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Finitely presentable objects in (Cb-Sets)
fs

Mahdieh Haddadi∗, Khadijeh Keshvardoost, and Aliyeh Hosseinabadi

Abstract. Pitts generalized nominal sets to finitely supported Cb-sets by
utilizing the monoid Cb of name substitutions instead of the monoid of finitary
permutations over names. Finitely supported Cb-sets provide a framework
for studying essential ideas of models of homotopy type theory at the level
of convenient abstract categories.

Here, the interplay of two separate categories of finitely supported actions
of a submonoid of End(D), for some countably infinite set D, over sets is first
investigated. In particular, we specify the structure of free objects. Then,
in the category of finitely supported Cb-sets, we characterize the finitely
presentable objects and provide a generator in this category.

1 Introduction

Given a countably infinite set D, a permutation π on D is said to be finitary
if it changes only a finite number of elements of D. Consider the group
Perm(D) of finitary permutations on D and take a set X equipped with an
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action of Perm(D) on it, that is, a Perm(D)-set. An element x ∈ X is said to
have a finite support S ⊆ D if it is invariant (fixed) under the action of each
element π of Perm(D) which fixes all the elements of S (that is, if πs = s,
for all s ∈ S, then πx = x). A Perm(D)-set X every element of which
has a finite support is said to be a nominal set. Nominal sets are used to
model the syntax of formal systems requiring variable binding operations,
(see [8]). These sets have become a popular topic not only in semantics but
also across various areas in mathematics [11, 15].

Gabbay [7] discusses the concept of nominal renaming sets, which are
sets with a finitely supported atoms-renaming action. Pitts [14] then con-
siders a special case of nominal renaming sets, known as finitely supported
Cb-sets by adding two elements to D, 0 and 1 and concentrating on the
monoid Cb rather than the group Perm(D), where Cb is a submonoid of the
monoid End(D) consisting of all maps on the countably infinite set D. In
these works by Gabbay and Pitts, finitely supported Cb-sets are utilized to
analyze models of homotopy type theory.

When working in a category C one possible interesting thing would be
to ask for the objects of C to be finite in some sense, since we are usually
better at understanding finite things. A finite object in the category Set is
just a finite set. However, the categorical way to characterize these objects
is that: a set X is finite if and only if its homfunctor (X,−) : Set →
Set preserves filtered colimits. In general algebraic categories an object
whose homfunctor preserves filtered colimits is called finitely presentable [2].
Finitely presentable objects often play a significant role in categories, for
instance, in the category of vector spaces over a field F , finitely presentable
objects are precisely finite-dimensional ones, see also the other items of [2,
Example 1.2], and it is always interesting to describe these objects in a
category. Finitely presentable objects in the category of nominal sets have
been characterized by Petrisan, see [12, Proposition 2.3.7]. Here we are
going to describe these objects in the category of finitely supported Cb-sets.

In this paper, to put our work in context, we first review the necessary
concepts. The construction of free Cb-sets over nominal sets is then shown
in Section 3, where we also construct free finitely supported N -sets over
a finitely supported M -set, in which M is a submonoid of N . The exis-
tence of a generator in a category provides useful information about that
category. For instance, every object in a category containing all coproducts
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is a homomorphic image of a coproduct of generators, see [3, Proposition
6.3]. So in Section 4, in order to give additional valuable information about
the category of finitely supported Cb-sets, we show that this category has a
generator. Finally, finitely presentable finitely supported Cb-sets are char-
acterized in Section 5.

2 Preliminaries

In this section, we give the necessary background on M -sets, finitely sup-
ported M -sets, and finitely supported Cb-sets. One can consult [6, 10, 14]
for more information.

2.1 M-sets An (left) M -set for a monoid M with identity e is a set X
equipped with a map M ×X → X, (m,x)⇝ mx, called an action of M on
X, subject to ex = x and m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈M .

By the category M -Set we mean the category of all M -sets and all
equivariant maps, f : X → Y subject to f(mx) = mf(x), for all x ∈ X and
m ∈M , between them.

In the category M -Set, epimorphisms are exactly surjective equivariant
maps (see [10, Proposition I.6.15]).

An element x of an M -set X is a zero (fixed or equivariant) element if
mx = x, for all m ∈M . We denote the set of all zero elements of an M -set
X by Z(X). An M -set X with discrete action is one in which all of its
elements are zero.

A subset Y of anM -set X is anM -subset of Y if my ∈ Y , for all m ∈M
and y ∈ Y . The subset Z(X) of X is in fact an M -subset of X.

A cyclic M -set X is an M -set which is generated by only one element.
In fact, that is of the form of Mx = {mx | m ∈M}, for some x ∈ X.

An equivalence relation ρ on an M -set X is called a congruence relation
on X if x ρ x′ implies mx ρ mx′, for x, x′ ∈ X, m ∈ M . We denote the set
of all congruences on X by Con(X).

Lemma 2.1. [10, Lemma I.4.37] For R ⊆ X × X, the smallest congru-
ence on X containing R is denoted by ρ(R). It is in fact, the congru-
ence relation generated by R, and so a ρ(R) b ⇔ a = b or ∃m1, . . . ,mn ∈
M,p1, p2, . . . , pn, q1, q2, . . . , qn ∈ X, where i = 1, . . . , n, (pi, qi) ∈ R or
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(pi, qi) ∈ R, such that there exists the following fence from a to b

a = m1p1
R

m2p2
R

m3p3
R

. . . mnpn
R

m1q1 m2q2 · · · mn−1qn−1 mnqn = b

2.2 Finitely supported M-sets In this subsection, we give some
facts about finitely supported M -sets, where M is a submonoid of the
monoid End(D) of maps on D together with composition and identity map.

Definition 2.2. Let X be an M -set and x ∈ X. Then,

(a) A subset S ⊆ D is a support of x, if

(∀m,m′ ∈M) (m(s) = m′(s), (∀s ∈ S)) ⇒ mx = m′x

If there exists a finite (possibly empty) support S of x, then we say that x
is finitely supported.

(b) A finitely supported M -set is an M -set X all of whose elements have
finite supports.

(c) A nominal set is a finitely supported Perm(D)-set.
(d) An M -set X is called uniformly finitely supported if there exists a

finite subset S ⊆ D such that S is a finite support of all elements of X.

Notation 2.3. We denote the full subcategory of M -Set consisting of all
finitely supported M -sets by (M -Set)fs.

Proposition 2.4. For each M -set X, the set

Xfs = {x ∈ X | x has a finite support in X}

is a finitely supported M -subset of X.

Proof. One can easily check that: if A is a finite support of x then m(A) is
a finite support of mx, for every m ∈M and x ∈ Xfs.

Example 2.5. (1) The set D is a finitely supportedM -set, with the canon-
ical action given by evaluation; that is, ∀m ∈M, d ∈ D, md = m(d). Also,
for each d ∈ D, the singleton {d} is a finite support of d.
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(2) Since P(D) together with the evaluation action (π,A) 7→ πA =
{π(a)|a ∈ A}, for every π ∈ Perm(D) and A ∈ P(D), is a Perm(D)-set, by
Proposition 2.4, (P(D))fs is a finitely supported Perm(D)-set.

(3) The set Pf(D), consisting of all finite subsets of D, together with the
evaluation action is a finitely supported Perm(D)-set.

(4) The sets Dn = {(d1, · · · , dn) | di ∈ D, i = 1, · · · , n} and D(n) =
{(d1, · · · , dn) ∈ Dn | di ̸= dj , for every i ̸= j ∈ {1, · · · , n}} are finitely sup-
ported M -sets, with the action given by m(d1, · · · , dn) = (md1, · · · ,mdn).
For each x = (d1, · · · , dn), the finite set {d1, · · · , dn} is a finite support of
x.

Theorem 2.6. Let f : X → Y be an equivariant map between finitely
supported M -sets and x ∈ X. Also, let S and S′ be supports of x and f(x),
respectively. Then,

(i) S is also a support of f(x).

(ii) If f is injective, then S′ is a support of x.

Proof. (i) Let m,m′ ∈ M and m|S = m′|S in which S is a support of
x. Then, we show that mf(x) = m′f(x). Indeed, Definition 2.2 implies
mx = m′x. So mf(x) = f(mx) = f(m′x) = m′f(x), since f is equivariant.

(ii) Let S′ be a support of f(x), and m|
S′ = m′|

S′ , for some m,m′ ∈M .
Then, we show that mx = m′x. First, because S′ is a support of f(x), we
have mf(x) = m′f(x). Notice that, f is equivariant, so f(mx) = f(m′x).
Now, since f is injective, we get that mx = m′x.

As a result of Theorem 2.6(i) we have:

Corollary 2.7. The category of finitely supportedM -sets is a mono-coreflect-
ive subcategory of the category of M -sets.

Definition 2.8. Let X be a finitely supported M -set and x ∈ X. Then,
we say

(a) x has the least finite support, if the intersection of all finite supports
of x is a support of x.

(b)X admits the least support, if each element ofX has the least support.

We denote the least support of x by suppx, for every x ∈ X.
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Proposition 2.9. Let X be a uniformly supported M -set which admits the
least support. If Perm(D) ⊆M , then X is discrete.

Proof. Towards a contradiction, suppose x ∈ X with suppx ̸= ∅. Since X
is uniformly, there exists a finite subset S ⊆ D with suppx ⊆ S, for all
x ∈ X. Let d1 /∈ S and d ∈ suppx. Then (d d1)x is a non-zero element
of X. So d1 = (d d1)d ∈ (d d1)suppx = supp (d d1)x ⊆ S which is a
contradiction.

Corollary 2.10. Let X be a finite finitely supported M -set which admits
the least support. If Perm(D) ⊆M , then all elements of X are zero.

Proof. Suppose X = {x1, . . . , xk} and xi1
, . . . , xi

l
are all non-zero elements

of X. Take S =
⋃l

j=1
suppxij

. Then, S is a finite support of xi’s and so

X is uniformly supported M -set. Now, applying Proposition 2.9, the result
holds.

Theorem 2.11. (Presentation Theorem) Let X be a finitely supported
M -set. Then, X is cyclic if and only if there exist a cyclic M -subset B of
D(n) and a congruence ∼ on B such that X is isomorphic to B/∼.

Proof. Notice that if X is singleton then B = D(n) and ∼ = B×B. Suppose
X =Mx is a cyclic finitely supportedM -set, for some non-zero element x ∈
X. Take {d1, . . . , dn} to be a support of x and B = M(d1, . . . , dn). Then,
B is a cyclic M -subset of D(n). Now, the assignment φ : B → Mx defined
by φ(m(d1, . . . , dn)) = mx, for every m ∈ M , is a surjective equivariant
map. Indeed, if m(d1, . . . , dn) = m′(d1, . . . , dn), for some m,m′ ∈ M , then
mdi = m′di, for each 1 ≤ i ≤ n, and since suppx = {d1, . . . , dn}, by
the definition of support, we have mx = m′x. Hence φ is well-defined.
Obviously φ is surjective and equivariant. On the other hand, kerφ is a
congruence relation on B. Therefore, B/kerφ is isomorphic to X.

To prove the converse, let B be a cyclic M -subset of D(n) which satis-
fies the assumption. Then, B = M(d1, . . . , dn), where (d1, . . . , dn) ∈ D(n).
We show that B/∼ = M([(d1, . . . , dk)]∼), and so, X is cyclic. Since ∼
is a congruence on B, we have B/∼ is a finitely supported M -set. Thus,
M([(d1, . . . , dk)]∼) ⊆ B/∼. Now, suppose [b̄]∼ ∈ B/∼, for some b̄ ∈ B.
Since B = M(d1, . . . , dn), we get b̄ = m(d1, . . . , dk), for some m ∈ M .
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Hence
[b̄]∼ = [m(d1, . . . , dk)]∼ = m([(d1, . . . , dk)]∼) ∈M([(d1, . . . , dk)]∼).

Lemma 2.12. [13, Homogeneity Lemma] For any finite subsets S, S′ of D
and any bijection f : S → S′, there exists π ∈ Perm(D) that extends f to a
bijection on the whole of D and that is the identity on the complement of
S ∪ S′:

(∀d ∈ S)π(d) = f(d) ∧ (∀d ∈ D \ (S ∪ S′))π(d) = d.

2.3 Cb-sets The following definition is given for 2 = {0, 1} with 0, 1 ̸∈ D.

Definition 2.13. [5, Definitions 2.1 and 2.2]

(a) An injective finite substitution is a map σ : D → D ∪ 2 for which
Dσ = {d ∈ D | σ(d) ̸= d} is finite, and

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2 ⇒ d = d′.

(b) If d ∈ D and b ∈ 2, we write (b/d) for the finite substitution which
maps d to b, and is the identity mapping on all the other elements of D.
Each (b/d) is called a basic substitution.

(c) If d, d′ ∈ D, then we write (d d′) for the finite substitution that
transposes d and d′, and keeps fixed all other elements. Each (d d′) is called
a transposition substitution.

(d) Let Cb be the monoid whose elements are injective finite substitu-
tions, with the monoid operation given by σ·σ′ = σ̂σ′, where σ̂ : D∪2 → D∪2
maps 0 to 0, 1 to 1, and on D is defined like σ. The identity element of Cb
is the inclusion ι : D ↪→ D ∪ 2.

(e) The set S=̇{δ = (b1/d1) · · · (bk/dk) | di ∈ D, bi ∈ 2} is a subsemigroup
of Cb. We denote the set {d1, . . . , dk} by Dδ, for every δ ∈ S.

Remark 2.14. [5, Remark 2.3(ii)] For every δ = (b1/d1) · · · (bk/dk) ∈ S
and π ∈ Perm(D) we have πδ = δ′π, in which δ′ = (b1/πd1) · · · (bk/πdk),
and δπ = πδ′′, in which δ′′ = (b1/π

−1d1) · · · (bk/π−1dk).

Theorem 2.15. [5, Theorem 2.6] For the monoid Cb, we have
Cb = Perm(D) ∪ Perm(D)S.



8 M. Haddadi, Kh. Keshvardoost, A. Hosseinabadi

2.4 Finitely supported Cb-sets As noted previously, a finitely sup-
ported M -set is one in which every element has a finite support for the
monoid M . We go over some facts concerning finitely supported Cb-sets in
this section. See [5, 14] for further information.

Lemma 2.16. [14, Lemma 2.4] Suppose X is a Cb-set, x ∈ X and b ∈ 2.
Also, let C be a finite subset of D. Then, C is a support of x if and only if

(∀d ∈ D) d /∈ C ⇒ (b/d)x = x.

Remark 2.17. [5, Remark 3.2 and Corollary 3.5] Let X be a Cb-set and
x ∈ X.

(i) If X is finitely supported, then the set {d ∈ D | (0/d)x ̸= x} is in
fact the least finite support of x.

(ii) The element x ∈ X is zero if and only if suppx = ∅ if and only if
δ x = x, for all δ ∈ S.

(iii) Every non-empty finitely supported Cb-set has a zero element.

Example 2.18. (1) The set D ∪ 2 is a finitely supported Cb-set, with the
canonical action given by evaluation; that is,

∀σ ∈ Cb, x ∈ D ∪ 2, σx = σ̂(x),

in which σ̂ is defined as in Definition 2.13(d). Also, for each d ∈ D, supp d =
{d}, and supp 0 = supp 1 = ∅.

(2) Let X = D(k) ∪ {0}, where k is a natural number, the set D(k)
is

given in Example 2.5(4), and 0 is a zero element which is not included in

D(k)
. Then, X is a finitely supported Cb-set with the following action of Cb.

Let σ ∈ Cb and x ∈ D(k)
. Then applying Theorem 2.15, σ = π or σ = πδ,

where π ∈ Perm(D) and δ ∈ S. For σ = π or σ = πδ with D
δ
∩ suppx = ∅,

define σx = πx and for σ = πδ with D
δ
∩ suppx ̸= ∅, define σx = 0. Notice

that, for each element (d1, . . . , dk), the set {d1, . . . , dk} is the support.

(3) The set P
f
(D∪ 2) = {Y | Y is a finite subset of D∪ 2} is a finitely

supported Cb-set with the natural Cb-action

∗ : Cb× P
f
(D ∪ 2) → P

f
(D ∪ 2), σ ∗ Y = σY = {σy | y ∈ Y }.
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Notice that suppY = Y \ 2.

(4) All Cb-sets with the discrete action are clearly finitely supported
Cb-sets, because of Remark 2.17(ii).

It is worth noting that, by Corollary 2.10, we have:

Corollary 2.19. Finite nominal sets and finite finitely supported Cb-sets
are discrete.

Remark 2.20. [5, Notation and Remark 4.4] The sets Sx
.
= {δ ∈ S | δx =

x} and S′
x
.
= S \ Sx = {δ ∈ S | δx ̸= x} are two subsemigroups of S.

Lemma 2.21. [5, Lemma 3.4] Let X be a non-empty finitely supported
Cb-set and x ∈ X. Then,

(i) for δ ∈ S, we have δ x = x if and only if D
δ
∩ suppx = ∅.

(ii) for δ ∈ S, supp δx ⊆ suppx \ D
δ
.

(iii) for π ∈ Perm(D), we have suppπx = π suppx. In particular,
|suppπx| = |πsuppx| = |suppx|.

Remark 2.22. (i) If X is a non-empty finitely supported Cb-set, x ∈ X
and σ ∈ Cb, then by Theorem 2.15, σ = πδ where π ∈ Perm(D) and δ ∈ S.
Now, since S = Sx ∪ S′

x
, applying Remark 2.20, we obtain that δ ∈ Sx or

δ ∈ S′
x
. Also, by Lemma 2.21, suppσx = suppπδx ⊆ π(suppx \ D

δ
).

(ii) We recall that a cyclic finitely supported Cb-set X is a finitely sup-
ported Cb-set generated by one element of X (i.e. X = Cbx = {σx | σ ∈
Cb}, for some x ∈ X).

Lemma 2.23. [5, Lemma 4.5] Let Cbx be a cyclic finitely supported Cb-set.
Then,

(i) Cbx = Perm(D)S′
xx ∪ Perm(D)x, and Perm(D)S′

xx ∩ Perm(D)x = ∅.
(ii) the set S′

x
x is finite.

Corollary 2.24. Suppose X is a finitely supported Cb-set and x ∈ X. If
δ ∈ S′

x, then
(i) there exists δ1 ∈ S′

x with Dδ1 ⊆ suppx and δx = δ1x.
(ii) δ|supp x = δ1|supp x, for some δ1 ∈ S′

x.

Proof. (i) Let δ ∈ S′
x. Then, δx ̸= x and, by Lemma 2.21(i), D

δ
∩

suppx ̸= ∅. Suppose δ = (b1/d1) . . . (bk/dk)(bk+1/dk+1) · · · (bn/dn), wherein
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{d1, . . . , dk} = D
δ
∩ suppx. Then, for i = k+1, . . . , n, we have (bi/di)x = x

and thus δx = (b1/d1) . . . (bk/dk) · · · (bn/dn)x = (b1/d1) . . . (bk/dk)x. Take
δ1 = (b1/d1) · · · (bk/dk). So δ1 ∈ S′

x and Dδ1 ⊆ suppx.

(ii) By (i), if d ∈ suppx, then (bi/di)d = d, for i = k + 1, · · · , n, and so
δ(d) = δ1(d), as required.

Corollary 2.25. Every cyclic finitely supported Cb-set is a finite disjoint
union of cyclic nominal sets.

3 Interaction between finitely supported act categories

For a given monoid N , in order to study the category (N -Set)fs of finitely
supported N -sets, it is crucial to find adjoint pairs between this category
and other well-known categories such as Set, Nom, and (Cb-Set)fs, espe-
cially the free functor, provided that there are any. We have divided this
section into two subsections to do this. The free functor from finitely sup-
ported M -sets to finitely supported N -sets is found in the first subsection,
where M ≤ N ≤ End(D). This is the composition of the forgetful func-
tor M -Set → Set with the free functor Set → N -Set (left adjoint to the
forgetful functor N -Set → Set). Also the free functor from the category
Nom to the category (Cb-Set)fs is given in the second subsection. In this
section, we additionally construct a right adjoint for the forgetful functor
U : (N -Set)fs → Set and transfer certain important functors from the
category Nom to the category (Cb-Set)fs.

3.1 A free functor from (M-Set)fs to (N-Set)fs
In this subsection, we consider N and M as two submonoids of End(D)

with M ≤ N , and recall that for any M -set X, the set N ×X together with
the action (n, (n′, x)) 7→ (nn′, x) is an N -set.

Definition 3.1. For any finitely supported M -set X we define the relation
RX over N ×X by

(n, x)RX (n′, x′) ⇔ ∃m ∈M ; mx = x′ and n′m|S = n|S ,

in which S is a finite support of x. We also consider ρ(RX ) to be the smallest
congruence on N ×X containing RX .
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Lemma 3.2. Suppose f : X → Y is an equivariant map between finitely
supported M -sets. Then ((n, f(x)), (n′, f(x′))) ∈ RY and nf(x) = n′f(x′),
if ((n, x), (n′, x′)) ∈ RX or ((n′, x′), (n, x)) ∈ RX , for every n, n′ ∈ N and
x, x′ ∈ X.

Proof. To prove the statement, we assume ((n, x), (n′, x′)) ∈ RX . The other
case is analogous. Since ((n, x), (n′, x′)) ∈ RX , by Definition 3.1, there exists
m ∈ M with mx = x′, and n′m|S = n|S , where S is a finite support of x.
Since f is equivariant, mf(x) = f(x′) and also Theorem 2.6(i) implies S is
a finite support of f(x). Hence ((n, f(x)), (n′, f(x′))) ∈ RY , by Definition
3.1. Also since S is a finite support of f(x), by Definition 2.2, we have
n′mf(x) = nf(x). Now, since f is equivariant, we get nf(x) = n′mf(x) =
n′f(mx) = n′f(x′).

Notation 3.3. We denote the N -set (N × X)/ρ(RX ) by F (X), and the
equivalence class [(n, x)]ρ(R

X
) by xn .

Remark 3.4. With this notation in mind and definition of the action of N
over F (X) one gets n′xn = x

n′n , for every n
′ ∈ N and xn ∈ F (X).

Lemma 3.5. If S is a finite support of x, then n(S) is a finite support of
the equivalence class xn.

Proof. For every n1, n2 ∈ N with n1|n(S)
= n2|n(S)

, we have n1n(d) =
n2n(d), for all d ∈ S. Thus, n1n|S = n2n|S . Since S is a finite sup-
port of x, and idx = x, we get that ((n1n, x), (n2n, x)) ∈ RX and hence
((n1n, x), (n2n, x)) ∈ ρ(RX ). Now, by Remark 3.4, we have n1xn =
n2xn .

Corollary 3.6. The N -set F (X) = (N ×X)/ρ(RX ) is a finitely supported
N -set.

It is worth noting that since M is a submonoid of the monoid N , every
finitely supported N -set can be considered as a finitely supported M -set.
So one can consider the forgetful functor U : (N -Set)

fs
→ (M -Set)

fs
which

forgets the action of elements in N \M over each N -set and U(f) = f , for
every equivariant map f : X → Y in (N -Set)

fs
. It is also worth noting that,

for every finitely supported N -set X with a finite support C for x ∈ X, C
is a finite support for x ∈ U(X).
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Theorem 3.7. The forgetful functor U : (N -Set)fs → (M -Set)fs has a left
adjoint.

Proof. Consider F : (M -Set)fs → (N -Set)fs mapping each X ∈ (M -Set)fs
to F (X) = (N × X)/ρ(RX ), and each equivariant map f : X → Y to
F (f) : F (X) → F (Y ), defined by F (f)(xn) = (f(x))n . The map F (f) is
well-defined, by Lemma 3.2, and obviously it is equivariant. It is a routine
to check that F is a functor. Now, for every X ∈ (M -Set)fs, we define
ηX : X → U(F (X)) = F (X) by ηX (x) = x

id
, for every x ∈ X. The map

ηX is equivariant, since ηX (mx) = (mx)
id
= x

mid
= xm = mx

id
= mηX (x),

for every x ∈ X andm ∈M . To prove the universal property of ηX , suppose
f : X → U(Y ) is an equivariant map in (M -Set)fs, wherein Y is a finitely
supported N -set. Then one can consider the diagram

N ×X
γ
N×X−−−−→ F (X)

idN × f
y

N × Y −−−−→
g

Y,

where γN×X is the canonical epimorphism mapping each (n, x) ∈ N × X
to xn and g is the action of N over Y . First we note that ker γN×X ⊆
ker (g(idN × f)). Since if xn = x′

n′ , for some x, x′ ∈ X and n, n′ ∈ N ,
then nf(x) = n′f(x′) follows from Lemma 3.2, and hence ((n, x), (n′, x′)) ∈
ker (g(idN × f)), as required. Now, by the Fundamental Theorem of Ho-
momorphisms for N -sets, see [10, Theorem I.4.21], there exists a unique
equivariant map f̂ : F (X) → Y in the category (N -Set)fs such that
f̂γN×X = g(idN × f). So we have U(f̂)ηX(x) = f̂(xid) = f̂γN×X (id, x) =
g(idN × f)(id, x) = idf(x) = f(x). That is the following triangle is commu-
tative.

X
η
X //

f
$$

U(F (X))

U(f̂)
��

Y

Obviously, f̂ with this definition is unique. Also, for every equivariant map
f : X → Y in M -Set, Ff = η̂Y f , which makes the family (ηX )X∈M -Set into
a natural transformation. Indeed, for every equivariant map f : X → Y in
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M -Set and every xn ∈ F (X) we have:

η̂Y f(xn) = nηY f(x) (by definition of η̂Y f)

= n(f(x))
id

(by definition of ηY )

= f(x)n

= Ff(x).

Corollary 3.8. If X =Mx is a cyclic finitely supported M -set, then F (X)
is a cyclic finitely supported N -set.

Proof. First, notice that (mx)id = mxid, for every m ∈M . Thus, for every
n ∈ N and m ∈ M , we have (mx)n = n(mx)id = (nm)xid, by Remark 3.4.
Now, if X =Mx, then F (X) = (N ×Mx)/ρ(RX ) = Nxid.

Given a finitely supported N -set X and M ≤ N , we define the relation
∼ over X as the following:

t∼ t′ ⇐⇒ ∃π ∈ Perm(D) ∩M, πt = t′,

for every t, t′ ∈ X. Let ρ be the least congruence generated by ∼. Then
the set X/ρ of ρ-classes with the action M × (X/ρ) → (X/ρ) defined by
m · ([t]ρ) = [(mt)]ρ forms a finitely supported M -set. It is worth noting
that if C is a finite support of t, then C is a finite support of [t]ρ. Indeed,
for every m1,m2 ∈ M with m1|C = m2|C , we have m1t = m2t, and so,
m1 · ([t]ρ) = [(m1t)]ρ = [(m2t)]ρ = m2 · ([t]ρ).

We now consider the assignment K : (N -Set)fs → (M -Set)fs, mapping
each X ∈ (N -Set)fs to K(X) = X/ρ, and each equivariant map f : X →
Y between finitely supported N -sets to K(f) : X/ρ → Y/ρ defined by
K(f)([x])ρ = [f(x)]ρ, for every [x]ρ ∈ X/ρ. The map K(f) is well-defined,
since if [x1]ρ = [x2]ρ, then there exists π ∈ Perm(D) ∩M with x2 = πx1.
Since f is equivariant, we get that f(x2) = f(πx1) = πf(x1). Therefore,
[f(x1)]ρ = [f(x2)]ρ and K is a functor.

We also consider the functor ∆ : (M -Set)fs → (N -Set)fs defined by
∆(X) = (X, ·), in which “·” is the discrete action, for every X ∈ (M -Set)fs,
and ∆(f) = f , for every equivariant map f : X → Y . Since the action of
∆X is discrete, ∆f = f is equivariant.

Theorem 3.9. The functor K is a left adjoint for ∆.
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Proof. For each finitely supported N -set X, consider ηX : X → ∆KX
mapping x 7→ [x]ρ. We show that ηX is an equivariant ∆-universal map.
To do so, let f : X → ∆Y be an equivariant map, for some Y ∈ (M -Set)fs.
Then we define f̄ : X/ρ→ Y by f̄([x]ρ) = f(x), for every [x]ρ ∈ X/ρ. This
means that the following commutative triangle is completed by ∆(f̄).

X
ηX //

f
$$

∆(K(X))

∆(f̄)
��

(X/ρ)

∃f̄
��

∆(Y ) Y

Similar to the proof of well-definedness ofK(f), one can check that f̄ is well-
defined. Also we have ∆(f̄)◦ηX(x) = ∆f̄([x]ρ) = f(x). The uniqueness of f̄
with ∆(f̄)◦ηX = f follows from its definition. To prove that (ηX)X∈(N -Set)fs
is a natural transformation, we note that, for every f : X → Y in (N -Set)fs
and every [x]ρ ∈ K(X),

ηY f([x]ρ) = ηY f(x) (by definition of ηY f)

= [f(x)]ρ (by definition of ηY )

= K(f)([x]ρ) (by definition of K(f)).

Now we define the functor Z : (N -Set)fs → (M -Set)fs by mapping each
finitely supported N -set X to the set Z(X), consists of all the zero elements
of X, with the discrete action and Z(f) = f , for each f : X → Y in N -Set.
It is worth noting that, since ∅ is a finitely supported M -set, Z(X) can be
empty for a given N -set X.

Theorem 3.10. The functor ∆ is a left adjoint for Z.

Proof. It is straightforward to verify that Z∆ is the identity, ηX = idX is
a universal map, for every X ∈ (M -Set)fs, and (ηX)(M -Set)fs is a natural
transformation.

Remark 3.11. Suppose X is a finitely supported Cb-set. If M = Perm(D)
and N = Cb, then

(i) the relation ∼ over X, defined after Corollary 3.8, is given as follows:

t∼ t′ ⇐⇒ ∃π ∈ Perm(D), πt = t′,
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for every t, t′ ∈ X, and it is a congruence relation.

(ii) K(X) = X/∼ is a nominal set.

(iii) furthermore, K ⊣ ∆ ⊣ Z, in which K,Z : (Cb-Set)fs → Nom and
∆ : Nom → (Cb-Set)fs.

Definition 3.12. [12, Remark 2.3.1] Let X be a set. We consider
∏

m∈M X
to be an M -set equipped with the action m′ ∗ (xm)m∈M = (xm·m′)m∈M , for
every m′ ∈M and (xm)m∈M ∈

∏
m∈M X.

The finitely supported elements of the above defined M -set,
(
∏

m∈M X)fs, is a finitely supportedM -set and denoted by R(X). For every
map f : X → Y we define R(f) : R(X) → R(Y ) by R(f)((xm)m∈M ) =
(f(xm))m∈M , for every (xm)m∈M ∈ R(X). One can easily see that
R : Set → (M -Set)fs forms a functor. Now, for every m′ ∈M , we consider
the natural projection map ρm′ : R(X) → X mapping (xm)m∈M to xm′ and
we have ρm(m′ ∗u) = ρmm′(u), for all u ∈ R(X). It is worth noting that for
every m′,m′′ ∈M and u = (xm)m∈M ∈

∏
m∈M X we have

ρm′(m′′ ∗ u) = ρm′(xm·m′′)m∈M = xm′·m′′ = ρm′·m′′((xm)m∈M ).

Theorem 3.13. The forgetful functor V : (M -Set)fs → Set is a left adjoint
to the functor R : Set → (M -Set)fs.

Proof. The proof is similar to [12, Lemma 2.3.2]. Indeed, it is enough to
show that ηX : X → RVX, mapping each x ∈ X to (m · x)m∈M , is an
R-universal arrow, for each X ∈ (M -Set)fs. We first show that ηX is equiv-
ariant. For every m′ ∈M and x ∈ X we have:

ηX(m′ · x) = (m(m′x))m∈M

= ((m ·m′) · x)m∈M

= ((m · x)m·m′)m∈M

= m′ ∗ (m · x)m∈M

= m′ ∗ ηX(x).

Also ηX is R-universal because for each set Y and each equivariant map
h : X → R(Y ), there is h̄ : V (X) → Y defined by x 7→ ρ1M (h(x)) in such
a way that

R(h̄) ◦ ηX(x) = R(h̄)(m · x)m∈M
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= (h̄(m · x))m∈M

= ρ1M (h(m · x))m∈M

= h(1M · x)
= h(x).

This means that R(h̄) completes the following commutative triangle.

X
ηX //

h
$$

R(V (X))

R(h̄)
��

V (X)

∃h̄
��

R(Y ) Y

To prove uniqueness of h̄, suppose there exists ḡ : V (X) → Y with R(ḡ) ◦
ηX = h. Then if we denote h(x) = (ym)m∈M , for each x ∈ X, we have
h(x) = (ym)m∈M = R(ḡ) ◦ ηX(x) = (ḡ(m · x))m∈M and hence h̄(x) = y1M =
ḡ(x), for each x ∈ X.

The diagram below shows the summary of the adjunctions given in this
subsection.

(N -Set)fs
U //

∆⊣
��

(M -Set)fs
F
⊥
oo

(M -Set)fs
V //

K⊣

OO

Z

OO

Set⊥
Roo

(1)

3.2 Free functor from Nom to (Cb-Set)fs To construct the free
functor from the category of nominal sets to the category of finitely sup-
ported Cb-sets, we first show that the monoid Cb is isomorphic to a sub-
monoid of End(D), and then use the results from the previous subsection.

Let A be a finite subset of D. Then the set

M = {m ∈ End(D) | m|A = id|A , m is an injective (one-one) map on D\A}

is a submonoid of End(D).
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Example 3.14. Define an action on D as: m ∗ d = m(d), m ∗ a = a, for all
a ∈ A and d ∈ D \A. The set D is an M -set with Z(D) = A.

Lemma 3.15. The monoid Cb is isomorphic to M where |A| = 2.

Proof. Suppose A = {d1, d2}. First, notice that, since A is finite and D is
countable, we get that D \ A is countable. Thus, there exists a bijective
map g : D \ A → D. So f : (D \ A) ∪ A → D ∪ 2 defined as f |D\A = g,
f(d1) = 0 and f(d2) = 1 is a bijective map. Now, φ : Cb → M defined by
φ(σ) = f−1σ̂f is an isomorphism between two monoids, as required.

Corollary 3.16. The monoid Cb is isomorphic to a submonoid of End(D).

It is also worth noting that the relation RX , given in Definition 3.1, is a
congruence over N ×X if M = Perm(D) and N = Cb.

Lemma 3.17. Let X be a nominal set. Then
(i) for every (σ, x), (σ′, x′) ∈ Cb × X, (σ, x) RX (σ′, x′), if and only if

there exists π ∈ Perm(D) with πx = x′ and σ′π|supp x = σ|supp x.

(ii) the relation RX is a congruence on Cb×X.

(iii) the Cb-set (Cb×X)/RX is finitely supported.

Proof. (i) It immediately follows from Definition 3.1, when N = Cb, M =
Perm(D) and S = suppx.

(ii) It is clear that RX is reflexive. To prove the symmetry property
of RX , suppose ((σ, x), (σ′, x′)) ∈ RX . Then there exists π ∈ Perm(D)
with πx = x′ and σ′π|supp x = σ|supp x . So π−1x′ = x. Let d ∈ suppx′.
Then π−1d ∈ suppx and so σ′d = σ′π(π−1d) = σ(π−1d). Thus, σ′|

supp x′ =

σπ−1|
supp x′ .

To show that RX is transitive, let ((σ, x), (σ′, x′)) ∈ RX and
((σ′, x′), (σ′′, x′′)) ∈ RX . Then there exist π, π′ ∈ Perm(D) with πx = x′

and π′x′ = x′′. Also, σ′π|supp x = σ|supp x and σ′π′|
supp x′ = σ′′|

supp x′ . So
π′πx = π′x′ = x′′. If d ∈ suppx, then πd ∈ suppx′ and so σ′′π′π(d) =
σ′(π(d)) = σ(d). Thus, σ′′π′π|supp x = σ|supp x .

Now, given σ1 ∈ Cb and ((σ, x), (σ′, x′)) ∈ RX , we have πx = x′ and
σ′π|supp x = σ|supp x . So for all d ∈ suppx, we have σ1σ

′π(d) = σ1σ(d)
which implies that σ1σ

′π|supp x = σ1σ|supp x . Consequently, we have
((σ1σ, x), (σ1σ

′, x′)) ∈ RX , as desired.
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(iii) The set Cb×X together with the action (σ, (σ′, x)) 7→ (σσ′, x) is a
Cb-set, for each nominal set X. Now since RX is a congruence on Cb×X,
by (ii), (Cb × X)/RX is a Cb-set. On the other hand, by Lemma 3.5, a
finite support of xσ = [(σ, x)]R

X
∈ (Cb × X)/RX is σ(suppx). Therefore,

(Cb×X)/RX is a finitely supported Cb-set.

Using Corollary 3.16, one can consider the monoid Cb as a submonoid
of End(D). Also, the monoid Perm(D) is a submonoid of Cb. So applying
Theorem 3.7, we have free finitely supported Cb-sets over nominal sets.

Corollary 3.18. A left adjoint to the forgetful functor U : (Cb-Set)
fs
→

Nom is given by the functor F : Nom → (Cb-Set)fs mapping each nominal
set X to F (X) = (Cb ×X)/RX , and each equivariant map f : X → Y to
F (f) : F (X) → F (Y ) with F (f)(xσ) = (f(x))σ . So we have the first row of
Diagram (1) as follows.

(Cb-Set)fs
U //

Nom
F
⊥
oo

4 A generator in the category (Cb-Set)fs

A set G = {Gi}i∈I of objects of a category is called a set of generators or
a generating set provided that for each pair f1, f2 : K → K ′ of distinct
morphisms there exist i ∈ I and a morphism g : Gi → K with f1g ̸= f2g.
When a generating set is reduced to a singleton set {G}, we say that G
is a generator in the category; this means that the associated homfunctor
(G,−) : C → Set detects differences between objects of the category, see [2,
Definition 0.6].

In this brief section, we present a generator in the category (Cb-Set)fs.
To do so, remember that the free Cb-set over X, for a given set X, is Cb×X
together with the action σ · (δ, x) = (σ ◦δ, x), for every σ, δ ∈ Cb and x ∈ X.

Lemma 4.1. The intersection of all nontrivial congruences of the free Cb-
set over a singleton set {x} is trivial.

Proof. To prove the desired statement, first we note that the free Cb-set
over {x}, Cb× {x}, is not finitely supported. Then, by adding an element
θ to D (as a zero element), we consider the set (D ∪ {θ}) × {x} and define
the following action.
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Cb× (D ∪ {θ})× {x} → (D ∪ {θ})× {x}
(σ, (d, x)) 7→ (σ(d), x)

(σ, (θ, x)) 7→ (θ, x)

One can easily see that (D ∪ {θ})× {x} together with the above action
is a Cb-set. Also, for every d ∈ D, supp (d, x) = {d}, and supp (θ, x) = ∅,
since (θ, x) is a zero element. Hence (D ∪ {θ})× {x} is a finitely supported
Cb-set.

Now for each d ∈ D we defined the map fd : {x} → (D ∪ {θ}) × {x}
by x 7→ (d, x). Therefore, by the universal property of the free Cb-set
over {x}, Cb× {x}, there exists a unique equivariant map f̄d : Cb× {x} →
(D∪{θ})×{x} defined by (σ, x) 7→ (σ(d), x). It is worth noting that f̄d is not
injective, for every d ∈ D, because otherwise, Cb × {x} will be isomorphic
to a finitely supported Cb-set while it is not finitely supported, and this
is a contradiction. Hence ker f̄d is a nontrivial congruence over Cb × {x},
for every d ∈ D. Now since the intersection of all nontrivial congruences
over the free Cb-set Cb × {x} is a subset of

⋂
d∈D ker f̄d, it is sufficient to

show that
⋂

d∈D ker f̄d = ∆. Suppose ((σ1, x), (σ2, x)) ∈
⋂

d∈D ker f̄d. Then
f̄d(σ1) = f̄d(σ2). Therefore σ1(d) = σ2(d), for each d ∈ D, hence σ1 = σ2 as
required.

Theorem 4.2. The category (Cb-Set)fs has a generating set.

Proof. To construct a generating set, first we define a set A as follows.

A .
= {ρ ∈ Con(Cb× {x}) | (Cb× {x})/ρ ∈ (Cb-Set)fs}.

Of course A is non-empty, because the kernel of the unique equivariant map
to the trivial one-point Cb-set {θ} lies in A, see Lemma 4.1. Now take

G .
= {(Cb× {x})/ρ | ρ ∈ A}

We show that G is a generating set in (Cb-Set)fs To do so, let g, f : A→ B be
two different equivariant maps in (Cb-Set)fs. Then there exists some a ∈ A
such that f(a) ̸= g(a). Hence there is the equivariant map h : Cb×{x} → A,
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which maps (ι, x) ∈ Cb × {x} to a, with fh ̸= gh, since (Cb × {x}) is a
generator in the category of Cb-sets. Therefore, by the First Isomorphism
Theorem, there exists the equivariant injective map h̄ : (Cb×{x})/ker (h) →
A such that fh̄ ̸= gh̄. Therefore, G is a generating set.

Corollary 4.3. The category (Cb-Set)fs has a generator.

Proof. To construct a generator in the category (Cb-Set)fs, first we note
that this category is cocomplete (for more information see [6, 14]). Now we
define the finitely supported Cb-set G

.
=

∐
ρ∈A(Cb× {x})/ρ and show that

G is a generator in the category (Cb-Set)fs. To do so, consider two different
equivariant maps g, f : A→ B, then as it is shown in the proof of Theorem
4.2, there exists the equivariant injective map h̄ : (Cb × {x})/ker (h) → A
such that fh̄ ̸= gh̄. Since every finitely supported Cb-set has a zero, see
Remark 2.17(iii), we define the set {kρ : (Cb× {x})/ρ→ A}ρ∈A to be:{

kρ = θ for every ρ ∈ A with ρ ̸= ker (h)
kρ = h̄ for ρ = ker (h),

in which θ is supposed to be a fixed zero element of A, and get the equiv-
ariant map k : G → A, by the universal property of the coporoduct, with
f(k([(ι, x)]ker (h))) ̸= g(k([(ι, x)]ker (h))).

Definition 4.4. [2, Definition 0.6] We recall from category theory that:
(a) an epimorphism f : A → B is called extremal (or strong) when it does
not factor through any proper subobject of B; that is f = i ◦ e in which i is
a monomorphism implies that i is an isomorphism.

(b) A generating set G in a cocomplete category is called strong if for
every object K in the category there exists an extremal epimorphism from
a coproduct of G-objects to K.

Theorem 4.5. The obtained generating set in Theorem 4.2 is strong.

Proof. Suppose K ∈ (Cb-Set)fs is generated by {a1, a2, . . . }. For ai ∈
{a1, a2, . . . }, we define a map li : {x} → K mapping x 7→ ai. By the
universal property of free object, there exists a unique equivariant map
lai : Cb × {x} → K with (ι, x) 7→ ai. Take ker lai = ki. Therefore, by
the First Isomorphism Theorem, there exists the equivariant injective map
l̄ai : (Cb × {x})/ki → K with [(σ, x)]ki 7→ σai. We define φ :

∐
i(Cb ×
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{x})/ki → K with [(σ, x)]
ki

7→ σai. Clearly φ is an epimorphism from a
coproduct of G-objects to K. Now we show φ is extremal. So let φ = me
in which m : A→ K is an injective equivariant map.∐

i(Cb× {x})/ki
φ
//

e
''

K

A

m

OO

Since φ is epic (surjective), so is m, and we are done.

5 Finitely presentable finitely supported Cb-sets

In a general algebraic category, an object A is said to be finitely presentable
if its homfunctor (A,−) preserves filtered colimits, and it is said to be
finitely presented if it can be presented by a finite set of generators and a
finite set of relations, see [2, Definition 1.1]. This means that there exists
a finite set X (of generators) such that A can be obtained as a quotient of
the free algebra F (X) by a finitely generated congruence. We also recall
that an algebra is said to be finitely generated if it is generated by a finite
subset X = {x1, · · · , xn} ⊆ A, see [4, Definition II.3.4]. In general, finitely
generated and finitely presented are not equivalent concepts. Nonetheless,
it is demonstrated [13, Theorem 5.16] that the classes of finitely generated
objects and finitely presented objects coincide in the category Nom. Now
the question is: is this statement true in the category (Cb-Set)fs? So here,
we describe finitely presentable objects in the category (Cb-Set)fs.

But first we recall that a Cb-set X is called decomposable if there exist
two Cb-subsets X1, X2 of X such that X = X1 ∪ X2 and X1 ∩ X2 = ∅.
Otherwise X is called indecomposable, see [10, Definition I.5.7].

Theorem 5.1. (i) If a finitely supported Cb-set X is finitely generated, then
it is finitely generated as a nominal set.

(ii) Every finitely presented M -set is finitely generated.

(iii) Every cyclic M -set is indecomposable.

(iv) Let Xi ⊆ X (i ∈ I) be a family of indecomposable M -subsets of an
M -set X such that

⋂
i∈I
Xi ̸= ∅. Then

⋃
Xi is an indecomposable M -subset

of X.
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(v) Every M -set X has a unique decomposition into indecomposable M -
subsets.

Proof. (i) Let X be generated by {x1, . . . , xn}. Then X =
⋃n

i=1
Cbxi. Since

for every i = 1, . . . , n, by Lemma 2.23, Cbxi = Perm(D)S′
xi
xi ∪ Perm(D)xi

in which S′
xi
xi is finite, Cbx is a union of disjoint cyclic nominal sets and

so X is a finite union of cyclic nominal sets. Hence X as a nominal set is
finitely generated.

(ii) Since X is finitely presented, there exist a finitely generated free
M -set F (B) over a finite set B and a finitely generated congruence ρ such
that ψ : F (B)/ρ→ X is an isomorphism. Since F (B) is finitely generated,
F (B)/ρ is finitely generated and we get the result.

(iii) By [10, Proposition I.5.8].

(iv) By [10, Lemma I.5.9].
(v) By [10, Theorem I.5.10].

Before presenting the following proposition, it will be useful to keep in
mind Remark 2.22(ii), which states that a cyclic finitely supported Cb-set
X is in the form of X = Cbx, for some x ∈ X, and Corollary 3.18, which
states that F (X) = (Cb×X)/RX .

Proposition 5.2. Let X be a finitely supported Cb-set. Then
(i) for all σ ∈ Cb, there exists an epimorphism (surjective equivariant

map) φ : F (X) → X defined by φ(xσ) = σx.
(ii) if X is finitely generated, then F (X) is finitely generated.

Proof. (i) First we note that φ is well-defined. For, if xσ = x′
σ′ , then

there exists π1 ∈ Perm(D) with π1x = x′ and σ′π1|supp x = σ|supp x . Thus,
σ′x′ = σ′π1x = σx. Also φ is equivariant, because σ1φ(xσ) = σ1σx =
φ(xσ1σ

) = φ(σ1xσ), for all σ1 ∈ Cb. Furthermore, φ(xι) = x, for all x ∈ X,
that is φ is surjective, and we are done.

(ii) Let X be finitely generated. Then by Theorem 5.1(i), X is finitely
generated as a nominal set. Thus, X =

∐n

i=1
Perm(D)xi is a finite coproduct

of cyclic nominal sets Perm(D)xi. Now we show that F (X) =
⋃̇n

i=1
Cb(xi)ι

is a finite disjoint union of cyclic finitely supported Cb-sets. (Note that
Cb(xi)ι is an instance of Cbx for x = (xi)ι , where (xi)ι is an instance of
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the notation xn for x = xi and n = ι). To prove the nontrivial part, let
a ∈ F (X). Then there exist σ ∈ Cb and x ∈ X with a = xσ . Since
x ∈ X, there exist π ∈ Perm(D) and 1 ≤ i ≤ n with x = πxi. Now,
a = (πxi)σ = (xi)σπ = σπ(xi)ι ∈ Cb(xi)ι as required.

In the sequel, we show that the finitely presentable finitely supported
Cb-sets are exactly finitely generated ones, see Theorem 5.18.

Definition 5.3. Let X be a finitely supported Cb-set. For all non-zero
x, x′ ∈ X, define

G
x,x′ = {π ∈ Perm(D) | πx = x′, suppπ ⊆ suppx ∪ suppx′}.

Lemma 5.4. The set G
x,x′ is empty or isomorphic with a subset of Sym(C)

where C = suppx ∪ suppx′.

Proof. Let G
x,x′ be non-empty and C = suppx ∪ suppx′. Then define

the assignment φ : G
x,x′ → Sym(C) by φ(π) = π|C . Notice that, since

suppπ ⊆ C, we have π|C ∈ Sym(C). So φ is well-defined. Now we show
that φ is an injective map. Let φ(π1) = φ(π2). Then π1|C = π2|C . If d /∈ C,
then since suppπ1, suppπ2 ⊆ C, we get that π1d = d = π2d. Therefore,
π1 = π2.

Remark 5.5. It is worth noting that since Sym(C) is finite, G
x,x′ is finite.

Corollary 5.6. Suppose X is a finitely supported Cb-set. If πδx = δ′x′, for
some non-zero elements x, x′ ∈ X, π ∈ Perm(D), and δ, δ′ ∈ S, then there
exists π1 ∈ G

δx,δ′x′ with π1|supp δx
= π|

supp δx
and π1δx = πδx = δ′x′.

Proof. Since πδx = δ′x′, we get πsupp δx = supp δ′x′. So π|
supp δx

:
supp δx→ supp δ′x′ is a bijective map. Now using the Homogeneity Lemma
2.12, there exists π1 ∈ Perm(D) with π1|supp δx

= π|
supp δx

, and π1d = d
for all d /∈ supp δx ∪ supp δ′x′. Thus, suppπ1 ⊆ supp δx ∪ supp δ′x′ and
π1δx = πδx = δ′x′.

Proposition 5.7. Let X be a finitely supported Cb-set and x ∈ X, δ, δ′1 ∈ S.
Then, for the equivalence class (δx)

πδ′1
we have the following cases:

(i) If δ ∈ S′
x and δ′1 ∈ S′

δx, then (δx)
πδ′1

= (δ1x)πδ′′1
with Dδ1 ⊆ suppx

and Dδ′′1
⊆ supp δ1x.
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(ii) If δ ∈ S′
x and δ′1 ∈ Sδx, then (δx)

πδ′1
= (δ1x)π with Dδ1 ⊆ suppx.

(iii) If δ ∈ Sx and δ′1 ∈ S′
δx, then (δx)

πδ′1
= (x)

πδ′′1
with Dδ′′1

⊆ suppx.

(iv) If δ ∈ Sx and δ′1 ∈ Sδx, then (δx)
πδ′1

= (x)π .

Proof. (i) If δ ∈ S′
x and δ′1 ∈ S′

δx, then by Corollary 2.24 there exist δ1 ∈ S′
x

and δ′′1 ∈ S′
δx with

Dδ1 ⊆ suppx, δx = δ1x, Dδ′′1
⊆ supp δ1x, δ

′
1|supp δ1x

= δ′′1 |supp δ1x
.

So applying Lemma 3.17(i) we have (δx)
πδ′ = (δ1x)πδ′′1

.

(ii) If δ′1 ∈ Sδx, then by Lemma 2.21(i), D
δ′1
∩supp δx = ∅. So δ′1|supp δx

=

ι|
supp δx

. Also, by (i), δx = δ1x. Now, applying (i) and Lemma 3.17(i), we
have ιδx = δ1x and π|

supp δ1x
= πδ′1|supp δ1x

. So (δx)
πδ′1

= (δ1x)π .

Items (iii) and (iv) follow from items (i) and (ii).

Corollary 5.8. Let X be a finitely supported Cb-set and x ∈ X, δ, δ′ ∈ S.
Then,

(i) the set S′
x = {δ ∈ S′

x | D
δ
⊆ suppx} is a finite set.

(ii) If δ ∈ S′
x and δ′ ∈ S′

δx, then (δx)
πδ′1

= (δ1x)πδ′′1
with δ1 ∈ S′

x and

δ′′1 ∈ S′
δ1x

.

(iii) If δ ∈ S′
x and δ′1 ∈ Sδx, then (δx)

πδ′1
= (δ1x)π with δ1 ∈ S′

x.

(iv) If δ ∈ Sx and δ′1 ∈ S′
δx, then (δx)

πδ′1
= (x)

πδ′′1
with δ′′1 ∈ S′

δ1x
.

Proof. (i) If |suppx| = n, then we get that |S′
x| =

∑n
i=1

2i
(
n
i

)
. So S′

x is
finite. The other parts follows from (i) and Proposition 5.7.

Lemma 5.9. Let X be a finitely supported Cb-set, x, x′ ∈ X, and

B
x,x′

.
= {((δx)

π1δ
′
1
, (δ′x′)

δ′2
) ∈ F (X)× F (X) | π1 ∈ G

δ′1δx,δ
′
2δ

′x′
, δ, δ1, δ

′
1, δ

′
2 ∈

S}.

Then B
x,x′ is a finite subset of kerφ, where φ : F (X) → X is given in

Proposition 5.2.

Proof. First we note that, by Remark 5.5, G
x,x′ is finite. Now, we show that

B
x,x′ is finite, for possible cases which occur for δ, δ′1, δ

′, δ′2 ∈ S. According
to Proposition 5.7 we have four cases for (δx)

π1δ
′
1
(similarly for (δ′x′)

δ′2
). In
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each case, one can prove the number of the equivalence classes (δx)
π1δ

′
1
and

(δ′x′)
δ′2

are finite. For instance, when δ ∈ S′
x and δ′1 ∈ S′

δx, by Corollary

5.8(ii), we have (δx)
πδ′1

= (δ1x)πδ′′1
with δ1 ∈ S′

x and δ′′1 ∈ S′
δ1x

. Now since

by Corollary 5.8(i), S′
x is finite, in this case the number of the equivalence

classes (δx)
π1δ

′
1
is finite. The other cases are analogous.

We show that Bx,x′ ⊆ kerφ. Suppose ((δx)
π1δ

′
1
, (δ′x′)

δ′2
) ∈ Bx,x′ . Since

π1 ∈ G
δ′1δx,δ

′
2δ

′x′
, π1δ

′
1δx = δ′2δ

′x, we get that φ((δx)π1δ′1
)) = φ((δ′x)δ′2).

Lemma 5.10. Let X be a finitely generated finitely supported Cb-set. Then
kerφ is finitely generated, where φ : F (X) = (Cb × X)/RX → X is given
in Proposition 5.2.

Proof. By the hypothesis, one can suppose X =
⋃k

i=1
Cbxi. Now take B

.
=⋃

1≤i,j≤k
Bxi,xj

, where the Bxi,xj
are defined in Lemma 5.9. Then by Lemma

5.9, B is a finite subset of F (X) × F (X). We show that kerφ = ρ(B) and
so kerφ is finitely generated. Indeed, since by Lemma 5.9, Bxi,xj

⊆ kerφ,

for every 1 ≤ i, j ≤ k, B ⊆ kerφ and hence ρ(B) ⊆ kerφ.
To prove the reverse inclusion, suppose ((σ1x1)σ , (σ2x2)σ′ ) ∈ kerφ.

Then by Theorem 2.15, σ, σ′, σ1, σ2 ∈ Perm(D) ∪ Perm(D)S = Cb. Hence,
several cases may occur for σ, σ′, σ1, σ2. We take σ, σ′, σ1, σ2 ∈ Perm(D)S
and show that ((σ1x1)σ , (σ2x2)σ′ ) ∈ ρ(B), other cases will be proved analo-
gously. Let σ = πδ, σ′ = π′δ′, σ1 = π1δ1, and σ2 = π2δ2 in which δ1 ∈ S′

x1
,

δ2 ∈ S′
x2
, π, π′, π1, π2 ∈ Perm(D). Then since ((σ1x1)σ , (σ2x2)σ′ ) ∈ kerφ,

we get that φ((π1δ1x1)πδ) = φ((π2δ2x2)π′δ′), and hence we have πδπ1δ1x1 =
σσ1x1 = σ′σ2x2 = π′δ′π2δ2x2. By Remark 2.14, δπ1 = π1δ

′
1 and δ

′π2 = π2δ
′
2

where D
δ′1

= {π−1
1 d : d ∈ D

δ
} and D

δ′2
= {π−1

2 d : d ∈ D
δ′}. Hence

ππ1δ
′
1δ1x1 = π′π2δ

′
2δ2x2 and so π−1

2 π′−1ππ1δ
′
1δ1x1 = (π′π2)

−1ππ1δ
′
1δ1x1 =

δ′2δ2x2. Now, applying Corollary 5.6 to π−1
2 π′−1ππ1 ∈ Perm(D) and

δ′1δ1, δ
′
2δ2 ∈ S, there exists π3 ∈ G

δ′1δ1x1,δ
′
2δ2x2

with π3δ
′
1δ1x1 = δ′2δ2x2. We

have

(σ1x1)σ = [(σ, σ1x1)]R = [(πδ, π1δ1x1)]R = [(ππ1δ, δ1x1)]R

= [(ππ1π
−1
3 π3δ, δ1x1)]R = ππ1π

−1
3 [(π3δ, δ1x1)]R = ππ1π

−1
3 (δ1x1)π3δ.

Since π−1
2 π′−1ππ1δ

′
1δ1x1 = δ′2δ2x2, we get

(δ′1δ1x1)ππ1
= [(ππ1, δ

′
1δ1x1)]R = [(π′π2, δ

′
2δ2x2)]R = (δ′2δ2x2)π′π2

,
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and so

ππ1π
−1
3 (δ′1δ1x1)π3 = ππ1π

−1
3 [(π3, δ

′
1δ1x1)]R = π′π2[(ι, δ

′
2δ2x2)]R = π′π2(δ

′
2δ2x2)ι.

Also we have

(σ2x2)σ′ = [(σ′, σ2x2)]R = [(π′δ′, π2δ2x2)]R = [(π′π2δ
′, δ2x2)]R

= π′π2[(δ
′, δ2x2)]R = π′π2(δ2x2)δ′ .

Hence we have the following equalities:

a = (σ1x1)σ = ππ1π
−1
3 (δ1x1)π3δ, ππ1π

−1
3 (δ′1δ1x1)π3 = π′π2(δ

′
2δ2x2)ι,

π′π2(δ2x2)δ′ = (σ2x2)σ′ .

Notice that ((δ1x1)π3δ, (δ
′
1δ1x1)π3 ), ((δ

′
2δ2x2)ι, (δ2x2)δ′) ∈ B. Thus

a = (σ1x1)σ = ππ1π
−1
3 (δ1x1)π3δ

B

π′π2(δ
′
2δ2x2)ι

B

ππ1π
−1
3 (δ′1δ1x1)π3 π′π2(δ2x2)δ′ = b

and so by Lemma 2.1 we get the desired result.

Theorem 5.11. Let X be a finitely supported Cb-set. Then X is a finitely
generated Cb-set if and only if X is finitely presented.

Proof. (⇒) Since X is finitely generated, by Proposition 5.2(ii), L(X) is
finitely generated. Also Lemma 5.10 implies that kerφ is finitely generated.
Thus, X(≃ L(X)/kerφ) is finitely presented.

(⇐) This part holds by Theorem 5.1(ii).

In the sequel, we give a characterization of finitely presentable objects in
Cb-Set. But first, we mention a number of facts in the following theorem.

Theorem 5.12. (i) If X =
∐

i∈I Xi is a coproduct of indecomposable finitely
supported Cb-sets Xi, then the Xi’s are retracts of X.

(ii) Finitely presentable objects are closed under finite colimits.
(iii) A nominal set is a finitely presentable object of Nom if and only if

it is orbit-finite.
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Proof. (i) First notice that, by Remark 2.17, every finitely supported Cb-set
Xi has a zero element θ. Now define φ : X → Xi by φ(x) = θ if x /∈ Xi and
φ(x) = x if x ∈ Xi. Clearly φ is equivariant. Also φ|Xi = idXi . Therefore
Xi is a retract of X, for every i ∈ I.

(ii) By [3, Lemma 5.11].

(iii) By [13, Theorem 5.16].

Lemma 5.13. Every finitely presentable finitely supported Cb-set is finitely
generated.

Proof. Let X be an arbitrary finitely presentable finitely supported Cb-set
and D : I → (Cb-Set)fs be a functor in which I is a small filtered category.
Then since by Remark 3.11(iii) K ⊣ ∆ ⊣ Z, we have

HomNom(K(X), colimjD(j)) ∼= Hom(Cb-Set)
fs
(X,∆(colimjD(j)))

∼= Hom(Cb-Set)
fs
(X, colimj∆D(j))

∼= colimjHom(Cb-Set)
fs
(X,∆D(j)).

On the other hand, since K ⊣ ∆, we have

HomNom(K(X), D(j)) ∼= Hom(Cb-Set)
fs
(X,∆D(j)),

for every j ∈ I. Thus,

HomNom(K(X), colimjD(j)) ∼= colimjHomNom(K(X), D(j)),

meaning that K(X) = X/∼ is a finitely presentable nominal set and hence,
by Theorem 5.12(iii), X/∼ =

⋃n
i=1 Perm(D)([ti]∼) in which ti ∈ X. Now

we show that A = {t1, . . . , tn} is a finite generator for the Cb-set X and so
X is finitely generated. It is clear that Cbti ⊆ X, for every i = 1, . . . , n.
Let y ∈ X =

⋃
x∈X

Cbx. Then there exists x ∈ X with y = πx or y = πδx.
So y ∼ x or y ∼ δx. Thus [y]∼ ∈ X/∼ and so there exist ti0 ∈ X and
π1 ∈ Perm(D) with [y]∼ = π1[ti0 ]∼ = [(π1ti0)]∼. Therefore, there exists
π2 ∈ Perm(D) with y = π2π1ti0 which implies that y ∈ Cbti0 .

Remark 5.14. Let X be a finitely supported Cb-set generated by
{x1, . . . , xk}.
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(i) For every i, j = 1, . . . , k, we define

Bi,j = {(πδi, δj) | π ∈ G
δixi,δjxj

,Dδi ⊆ suppxi,Dδj
⊆ suppxj}

∪ {(π, ι)) | π ∈ Gxi,xj
}

∪ {(π, δj)) | π ∈ G
xi,δjxj

,Dδj
⊆ suppxj}

∪ {(πδi, ι)) | π ∈ G
δixi,xj

,Dδi
⊆ suppxi}.

By Remark 5.5, the G
x,x′ ’s are finite, for all x, x

′ ∈ X. Also by Corollary
5.8(i) we have:

Bi,j = {(πδi, δj) | π ∈ G
δixi,δjxj

, δt ∈ S′
xt
, t = i, j}

∪ {(π, ι)) | π ∈ Gxi,xj
}

∪ {(π, δj)) | π ∈ G
xi,δjxj

, δj ∈ S′
xj
}

∪ {(πδi, ι)) | π ∈ G
δixi,xj

, δi ∈ S′
xi
}.

Since the S′
x’s are finite, we get that Bi,j , for i, j = 1, . . . , k, is finite.

(ii) For given x, x′ ∈ X, define A
x,x′ = {(σ, σ′) ∈ Cb× Cb | σx = σ′x′}.

Lemma 5.15. Suppose X ∈ (Cb-Set)fs is generated by {x1, . . . , xk}. For
each finitely supported Cb-set Y and y1, . . . , yk ∈ Y , there exists at most
one equivariant map f : X → Y with f(xi) = yi; and exactly one if and
only if

Bi,j ⊆ Ayi,yj
, supp yi ⊆ suppxi, supp δyi ⊆ supp δxi, (∗)

where δ ∈ S′
xi
.

Proof. Suppose there exist the equivariant maps f, f ′ : X → Y with f(xi) =
f ′(xi) = yi, for all i = 1, . . . , k. Then since {x1, . . . , xk} is a generator for
X, for every x ∈ X there exist σ ∈ Cb and i ∈ {1, . . . , k} with x = σxi. So

f(x) = f(σxi) = σf(xi) = σf ′(xi) = f ′(σxi) = f ′(x).

This proves that f = f ′.
Now suppose f : X → Y is an equivariant map with f(xi) = yi, for

every i = 1, . . . , k. Assume (σ, σ′) ∈ Bi,j such that σ = πδi and σ′ = δj .
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We prove that (σ, σ′) ∈ Ayi,yj
. Other cases will be proved analogously. The

assumption (πδi, δj) ∈ Bi,j implies that π ∈ G
δixi,δjxj

. So πδixi = δjxj .

Now, since f is equivariant, we get

πδiyi = πδif(xi) = f(πδixi) = f(δjxj) = δjf(xj) = δjyj .

Thus (σ, σ′) = (πδi, δj) ∈ Ayi,yj
. We also have supp yi = supp f(xi) ⊆

suppxi. Since f is equivariant and f(δxi) = δyi, we get supp δyi ⊆ supp δxi,
for all δ ∈ S′

xi
.

Conversely, suppose xi’s and yi’s satisfy (∗). We show that the equiv-
ariant subset f = {(σxi, σyi) | σ ∈ Cb} ⊆ X × Y is single-valued. Let
σ, σ′ ∈ Cb with σxi = σ′xj where i, j = 1, . . . , k. By Remark 2.22, we have
the following cases;

Case (1): σ = πδ and σ′ = π′δ′ where δ ∈ S′
xi

and δ′ ∈ S′
xj
.

Case (2): σ = πδ and σ′ = π′δ′ where δ ∈ S′
xi

and δ′ ∈ Sxj .

Case (3): σ = πδ and σ′ = π′δ′ where δ ∈ Sxi and δ
′ ∈ S′

xj
.

Case (4): σ = πδ and σ′ = π′δ′ where δ ∈ Sxi and δ
′ ∈ Sxj .

Here we prove the first case. The other cases are proved analogously. If
Case (1) holds, then by Corollary 2.24 there are δ1 ∈ S′

xi
and δ′1 ∈ S′

xj
with

δ|supp xi
= δ1|supp xi

, δ′|supp xj
= δ′1|supp xji , δxi = δ1xi, δ

′xj = δ′1xj , and

Dδ1 ⊆ suppxi, Dδ′1
⊆ suppxj .

Since πδ1xi = π′δ′1xj we have π′−1πδ1xi = δ′1xj . Applying Corollary 5.6,
there exists π1 ∈ G

δ1xi,δ
′
1xj

with π1δ1xi = π′−1πδ1xi = δ′1xj and π1|supp δ1xi
=

π′−1π|
supp δ1xi

. Thus, (π1δ1, δ
′
1) ∈ Bi,j . So (π1δ1, δ

′
1) ∈ Ayi,yj

. By (∗), since
supp yi ⊆ suppxi and since δ|supp xi

= δ1|supp xi
, δ′|supp xj

= δ′1|supp xj
we get

that δ|supp yi
= δ1|supp yi

, δ′|supp yj
= δ′1|supp yj

. Thus π1δyi = π1δ1yi = δ′1yi =

δ′yi.

Notice that, by (∗), we have supp δyi ⊆ supp δxi. Hence, π1|supp δyi
=

π′−1π|
supp δyi

. Therefore, δ′yj = π1δyi = π′−1πδyi. Now, for every x ∈ X
there exist σ ∈ Cb and xi with x = σxi. So f(x) = f(σxi) = σyi and
also for every σ1 ∈ Cb we have σ1f(x) = σ1f(σxi) = σ1σyi = f(σ1σxi) =
f(σ1x).
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Remark 5.16. By [14, Lemma 3.5], the functorM -Set → (M -Set)
fs
, X 7→

X
fs
is a right adjoint to the inclusion functor (M -Set)

fs
↪→ M -Set. Hence

the inclusion functor preserves all colimits. So one can infer that the colimits
in the category of finitely supported Cb-sets are computed at the level of
the category of Cb-sets.

Proposition 5.17. Given a small filtered category I and a functor D : I →
(Cb-Set)fs, consider the colimit of the filtered diagram D(I), colimi∈ID(i),
with colimit injections denoted by the ιi’s and connecting morphism from
D(i) to D(j) denoted by ιij. Then for all y ∈ colimi∈ID(i) there exist k ∈ I
and x ∈ D(k) with y = ιk(x) such that supp y = suppx.

Proof. Existence of k ∈ I and x ∈ D(k) immediately follow from the defini-
tion of filtered colimit in (Cb-Set)fs. Notice that, since ιk is equivariant, by
Theorem 2.6(i), supp y = supp ι

k
(x) ⊆ suppx. Now if supp y ⊊ suppx, then

take δ ∈ S with D
δ
= (suppx) \ supp y. We show that supp y = supp δx,

where δx ∈ D(k). Indeed, since D
δ
∩ supp y = ∅, we have δy = y. So

supp y = supp δy = supp δι
k
(x) = supp ι

k
(δx) ⊆ supp δx. If d ∈ supp δx

and d /∈ supp y, then d ∈ (suppx) \ supp y and d /∈ D
δ
which is impossible

because, (suppx) \ supp y = D
δ
. Therefore, in this case, there exist k ∈ I

and x0 = δx ∈ D(k) with y = ι
k
(x0) and supp y = suppx0 .

Theorem 5.18. Let X be a finitely supported Cb-set. Then X is finitely
presentable if and only if X is finitely generated.

Proof. The ‘only if’ direction follows from Lemma 5.13. For the ‘if’ direc-
tion, let X be generated by {x1, . . . , xk}, and D : I → (Cb-Set)fs be a
filtered diagram in (Cb-Set)fs. Then the diagram

I D //(Cb-Set)fs
Hom(Cb-Set)fs

(X,−)
//Set

is filtered in the category of sets in which each connecting mor-
phism ιij : D(i) → D(j) is assigned to the connecting map
uij : Hom(Cb-Set)fs(X,D(i)) → Hom(Cb-Set)fs(X,D(j)), defined by
uij (h) = ιij ◦ h, for every h ∈ Hom(Cb-Set)fs(X,D(i)). Now, consider
the colimit cocone

(u
l
: Hom(Cb-Set)fs(X,D(l)) → coliml∈IHom(Cb-Set)fs(X,D(l)))l∈I ,
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where every element of coliml∈IHom(Cb-Set)fs(X,D(l)) is of the form of
uj (h), for some j ∈ I and h : X → D(j). So we can define the map

φ : coliml∈IHom(Cb-Set)fs(X,D(l)) → Hom(Cb-Set)fs(X, coliml∈ID(l))

by φ(uj (h)) = ιj ◦ h where ιj : D(j) → colim
l∈ID(l) denotes the

jth colimit injection. First we show that φ is well-defined. Indeed, if
uj (h1) = ut(h2), for some j, t ∈ I, h1 ∈ Hom(Cb-Set)fs(X,D(j)), and
h2 ∈ Hom(Cb-Set)fs(X,D(t)), then using the filteredness of the diagram
Hom(Cb-Set)fs(X,D(I)), there exist k ∈ I and connecting u

jk
: j → k and

u
tk

: j → k such that

u
jk
(h1) = ι

jk
◦ h1 = ι

tk
◦ h2 = u

tk
(h2),

and hence

ιj ◦ h1 = ι
k
◦ ι

jk
◦ h1 = ι

k
◦ ι

tk
◦ h2 = ιt ◦ h2.

Therefore

φ(uj (h1)) = ιj ◦ h1 = ιt ◦ h2 = φ(ut(h2)).

Now, to prove that φ is a bijection, we use Lemma 5.15 and show that
each member of Hom(Cb-Set)fs(X, coliml∈ID(l)) is the image of exactly one
element of coliml∈IHom(Cb-Set)fs(X,D(l)) under φ. Indeed, since for each
equivariant map g : X → colim

l∈ID(l) we have g(xi) ∈ colim
l∈ID(l), by

Proposition 5.17, there exist ki ∈ I and yi ∈ D(ki) with g(xi) = ι
ki
(yi) and

supp yi = supp g(xi), for all i = 1, . . . , k. Now for every (πδi, δj) ∈ Bi,j with
π ∈ G

δixi,δjxj
, Dδi ⊆ suppxi, and Dδj ⊆ suppxj , we have:

ι
ki
(πδiyi) = πδiιki

(yi) = πδig(xi) = g(πδixi) = g(δjxj) = δjg(xj)

= δjιkj
(yj) = ι

kj
(δjyj).

Hence, using the filteredness of the given diagramD(I), there exist an object
t1
ij

∈ I and connecting i → t1
ij

and j → t1
ij

in I such that ιi,t1
ij
(πδiyi) =

ι
j,t1

ij

(δjyj). Also for every (π, ι) ∈ Bi,j with π ∈ Gxi,xj
, we have:

ι
ki
(πyi) = πι

ki
(yi) = πg(xi) = g(πxi) = g(xj) = ι

kj
(yj),
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and hence, using the filteredness of the diagram D(I), there exist an object
t2
ij

∈ I and connecting i → t2
ij

and j → t2
ij

in I such that ιi,t2
ij
(πyi) =

ι
j,t2

ij

(yj). By the same argument, one can also see that for every (π, δj) ∈

Bi,j with π ∈ G
xi,δjxj

and Dδj
⊆ suppxj , and every (πδi, ι) ∈ Bi,j with

π ∈ G
δixi,xj

and Dδi
⊆ suppxi we, respectively, have:

ι
ki
(πyi) = ι

kj
(δjyj), and ιki

(πδiyi) = ι
kj
(yj),

and hence there exist t3
ij
, t4

ij
∈ I such that ιi,t3

ij
(πyi) = ι

j,t3
ij

(δjyj) and

ιi,t4
ij
(πδiyi) = ι

j,t4
ij

(yj), respectively. Since I is filtered and B =
⋃

i,j
Bi,j is

finite, one can find t1 ∈ I with

ιki t1(σyi) = ιkj t1(σ
′yj), (5.1)

for all (σ, σ′) ∈ Bi,j and i, j = 1, . . . , k. So

Bi,j ⊆ A
ιki t1

(yi),ιkj t1
(yj)

, for every i, j = 1, . . . , k. (5.2)

We also have

supp ι
kit1

(yi) ⊆ supp yi = supp g(xi) ⊆ suppxi. (5.3)

Also for every δ ∈ S′
xi
, by Corollary 2.24, without loss of generality one

can assume that Dδ ⊆ suppxi, and we have g(δxi) = δg(xi) = δι
ki
(yi) =

ι
ki
(δyi). Since g(δxi) ∈ colim

l∈ID(l), by Proposition 5.17, there exist ji ∈
I and y ∈ D(ji) with g(δxi) = ιji

(y) and supp g(δxi) = supp y. Hence

ι
ki
(δyi) = ιji

(y). So there exist t′ ∈ I and connecting ki → t′ and ji → t′ in

I with ιji t′(y) = ιki t′(δyi), for every i = 1, . . . , k. Notice that, by Corollary
5.8(i), number of such δ ∈ S′

xi
with Dδ ⊆ suppxi is finite. Hence, using the

filteredness of I, one can find t2 ∈ I and connecting ki → t2 and ji → t2
with ιji t2(y) = ιki t2(δyi), for every i = 1, . . . , k, and every δ ∈ S′

xi
, and

supp διki t2(yi) = supp ιki t2(δyi)

= supp ιji t2(y)

⊆ supp y

= supp g(δxi)

⊆ supp δxi.

(5.4)
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Now, using the filteredness of I for objects t1 and t2, one can find
an object t ∈ I and connecting t1 → t and t2 → t such that, for every
i, j = 1, . . . , k, the followings hold:

Bi,j ⊆ A
ι
ki

t(yi),ιkj
t(yj)

, (by 5.2)

supp ι
kit

(yi) ⊆ suppxi, (by 5.3)

supp δι
ki
t(yi) ⊆ supp δxi, (by 5.4).

So, by Lemma 5.15, there exists a unique equivariant map g′ : X → D(t)
with g′(xi) = ιki t(yi). Also, g(xi) = ι

ki
(yi) = ιt(ιki t(yi)) = (ιt ◦ g′)(xi) and

hence ιt ◦ g′ = g. Thus φ(ut(g
′)) = ιt ◦ g′ = g, and we are done.

As an application of Theorem 5.18 we give the following corollary. But
first, we recall that a category is called locally finitely presentable provided
that it is cocomplete and has a set A of finitely presentable objects such
that every object is a directed colimit of objects from A, see [2, Definition
1.9]. We also recall the fact that a category is locally finitely presentable if it
is cocomplete and has a strong generating set formed by finitely presentable
objects [2, Theorem 1.11].

Corollary 5.19. (i) The finitely supported Cb-sets in the given generating
set G in Theorem 4.2 are finitely presentable.

(ii) The category (Cb-Set)fs is a locally finitely presentable category.

(iii) Every quotient of a finitely presentable finitely supported Cb-set is
finitely presentable.

It is worth noting that, because in the adjunction F ⊣ U : (Cb-Set)
fs
→

Nom, given in Corollary 3.18, U is finitary, one can apply Corollary 5.19(ii)
and [1, Lemma 2.4] to the adjunction F ⊣ U , and obtain the following
corollary.

Corollary 5.20. If X is a finitely presentable nominal set, then F (X) is a
finitely presentable finitely supported Cb-set.

Theorem 5.21. Let X be a finitely supported Cb-set. Then X is finitely
presentable if and only if X is a finite disjoint union of indecomposable
finitely presentable finitely supported Cb-sets.
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Proof. (⇐) Since, by Remark 5.16, coproducts in the category of finitely
supported Cb-sets are given by disjoint union, the result follows from The-
orem 5.12(ii).

(⇒) Suppose X is finitely presentable. By Theorem 5.18, X is finitely
generated. So X =

⋃n

i=1
Cbxi , for some x1 , . . . , xn ∈ X. Hence, by Theorem

5.1(v), X is a finite disjoint union of indecomposable Cb-subsets. Now, by
Theorem 5.12(i), each of these Cb-subsets is a retract of X and hence each
of them is finitely presentable by Corollary 5.19(iii).
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