ⊆ C ⊆ J
and I ≪ κ(a)≪ κ(ς(J)). Therefore

I ≪ κ(ς(κ(a) ∩ J)) = κ(a) and C ⊆ κ(a)≪ κ(ς(J)).

This shows that I⊑ C⊑ J . Finally, since
∨ {K | K ≪ I} ⊆ ∨ {K | K ≪ κ(ς(I))},

we have I ⊆ ∨ {K | K⊑ I} ⊆ I.

Proposition 4.11. For any frame homomorphism f : L→M that pre-
serves ≺, Rf preserves ⊑ .

Proof. Suppose I ≪ κL(ςL(J)). There is a ∈ L such that I ≪ κL(a) ≪
κL(ςL(J)). We then have a = ςL(κL(a))≺ ςL(J). For any j ∈ J , ∧aj ∈ J
and ∧aj =

∨ {c ∈ J | c≺ ∧ aj}. On the other hand we have that a =∨ {∧aj | j ∈ J} and so a =
∨ {∨ {c ∈ J | c≺ ∧ aj} | j ∈ J} = ∨ {c ∈ J | c≺ a}.

Since f preserves joins,

f(a) =
∨ {f(c) | c ∈ J and c≺ a} = ςMRf(κL(a) ∩ J) ≤ ςMRf(J).

Since f = ςMRfκL we have ςMRf(I)≺ (ςMRfκL)(a) ≤ ςMRf(J). This
shows Rf(I)≪ κM ςMRf(J).

Corollary 4.12. C is an endofunctor on C and there is a natural bijection
β : R→ C .

Proof. For any f : L→M in C, it has been shown that Rf preserves both
≪ and ⊑ . For each proximity frame L, βL is defined as the inclusion
(RL,≪) → (RL,⊑ ). C f is then defined as the “extension” of Rf , i.e.
C f · βL = βM ·Rf .

Corollary 4.13. There is a natural transformation ε : C → 1, where εβ =
ς.
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Remark 4.14. To differentiate the members of CL from those of RL, we
shall write J = βL(J). The only exception where this will not apply is for
J ∈ C (CL). CL is a stably compact frame and we have I ≪ J if and only
if I ≪ J . Also, we have a ∈ I if and only if a ∈ I. RL and CL are then
isomorphic as frames, but not as proximity frames.

Lemma 4.15. For a proximity frame L, εL ⊣ βLκL. If in addition L is
stably compact, then βLα ⊣ εL, where α : L→ RL is the monotone map
from Proposition 3.10.

Proof. By construction, εL◦(βLκL) = 1 and εL◦(βLα) = 1. From the ad-
junction ςL ⊣ κL, it follows βL · (κLεLβL) ≥ βL. Since βL is surjective
(βLκL)◦εL ≥ 1. In the same way, (βLα)◦εL ≤ 1.

Consider cL = C (βL ∗ κL) = C (βLκL) (Lemma 2.3):

C (βLκL)(I) = C (βLκL)βL(I)

= βCLR(βLκL)(I)

= βCL{K ∈ CL | K ⊑ βLκL(a) for some a ∈ I}
= βCL{K ∈ CL | εL(K)≺ a for some a ∈ I}
= βCL{K ∈ CL | εL(K) ∈ I} (Since I is round)

Proposition 4.16. Each cL = βCLR(βLκL) is a morphism in C and we
have cL ⊣ εCL ⊣ βCLκCL.

Proof. Note that

{K ∈ CL | εL(K) ∈ I} = {K ∈ CL | K ≪ I} = {K ∈ CL | K ≪ I}.
Therefore cL = βCLα where α : CL→ RCL. The result follows from
Lemma 4.15.

Proposition 4.17. The morphisms cL define a natural transformation c : C → C C .

Proof. Let f : L→M be a morphism in C and let I ∈ CL. We have

C C f(cL(I)) = βCM{K ∈ CL | K ⊑ C f(J) with J ∈ cL(I)}
= βCM{K ∈ CL | K ⊑ βM (Rf(J)) with εL(J) ∈ I}
= βCM{K ∈ CL | εM (K)≺ ςL(Rf(J)) with εL(J) ∈ I}
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= βCM{K ∈ CL | εM (K)≺ f(ςL(J)) with εL(J) ∈ I}.
(Lemma 4.2)

On the other hand

cM (C f(I)) = βCM{K ∈ CL | εM (K) ∈ C f(I)}
= βCM{K ∈ CL | εM (K) ∈ C f(βL(I))}
= βCM{K ∈ CL | εM (K) ∈ βM (Rf(I))}
= βCM{K ∈ CL | εM (K)≺ f(i), i ∈ I}.

The two are equal by considering J = κL(i).

Lemma 4.18. For each J ∈ C CL and I ∈ CL, εL(εCL(J )) ∈ I if and
only if for some J ∈ CL, εCL(J ) ⊑ J and εL(J) ∈ I.

Proof. If εL(εCL(J ))≺ b for some b ∈ I, then we take J = βLκL(b). We
then have εCL(J )) ⊑ J and εL(J) = b ∈ I. Conversely, if such J exists,
then εL(εCL(J ))≺ εL(J) and so εL(εCL(J )) ∈ I.

Theorem 4.19. The triple (C , c, ε) forms a comonad on C.

Proof. Let us show that the following diagrams commute

C CL
C cL // C C CL CL C CL

εCLoo
C εL // CL

CL

cL

OO

cL
// C CL

cCL

OO

CL
1

cc

cL

OO

1

;;

We have εCL(cL(I)) = I by Proposition 4.16. For the triangle on the right,
we have C (εL)cL = C (εL)C (βκL) = C (εLβLκL) = C (1) = 1. This holds
since R(εL)R(βκL) = 1 by Remark 4.4. For the square on the left

cCL(cL(I)) = cCL
(
{J ∈ CL | εL(J) ∈ I}

)

= βCL{J | εL(εCL(J )) ∈ I}
= βCL{J | εCL(J ) ⊑ J for some εL(J) ∈ I}

and on the other hand
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C (cL)(cL(I)) = βCL{J | J ⊑ cL(K) for some εL(K) ∈ I}.
If J ⊑ cL(K), then εCL(J ) ⊑ εCL(cL(K)) = K. For the converse, assume
that εL(εCL(J )) ∈ I. We have εL(εCL(J ))≺ b for some b ∈ I. For allK ∈
J ,K ⊆ εCL(J ), so that εL(K) ≤ εL(εCL(J ))≺ b and J ⊆ cL(βLκL(b)).
Now if d ∈ I such that b≺ d, then κL(b)≪ κL(d) and βLκL(b) ⊑ βLκL(d).
By taking K = βLκL(d), we have J ⊑ cL(K) and εL(K) = b ∈ I.

Corollary 4.20. (R, r, ς) is a submonad of (C , ε, c).

Proof. We have cLβRL = βCLR(βLκL) = βCLR(βL)R(κL) = (βL ◦ βL)rL
and εLβL = ςL.

4.2.1 Coalgebras of the comonad (C , ε, c)

Consider two stably compact proximity frames L and M . We shall denote
by αL and αM the maps that are given from Proposition 3.10 without
any additional assumption on the nature of the class α = {αL | L ∈ C} in
general.

Proposition 4.21. Consider a frame homomorphism f : L→M .

1. Rf◦αL = αM ◦f if and only if f is proper.

2. Rf◦αL = αM ◦f if and only if C f◦βLαL = βMαM ◦f .

Proof. 1. Suppose the diagram is commutative and let a ≪ b in L.
Since ςL(αL(a)) ∈ αL(b) we have αL(a) ≪ αL(b) and αM (f(a)) ≪
αM (f(b)). This shows that f(a) ∈ αM (f(b)). Conversely, suppose
that f is proper. By Lemma 4.2, f · ςL = ςM · Rf . By composing
with αL and αM on the right and on the left respectively, we have
Rf◦αL ≤ αM ◦f . Now, let c ∈ αM (f(a)). As αM (f(a)) is round,
there is d ∈ αM (f(a)) with c≺ d. Since f preserves joins and L is
stably compact, d≪ ∨ {f(t) | t≪ a} and so there is t≪ a such that
d ≤ f(t)≪ f(a). Thus c ∈ Rf(αL(a)).

2. This is clear from the fact that β is a natural transformation and each
component βM is a monomorphism.

Horizontal composition of natural transformations is defined in [17, Section II.3] and
[18, Chapter II, Section 5].
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Let us note that the comonad (C , ε, c) is a Kock-Zöberlein comonad
with εCL ≤ C (εL) or equivalently C (εL) ⊣ cL ⊣ εCL . This implies that
any coalgebra morphism k : L→ CL is a section that is left adjoint to εL.

Proposition 4.22. The coalgebras of the comonad (C , ε, c) are precisely the
proximity frames that are stably compact together with proper frame maps
that preserve the proximities.

Proof. If (L, k) is a coalgebra, then L is stably compact since εL · k =
1. Since k ⊣ εL, we have k = βLαL. Proposition 4.21 shows that any
coalgebra morphism f : (L, kL)→ (M,kM ) is proper. Conversely, if L is
stably compact, then α : L→ RL exists by Proposition 3.10, with βLα ⊣
εL. Since C (εL) ⊣ cL ⊣ εCL, βLα is a coalgebra morphism. Finally, if
f : L→M is proper in C, then f : (L, βLαL)→ (M,βMαM ) is a coalgebra
morphism by Proposition 4.21.

5 Remark on some familiar categories

With respect to the category C of proximity frames and frame homomor-
phisms preserving proximity relations, certain categories are of particular
interest to us. These are the category of completely regular frames, uniform
frames and the category of proximal frames.

Completely regular frames. The completely below relation is a proxim-
ity which is preserved by frame homomorphisms. This presents the category
CRFrm formed by such frames as a full subcategory of C. Here the re-
striction of R gives the Stone-Čech compactification. As for the restriction
of C , it is not clear whether ⊑ coincides with the strong inclusion ≪ on
RL. However, the coalgebras of the restriction of C are exactly the compact
regular frames.

Proximal frames Frames endowed with strong inclusions ([2, 12]) and
frame homomorphisms that preserve them form the category of proximal
frames denoted by ProxFrm. The embedding ProxFrm → C is full and
the restriction of R coreflects ProxFrm onto the category of compact reg-
ular frames.

See [17, Section II.4.9] and [15].
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Uniform Frames The category UniFrm of uniform frames cannot be
considered as a subcategory of C. There is however a functor
G : UniFrm→ ProxFrm ([4, 12]) such that the composition R · G gives
the Samuel compactification (See also [5, Remark 7.12]).

Frames If the order relation ≤ on any frame is considered as a proxim-
ity, then there is full embedding E : Frm→ C. Here the restriction of R
coincides with the ideal functor I. However when R coreflects Frm onto
StKFrm insideC, it portrays StKFrm as a full subcategory. The comonad
C with the proximity ⊑=⊆, is on the other hand non-idempotent and the
coalgebras StKFrm do not form a full subcategory of Frm (See [7, Theo-
rem 3.3]). To see this, let G≤ and G≪ be the functors that embed StKFrm
into C as proximity frames with the orders ≤ and ≪ respectively. We then
have the following identities: R · E = G≪ · I and C · E = G≤ · I.

That I is comonadic on the category Frm was already mentioned in B.
Banaschewski and G.C.L. Brümmer’s paper [3, Section 3].
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