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Finitely presentable objects in (C'b-Sets)

fs

Mahdieh Haddadi*, Khadijeh Keshvardoost, and Aliyeh Hosseinabadi

Abstract. Pitts generalized nominal sets to finitely supported Cb-sets by
utilizing the monoid Cb of name substitutions instead of the monoid of finitary
permutations over names. Finitely supported Cb-sets provide a framework
for studying essential ideas of models of homotopy type theory at the level
of convenient abstract categories.

Here, the interplay of two separate categories of finitely supported actions
of a submonoid of End(DD), for some countably infinite set D, over sets is first
investigated. In particular, we specify the structure of free objects. Then,
in the category of finitely supported Cb-sets, we characterize the finitely
presentable objects and provide a generator in this category.

1 Introduction

Given a countably infinite set D, a permutation 7 on ID is said to be finitary
if it changes only a finite number of elements of ID. Consider the group
Perm(ID) of finitary permutations on I and take a set X equipped with an
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action of Perm(DD) on it, that is, a Perm(ID)-set. An element x € X is said to
have a finite support S C D if it is invariant (fixed) under the action of each
element 7 of Perm(ID) which fixes all the elements of S (that is, if 7s = s,
for all s € S, then 7z = x). A Perm(D)-set X every element of which
has a finite support is said to be a nominal set. Nominal sets are used to
model the syntax of formal systems requiring variable binding operations,
(see [8]). These sets have become a popular topic not only in semantics but
also across various areas in mathematics [11, 15].

Gabbay [7] discusses the concept of nominal renaming sets, which are
sets with a finitely supported atoms-renaming action. Pitts [14] then con-
siders a special case of nominal renaming sets, known as finitely supported
Cb-sets by adding two elements to D, 0 and 1 and concentrating on the
monoid Cb rather than the group Perm(D), where Cb is a submonoid of the
monoid End(D) consisting of all maps on the countably infinite set D. In
these works by Gabbay and Pitts, finitely supported Cb-sets are utilized to
analyze models of homotopy type theory.

When working in a category C one possible interesting thing would be
to ask for the objects of C to be finite in some sense, since we are usually
better at understanding finite things. A finite object in the category Set is
just a finite set. However, the categorical way to characterize these objects
is that: a set X is finite if and only if its homfunctor (X,—) : Set —
Set preserves filtered colimits. In general algebraic categories an object
whose homfunctor preserves filtered colimits is called finitely presentable [2].
Finitely presentable objects often play a significant role in categories, for
instance, in the category of vector spaces over a field F', finitely presentable
objects are precisely finite-dimensional ones, see also the other items of [2,
Example 1.2], and it is always interesting to describe these objects in a
category. Finitely presentable objects in the category of nominal sets have
been characterized by Petrisan, see [12, Proposition 2.3.7]. Here we are
going to describe these objects in the category of finitely supported Cb-sets.

In this paper, to put our work in context, we first review the necessary
concepts. The construction of free C'b-sets over nominal sets is then shown
in Section 3, where we also construct free finitely supported N-sets over
a finitely supported M-set, in which M is a submonoid of N. The exis-
tence of a generator in a category provides useful information about that
category. For instance, every object in a category containing all coproducts
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is a homomorphic image of a coproduct of generators, see [3, Proposition
6.3]. So in Section 4, in order to give additional valuable information about
the category of finitely supported Cb-sets, we show that this category has a
generator. Finally, finitely presentable finitely supported Cb-sets are char-
acterized in Section 5.

2 Preliminaries

In this section, we give the necessary background on M-sets, finitely sup-
ported M-sets, and finitely supported Cb-sets. One can consult [6, 10, 14]
for more information.

2.1 M-sets An (left) M-set for a monoid M with identity e is a set X
equipped with a map M x X — X, (m, z) ~» mz, called an action of M on
X, subject to ex = x and m(m'z) = (mm')z, for all x € X and m,m’ € M.

By the category M-Set we mean the category of all M-sets and all
equivariant maps, f : X — Y subject to f(mz) = mf(z), for all x € X and
m € M, between them.

In the category M-Set, epimorphisms are exactly surjective equivariant
maps (see [10, Proposition 1.6.15]).

An element x of an M-set X is a zero (fixed or equivariant) element if
mx = z, for all m € M. We denote the set of all zero elements of an M-set
X by Z(X). An M-set X with discrete action is one in which all of its
elements are zero.

A subset Y of an M-set X is an M-subsetof Y if my € Y, forallm € M
and y € Y. The subset Z(X) of X is in fact an M-subset of X.

A cyclic M-set X is an M-set which is generated by only one element.
In fact, that is of the form of Mz = {mx | m € M}, for some = € X.

An equivalence relation p on an M-set X is called a congruence relation
on X if z p 2’ implies mx p ma’, for x,2’ € X, m € M. We denote the set
of all congruences on X by Con(X).

Lemma 2.1. [10, Lemma 1.4.37] For R C X x X, the smallest congru-
ence on X containing R is denoted by p(R). It is in fact, the congru-
ence relation generated by R, and so a p(R)b < a = b or Imy,...,m, €
M,p1,p2,. s Dnsq1,92,---,qn € X, where i = 1,...,n, (pi,q;) € R or
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(pi,qi) € R, such that there ezists the following fence from a to b

a = mip1 map2 map3 MnPn

k= k7 k ok

miqi maqg2 T Mp—-19n—1 MpGn = b

2.2 Finitely supported M-sets In this subsection, we give some
facts about finitely supported M-sets, where M is a submonoid of the
monoid End(ID) of maps on D together with composition and identity map.

Definition 2.2. Let X be an M-set and x € X. Then,
(a) A subset S C D is a support of x, if

(Ym,m’ € M) (m(s) = m/(s), (Vs € S)) = mx =m'z

If there exists a finite (possibly empty) support S of z, then we say that x
is finitely supported.

(b) A finitely supported M -setis an M-set X all of whose elements have
finite supports.

(c¢) A nominal set is a finitely supported Perm(D)-set.

(d) An M-set X is called uniformly finitely supported if there exists a
finite subset S C D such that S is a finite support of all elements of X.

Notation 2.3. We denote the full subcategory of M-Set consisting of all
finitely supported M-sets by (M-Set)s.

Proposition 2.4. For each M-set X, the set
Xis ={z € X | © has a finite support in X}
is a finitely supported M -subset of X.

Proof. One can easily check that: if A is a finite support of x then m(A) is
a finite support of mz, for every m € M and x € X. O

Example 2.5. (1) The set D is a finitely supported M-set, with the canon-
ical action given by evaluation; that is, Vm € M, d € D, md = m(d). Also,
for each d € D, the singleton {d} is a finite support of d.
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(2) Since P(D) together with the evaluation action (w, A) — 7A =
{m(a)la € A}, for every m € Perm(D) and A € P(D), is a Perm(D)-set, by
Proposition 2.4, (P(D))g is a finitely supported Perm(ID)-set.

(3) The set P¢(DD), consisting of all finite subsets of D, together with the
evaluation action is a finitely supported Perm(D)-set.

(4) The sets D* = {(dy,--- ,d,) | di € D, i = 1,--- ,n} and D™ =
{(d1,--- ,dn) € D" | d; # dj, for every i # j € {1,--- ,n}} are finitely sup-
ported M-sets, with the action given by m(dy, - ,dy) = (mdy,--- ,md,).
For each = = (dy,--- ,d,), the finite set {dy,--- ,d,} is a finite support of
x.

Theorem 2.6. Let f : X — Y be an equivariant map between finitely
supported M -sets and x € X. Also, let S and S" be supports of x and f(z),
respectively. Then,

(i) S is also a support of f(z).

(i) If f is injective, then S’ is a support of x.

Proof. (i) Let m,m' € M and m|, = m/|g in which S is a support of
x. Then, we show that mf(z) = m/f(z). Indeed, Definition 2.2 implies
mz = m'z. Somf(x) = f(mz) = f(m'z) =m/f(z), since f is equivariant.

(ii) Let S” be a support of f(x), and m|,, = m/[,, for some m,m’ € M.
Then, we show that mxz = m/z. First, because S’ is a support of f(x), we
have mf(xz) = m/f(z). Notice that, f is equivariant, so f(mz) = f(m'z).
Now, since f is injective, we get that mxz = m/'z. O

As a result of Theorem 2.6(i) we have:

Corollary 2.7. The category of finitely supported M -sets is a mono-coreflect-
ive subcategory of the category of M -sets.

Definition 2.8. Let X be a finitely supported M-set and x € X. Then,
we say

(a) = has the least finite support, if the intersection of all finite supports
of x is a support of x.

(b) X admits the least support, if each element of X has the least support.

We denote the least support of = by supp x, for every z € X.



180 M. Haddadi, Kh. Keshvardoost, A. Hosseinabadi

Proposition 2.9. Let X be a uniformly supported M -set which admits the
least support. If Perm(D) C M, then X is discrete.

Proof. Towards a contradiction, suppose x € X with suppz # (. Since X
is uniformly, there exists a finite subset S C D with suppx C 5, for all
x € X. Let di ¢ S and d € suppx. Then (d dj)z is a non-zero element
of X. Sod; = (d d1)d € (d di)suppz = supp(d di)x C S which is a
contradiction. O

Corollary 2.10. Let X be a finite finitely supported M -set which admits
the least support. If Perm(DD) C M, then all elements of X are zero.

Proof. Suppose X = {z1,...,z} and Ty seeo,, are all non-zero elements

of X. Take S = Ui‘ﬂ suppz, . Then, S is a finite support of x;’s and so
- J

X is uniformly supported M-set. Now, applying Proposition 2.9, the result
holds. O

Theorem 2.11. (Presentation Theorem) Let X be a finitely supported
M-set. Then, X is cyclic if and only if there exist a cyclic M-subset B of
D™ and a congruence ~ on B such that X is isomorphic to B/~.

Proof. Notice that if X is singleton then B = D(™ and ~ = B x B. Suppose
X = Mz is a cyclic finitely supported M-set, for some non-zero element x €
X. Take {dy,...,d,} to be a support of z and B = M (dy,...,d,). Then,
B is a cyclic M-subset of D). Now, the assignment ¢ : B — Mz defined
by ¢(m(di,...,d,)) = maz, for every m € M, is a surjective equivariant
map. Indeed, if m(dy,...,d,) = m/(dy,...,d,), for some m,m’ € M, then
md; = m'd;, for each 1 < ¢ < n, and since suppz = {di,...,d,}, by
the definition of support, we have mx = m’z. Hence ¢ is well-defined.
Obviously ¢ is surjective and equivariant. On the other hand, ker ¢ is a
congruence relation on B. Therefore, B/ker ¢ is isomorphic to X.

To prove the converse, let B be a cyclic M-subset of D™ which satis-
fies the assumption. Then, B = M(dy,...,dy), where (di,...,d,) € D™,
We show that B/~ = M([(dy,...,dx)]~), and so, X is cyclic. Since ~
is a congruence on B, we have B/~ is a finitely supported M-set. Thus,
M([(dy,...,dy)]~) € B/~. Now, suppose [b].. € B/~, for some b € B.
Since B = M(dy,...,d,), we get b = m(dy,...,dy), for some m € M.



Finitely presentable Cb-sets 181

Hence
[l_)]N = [m(dy,...,dp)]~ =m([(d1,...,dr)]~) € M([(d1,...,dg)]~). ]

Lemma 2.12. [13, Homogeneity Lemma] For any finite subsets S, S’ of D
and any bijection f : S — S', there exists m € Perm(D) that extends f to a
bijection on the whole of D and that is the identity on the complement of
Sus”:

(Vd € S)m(d) = f(d) A (Vd e D\ (SUS")) 7(d) = d.

2.3 Cb-sets The following definition is given for 2 = {0,1} with 0,1 ¢ D.

Definition 2.13. [5, Definitions 2.1 and 2.2]
(a) An injective finite substitution is a map o : D — D U 2 for which
Dy = {d € D | o(d) # d} is finite, and

(Vd,d € D), o(d) =o(d) ¢2=d=d.

(b) If d € D and b € 2, we write (b/d) for the finite substitution which
maps d to b, and is the identity mapping on all the other elements of D.
Each (b/d) is called a basic substitution.

(¢) If d,d’ € D, then we write (dd') for the finite substitution that
transposes d and d’, and keeps fixed all other elements. Each (dd') is called
a transposition substitution.

(d) Let Cb be the monoid whose elements are injective finite substitu-
tions, with the monoid operation given by -0’ = 6¢’, where ¢ : DU2 — DU2
maps 0 to 0, 1 to 1, and on D is defined like o. The identity element of Cb
is the inclusion ¢ : D — D U 2.

(e) Theset S={d = (b1/d1)--- (bx/dk) | d; € D,b; € 2} is a subsemigroup
of Cb. We denote the set {dy,...,d;} by Ds, for every § € S.

Remark 2.14. [5, Remark 2.3(ii)] For every 6 = (b1/dy) - (br/di) € S
and 7 € Perm(D) we have 7§ = ¢'w, in which ¢ = (by/mdy) - - (br/mdy),
and d7 = 76", in which §” = (by /7~ 1dy) - - - (b /7~ 1dy,).

Theorem 2.15. [5, Theorem 2.6] For the monoid Cb, we have
Cb= Perm(D) U Perm(D)S.
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2.4 Finitely supported Cb-sets As noted previously, a finitely sup-
ported M-set is one in which every element has a finite support for the
monoid M. We go over some facts concerning finitely supported Cb-sets in
this section. See [5, 14] for further information.

Lemma 2.16. [14, Lemma 2.4] Suppose X is a Cb-set, v € X and b € 2.
Also, let C be a finite subset of . Then, C is a support of x if and only if

(VdeD) d¢C = (b/d)x =x.

Remark 2.17. [5, Remark 3.2 and Corollary 3.5] Let X be a Cb-set and
e X.

(i) If X is finitely supported, then the set {d € D | (0/d)x # =z} is in
fact the least finite support of x.

(ii) The element x € X is zero if and only if suppx = () if and only if
dx=ux, foralld eb.

(iii) Every non-empty finitely supported Cb-set has a zero element.

Example 2.18. (1) The set DU 2 is a finitely supported Cb-set, with the
canonical action given by evaluation; that is,

Vo e Cb, z€DU2, ox =d(x),

in which & is defined as in Definition 2.13(d). Also, for each d € D, suppd =
{d}, and supp0 = supp 1 = 0.

(2) Let X = D" U {0}, where k is a natural number, the set D" is
given in Example 2.5(4), and 0 is a zero element which is not included in
D* . Then, X is a finitely supported Cb-set with the following action of Cb.
Let 0 € Cb and z € D®. Then applying Theorem 2.15, 0 = 7 or ¢ = 79,
where m € Perm(D) and § € S. For 0 = 7 or 0 = 7§ with D; Nsuppz = 0,
define oz = 7wz and for 0 = wd with D, Nsupp x # ), define ox = 0. Notice
that, for each element (dy,...,dy), the set {di,...,dx} is the support.

(3) The set P,(DU2) ={Y | Y is a finite subset of DU 2} is a finitely
supported Cb-set with the natural C'b-action

x:Cbx P,(DU2) - P,(DU2), oxY =0Y ={oy| yeY}.
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Notice that suppY =Y \ 2.

(4) All Cb-sets with the discrete action are clearly finitely supported
Cb-sets, because of Remark 2.17(ii).

It is worth noting that, by Corollary 2.10, we have:

Corollary 2.19. Finite nominal sets and finite finitely supported Cb-sets
are discrete.

Remark 2.20. [5, Notation and Remark 4.4] The sets S, = {0 € §'| dz =
x} and S, =S\ S, ={6 € S| dx # x} are two subsemigroups of S.

Lemma 2.21. [5, Lemma 3.4] Let X be a non-empty finitely supported
Cb-set and x € X. Then,

(i) for 6 € S, we have 6 x = x if and only if D, Nsuppx = 0.

(ii) for 6 € S, suppdx C suppx \ D;.

(iii) for m € Perm(D), we have suppmz = wsuppx. In particular,
|supp 2| = |wsupp x| = [supp z|.

Remark 2.22. (i) If X is a non-empty finitely supported Cb-set, x € X
and o € Cb, then by Theorem 2.15, 0 = md where m € Perm(D) and § € S.
Now, since S = S, U S’, applying Remark 2.20, we obtain that § € S, or
6 € 5. Also, by Lemma 2.21, supp o = supp 7éx C w(suppz \ D).

(ii) We recall that a cyclic finitely supported Cb-set X is a finitely sup-
ported Cb-set generated by one element of X (i.e. X = Cbx = {0z |0 €
Cb}, for some x € X).

Lemma 2.23. [5, Lemma 4.5] Let Cbx be a cyclic finitely supported Cb-set.
Then,
(i) Cbx = Perm(D)S,x U Perm(D)x, and Perm(D)S,x N Perm(D)z = 0.
(ii) the set S’z is finite.

Corollary 2.24. Suppose X is a finitely supported Cb-set and x € X. If
§ € SL, then

(i) there exists 01 € S, with D5, C suppx and dx = 6.

(i) lsuppe = O1lsuppas fOr sOme 81 € S,.

Proof. (i) Let 6 € S.. Then, éx # = and, by Lemma 2.21(i), D, N
suppx # (). Suppose § = (b1/d1) ... (bg/dk)(bg+1/dg+1) - - - (bn/dy), wherein
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{di,...,dr} =D;Nsuppx. Then, for i =k+1,...,n, we have (b;/d;)z =
and thus dx = (b1/dy) ... (bg/dg) - (by/dp)x = (b1/dy) ... (bg/di)x. Take
= (by/dy) - (bg/dk). So 61 € S, and Ds, C supp .
(11) By (i), if d € supp x, then (b;/d;)d =d, for i =k +1,--- ,n, and so
d(d) = 01(d), as required. O

Corollary 2.25. Every cyclic finitely supported Cbh-set is a finite disjoint
union of cyclic nominal sets.

3 Interaction between finitely supported act categories

For a given monoid N, in order to study the category (IN-Set)g of finitely
supported N-sets, it is crucial to find adjoint pairs between this category
and other well-known categories such as Set, Nom, and (Cb-Set)ss, espe-
cially the free functor, provided that there are any. We have divided this
section into two subsections to do this. The free functor from finitely sup-
ported M-sets to finitely supported N-sets is found in the first subsection,
where M < N < End(D). This is the composition of the forgetful func-
tor M-Set — Set with the free functor Set — N-Set (left adjoint to the
forgetful functor N-Set — Set). Also the free functor from the category
Nom to the category (Cb-Set)s is given in the second subsection. In this
section, we additionally construct a right adjoint for the forgetful functor
U : (N-Set)i; — Set and transfer certain important functors from the
category Nom to the category (Cb-Set ).

3.1 A free functor from (M-Set)s to (N-Set)

In this subsection, we consider N and M as two submonoids of End(ID)
with M < N, and recall that for any M-set X, the set N x X together with
the action (n, (n',z)) — (nn’,x) is an N-set.

Definition 3.1. For any finitely supported M-set X we define the relation
R, over N x X by

(n,z) Ry (n',2') < Im € M; mz = 2" and n'm|, = n|,,

in which S is a finite support of z. We also consider p(R, ) to be the smallest
congruence on N x X containing R, .
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Lemma 3.2. Suppose f : X — Y is an equivariant map between finitely
supported M-sets. Then ((n, f(z)), (0, f(2'))) € R, and nf(zx) = n'f(2'),
if ((n,x),(n,2")) € Ry or ((n',2'),(n,z)) € Ry, for every n,n’ € N and
z, 7 € X.

Proof. To prove the statement, we assume ((n,z), (n’,2')) € R,. The other
case is analogous. Since ((n, z), (n’,2’)) € R,, by Definition 3.1, there exists
m € M with ma = 2/, and n'm|, = n|y, where S is a finite support of .
Since f is equivariant, mf(x) = f(2’) and also Theorem 2.6(i) implies S is
a finite support of f(z). Hence ((n, f(x)), (n/, f(2))) € R,, by Definition
3.1. Also since S is a finite support of f(z), by Definition 2.2, we have
n'mf(x) = nf(x). Now, since f is equivariant, we get nf(x) = n'mf(x) =
n' f(mx) =n'f(2). O

Notation 3.3. We denote the N-set (N x X)/p(R, ) by F(X), and the
equivalence class [(n, )]y(r,) by @,

Remark 3.4. With this notation in mind and definition of the action of N
over F'(X) one gets n'x, = x , , for every n’ € N and z, € F(X).

Lemma 3.5. If S is a finite support of x, then n(S) is a finite support of
the equivalence class x,, .

Proof. For every ni,ne € N with nl\n(s) = ngln(s), we have nin(d) =
ngn(d), for all d € S. Thus, nin|y = ngn|,. Since S is a finite sup-
port of x, and idrx = z, we get that ((nin,x), (n2n,z)) € R, and hence
((nin,x), (nen,z)) € p(R,). Now, by Remark 3.4, we have njz, =
nox. . O

n

Corollary 3.6. The N-set F(X) = (N x X)/p(R,) is a finitely supported
N -set.

It is worth noting that since M is a submonoid of the monoid N, every
finitely supported N-set can be considered as a finitely supported M-set.
So one can consider the forgetful functor U : (N-Set), — (M-Set), which
forgets the action of elements in N \ M over each N-set and U(f) = f, for
every equivariant map f : X — Y in (N-Set), . It is also worth noting that,
for every finitely supported N-set X with a finite support C for x € X, C
is a finite support for x € U(X).
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Theorem 3.7. The forgetful functor U : (N-Set)s — (M-Set)gs has a left
adjoint.

Proof. Consider F : (M-Set)s — (N-Set)s mapping each X € (M-Set)qg
to FI(X) = (N x X)/p(R,), and each equivariant map f : X — Y to
F(f): F(X)— F(Y), defined by F(f)(z,) = (f(x)),. The map F(f) is
well-defined, by Lemma 3.2, and obviously it is equivariant. It is a routine
to check that F' is a functor. Now, for every X € (M-Set)s, we define
Ny : X = UF(X)) = F(X) by n,(x) =z, for every z € X. The map
nx is equivariant, since 7, (mz) = (mx),, = z,,,, = x,, = mx,, = mn, (),
for every x € X and m € M. To prove the universal property of nx, suppose
f:X = U(Y) is an equivariant map in (M-Set), wherein Y is a finitely
supported N-set. Then one can consider the diagram

NxX 2% pex)
idefl

NxY — Y,
g

where 7,  is the canonical epimorphism mapping each (n,z) € N x X
to x, and g is the action of N over Y. First we note that kervy,, , C
ker (g(id, x f)). Since if z, = 2, for some z,z’ € X and n,n’ € N,
then nf(x) = n'f(2") follows from Lemma 3.2, and hence ((n,x),(n',2")) €
ker (g(id, x f)), as required. Now, by the Fundamental Theorem of Ho-
momorphisms for N-sets, see [10, Theorem 1.4.21], there exists a unique
equivariant map f:FX) - Y in the category (N-Set)g such that
Fraex = glidy % £). So we have U(f)nx(z) = F(ia) = Fryex (ids ) =
g(id, x f)(id,z) = idf (x) = f(z). That is the following triangle is commu-
tative.

X 2L U(P(X))
; VU(f)
Y

Obviously, f with this definition is unique. Also, for every equivariant map
f:X =Y in M-Set, Ff =n, f, which makes the family (7, ) xem-Set into
a natural transformation. Indeed, for every equivariant map f: X — Y in
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M-Set and every x, € F(X) we have:

— —

ny f(z,) =nn, f(z) (by definition of 7, f)
=n(f(z)),, (by definition of 7, )
= f(z),
= Ff(x). O]

Corollary 3.8. If X = Mx is a cyclic finitely supported M -set, then F(X)
s a cyclic finitely supported N -set.

Proof. First, notice that (mx);q = ma;q, for every m € M. Thus, for every
n € N and m € M, we have (mx),, = n(mz);q = (nm)z;q, by Remark 3.4.
Now, if X = Mz, then F(X) = (N x Mxz)/p(R,) = Nx;q. O

Given a finitely supported N-set X and M < N, we define the relation
~ over X as the following:

t~t' < Ir € Perm(D) N M, =wt =1,

for every t,t' € X. Let p be the least congruence generated by ~. Then
the set X/p of p-classes with the action M x (X/p) — (X/p) defined by
m - ([t],) = [(mt)], forms a finitely supported M-set. It is worth noting
that if C' is a finite support of ¢, then C' is a finite support of [t],. Indeed,
for every my,mg € M with mi|c = ma|c, we have mit = mat, and so,
ma - ([t]y) = [mat)], = [(mat)], = ms - (1],).

We now consider the assignment K : (N-Set)g — (M-Set)g, mapping
each X € (N-Set)g to K(X) = X/p, and each equivariant map f : X —
Y between finitely supported N-sets to K(f) : X/p — Y/p defined by
K(f)([z]), = [f(x)],, for every [z], € X/p. The map K(f) is well-defined,
since if [z1], = [x2],, then there exists 7 € Perm(D) N M with zo = 7.
Since f is equivariant, we get that f(x9) = f(wxz1) = wf(x1). Therefore,
[f(z1)], = [f(x2)], and K is a functor.

We also consider the functor A : (M-Set) — (N-Set)g defined by
A(X) = (X,-), in which “” is the discrete action, for every X € (M-Set)q,
and A(f) = f, for every equivariant map f : X — Y. Since the action of
AX is discrete, Af = f is equivariant.

Theorem 3.9. The functor K is a left adjoint for A.
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Proof. For each finitely supported N-set X, consider nx : X — AKX
mapping « — [z],. We show that nx is an equivariant A-universal map.
To do so, let f: X — AY be an equivariant map, for some Y € (M-Set ).
Then we define f : X/p — Y by f([z],) = f(z), for every [z], € X/p. This

means that the following commutative triangle is completed by A(f).

X 5 A(K(X)) (X/p)
x vA(f) vaf
A(Y) Y

Similar to the proof of well-definedness of K (f), one can check that f is well-
defined. Also we have A(f)onx(z) = Af([z],) = f(x). The uniqueness of f
with A(f)onx = f follows from its definition. To prove that (1x) X e(N-Set).
is a natural transformation, we note that, for every f: X — Y in (IV-Set)g

and every [z], € K(X),

ny f(l2lp) =y f () (by definition of 7, f)
= [f(z)], (by definition of 7, )
= K(f)([z],) (by definition of K(f)). O

Now we define the functor Z : (N-Set)s — (M-Set)g by mapping each
finitely supported N-set X to the set Z(X), consists of all the zero elements
of X, with the discrete action and Z(f) = f, for each f: X — Y in N-Set.
It is worth noting that, since @ is a finitely supported M-set, Z(X) can be
empty for a given N-set X.

Theorem 3.10. The functor A is a left adjoint for Z.

Proof. Tt is straightforward to verify that ZA is the identity, nx = idx is
a universal map, for every X € (M-Set)s, and (9x)(ar-set);, i a natural
transformation. O

Remark 3.11. Suppose X is a finitely supported Cb-set. If M = Perm(D)
and N = Cb, then
(i) the relation ~ over X, defined after Corollary 3.8, is given as follows:

t~t <= Ir € Perm(D), wt=1,
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for every t,t’ € X, and it is a congruence relation.
(ii) K(X) = X/~ is a nominal set.

(iii) furthermore, K 4 A 4 Z, in which K, Z : (Cb-Set)t, — Nom and
A: Nom — (Cb-Set)ss.

Definition 3.12. [12, Remark 2.3.1] Let X be a set. We consider [], o5, X
to be an M-set equipped with the action m/ * () mer = (Tmm? )menr, for
every m' € M and (zym)mem € [Lnear X

The finitely supported elements of the above defined M-set,
(ILear X)ts, is a finitely supported M-set and denoted by R(X). For every
map f : X — Y we define R(f) : R(X) — R(Y) by R(f)(zm)mem) =
(f(xm))menm, for every (zpm)mem € R(X). One can easily see that
R : Set — (M-Set) forms a functor. Now, for every m’ € M, we consider
the natural projection map p,,» : R(X) — X mapping (2 )menm t0 ,y and
we have pp,(m’ xu) = pppe (u), for all u € R(X). It is worth noting that for
every m',m" € M and u = (¢ )menm € [[,near X we have

pm/(m” * U) = Pm/ (:Em-m”)mEM = Tm/-m!" = pm’~m”(($m)m€M)-

Theorem 3.13. The forgetful functor V : (M-Set)g — Set is a left adjoint
to the functor R : Set — (M -Set)ss.

Proof. The proof is similar to [12, Lemma 2.3.2]. Indeed, it is enough to
show that nx : X — RV X, mapping each z € X to (m - x)menm, is an
R-universal arrow, for each X € (M-Set). We first show that nx is equiv-
ariant. For every m’ € M and x € X we have:

nx(m' - x) = (m(m'z))men
= ((m-m) - T)mem

= ((m . x)m-m/)mGM

Also nx is R-universal because for each set ¥ and each equivariant map
h: X — R(Y), thereis h: V(X) — Y defined by = — p1,,(h(x)) in such
a way that

R(h) onx(x) = R(h)(m - 2)mem
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= (h(m - z))mem

= p1py (MM - 2))mem
= h(lM . a?)

= h(z).

This means that R(h) completes the following commutative triangle.

X 5 R(V(X)) V(X)
x R(h) In

To prove uniqueness of h, suppose there exists g : V(X) — Y with R(g) o
nx = h. Then if we denote h(z) = (Ym)mem, for each z € X, we have
h(@) = (Ym)mem = R(g) onx(x) = (g(m - x))menm and hence h(z) =y, =
g(x), for each x € X. O

The diagram below shows the summary of the adjunctions given in this
subsection.

(N-Set)s ~ L (M-Set)s

3.2 Free functor from Nom to (Cb-Set)i To construct the free

functor from the category of nominal sets to the category of finitely sup-

ported Cb-sets, we first show that the monoid Cb is isomorphic to a sub-

monoid of End(ID), and then use the results from the previous subsection.
Let A be a finite subset of ID. Then the set

M = {m € End(D) | m|, = id|,, mis an injective (one-one) map on D\ A}

is a submonoid of End(D).
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Example 3.14. Define an action on D as: mxd = m(d), m *a = a, for all
a€ Aand d € D\ A. The set D is an M-set with Z(D) = A.

Lemma 3.15. The monoid Cb is isomorphic to M where |A| = 2.

Proof. Suppose A = {dj,d>}. First, notice that, since A is finite and D is
countable, we get that D\ A is countable. Thus, there exists a bijective
map g : D\ A —-D. So f: (D\A)UA — DU 2 defined as f\D\A = g,
f(d1) =0 and f(d2) = 1 is a bijective map. Now, ¢ : Cb — M defined by
@(0) = f~16f is an isomorphism between two monoids, as required. O

Corollary 3.16. The monoid Cb is isomorphic to a submonoid of End(D).

It is also worth noting that the relation R, , given in Definition 3.1, is a
congruence over N x X if M = Perm(D) and N = Cb.

Lemma 3.17. Let X be a nominal set. Then
(i) for every (o,z),(c’,2’) € Cb x X, (0,2) Rx (¢,2'), if and only if

there exists m € Perm(D) with 7x = 2’ and o'7| = 0]

supp supp x °

(ii) the relation R, is a congruence on Cb x X.
(iii) the Cb-set (Cb x X)/R, is finitely supported.

Proof. (i) It immediately follows from Definition 3.1, when N = Cb, M =
Perm(D) and S = supp x.

(ii) It is clear that R, is reflexive. To prove the symmetry property
of R, suppose ((0,z),(c’,2")) € R,. Then there exists 7 € Perm(D)
with 72 = 2’ and o'm|,,,, = 0l S0 7 '2’ = 2. Let d € suppa’.
Then 7~ 1d € suppx and so o'd = o'n(7'd) = o(n~1d). Thus, et =
Uﬂ’llsuppz,.

To show that R, is transitive, let ((o,2),(¢’,2’)) € R, and
((o',2"),(c”,2")) € R,. Then there exist 7,7’ € Perm(D) with max = 2’
wpps = Oloppe and o'@’| = 0" . So
m'rx = 7'x’ = 2”. If d € suppz, then nd € suppa’ and so O'//’/T})W(d) =
o'(n(d)) = o(d). Thus, o"7'7|,, .. = O|sppe-

Now, given o1 € Cb and ((0,z), (¢/,2')) € R, we have nz = 2’ and
0T supp So for all d € suppz, we have o10'm(d) = o10(d)
which implies that oio'w|,,,,, Consequently, we have
((o10,2), (010", 2")) € R, as desired.

and 7'z’ = 2”. Also, o'

:O"

suppx *

o10|

supp x *
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(iii) The set Cb x X together with the action (o, (¢/,z)) — (00’,x) is a
Cb-set, for each nominal set X. Now since R, is a congruence on Cb x X,
by (i), (Cb x X)/R, is a Cb-set. On the other hand, by Lemma 3.5, a
finite support of z, = [(J,:U)]RX € (Cbx X)/R, is o(suppz). Therefore,
(Cb x X)/R, is a finitely supported Cb-set. O

Using Corollary 3.16, one can consider the monoid Cb as a submonoid
of End(ID). Also, the monoid Perm(DD) is a submonoid of Cb. So applying
Theorem 3.7, we have free finitely supported Cb-sets over nominal sets.

Corollary 3.18. A left adjoint to the forgetful functor U : (Cb-Set), —
Nom is given by the functor F' : Nom — (Cb-Set)g mapping each nominal
set X to F(X) = (Cbx X)/R,, and each equivariant map f: X — Y to
F(f): F(X)— F(Y) with F(f)(zs) = (f(z)),. So we have the first row of
Diagram (1) as follows.

(Cb-Set)r, T Nom
‘>

4 A generator in the category (Cb-Set)q;

A set G = {G,}ier of objects of a category is called a set of generators or
a generating set provided that for each pair fi, fo : K — K’ of distinct
morphisms there exist ¢ € I and a morphism ¢ : G; — K with fig # fag.
When a generating set is reduced to a singleton set {G}, we say that G
is a gemerator in the category; this means that the associated homfunctor
(G, —) : C — Set detects differences between objects of the category, see [2,
Definition 0.6].

In this brief section, we present a generator in the category (Cb-Set)s.
To do so, remember that the free C'b-set over X, for a given set X, is Cbx X
together with the action o - (0, ) = (604, z), for every 0,6 € Cband x € X.

Lemma 4.1. The intersection of all nontrivial congruences of the free Cb-
set over a singleton set {x} is trivial.

Proof. To prove the desired statement, first we note that the free Cb-set
over {z}, Cb x {z}, is not finitely supported. Then, by adding an element
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0 to D (as a zero element), we consider the set (DU {0}) x {z} and define
the following action.

Cb x (DU {0}) x {z} — (DU {0}) x {2}
(0,(d,z)) = (o(d),z)
(0,(0,2)) = (0, 2)

One can easily see that (DU {60}) x {x} together with the above action
is a Cb-set. Also, for every d € D, supp (d,z) = {d}, and supp (0, z) = 0,
since (0, x) is a zero element. Hence (DU {6}) x {z} is a finitely supported
Cb-set.

Now for each d € D we defined the map fg : {z} — (DU {0}) x {x}
by x + (d,z). Therefore, by the universal property of the free Cb-set
over {x}, Cb x {x}, there exists a unique equivariant map f;: Cb x {z} —
(DU{6}) x {z} defined by (o, ) — (o(d),z). It is worth noting that f; is not
injective, for every d € D, because otherwise, Cb x {z} will be isomorphic
to a finitely supported Cb-set while it is not finitely supported, and this
is a contradiction. Hence ker f; is a nontrivial congruence over Cb x {z},
for every d € D. Now since the intersection of all nontrivial congruences
over the free Cb-set Cb x {z} is a subset of (,cp ker fy, it is sufficient to
show that (,ep ker f4 = A. Suppose ((o1,2), (02,%)) € Nyepker fa. Then
fa(o1) = fa(oz). Therefore o1(d) = o2(d), for each d € D, hence o1 = o9 as
required. O

Theorem 4.2. The category (Cb-Set)g has a generating set.

Proof. To construct a generating set, first we define a set A as follows.
A={pe Con(Cbx {z})| (Cbx{x})/p € (Cb-Set)g}.

Of course A is non-empty, because the kernel of the unique equivariant map
to the trivial one-point Cb-set {6} lies in A, see Lemma 4.1. Now take

G={(Cox{z})/p|pe A}

We show that G is a generating set in (Cb-Set)g To doso, let g, f : A — B be
two different equivariant maps in (Cb-Set)g. Then there exists some a € A
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such that f(a) # g(a). Hence there is the equivariant map h : Cbx{z} — A,
which maps (¢,2) € Cb x {x} to a, with fh # gh, since (Cb x {z}) is a
generator in the category of Cb-sets. Therefore, by the First Isomorphism
Theorem, there exists the equivariant injective map h : (Cbx{z})/ker (h) —
A such that fh # gh. Therefore, G is a generating set. O

Corollary 4.3. The category (Cb-Set)g has a generator.

Proof. To construct a generator in the category (Cb-Set)g, first we note
that this category is cocomplete (for more information see [6, 14]). Now we
define the finitely supported Cb-set G =[], 4(Cb x {z})/p and show that
G is a generator in the category (Cb-Set)g. To do so, consider two different
equivariant maps g, f : A — B, then as it is shown in the proof of Theorem
4.2, there exists the equivariant injective map h : (Cb x {z})/ker (h) — A
such that fh # gh. Since every finitely supported Cb-set has a zero, see
Remark 2.17(iii), we define the set {k, : (Cb x {z})/p — A} e to be:

kp =10 for every p € A with p # ker (h)
k,=h for p = ker (h),

in which 6 is supposed to be a fixed zero element of A, and get the equiv-
ariant map k : G — A, by the universal property of the coporoduct, with

SR 2)]ker (1) # 95 ) er (n)))- O

Definition 4.4. [2, Definition 0.6] We recall from category theory that:
(a) an epimorphism f : A — B is called extremal (or strong) when it does
not factor through any proper subobject of B; that is f = ioe in which 7 is
a monomorphism implies that ¢ is an isomorphism.

(b) A generating set G in a cocomplete category is called strong if for
every object K in the category there exists an extremal epimorphism from
a coproduct of G-objects to K.

Theorem 4.5. The obtained generating set in Theorem 4.2 is strong.

Proof. Suppose K € (Cb-Set)ss is generated by {ai,as,...}. For a; €
{a1,a9,...}, we define a map l; : {r} — K mapping = — a;. By the
universal property of free object, there exists a unique equivariant map
lo, + Cb x {z} — K with (¢t,2) — a;. Take kerl,, = k;. Therefore, by
the First Isomorphism Theorem, there exists the equivariant injective map
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lo,  (Cb x {z})/ki — K with [(0,2)]y, — oa;. We define ¢ : [[,(Cb x
{z})/ki — K with [(0,x)], — oca;. Clearly ¢ is an epimorphism from a
coproduct of G-objects to K. Now we show @ is extremal. So let ¢ = me
in which m : A — K is an injective equivariant map.

[1L(Cb x {}) ks —— K
\ A
Since ¢ is epic (surjective), so is m, and we are done. O

5 Finitely presentable finitely supported Cbh-sets

In a general algebraic category, an object A is said to be finitely presentable
if its homfunctor (A, —) preserves filtered colimits, and it is said to be
finitely presented if it can be presented by a finite set of generators and a
finite set of relations, see [2, Definition 1.1]. This means that there exists
a finite set X (of generators) such that A can be obtained as a quotient of
the free algebra F(X) by a finitely generated congruence. We also recall
that an algebra is said to be finitely generated if it is generated by a finite
subset X = {z1, -+ ,zp,} C A, see [4, Definition 11.3.4]. In general, finitely
generated and finitely presented are not equivalent concepts. Nonetheless,
it is demonstrated [13, Theorem 5.16] that the classes of finitely generated
objects and finitely presented objects coincide in the category Nom. Now
the question is: is this statement true in the category (Cb-Set)g? So here,
we describe finitely presentable objects in the category (Cb-Set)gs.

But first we recall that a Cb-set X is called decomposable if there exist
two Cb-subsets X1, X5 of X such that X = X; U X5 and X7 N Xy = 0.
Otherwise X is called indecomposable, see [10, Definition 1.5.7].

Theorem 5.1. (i) If a finitely supported Cb-set X is finitely generated, then
it is finitely generated as a nominal set.

(ii) Every finitely presented M -set is finitely generated.

(iii) Every cyclic M -set is indecomposable.
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(iv) Let X, C X (i € I) be a family of indecomposable M -subsets of an
M-set X such that (,_, X; # 0. Then X, is an indecomposable M -subset
of X.

(v) Every M-set X has a unique decomposition into indecomposable M -
subsets.

Proof. (i) Let X be generated by {z1,...,2,}. Then X = U;l Cbx;. Since
for every i = 1,...,n, by Lemma 2.23, Cbz; = Perm(DD)S;, x; U Perm(D)z;
in which S, z; is finite, Cbz is a union of disjoint cyclic nominal sets and
so X is a finite union of cyclic nominal sets. Hence X as a nominal set is
finitely generated.

(ii) Since X is finitely presented, there exist a finitely generated free
M-set F'(B) over a finite set B and a finitely generated congruence p such
that ¢ : FI(B)/p — X is an isomorphism. Since F'(B) is finitely generated,
F(B)/p is finitely generated and we get the result.

(iii) By [10, Proposition 1.5.8].

(iv) By [10, Lemma 1.5.9].
(v) By [10, Theorem 1.5.10]. O

Before presenting the following proposition, it will be useful to keep in
mind Remark 2.22(ii), which states that a cyclic finitely supported Cb-set
X is in the form of X = Cbz, for some x € X, and Corollary 3.18, which
states that F'(X) = (Cbx X)/R,.

Proposition 5.2. Let X be a finitely supported Cb-set. Then

(i) for all o € Cb, there exists an epimorphism (surjective equivariant
map) ¢ : F(X) — X defined by p(z,) = ox.

(ii) of X s finitely generated, then F(X) is finitely generated.

Proof. (i) First we note that ¢ is well-defined. For, if xz, = z’,, then
there exists m; € Perm(D) with m2 = 2’ and o'my|,,,,, = a\supp; Thus,
o't = o'max = ox. Also ¢ is equivariant, because o1p(z,) = ojo0z =
o(z,,,) = ¢lo1z,), for all o1 € Cb. Furthermore, p(z,) = z, for all z € X,
that is ¢ is surjective, and we are done.

(ii) Let X be finitely generated. Then by Theorem 5.1(i), X is finitely
generated as a nominal set. Thus, X = [[_ Perm(D)z; is a finite coproduct
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of cyclic nominal sets Perm(D)xz;. Now we show that F(X) = Uileb(xi)L
is a finite disjoint union of cyclic finitely supported Cb-sets. (Note that
Cb(z;), is an instance of Cbx for x = (x;),, where (z;), is an instance of
the notation z, for + = z, and n = ¢). To prove the nontrivial part, let
a € F(X). Then there exist 0 € Cb and z € X with a = z,. Since
x € X, there exist 7 € Perm(D) and 1 < ¢ < n with z = 7a;. Now,
a=(rx;), = (x;),. =on(x;), € Cb(x;), as required. O

In the sequel, we show that the finitely presentable finitely supported
Cb-sets are exactly finitely generated ones, see Theorem 5.18.

Definition 5.3. Let X be a finitely supported Cb-set. For all non-zero
z,7 € X, define

G, ., ={m €Perm(D) | 7z = 2, supp7 C suppz Usuppz'}.

Lemma 5.4. The set G__, is empty or isomorphic with a subset of Sym(C)
where C' = supp x U supp z’.

Proof. Let G_, be non-empty and C' = suppz U supp z'. Then define
the assignment ¢ : G, — Sym(C) by ¢(r) = 7|,. Notice that, since
suppnm C C, we have 7T|C € Sym(C). So ¢ is well-defined. Now we show
that ¢ is an injective map. Let ¢(m1) = ¢(m2). Then m|, = ma|.. If d ¢ C,
then since supp 7i,suppmy C C, we get that myd = d = mod. Therefore,
T = 9. O

Remark 5.5. It is worth noting that since Sym(C) is finite, G_ , is finite.

Corollary 5.6. Suppose X is a finitely supported Cb-set. If méx = &'x’, for
some non-zero elements x,2' € X, m € Perm(D), and 6,8 € S, then there
exists m € G with T, 5. = 7| and w0z = mox = o'z’

Sx,6'x! supp 0z

Proof. Since wéx = d'z’, we get msuppdx = suppd’z’. So 7| s,

supp dx — supp &'z’ is a bijective map. Now using the Homogeneity Lemma
2.12, there exists m € Perm(D) with w1 ;. = 7.6, and md = d
for all d ¢ suppdz Usuppd’a’. Thus, suppm C suppdx Usuppd’z’ and
mozr = mdx = §'x’. O
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Proposition 5.7. Let X be a finitely supported Cb-set and x € X,6,0) € S.
Then, for the equivalence class (0x) , We have the following cases:
™1

i) If 6 € S, and 8, € S5, then (dx = (01x
x 1 ox
and Dgr C supp d12.
ii) If 6 € S!. and &} € Ss;, then (0x) ., = (01x),_ with Ds, C supp x.
x 1 ™8] T 1
(iii) If 6 € Sy and &7 € Sy, then (0z) , = (x) ,,
1 1
(iv) If € Sy and & € Ssz, then (6x) , = (z),.

!
61

with Ds, C suppx

7r5i 71'5’1/

with Dgy € supp .

Proof. (i) If § € S, and ¢} € Sj,, then by Corollary 2.24 there exist 6; € S,
and 07 € S5, with
Ds, C suppa, oz = d1z, Dyr C supp diz, & =&

supp §1 1 lsupp d1x”
So applying Lemma 3.17(i) we have (0z)_, = (017) -
o1
(i) If 0] € Sy, then by Lemma 2.21(i), D5'1 Nsupp dz = 0. S0 61,050 =

L] Also, by (i), dx = d12. Now, applying (i) and Lemma 3.17(i), we

supp éx *
have 16z = orv and wl, oo =701 0, L So (07) , = (012),.
o1
Items (iii) and (iv) follow from items (i) and (ii). O

Corollary 5.8. Let X be a finitely supported Cb-set and v € X,6,0' € S.
Then,
(i) the set ST = {5 € S, | D, C suppz} is a finite set. -
(ii) If 6 € S and &' € Sy, then (6x) , = (d1z) ,, with 61 € S}, and
T o1
S Sy .
(iii) If 6 € SI, and &) € Sss, then (0x)
(iv) If § € Sy and &} € S§,, then (0x)

= (51$)W with 61 € Sflx
= (x)ﬂéll/ with 6/1/ € le

!
71'61
/
7r(51

Proof. (i) If |suppz| = n, then we get that |S,| = >2" 2/(7). So S, is

i=1

finite. The other parts follows from (i) and Proposition 5.7. O

Lemma 5.9. Let X be a finitely supported Cb-set, x,2' € X, and

B, ={((6w) . (0'0),) € F(X)x F(X)| m €G 5,61,0, 8 €
S}.

64 a,8568'a"”?

Then B_, is a finite subset of ker p, where ¢ : F(X) — X is given in
Proposition 5.2.



Finitely presentable Cb-sets 199

Proof. First we note that, by Remark 5.5, G_ , is finite. Now, we show that

B_ , is finite, for possible cases which occur for 4, 47,4’,05 € S. According

to Proposition 5.7 we have four cases for (6x) N (similarly for (0'2"),, ). In
1] 2

each case, one can prove the number of the equivalence classes () 5 and

(¢6'2"),, are finite. For instance, when ¢ € §; and ¢ € Sj,, by Corollary
2 E— [
5.8(ii), we have (6x) , = (d1z) ., with 6; € S}, and 07 € S; .- Now since

by Corollary 5.8(i), S’ is finite, in this case the number of the equivalence
classes (0x) N is finite. The other cases are analogous.
191

We show that B, ,» C ker ¢. Suppose ((5:5)7716/ ,(0'2") ) € By Since
1 2
meQG grar T10107 = 050"x, we get that ¢((02)x,s;)) = ((0'2)s;). O

8 62,8,
Lemma 5.10. Let X be a finitely generated finitely supported Cb-set. Then
ker ¢ is finitely generated, where ¢ : F(X) = (Cb x X)/R, — X is given
in Proposition 5.2.

Proof. By the hypothesis, one can suppose X = Uf_l Cbx;. Now take B =
U1<Z_7j<k le_@j, where the B are defined in Lemma 5.9. Then by Lemma
5.9, B is a finite subset of F(X) x F(X). We show that ker p = p(B) and
so ker ¢ is finitely generated. Indeed, since by Lemma 5.9, B%x]_ C ker ¢,
for every 1 <i,j <k, B C ker ¢ and hence p(B) C ker ¢.

To prove the reverse inclusion, suppose ((o171),,(0222),,) € kerep.
Then by Theorem 2.15, 0,0, 01,09 € Perm(D) U Perm(D)S = Cb. Hence,
several cases may occur for o,0’,01,09. We take 0,0, 01,09 € Perm(D)S
and show that ((o121),, (0222)_,) € p(B), other cases will be proved analo-

gously. Let o = 76, o/ = 7/d’, 01 = w101, and oo = modo in which d; € S;l,

T,

do € 5’;2, m, ', m,me € Perm(D). Then since ((o171),,(0212)_,) € ker o,
we get that ¢((m10121)rs) = @((720222) s ), and hence we have wdm o121 =
oo1x1 = o' oaxy = 7'’ madaxe. By Remark 2.14, dm; = m10] and 6'mg = mad),
where ]D)é/1 = {r;'d : d € D,} and ]D)[s,2 = {ry'd : d € D, }. Hence

ey = (n'me) T tam 661wy =

1010121 = 7 medhdoxs and so ngw
8hdaxe.  Now, applying Corollary 5.6 to m, 'n'~'nm € Perm(D) and
8101,0509 € S, there exists m3 € G with m30)0121 = 05d222. We

have

4 8121,8580m

(0171)0 = [(0,0121)|r = [(76, m16121)| R = [(7716, 6121)] R
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= [(71'71'17‘('3_171'35, (51:61)]3 = 71'7['171'3_1[(71'35, (51:61)]3 = 71'7['17T?)_1((511I1)7r35.

/

Since w;lw _17r7715151x1 = 0hdaxa, we get

(010121) oy = [(771,010121)] . = [(7'72, 05022)] , = (630272)
and so

7T7T17T§1(5£51.’E1) = 7T7r177§1[(7r3, 5’151:61)]R = 7'ma(1, (53621:2)]}2 = 77y (0h022),.

3

Also we have

(0912) e = [(Jl,agxg)]R = [(77/5/,77252x2)]R = [(7r/7725/,52x2)]R

= 7T’7T2[((5/, dox2)], = 77’772(521:2)5/.
Hence we have the following equalities:

a=(o171)s = 7T7r17r§1(51331)7r35, 7T7T17['§1(5£511’1) = 7'mo(8502x9),,

3
7T/7T2 (521’2)5/ = (O'ng)al .

Notice that ((0121)rs, (610121),.), ((d502x2),, (d222)s) € B. Thus

3

a=(0171)s = 7T7T17T§1(51.1J1)7T35 7' ma(0h02a),

mmimy (816121),, m'ma(02w2)s = b

and so by Lemma 2.1 we get the desired result. O

Theorem 5.11. Let X be a finitely supported Cb-set. Then X is a finitely
generated Cb-set if and only if X is finitely presented.

Proof. (=) Since X is finitely generated, by Proposition 5.2(ii), L(X) is
finitely generated. Also Lemma 5.10 implies that ker ¢ is finitely generated.
Thus, X (~ L(X)/ker ¢) is finitely presented.

(<) This part holds by Theorem 5.1(ii). O

In the sequel, we give a characterization of finitely presentable objects in
Cb-Set. But first, we mention a number of facts in the following theorem.
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Theorem 5.12. (i) If X = [[,.; X; is a coproduct of indecomposable finitely
supported Cb-sets X;, then the X;’s are retracts of X.

(ii) Finitely presentable objects are closed under finite colimits.

(iii) A nominal set is a finitely presentable object of Nom if and only if
it is orbit-finite.

Proof. (i) First notice that, by Remark 2.17, every finitely supported Cb-set
X; has a zero element 6. Now define ¢ : X — X; by ¢o(x) =0 if x ¢ X; and
p(x) =z if x € X;. Clearly ¢ is equivariant. Also ¢|x, = idx,. Therefore
X, is a retract of X, for every ¢ € I.

(ii) By [3, Lemma 5.11].
(iii) By [13, Theorem 5.16]. O

Lemma 5.13. Every finitely presentable finitely supported Cb-set is finitely
generated.

Proof. Let X be an arbitrary finitely presentable finitely supported Cb-set
and D : T — (Cb-Set) be a functor in which 7 is a small filtered category.
Then since by Remark 3.11(iii) K 4 A 4 Z, we have

Homnom (K (X), colim;D(7)) = Homopset),, (X, Alcolim; D(j)))
Hom(Cb—Set)fs (X, COhHlj AD(]))
))-

I

= COliHlj HOm(Cb—Set)fs (X, AD(]

On the other hand, since K 4 A, we have
HomNom (K (X), D(j)) & Homcp-set), (X, AD(j)),

fs

for every j € Z. Thus,
Homnom (K (X), colim; D(j)) = colim; Homnom (K (X), D(j)),

meaning that K (X) = X/~ is a finitely presentable nominal set and hence,
by Theorem 5.12(iii), X/~ = [J;"; Perm(D)([t;]~) in which ¢; € X. Now
we show that A = {¢1,...,t,} is a finite generator for the Cb-set X and so
X is finitely generated. It is clear that Cbt; C X, for every ¢ = 1,...,n.
Let y € X = Umex Cbz. Then there exists x € X with y = 7z or y = wz.
Soy ~ xory ~ dr. Thus [y]. € X/~ and so there exist t;, € X and
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m1 € Perm(D) with [y]~ = mi[ti]~ = [(m1ti,)]~. Therefore, there exists
w9 € Perm(DD) with y = momit;, which implies that y € Cbt;,,. O

Remark 5.14. Let X be a finitely supported Cb-set generated by

{wl,...,xk}.
(i) For every i,j = 1,...,k, we define

B, ={(r0;,6;) | ™ € Gy, 5..-Ds; S suppx;, D5, C suppa;}
U {(7'[', L) ‘ (IS Gxi,ocj}
U {(71—75])> ’ e Gzi,(sjzj’
U{(mdi,0)) | meG

ng C suppz;}

§;x;,x

D5, C suppai}.

By Remark 5.5, the G_ ,’s are finite, for all z, 2’ € X. Also by Corollary
5.8(i) we have:
B, ={(7d;,0;) | 7 € Gsixi,ijj"st €S t=1,j}
U{(m) |7 eG,,, )
U{(m ;) Im€G, ,....0 €5}
U{(ndi,0)) |meqG j,(SiGS;i}.

S;x;,x

Since the S.’s are finite, we get that B, ,, fori,j=1,...,k, is finite.
(ii) For given z,2" € X, define A, = {(0,0") € Cb x Cb | oz = o'2'}.

Lemma 5.15. Suppose X € (Cb-Set)ss is generated by {z1,...,x}. For
each finitely supported Cb-set Y and y1,...,yr € Y, there exists at most
one equivariant map f : X — Y with f(x;) = yi; and exactly one if and

only if

B..CA , suppy; Csuppw;, suppdy; C suppox;, (x)

i = Yy
where § € S’ .
1

Proof. Suppose there exist the equivariant maps f, f' : X — Y with f(x;) =
f(x;) = ys, for all i = 1,... k. Then since {x1,...,2;} is a generator for
X, for every x € X there exist 0 € Cb and i € {1,...,k} with x = oz;. So

f(@) = flowi) = o f(z:) = o f' () = f'(owi) = f'(2).
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This proves that f = f’.

Now suppose f : X — Y is an equivariant map with f(x;) = y;, for
every i = 1,...,k. Assume (0,0') € B, such that o = 7d; and o' = J;.
We prove that (o,0’) € Ayhyj. Other cases will be proved analogously. The
assumption (7d;,d;) € B, implies that 7 € G

Siwindjay So 7r6i33i = 5j$j.

Now, since f is equivariant, we get
w0y = 703 f(ws) = f(mbiws) = f(6525) = 6;f (w;) = 6515

Thus (o,0') = (76;,0;) € Ayiwyj‘ We also have suppy; = supp f(z;) C
supp x;. Since f is equivariant and f(dx;) = dy;, we get supp dy; C supp dx;,
for all § € S .

Conversefy, suppose z;’s and y;’s satisfy (). We show that the equiv-
ariant subset f = {(ox;,0y;) | 0 € Cb} C X x Y is single-valued. Let
0,0 € Cb with oz; = o'z; where i,j = 1,..., k. By Remark 2.22, we have
the following cases;

Case (1): 0 = w6 and o' = 7’6’ where § € 5 and &' € 5 .

Case (2): 0 =76 and o' = 7'¢" where § € S}, and ¢’ € S.

Case (3): o =76 and o’ = 7'¢’ where § € S, and &' € 5 .

Case (4): 0 = md and o' = 76" where § € Sy, and ¢’ € S.

Here we prove the first case. The other cases are proved analogously. If
Case (1) holds, then by Corollary 2.24 there are 01 € S;, and §; € Sy with

5| =6

!
supp x; 1 |supp z;) |

= ¢ P— . Lo — 8 .
suppz; (51|suppzji7 5xl - 511'7/, ) .T] == 51x],and

Ds, € suppz;, Dy C supp ;.

Since wé1z; = 7’8 x; we have n'~Indz; = 8 x;. Applying Corollary 5.6,

; ; =1 = S e
there exists m € G‘Slzi"sllzj with md12; = 7' “7wd12; = dj2j and 7T1|Supp611,i =

. Thus, (7161,61) € B, ;. So (m1d1,6]) € A, .- By (%), since

Supp x; = 51‘suppxi7 5/’ - (5“
d / . Thus m6y; = m61y; = Oy; =

7_‘_/—17.r| 5o
supp d1z;
supp y; C supp z; and since J|
that 0|
5/%-
Notice that, by (x), we have suppdy; C suppdx;. Hence, Wl‘supp(syi =
W’*lw\suppayi. Therefore, 0'y; = mdy; = '~ 1ndy;. Now, for every z € X

there exist ¢ € Cb and z; with x = ox;. So f(x) = f(ox;) = oy; and

Supp 5 supp  ; we get

supp y; - 61 ‘supp ;) suppy; 1 ‘supp Y
J J
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also for every o1 € Cb we have o1 f(z) = o1f(0x;) = o10y; = f(o102;) =
flo1z). O

Remark 5.16. By [14, Lemma 3.5], the functor M-Set — (M-Set), , X —
X,, is a right adjoint to the inclusion functor (A/-Set), — M-Set. Hence
the inclusion functor preserves all colimits. So one can infer that the colimits
in the category of finitely supported Cb-sets are computed at the level of

the category of Cb-sets.

Proposition 5.17. Given a small filtered category L and a functor D : T —
(Cb-Set)g, consider the colimit of the filtered diagram D(Z), colim,_, D(i),
with colimit injections denoted by the t;’s and connecting morphism from
D(i) to D(j) denoted by v;j. Then for all y € colim,_, D(i) there existk € T
and x € D(k) with y = vx(z) such that suppy = supp .

Proof. Existence of k € Z and = € D(k) immediately follow from the defini-
tion of filtered colimit in (Cb-Set)s. Notice that, since ¢, is equivariant, by
Theorem 2.6(i), suppy = supp ¢, (x) C supp . Now if suppy C supp z, then
take 0 € S with D, = (suppz) \ suppy. We show that suppy = supp dz,
where 0z € D(k). Indeed, since D, Nsuppy = (), we have dy = y. So
suppy = supp oy = suppde, (x) = suppe, (éx) C suppdz. If d € suppdx
and d ¢ suppy, then d € (suppx) \ suppy and d ¢ D, which is impossible
because, (suppz) \ suppy = ;. Therefore, in this case, there exist k € Z
and x, = 0x € D(k) with y = ¢, (z,) and suppy = supp z,. O

Theorem 5.18. Let X be a finitely supported Cb-set. Then X is finitely
presentable if and only if X is finitely generated.

Proof. The ‘only if’ direction follows from Lemma 5.13. For the ‘if’ direc-
tion, let X be generated by {z1,...,2x}, and D : T — (Cb-Set)s be a
filtered diagram in (Cb-Set)g. Then the diagram

Hom(Cb—Set)fs (Xzf)

I—L5(Cb-Set)y, Set

is filtered in the category of sets in which each connecting mor-
phism ¢, D(i) — D(j) is assigned to the connecting map
u,; :  Homcpset), (X, D(i)) —  Homcpset), (X, D(j)), defined by

1
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u,;(h) = ;0 h, for every h € Homcypset), (X, D(i)). Now, consider
the colimit cocone

(u, : Homcpyet),, (X, D(1)) = colimezr Homcy-get),, (X, D(1)))iez,

where every element of colimyez Homcp get), (X, D(1)) is of the form of
u;(h), for some j € Z and h : X — D(j). So we can define the map

¢ : colimer Hom cp-set),, (X, D(1)) = Hom(cp-set),, (X, colimiez D(1))
by ¢(u;(h)) = ¢, o h where ¢, : D(j) — colim,_,D(l) denotes the

leT
jth colimit injection. First we show that ¢ is Well—edeﬁned. Indeed, if
u;(h1) = u,(h), for some j,t € Z, hy € Homcpset), (X, D(j)), and
ha € Homcpset), (X, D(t)), then using the filteredness of the diagram
Homcpset),. (X; D(Z)), there exist k € T and connecting u, : j — k and

u,, :j — k such that
U, (h1) =, 0oh1 =1, ohy =u, (hs),

and hence
L ohy :Lkobjkoh’l =1, 0, 0hy=1,0hs.

Therefore

So(uj (hl)) =1{;0 hy = Ly © hy = (p(ut(hg)).
Now, to prove that ¢ is a bijection, we use Lemma 5.15 and show that
each member of Hom cy-get),, (X, colimez D(1)) is the image of exactly one
element of colim;ez Hom(cp.set),, (X, D(1)) under . Indeed, since for each
equivariant map g : X — colim,_,D(l) we have g(z;) € colim,_, D(l), by
Proposition 5.17, there exist k, € Z and y; € D(k,) with g(x;) = ¢, (y;) and
suppy; = supp g(x;), for alli =1,..., k. Now for every (7d;,6;) € ZB” with
mEe G‘Sixi";jx]” Ds; C supp z;, and Ds; C supp z;, we have:

b, (T0iyi) = woit, (yi) = mlig(wi) = g(mwizi) = g(855) = d;9(x;5)

= dju, (4j) = v (09)-
Hence, using the filteredness of the given diagram D(Z), there exist an object
tilj € 7 and connecting 7 — tilj and j — tilj in Z such that il (méiy;) =
Lﬂ%f}j (85y;). Also for every (m,1) € B, , with w € G,, ., we have:

b, (1yi) = mu (i) = mg(@:) = g(rwi) = g(z5) = ¢, (y5),

i
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and hence, using the filteredness of the diagram D(Z), there exist an object

t.2. € 7 and connecting i — tfj and j — t?j in Z such that ;2 (7y;) =
ij

L 2 (yj). By the same argument, one can also see that for every (m,d;) €

Bm. with 7 € G

TeG

§Z~zi,zj

. and ]D)(;j C suppzj, and every (md;,t) € B, with

and Dgi C supp x; we, respectively, have:
Lki (Wyi) = /'k. (5jyj)7 and Lki (71—52.%) = Lk. (yj)7

and hence there exist t3 t4 € T such that ¢ . (ry;) = L 5 (0jy;) and
it (mdiyi) = ¢4 (y;), respectively. Since T is ﬁltered and B = U B,
ﬁmte one can ﬁnd t1 € Z with

Lk, t1 (o-yl) = l’/fjh (J/yj)’ (5'1)
for all (o,0') € B, ; and i,j =1,...,k. So
B .CA for every i,j =1,...,k. (5.2)

i = Lkit1<yi)’bkjt1<yj)’
We also have
supp, , (¥i) € suppy; = supp g(z;) C supp z;. (5.3)

Also for every 6 € S , by Corollary 2.24, without loss of generality one
can assume that Dy C sﬁpp:nz, and we have g(dz;) = dg(z;) = 9, (y,) =
L, (6y;). Since g(dx;) € colim,, D(l), by Proposition 5.17, there exist Ji €
Z and y € D(j,) with g(dx;) = . (y) and supp g(dz;) = suppy. Hence

t, (0yi) = ¢; (y). So there exist ' € T and connecting k, — ¢’ and j, — ¢’ in
I ‘with Lyt (1 ) = tk,v'(6y;), for every i = 1,..., k. Notice that, by Corollary
5.8(i), number of such & € S’ with Ds C supp x; is finite. Hence, using the
filteredness of Z, one can ﬁnd to € 7 and connecting k;, — t2 and j, — to
with ¢ ¢, (y) = Lkit2(5y2), for every i =1,...,k, and every § € S;i, and

SUPP Otk 1, (Yi) = SUPP ti, ¢ (6Y3)
= Supp 5,1, ()
C suppy (5.4)

= supp g(0x;)
C supp 0x;.
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Now, using the filteredness of Z for objects t; and t, one can find
an object t € Z and connecting t; — ¢ and to — t such that, for every
i,7=1,...,k, the followings hold:

supp , ,(yi) C supp ;, (by 5.3)
supp 0¢,, +(yi) € supp dz;, (by 5.4).

So, by Lemma 5.15, there exists a unique equivariant map ¢’ : X — D(t)
with g/(xi) = Lkit(yi)' Also, g(mz) = Lkz‘ (yl) = Lt(Lkit(yi)) = (l’t Og/)(mi) and
hence ¢, o ¢ = g. Thus p(u,(¢’)) =, 0 ¢’ = g, and we are done. O

As an application of Theorem 5.18 we give the following corollary. But
first, we recall that a category is called locally finitely presentable provided
that it is cocomplete and has a set A of finitely presentable objects such
that every object is a directed colimit of objects from A, see [2, Definition
1.9]. We also recall the fact that a category is locally finitely presentable if it
is cocomplete and has a strong generating set formed by finitely presentable
objects [2, Theorem 1.11].

Corollary 5.19. (i) The finitely supported Cb-sets in the given generating
set G in Theorem 4.2 are finitely presentable.

(ii) The category (Cb-Set)ss is a locally finitely presentable category.

(iii) Fvery quotient of a finitely presentable finitely supported Cb-set is
finitely presentable.

It is worth noting that, because in the adjunction F* 4 U : (Cb-Set), —
Nom, given in Corollary 3.18, U is finitary, one can apply Corollary 5.19(ii)
and [1, Lemma 2.4] to the adjunction F' 4 U, and obtain the following
corollary.

Corollary 5.20. If X is a finitely presentable nominal set, then F(X) is a
finitely presentable finitely supported Cb-set.

Theorem 5.21. Let X be a finitely supported Cb-set. Then X 1is finitely
presentable if and only if X is a finite disjoint union of indecomposable
finitely presentable finitely supported Cb-sets.
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Proof. (<) Since, by Remark 5.16, coproducts in the category of finitely
supported Cb-sets are given by disjoint union, the result follows from The-
orem 5.12(ii).

(=) Suppose X is finitely presentable. By Theorem 5.18, X is finitely
generated. So X = U;l Cbzx,, for some z,,...,z, € X. Hence, by Theorem
5.1(v), X is a finite disjoint union of indecomposable C'b-subsets. Now, by
Theorem 5.12(i), each of these Cb-subsets is a retract of X and hence each
of them is finitely presentable by Corollary 5.19(iii). O
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