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Another closure operator on
preneighbourhood spaces

Partha Pratim Ghosh

Dedicated to Themba Dube on the occasion of his 65th birthday

Abstract. The notions of dense, proper, separated or perfect morphisms
and hence of compact, Hausdorff or compact Hausdorff are all consequent to
good properties of a family of closed morphisms is well known in literature.
Deeper consequences like the Tychonoff product theorem or the Stone Čech
compactifications follow from richer properties of the set of closed morphisms.
The purpose of this paper is to provide a closure operation on a preneigh-
bourhood space so that the resulting set of closed morphisms possess all the
properties mentioned above.

1 Introduction

The notion of a preneighbourhood space (X,µ) was initiated in [5]; in [6] a
closure operation clµ (see Definition 3.1, [6]) is investigated, the correspond-
ing set Acl of closed morphisms (see Definition 4.1, [6]) exhibited to have
good properties (see §4 and Table 1 on page 218, [6]). This facilitated in-
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vestigation into dense morphisms (see §5, [6]), proper morphisms and hence
compact preneighbourhood spaces (see §6, [6]), separated morphisms and
hence Hausdorff spaces (see §7, [6]), perfect morphisms and hence compact
Hausdorff spaces (see §8, [6]). The investigation of proper, separated and
perfect morphisms depended only on good properties of the set Acl.

The dependence of notions of proper, separated, perfect morphisms on
good properties of the set of closed morphism is inspired from [3]. In [3],
the good properties were formulated as axioms on a set of morphisms, called
closed morphisms, (see conditions (F3), (F4) and (F5), [3]). More involved
topological facts like the Tychonoff’s product theorem or the Stone Čech
compactification of a Tychonoff space required an additional list of four
axioms (see conditions (F6), (F7), (F8) and (F9) in §11, [3]).

The purpose of this paper is to provide another closure operation clFµ
on each preneighbourhood space (X,µ) (see Definition 3.1). It is shown clFµ
has, in comparison to clµ in [6], many more properties facilitating its set
AF
cl (see Definition 4.1) of closed morphisms having analogues of all the

seven axioms for closed sets referred above. Thus it is expected that most
of the notions dealt in [3] would be achieved with this specific closure opera-
tion. The paper provides list of properties for the consequent notions which
only depend on the analogues of conditions (F3)-(F5) of [3]; consequences
involving analogues of later axioms (F6)-(F9) shall be dealt in later papers.

At this point it must be emphasised that categorical neighbourhood op-
erators have already been considered earlier, especially in [7, 10, 11, 15–22]
as well as in the references therein. The closure operation in this paper was
initially described in [10] and investigated there. However, there are two
major points of divergence between the approaches in these papers or their
references and the work in this paper or [5, 6]:

(i) Firstly, it is standard in literature to consider operators and thereby
the notion of continuity of morphisms is hard-wired in the definition.
In this paper, as in [5, 6] the situation is transversal: a suitable cat-
egory with an ambient structure is considered, wherein each object
is assigned a neighbourhood system; a morphism between objects en-
dowed with neighbourhood systems may or may not preserve the neigh-
bourhood structure, and hence continuity becomes an extra property
that a morphism may or may not possess. Often, the objects endowed
with the neighbourhood systems and morphisms preserving them (i.e.,
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continuous ones in that sense) make a (full) subcategory and there is
a forgetful functor from this subcategory to the base category, which
in many cases is topological (see [5] for details).

(ii) To include a large class of examples, minimum structure is assumed
on the category. Usually, apart from finite completeness and existence
of finite coproducts, the category is assumed to have a proper factori-
sation structure (E,M) (see Definition 2.2). In most of the papers, for
instance in [10, 11], it is assumed that E is stable under pullbacks of
M-morphisms — a restriction that does not hold for locales (see for
instance in [23]).

However, a comparison between these approaches is necessary to place
them in their proper perspective and is done in the paper.

The paper is organised as follows: §2 recalls all the facts necessary for
this paper, §3 investigates closure operation clFµ, §4 investigates the prop-

erties of the set AF
cl , §5 provides a list of properties for proper, separated

and perfect morphisms and hence properties for compact, Hausdorff and
compact Hausdorff preneighbourhood spaces.

The categorical notation used in this paper is akin to usage in [12] or [1].
The paper is based on NBG set theory (see [13] for details); in this paper a
set x is small if (∃y)(x ∈ y), else it is large and 2X<ℵ0 is the set of all finite
subsets of X.

2 Preliminaries

This section recalls facts that are necessary for the paper.

2.1 Closure operations Let P be a poset with smallest element 0 and

largest element 1; an order preserving endomap P
f−→ P is extensional if x ≤

f(x) (x ∈ P ) and grounded if f(0) = 0. In this paper, a closure operation
is an extensional grounded order preserving endomap and EGM(P ) is the
set of all closure operations on P . Evidently, EGM(P ) is ordered pointwise,
i.e., f ≤ g if f(x) ≤ g(x) (x ∈ P , f, g ∈ EGM(P )), the smallest closure

[13] uses the term proper class to refer to large sets of this paper, set to refer to
small sets of this paper, and the term class is used for a generic set.
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operation is 1P and the largest is P
l−→ P where l(x) =

{
0, if x = 0,

1, otherwise
.

A closure operation f ∈ EGM(P ) is idempotent if f◦f = f and additive
if f(x ∨ y) = f(x) ∨ f(y), whenever the suprema exist. For any closure
operation f ∈ EGM(P ), Fix[f ] is the set of all its fixed points, i.e., Fix[f ] ={
x ∈ P : f(x) = x

}
. Furthermore, for any S ⊆ Fix[f ], f(

∧
S) =

∧
S, if the

infima exist, i.e., Fix[f ] is closed under arbitrary meets.

Proposition 2.1 (see §2.1, [6]). For any complete lattice L and a closure

operation L
f−→ L the equation:

f̂(x) =
∧{

k ∈ Fix[f ] : x ≤ k
}

(2.1)

defines an idempotent closure operation on L, Fix[f̂ ] = Fix[f ], f ≤ f̂ and
for any idempotent closure operation g on L, f ≤ g ⇔ f̂ ≤ g.

Proof. See §2, [6].

The closure operation f̂ of Proposition is called the idempotent hull of
f , (see §4.6 in [4] for details).

2.2 Contexts The notion of a context is introduced in [5]; a closure
operation and its consequences treated in [6].

Definition 2.2 (see [5, 6]). (a) A context is (A,E,M) where A is a finitely
complete category with finite coproducts, (E,M) is a proper factorisation
system on A such that for each object X ∈ A0, the set SubM(X) is a com-
plete lattice.

(b) An order preserving map SubM(X)op
µ−→ Fil [X] with the property

u ∈ µ(p) ⇒ p ≤ u is a preneighbourhood system on X; the pair (X,µ) is
called a preneighbourhood space.

A morphism in M is called an admissible monomorphism.
An m ∈ SubM(X) is called an admissible subobject of X.
Given any semilattice L, Fil [L] is the complete lattice of all filters in L; in this paper,

Fil [X] is abbreviation for Fil [SubM(X)].
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(c) A preneighbourhood system µ is a weak neighbourhood system on
X if for every p ∈ SubM(X), µ(p) ⊆ ⋃

x∈µ(p)
⋂
y≤x µ(y) (or equivalently,

µ(p) =
⋃
x∈µ(p) µ(x), (see [5] for details); the pair (X,µ) is called a weak

neighbourhood space.

(d) A weak neighbourhood system µ is a neighbourhood system on X
if it preserves all meets, i.e., µ(

∨
S) =

⋂
s∈S µ(s) (S ⊆ SubM(X)); the pair

(X,µ) is called a neighbourhood space.

(e) Given a preneighbourhood space (X,µ), the (possibly large) set of
µ-open subobjects of X is Oµ =

{
p ∈ SubM(X) : p ∈ µ(p)

}
; for any

p ∈ SubM(X), µ-interior of p is intµp =
∨{

u ∈ Oµ : u ≤ p
}
.

(f) Given preneighbourhood spaces (X,µ) and (Y, ϕ), a morphismX
f−→ Y

is a preneighbourhood morphism, written (X,µ)
f−→ (Y, ϕ), if u ∈ ϕ(y) ⇒

f−1u ∈ µ(y−1) for each y ∈ SubM(Y ). The category of preneighbour-
hood spaces and preneighbourhood morphisms is pNbd[A], wNbd[A] is the
full subcategory of weak neighbourhood spaces, and Nbd[A] is the non-full
subcategory of wNbd[A] with neighbourhood spaces as objects and prenei-

ghbourhood morphisms (X,µ)
f−→ (Y, ϕ) for which f−1 preserves arbitrary

joins.

Similar definition appears in literature:

A. In [10, Definition 3.1] the authors define a neighbourhood operator
quite similarly; however, there are some differences. Firstly, the codomain
of each neighbourhood operator is a stack of admissible subobjects of X
— a stack on a poset P is alternatively known as a upward closed subset
of P , i.e., U ⊆ P such that x ≥ y ∈ U ⇒ x ∈ U ; secondly, their condi-
tions (nbh0) and (nbh1) together define preneighbourhood system of this
paper; condition (nbh2) of their paper defines neighbourhood system of this
paper without the weak neighbourhood condition. The condition (nbh3)
in their paper is used to effect continuity of each morphism with respect
to the neighbourhood operations, contrary to the case here where being a
preneighbourhood morphism is an additional property of a morphism which
may or not be possessed.

A similar definition also appears in [11].
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B. In [17, 19] neighbourhood operatons are defined as certain lax natural
transformations, which are almost same as the preneighbourhood systems of
this paper, with the only difference being in the present paper the codomains
are filters while in the papers mentioned they are posets.

Contexts abound — every small complete and small cocomplete, if
wellpowered category A provides the context E = (A, Epi(A), ExtMon(A)),
and if co-wellpowered provides the context M = (A, ExtEpi(A), Mono(A));
for other familiar examples see [5, 6].

Some notations need to be explained and hence standardised for use in
this paper:

C. Every morphism X
f−→ Y factors uniquely as X

fE
// //

f

��

If //
fM
// Y

with fE ∈ E and fM ∈ M; morphisms from E shall be denoted as // //

while morphisms from M as // // .

D. Given P //
p
// X

f
// Y Qoo

q
oo , ∃

f
p = (f◦p)M is the image of p

under f , (f
∣∣
p
) = (f◦p)E is the restriction of f on p and in the pullback

square f−1Q
fq
//

��

f−1q
��

Q
��

q

��

X
f
// Y

, f−1q is the preimage of q under f , fq is the

corestriction of f along q.

E. The (E,M)-factorisation induces the adjunction on the left

SubM(X)

∃
f
//

oo

f−1
⊥ SubM(Y ) Fil [Y ]

←−
f
//

oo −→
f

⊥ Fil [X]

between complete lattices, whenever X
f−→ Y is a morphism of A; further-

more, f also induces the adjunction on the right between complete lattices
of filters, where for any A ∈ Fil [X] and B ∈ Fil [Y ]:

−→
f A =

{
y ∈ SubM(Y ) : (∃x ∈ A)(∃

f
x ≤ y)

}
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=
{
y ∈ SubM(Y ) : f−1y ∈ A

}
, (2.2)

and

←−
f B =

{
x ∈ SubM(X) : (∃y ∈ B)(f−1y ≤ x)

}
. (2.3)

F. (X,µ)
f−→ (Y, ϕ) is a preneighbourhood morphism if and only if for

each x ∈ SubM(X),
←−
f ϕ(∃

f
x) ⊆ µ(x) if and only if for each y ∈ SubM(Y ),

ϕ(y) ⊆ −→f µ(f−1y). Incidentally, the assignment:

x

←−
f ϕ∃

f7−→ ←−
f ϕ(∃

f
x)

is a preneighbourhood system onX, the smallest one making f a preneigh-
bourhood morphism.

G. The categories pNbd[A] as well as wNbd[A] are both topological over
A, [5, Theorem 4.8, for details].

H. In view of G., every small limit (respectively, small colimit) object is
usually considered as a preneighbourhood space with the smallest (respec-
tively, largest) preneighbourhood system making each component of the
limiting cone (respectively, colimiting cone) preneighbourhood morphism.
In particular:

(i) For a preneighbourhood space (X,µ) and an admissible monomor-

phism M // m // X of X, M is usually considered a preneighbour-
hood space with preneighbourhood system (µ

∣∣
m
), where for each a ∈

SubM(M):

(µ
∣∣
m
)(a) =←−mµ(m◦a)

=
{
u ∈ SubM(M) : (∃v ∈ µ(m◦a))(m−1v ≤ u)

}

=
{
u ∈ SubM(M) : (∃v ∈ µ(m◦a))(v ∧m ≤ m◦u)

}
. (2.4)

(ii) For preneighbourhood spaces (X,µ) and (Y, ϕ), the product object

X × Y with product projections X oo
pX

X × Y pY // Y is usually
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considered a preneighbourhood space with preneighbourhood system
µ× ϕ, where for each u = (uX , uY ) ∈ SubM(X × Y ):

(µ× ϕ)(u) =←−pXµ(∃pX u) ∨
←−pY ϕ(∃pY u)

=
{
(vX , vY ) ∈ SubM(X × Y ) : (∃wX ∈ µ(vMX ))(∃wY ∈ ϕ(vMY ))

(wX × wY ≤ v)
}
.

(2.5)

I. Given the family
(
(Xi, µi)i

)
i∈I of preneighbourhood spaces, let X =

∏
i∈I Xi with product projections X

pi−→ Xi (i ∈ I), XJ =
∏
j∈J Xj with

product projections XJ

pJj−→ Xj for any j ∈ J ∈ 2I<ℵ0 . Evidently, there are

the unique morphisms X
pJ−→ XJ with pJj ◦pJ = pj (j ∈ J ∈ 2I<ℵ0) such that

for J,K ∈ 2I<ℵ0 with J ⊆ K there exists the unique bonding morphism

XK
pJ,K−−−→ XJ making the diagram:

X
pJ

}}

pK

!!

pj

��

XJ

pJj !!

oo ! pJ,K XK

pKj}}

Xj

(2.6)

to commute for every j ∈ J ⊆ K. Hence X ≃ ∏
J∈2I<ℵ0

XJ with product

projections X
pJ−→ XJ (J ∈ 2I<ℵ0).

The object X is usually considered a preneighbourhood space with
preneighbourhood system µ, where for each u =

(
ui
)
i∈I ∈ SubM(X):

µ(u) =
∨

i∈I

←−piµi(∃piu)

=
{
v ∈ SubM(X) : (∃J ∈ 2I<ℵ0)(∀j ∈ J)(∃wj ∈ µj(u

M
j ))

(
∧

j∈J
pj
−1wj ≤ v)

}
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=
∨

J∈2I<ℵ0

←−pJµJ(∃pJ u), (2.7)

where µJ is the product preneighbourhood system on XJ (J ∈ 2I<ℵ0).

The product is a limit of an inverse sytem (see [3, §11.2]), and (2.7) is
also mentioned in [19, Definition 4] or [17, §5].

2.3 Morphisms reflecting zero Let A = (A,E,M) be a context.

A morphism X
f−→ Y is said to reflect zero if f−1σY = σX , where σX ∈

SubM(X) is the smallest admissible subobject of X.

Proposition 2.3 ([6, Theorem 2.11]). Given X
f−→ Y

g−→ Z, the following
statements hold.

(a) The following are equivalent:

(i) f reflects zero.

(ii) For any p ∈ SubM(X), ∃
f
p = σY ⇒ p = σX .

(iii) For any p ∈ SubM(X) and v ∈ SubM(Y ):

v ∧ ∃
f
p = σY ⇒ p ∧ f−1v = σX . (2.8)

(b) If f−1◦∃
f
= 1SubM(X) then f reflects zero; in particular, every ad-

missible monomorphism reflects zero.

(c) The set of morphisms reflecting zero is closed under composition.

(d) If g◦f reflects zero then f reflects zero.

(e) For any n ∈ SubY(Y ), the corestriction fn of f along n reflects zero
whenever f reflects zero.

(f) In presence of pullbacks in A:

(i) if every morphism reflect zero then the initial object ∅ is strict.

(ii) if the initial object is strict and the unique morphism ∅ i1−−→ 1 is
an admissible monomorphism then every morphism reflects zero.

Proof. [6, page 170].
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J. The term reflects 0 is used in [11, Definition 2.1] and called reflects
least subobject in [10, §2]. Also, a characterisation of morphisms reflecting
zero appears in [11, Proposition 2.2] under closure of E-morphisms along
pullbacks along M-morphisms, while some connection with Frobenius mor-
phisms established in [10, Lemma 2.1]. It seems the reflecting zero property
is more about a Frobenius reciprocity at the smallest subobject — compare
with Proposition 2.4.

K. A finitely complete category with an initial object is quasi-pointed

if the unique morphism ∅ i1−−→ 1 is a monomorphism, (see [2, 8]). In many
familiar contexts the unique morphism i1 is a regular monomorphism and
hence an admissible monomorphism, [6, Remark 2.12]. A context A is
called admissibly quasi-pointed if the unique morphism i1 in A is an ad-
missible monomorphism. Thus: in admissibly quasi-pointed contexts, every
morphism reflect zero if and only if the initial object is strict.

L. Henceforth the context A shall be called a reflecting zero context if
every morphism of A reflects zero.

2.3.1 Converse of reflecting zero condition

With regards to converse implication of (2.8):

Proposition 2.4. Given a morphism X
f−→ Y , p ∈ SubM(X) and v ∈

SubM(Y ) consider the statements:

p ∧ f−1v = σX ⇒ v ∧ ∃
f
p = σY . (2.9)

f−1v = σX ⇒ v ∧ fM = σY . (2.10)

For each f , p and v, (2.9) implies (2.10); if for every f and v, (2.10) is
true then for every f, p, v, (2.9) holds good.

Proof. Assuming (2.9), and taking p = 1X implies (2.10). Conversely, as-
suming (2.10) holding for each f, v, consider the diagram:

A morphism f is a Frobenius morphism if it satisfies the Frobenius reciprocity law,
i.e., for all admissible subobjects x of the domain and admissible subobjects y of the
codomain, ∃f

(
x ∧ f−1y

)
= y ∧ ∃f x.
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P ∧ f−1V
��

v′1

��

ww

f ′1

ww

(f
∣∣
∃

f
(p ∧ f−1v)

)
// // ∃

f
(P ∧ f−1V ) //

v2 // V ∧ ∃
f
P

��

v1

��

uu

f1

uu
P
��

p

��

(f
∣∣
p
) // // ∃

f
P
��

∃
f
p

��

f−1V
vv

f−1v

vv

fv // V
tt

v
ttX

f
// Y

where:

(i) the left hand and right hand upright squares are pullback squares
depicting intersections,

(ii) the bottom horizontal square is a pullback square depicting preimage
f−1v,

(iii) since ∃
f
p◦(f

∣∣
p
)◦f ′1 = v◦fv◦v′1, (P ∧ f−1V )

w−→ (V ∧ ∃
f
P ) is the unique

morphism such that f1◦w = (f
∣∣
p
)◦f ′1 and v1◦w = fv◦v′1.

Since ∃
f
p◦f1◦w = f◦(p ∧ f−1v), using the (E,M)-factorisation of w,

wE = (f
∣∣
∃

f
(p ∧ f−1v)

), wM = v2 and ∃
f
(p ∧ f−1v) = (∃

f
p)◦f1◦v2. Furthermore,

since the upright left hand square, the bottom horizontal square and the
upright right hand square are pullbacks, the top horizontal square is also a
pullback, i.e., f ′1 = (f

∣∣
p
)
−1
f1. Consequently for non-trivial p, v:

p ∧ f−1v = σX ⇔ f ′1 = σP

⇔ (f
∣∣
p
)
−1
f1 = σP

⇒ f1 ∧ (f
∣∣
p
)
M

= σ∃
f
P (from assumption)

⇔ f1 = σ∃
f
P (since (f

∣∣
p
) ∈ E⇒ (f

∣∣
p
)
M

= 1∃
f
P )

⇒ v ∧ ∃
f
p = σY ,
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completing the proof.

The property in equation (2.10) is reminiscent of sets and functions;

however it also holds in the context (Loc,Epi,RegMono) — if X
f−→ Y is a

localic map then f−1V is non-null if and only if there exists a x ∈ X \ {1}
with f(x) ∈ V , and hence f−1V = {1} ⇔

(
f(x) ∈ V ⇒ x = 1

)
⇔

∃
f
X ∩ V = {1}. Interesting to note: equation (2.8) also holds for locales:

since for each localic map f , f(x) = 1 ⇔ x = 1, f [P ] = {1} ⇔
(
p ∈ P ⇒

f(p) = 1
)
⇔
(
p ∈ P ⇒ p = 1

)
⇔ P = {1}.

Definition 2.5. A morphism X
f−→ Y is a formal function if (2.10) holds

for every v.

Recall from [6, Definition 2.7(f)]: a morphism X
f−→ Y is formally sur-

jective (or semistable as in [24]) if ∃
f
f−1 = 1SubM(Y ).

Corollary 2.6. Every admissible monomorphism or a formally surjective
morphism is a formal function.

M. Henceforth the context A shall be called a formal function context
if each of its morphisms is a formal function.

2.4 Properties of products Let A = (A,E,M) be a context. This
section collects results concerning product objects. In this connection, recall

in a category morphisms T
f−→ X × Y to a product correspond naturally

to pairs of morphisms
(
T

fX−−→ X,T
fY−−→ Y

)
; using this natural bijection

morphisms like f is alternatively be presented as (fX , fY ); furthermore, if

T
g−→ X and S

h−→ Y are morphisms then T × S g×h−−→ X × Y is the unique
morphism g × h = (g◦pT , h◦pS). Note: the subobjects in SubM(X × Y ) are

precisely given by pairs U //
u=(uX , uY )

// X × Y which are jointly monic,

i.e., for all morphisms S
x //

x′
// U , u◦x = u◦x′ ⇔ uX◦x = uX◦x′

uY ◦x = uY ◦x′

}
⇒ x =

x′.

In localic parlance, f−1V is usually denoted by f−1V , [14, §III.4.2.1], and ∃fP denoted
by f [P ].
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Proposition 2.7. Given the product diagram X oo
pX

X × Y pY // Y the
following statements are true.

(a) For any subobject u = (uX , uY ) ∈ SubM(X × Y ):

pX
−1uMX ∧ pY −1uMY = uMX × uMY and u ≤ uMX × uMY . (2.11)

(b) If the initial object is strict then ∅ × Y ≃ ∅.
(c) If t ∈ SubM(X) then pX

−1t = t×1Y ; in particular, if the initial object
is strict then finite product projections reflect zero.

(d) The non-trivial finite product projections are formally surjective if and
only if they are E-morphisms.

(e) Given the morphisms A
f−→ C, B

g−→ D, U
c−→ B and U

d−→ D the pull-
back of (c, d) along f × g is given by:

U ′ w //

(cf ◦u, dg◦v)
��

C

(c, d)
��

A×B
f×g
// C ×D

(2.12)

where:

A×C U
cf
��

fc
// U

c

��

A
f

// C

B ×D U
dg
��

gd // U

d
��

B g
// D

and U ′

u

��

v //

w

&&

B ×D U
gd
��

A×C U
fc

// U

with w = cf ◦u = dg◦v, are pullback squares.

Hence if (c, d), f and g are monomorphisms then:

(f × g) ∧ (c, d) = (c, d)◦
(
(c−1f) ∧ (d−1g)

)
. (2.13)

In particular,

u ∧ p1−1t = u◦
(
u1
−1t
)
, for u ∈ SubM(X × Y ), t ∈ SubM(X). (2.14)
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(f) For any J,K ∈ 2I<ℵ0, J ⊆ K, each bonding morphism pJ,K and finite
product projection pJ (see I., page 66) are formally surjective if the
non-trivial finite product projections are formally surjective.

Furthermore for any u ∈ SubM(X):

∃pJ u =
(∏

j∈J u
M
j

)
◦
((
uj
)
j∈J

M
)
≤
∏

j∈J
uj

M.

Proof. Trivial.

2.4.1 Product preneighbourhood systems

For preneighbourhood systems, let µJ =
∨
j∈J
←−
pJj µj∃pJ

j

(J ∈ 2I<ℵ0) be

the smallest preneighbourhood system on XJ making each of the prod-
uct projections pJj preneighbourhood morphisms (j ∈ J ∈ 2I<ℵ0) and µ =∨
i∈I
←−piµi∃pi is the smallest preneighbourhood system on X making each

of the product projections pi (i ∈ I) preneighbourhood morphisms. Con-

sequently each (XK , µK)
pJ,K−−−→ (XJ , µJ) for J ⊆ K,J,K ∈ 2I<ℵ0 . Further-

more:

µ =
∨

i∈I

←−piµi∃pi

=
∨

J∈2I<ℵ0

∨

j∈J

←−pjµj∃pj

=
∨

J∈2I<ℵ0

∨

j∈J

←−pJ
←−
pJj µj∃pJ

j

∃pJ

=
∨

J∈2I<ℵ0

←−pJ
(∨

j∈J
←−
pJj µj∃pJ

j

)
∃pJ (since ←−pJ ⊣ −→pJ)

=
∨

J∈2I<ℵ0

←−pJµJ∃pJ =
⋃

J∈2I<ℵ0

←−pJµJ∃pJ ,
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the last equality holds since the set
{←−pJµJ∃pJ : J ∈ 2I<ℵ0

}
is an up-directed

set of filters. This yields:

µ =
∨

i∈I

←−piµi∃pi =
∨

J∈2I<ℵ0

←−pJµJ∃pJ =
⋃

J∈2I<ℵ0

←−pJµJ∃pJ . (2.15)

N. The computations above are based on the fact that the structure on
products is an inverse limit, the preneighbourhood system is the smallest
making the product morphisms preneighbourhood morphisms, and hence is
a limit of the inverse system of the coordinate preneighbourhood systems,
compare with [3, §11].

3 Closure operation from preneighbourhood

Let A = (A,E,M) be a context.

Definition 3.1. Given a preneighbourhood system (X,µ) define:

clFµp =
∨{

x ∈ SubM(X) : σX ̸= t ≤ x AND u ∈ µ(t)⇒ u ∧ p ̸= σX
}
,

(3.1)
a µ-closure of p ∈ SubM(X), C

clFµ
= Fix[clFµ] =

{
p ∈ SubM(X) : p = clFµp

}
is

the (possibly large) set of all µ-closed admissible subobjects of X.
Further, given the preneighbourhood spaces (X,µ), (Y, ϕ) and a mor-

phism X
f−→ Y , f is µ-ϕ continuous or simply continuous if for each p ∈

SubM(X):

∃
f
ĉlFµp ≤ ĉlFϕ∃f p; (3.2)

f is said to be µ-ϕ continuous with respect to closures or simply continuous
with respect to closures if for each p ∈ SubM(X):

∃
f
clFµp ≤ clFϕ∃f p. (3.3)

Theorem 3.2. The following statements are true:

(a) For any p ∈ SubM(X), p ≤ clFµp, clFµσX = σX and the assignment

p 7→ clFµp is monotonic.
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(b) If µ is a weak neighbourhood system then for any p ∈ SubM(X),
clFµcl

F
µp = clFµp.

(c) If µ is a weak neighbourhood system then for any p ∈ SubM(X), clFµp is

the smallest µ-closed subobject containing p, i.e., clFµp =
∧{

k ∈ C
clFµ

:

p ≤ k
}
.

(d) If SubM(X) is distributive then clFµ is additive:

clFµ(p ∨ p′) = clFµp ∨ clFµp
′. (3.4)

(e) If SubM(X) is pseudocomplemented then:

p ∈ Oµ ⇔ p∗ ∈ C
clFµ
, (3.5)

p ∈ C
clFµ
⇒ p∗ ∈ Oµ (3.6)

p∗ ∈ Oµ ⇒ p∗∗ = clFµp (3.7)

In particular, every closed subobject is regular closed, i.e., for any
p ∈ C

clFµ
, p = p∗∗.

(f) If SubM(X) is pseudocomplemented then there exists an adjunction

C
clFµ

∗ //

oo
∗
⊥ Oµ

op restricting to a dual equivalence between C
clFµ

and

Oµ
∗ =

{
p ∈ Oµ : p = p∗∗

}
of regular open subobjects of X.

(g) If SubM(X) is pseudocomplemented, µ is weak neighbourhood with
open interiors then: (

clFµp
)∗

= intµp
∗. (3.8)

(h) Given A //
a //M // m // X , clFµ is hereditary:

clF
(µ
∣∣
m
)
a = m−1clFµ(m◦a). (3.9)

Furthermore, if m ∈ C
clFµ

then:

clFµ(m◦a) = m◦clF
(µ
∣∣
mu
)
a. (3.10)
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(i) Given the preneighbourhood spaces (X,µ), (Y, ϕ) and any morphism

X
f−→ Y consider the statements:

i. f is continuous with respect to closures

ii. f is continuous

iii. t ∈ C
clFϕ
⇒ f−1t ∈ C

clFµ

the implications i. +3 ii. ks +3 iii. hold good. Evidently, if clFµ is
idempotent then all three are equivalent.

(j) Every reflecting zero preneighbourhood morphism which satisfies (2.9)
is continuous with respect to closures.

Thus, in reflecting zero formal function context A all preneighbour-
hood morphisms are continuous with respect to closures.

(k) Assume: A is a reflecting zero formal function context. Given any
family

(
(Xi, µi)i

)
i∈I of preneighbourhood spaces with the earlier con-

ventions for u ∈ SubM(X):

clFµu =
∧

J∈2I<ℵ0

pJ
−1clFµJ∃pJ u. (3.11)

Proof. The statements in (a) are evident and the statement in (c) follows
from properties of idempotent closure operators [6, Proposition 2.1] while
(f) immediately follows from (e).

Clearly clFµp ≤ clFµcl
F
µp, since p ≤ clFµp from (a). If σX ̸= x ≤ clFµcl

F
µp then

u ∧ clFµp ̸= σX , for each σX ̸= t ≤ x and each u ∈ µ(t). Choose and fix a

σX ̸= t ≤ x ≤ clFµcl
F
µp and a u ∈ µ(t). Since µ is a weak neighbourhood

system on X, there exists a q ∈ µ(t) such that x′ ≤ q ⇒ u ∈ µ(x′). Since
q ∈ µ(t), q ∧ clFµp ̸= σX , u ∈ µ(q ∧ clFµp), and since σX ̸= q ∧ clFµp ≤ clFµp,
u ∧ p ̸= σX , in particular. Hence: σX ̸= t ≤ x, u ∈ µ(t) ⇒ u ∧ p ̸= σX
implying x ≤ clFµp, proving (b).

From monotonicity in (a), clFµp∨clFµp′ ≤ clFµ(p ∨ p′); if x ≤ clFµ(p ∨ p′) then
u ∧ (p ∨ p′) ̸= σX for each u ∈ µ(t), σX ̸= t ≤ x. If SubM(X) is distributive
then u ∧ (p ∨ p′) = (u ∧ p) ∨ (u ∧ p′) ̸= σX implies either u ∧ p ̸= σX or
u ∧ p′ ̸= σX , proving (d).
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Towards a proof of (e) assume SubM(X) is pseudocomplemented. Since
the statements are trivially true for p = σX ,1X , consider p otherwise in
proof of this part. If p ∈ Oµ and σX ̸= t ≤ x AND u ∈ µ(t)⇒ u∧ p∗ ̸= σX
then x ∧ p = σX ⇔ x ≤ p∗ — for if x ∧ p ̸= σX , then since p ∈ Oµ,
p ∈ µ(x ∧ p) and p ∧ p∗ = σX , contradicting the property for x. Hence
x ≤ clFµp

∗ ⇒ x ≤ p∗, proving p∗ ∈ C
clFµ

. Conversely, if p∗ ∈ C
clFµ

then:

[(
σX ̸= t ≤ x AND u ∈ µ(t)⇒ u ∧ p∗ ̸= σX

)
⇒ x ≤ p∗

]

⇔
[(
σX ̸= t ≤ x AND u ∧ p∗ = σX ⇒ u /∈ µ(t)

)
⇒ x ∧ p = σX

]
,

and each of the statements are true. Since σX ̸= p ≤ p AND p ∧ p∗ = σX
is a true statement, the truth of the last implication forces the truth of
p ∈ µ(p) from p ̸= σX ; hence p ∈ Oµ, proving (3.5). If p ∈ C

clFµ
then:

[(
σX ̸= t ≤ x AND u ∈ µ(t)⇒ u ∧ p ̸= σX

)
⇒ x ≤ p

]

⇔
[
x ≰ p⇒

(
σX ̸= t ≤ x AND u ∈ µ(t) AND u ≤ p∗

)]

and each of the statements are true. Since p∗ ≤ p ⇔ p∗ = σX , if p
∗ ̸= σX ,

then the truth of:

p∗ ≰ p⇒
(
σX ̸= p∗ ≤ p∗ AND p∗ ∈ µ(p∗) AND p∗ ≤ p∗

)

forces the truth of p∗ ∈ µ(p∗), proving p ∈ C
clFµ
⇒ p∗ = σX OR p∗ ∈ Oµ,

and hence (3.6) stands proved. Finally, since k ∧ p = σX ⇔ k ≤ p∗ ⇔
k ∧ p∗∗ = σX and p∗ ∈ Oµ ⇔ p∗∗ ∈ C

clFµ
(by (3.5)) the following list of

equivalent statements emerge:

x ≤ p∗∗ ⇔
(
σX ̸= t ≤ x AND u ∈ µ(t)⇒ u ∧ p∗∗ ̸= σX

)

⇔
(
σX ̸= t ≤ x AND u ∈ µ(t)⇒ u ∧ p ̸= σX

)

⇔ x ≤ clFµp,
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yielding a proof of (3.7). Hence for any p ∈ C
clFµ

, p∗ ∈ Oµ ⇒ p∗∗ = clFµp = p,

completing the proof of (e).
Since µ is a weak neighbourhood, clFµ is idempotent, using (b); since

clFµp ∈ C
clFµ

,
(
clFµp

)∗ ∈ Oµ using (3.6), and from p ≤ clFµp,
(
clFµp

)∗ ≤ intµp
∗.

If intµp
∗ ∧ clFµp ̸= σX then for any u ∈ µ(intµp∗ ∧ clFµp), u∧ p ̸= σX . Since

intµp
∗ is µ-open, intµp∗ ∈ µ(intµp∗ ∧ clFµp) ⇒ p∗ ∈ µ(intµp∗ ∧ clFµp) and

p∧p∗ = σX , contradicting σX ̸= intµp
∗∧clFµp ≤ clFµp. Hence intµp

∗∧clFµp =
σX ⇔ intµp

∗ ≤
(
clFµp

)∗
, proving (3.8).

Since every admissible monomorphism satisfies the conditions of the
first part of (j), clF

(µ
∣∣
m
)
a ≤ m−1

(
clFµ∃ma

)
= m−1clFµ(m◦a). If σM ̸= t ≤ x ≤

m−1clFµ(m◦a) ⇔ σX ̸= m◦t ≤ m◦x ≤ clFµ(m◦a), and hence v ∈ µ(m◦t) ⇒
v ∧ m◦a ̸= σX ; if u ∈ (µ

∣∣
m
)(t), then there exists a v ∈ µ(m◦t) such that

m−1v ≤ u, and hence u ∧ a ≥ a ∧m−1v = m−1(v ∧m◦a) ̸= σM , implying
x ≤ clF

(µ
∣∣
m
)
a, proving (3.9). Furthermore, clFµ(m◦a) ≤ clFµm, so that m ∈

C
clFµ
⇒ clFµ(m◦a) ≤ m; hence from (3.9), m◦clF

(µ
∣∣
a
)
m = m ∧ clFµ(m◦a) =

clFµ(m◦a) if m ∈ C
clFµ

, proving (h).

If f is continuous, then for any t ∈ C
clFϕ

, ĉlFµf
−1t ≤ f−1 ĉlFϕ∃f f−1t ≤

f−1 ĉlFϕt = f−1t, proving f−1t ∈ C
clFµ

. Conversely, if f−1 preserves closed

subobjects, then:

f−1 ĉlFϕ∃f p = f−1
∧{

k ∈ C
clFϕ

: ∃
f
p ≤ k

}

=
∧{

f−1k : k ∈ C
clFϕ

AND p ≤ f−1k
}

≥
∧{

t ∈ C
clFµ

: p ≤ t
}

(since k ∈ C
clFϕ
⇒ f−1k ∈ C

clFµ
)

= ĉlFµp,

proving continuity for f . Finally if f is continuous with respect to closures,

then for any t ∈ C
clFϕ
, clµf

−1t ≤ f−1clFϕ∃f f−1t ≤ f−1clFϕt ≤ f−1 ĉlFϕt =

f−1t, proving f−1 preserves closed subobjects. This proves (i).
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Towards a proof of (j), given (X,µ)
f−→ (Y, ϕ) a preneighbourhood mor-

phism with f reflecting zero and satisfying (2.9), choose and fix a x ≤ clFµp;
if σY ̸= s ≤ ∃

f
x then from (2.9) x ∧ f−1s ̸= σX ; further since f is a

preneighbourhood morphism, v ∈ ϕ(s) ⇒ f−1v ∈ µ(f−1s). Since σX ̸=
x∧ f−1s ≤ x, u∧ p ̸= σX for each u ∈ µ(x∧ f−1s) ⊇ µ(f−1s); in particular
p∧ f−1v ̸= σX ⇒ v ∧ ∃

f
p ̸= σY , since f reflects zero [6, page 169, Theorem

2.11]. Hence ∃
f
x ≤ clFϕ∃f p, proving (j).

Since for preneighbourhood systems µ ≤ ϕ, clFϕ ≤ clFµ, using (j) on (2.15)
one obtains for any u ∈ SubM(X):

clFµu ≤
∧

J∈2I<ℵ0

clF←−pJµJ∃pJ
u ≤

∧

J∈2I<ℵ0

pJ
−1clFµJ∃pJ u,

the last one following from (j) and the preneighbourhood morphisms (J ∈
2I<ℵ0) (X,µ)

pJ−→ (Xj , µJ). Choose and fix x ≤ ∧
J∈2I<ℵ0

pJ
−1clFµJ∃pJ u and a

v ∈ µ(t). Then each of the preceding statement in the list below is equivalent
to the next:

(i) for each J ∈ 2I<ℵ0 , ∃pJ x ≤ clFµJ∃pJ u
(ii) for each J ∈ 2I<ℵ0 , σXJ

̸= t ≤ ∃pJ x, v ∈ µJ(t), the condition v∧∃pJ u ̸=
σXJ

holds good

(iii) for each J ∈ 2I<ℵ0 , σXJ
̸= t ≤ ∃pJ x, vj ∈ µj(t

M
j ) (j ∈ J), the condition

×j∈Jvj ∧ ∃pJ u ̸= σX holds good

(iv) for each J ∈ 2I<ℵ0 , σXJ
̸= t ≤ ∃pJ x, vj ∈ µj(t

M
j ) (j ∈ J), the condition

pJ
−1(×j∈Jvj) ∧ u ̸= σX holds good,

where the last one follows from each morphism being formal functions. The
proof of (k) now follows on an application of (2.15) to the last statement.

O. The preservation of closed subobjects by preimage in part (i).iii. of
Theorem is characteristic of continuity; in the additional special case when
the closure operation is idempotent, this is equivalent to continuity with
respect to closures, [6, compare with Proposition 3.12 & Remark 3.14].
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P. The assumption of weak neighbourhood system inducing idempotence
in (b) can also be seen for clµ [6, Definition 3.1]: if x ≤ clµclµp then x ≯ clµp
and u ∈ µ(x) ⇒ u ∧ clµp ̸= σX . Since µ is a weak neighbourhood, one can
choose a u ∈ µ(x) such that y ≤ u⇒ u ∈ µ(y). Choose and fix a σX ̸= y ≯ p
and y ≤ u ∧ clµp; hence v ∈ µ(y) ⇒ v ∧ p ̸= σX . Since u ∧ v ∈ µ(y), it
follows that u∧v∧p ̸= σX and hence u∧p ≥ u∧v∧p ̸= σX . Consequently,
x ≤ clµp, proving idempotence.

Q. In case when SubM(X) is pseudocomplemented, x ≤ clFµp ⇔
(
σX ̸=

t ≤ x⇒ p∗ /∈ µ(t)
)
, [6, compare (3.5) & (3.6) with Theorem 3.5(c)].

R. The term additive for a closure operator is adopted from [4, condition
(AD) in §2.6]; (d) shows it holds whenever subobject lattice is distributive,
[6, compare with Theorem 3.5(d), Proposition 3.12 & Remark 3.13].

S. The term hereditary for a closure operator is adopted from [4, con-
dition (HE) in §2.5]; the hereditary property for clFµ is easily established
unlike the case for clµ [6, see Theorem 3.18 and ensuing discussion in §3.3].
Incidentally, this property appears as an axiom on the set of closed mor-
phisms, [3, see condition (F8), §11.1].

T. The statement in (k) essentially states that the closure operation in
product preneighbourhood spaces is completely determined by the closures
in finite products. Incidentally this property appears as an axiom for the
set of closed morphisms, [3, see condition (F9), §11.2].

U. Since Definition 3.1 appeared earlier and its properties investigated
[10, see Proposition 2] some comparison between the two discussions is im-
perative:

(i). A blanket assumption of E-morphisms satisfying Frobenius reci-
procity law is tacitly present [10, see page 2357, after the proof of Lemma
1]; incidentally, this assumption is also present in [11]. In the present paper
(E,M) is merely a proper factorisation structure and no further assumptions
are made. Hence (Loc, Epi(Loc), RegMon(Loc)) is an example of the theory
developed herein, since in the category of locales the Frobenius reciprocity
law holds for complemented sublocales only [23, see Proposition 1.4]. In
this regard, the context of locales is known to possess a functorial neigh-
bourhood system for a specific choice of neighbourhood system, namely the
T -neighbourhood system SubRegMon(Loc)(X)

τX−−→ Fil [X] on each locale X
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— see §3.1 below and [5, see Example 3.37, Theorem 3.38 and Definition
4.3].

(ii). The paper [10] investigates closure operators on a category con-
sequent to a neighbourhood operator. On the other hand, the approach
in this paper is transversal: each object is assigned with a preneighbour-
hood system and thereby the preneighbourhood system provides a method
to measure closeness of admissible subobjects. Thus preservation of this
measure of closeness by morphisms is an extra property that a morphism
may or may not have — statements (i) and (j) of Theorem 3.2 address extra
conditions, either on the category or on morphisms to ensure possession of
this property.

(iii). The paper [10] does not mention about the additivity, heredity and
idempotence of the closure operations; here (b), (d), (h) of Theorem 3.2
discusses them. However, discussion on these properties do appear in [11],
but in the restricted set up as already observed.

(iv). The paper discusses compatibility of closure and interior operators
[10, see Proposition 3, page 2360]; statements (e)-(g) extend the observations
of [10] to the pseudocomplemented case.

3.1 Examples If SubM(X) is join generated by G ⊆ SubM(X), i.e., G
is a set of non-zero admissible subobjects such that p =

∨{
a ∈ G : a ≤ p

}
,

then:
clFµp =

∨{
a ∈ G : a ≤ clFµp

}
.

Thus, for instance in (Loc,Epi,RegMono) with each object given the

T -neighbourhood system SubRegMono(X)op
τX−−→ Fil [X] [6, Example 2.20]:

τX(S) =
{
T ∈ SubRegMono(X) : (∃a ∈ X)(S ⊆ o(a) ⊆ T )

}
,

where o(a) =
{
(a =⇒ x) : x ∈ X

}
is the open sublocale of X for a [14,

§III.6.1], the computation for closure is:

x ∈ clFτXS ⇔ [x] ⊆ clFτXS

⇔
((

[x′] ⊆ [x] AND T ∈ τX([x′])
)
⇒ T ∩ S ̸= {1}

)

⇔
((

[x′] ⊆ [x] AND [x′] ⊆ o(a)
)
⇒ o(a) ∩ S ̸= {1}

)



Another closure operator 81

(since open sublocales generate T -neighbourhoods)

⇔
(
[x] ⊆ o(a)⇒ o(a) ∩ S ̸= {1}

)

⇔
(
o(a) ∩ S = {1} ⇒ [x] ⊈ o(a)

)

⇔
(
S ⊆ ↑ a⇒ [x] ⊈ o(a)

)

((ii) below)

⇔
(
a ≤

∧
S ⇒ [x] ⊈ o(a)

)

⇔ x ≥
∧
S

((iii)&(iv) below),

where:

(i) [x] =
{
(t =⇒ x) : t ∈ X

}
is the smallest sublocale of X containing x.

(ii) For each a ∈ X, ↑ a is the closed sublocale for a; ↑ a and o(a) are
complementary sublocales, [14, Proposition III.6.1.3].

(iii) Assume a ≤ ∧
S ≤ x ̸= 1; if for s ∈ S, (s =⇒ x) ∈ o(a) then

(s =⇒ x) = (a =⇒ (s =⇒ x)) = (a ∧ s =⇒ x) = (a =⇒ x) = 1
implying s ≤ x. Hence x = (1 =⇒ x) /∈ o(a) proving [x] ⊈ o(a)

(iv) Since the assignment a 7→ o(a) is order preserving [14, Corollary
III.6.1.4], (a ≤ ∧S ⇒ [x] ⊈ o(a)) ⇔ [x] ⊈ o(

∧
S); hence the implica-

tion is equivalent to proving the statement [x] ⊈ o(
∧
S) ⇒ x ≥ ∧S,

which in turn is equivalent to proving the truth of the statement
[x] ⊆ o(

∧
S) OR x ≥ ∧S, and is immediate.

Hence: clFτXS = ↑ ∧S = clµS, [6, page 194] and agrees with the closure
for locales, [14, §III.8.1].

Furthermore, if G is a set of atoms then the formula becomes simpler:

clFµp =
∨{

a ∈ atom(X) : u ∈ µ(a)⇒ u ∧ p ̸= σX
}
; (3.12)

in particular, in all such cases clFµp = clµp [6, Remark 3.4].

4 Closed morphisms

This section deals with morphisms which preserve closure operation of Def-
inition 3.1.
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Definition 4.1. Given preneighbourhood spaces (X,µ) and (Y, ϕ), a mor-

phism X
f−→ Y is a µ-ϕ closed morphism, or simply closed morphism when

the preneighbourhood systems are evident, if ∃
f
p ∈ C

clFϕ
whenever p ∈ clFµ.

The (possibly large) set of closed morphisms is AF
cl .

Theorem 4.2. The following statements are true for preneighbourhood

spaces (X,µ), (Y, ϕ), (Z,ψ) and morphisms X
f−→ Y

g−→ Z.

(a) The morphism f is closed if and only if for any p ∈ SubM(X):

ĉlFϕ∃f p ≤ ∃f ĉlFµp. (4.1)

(b) If f is continuous then f is closed if and only if ĉlFϕ∃f p = ∃
f
ĉlFµp

for each p ∈ SubM(X).

In particular, m ∈ C
clFµ

if and only if m is a closed morphism.

(c) AF
cl contains all isomorphisms and is closed under compositions.

(d) If f ∈ AF
cl is continuous then for each m ∈ C

clFϕ
the corestriction

fm ∈ AF
cl and continuous.

(e) If g◦f ∈ AF
cl and f is formally surjective and continuous then g ∈ AF

cl.

Proof. The statement of the first part in (b) follows immediately from (a)
and definition of continuity, while the second part follows from (3.10); evi-
dently, every isomorphism is a closed morphism and closed morphisms are
closed under composition follows from (a), proving (c).

If f is a closed morphism then since ĉlFµp is a closed subobject con-

taining p, ∃
f
ĉlFµp is a closed subobject containing ∃

f
p; hence (4.1) follows.

Conversely, if p is a closed subobject then (4.1) forces ĉlFϕ∃f p ≤ ∃f p and

hence ∃
f
p is closed from extensionality of ĉlFµ . This proves (a).

For instance, for an m ∈ SubM(X), to say m is a closed morphism would mean m is
(µ

∣∣
m
)-µ closed morphism, where µ is a preneighbourhood system on X.
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If P //
p
// f−1M

fm
//

��

f−1m
��

M
��

m
��

X
f

// Y

is a pullback and m ∈ C
clFµ

then f−1m ∈

C
clFµ

(continuity of f , Theorem 3.2(i)) and:

m◦∃
fm

ĉlF
(µ
∣∣
f−1m

)
p = ∃

f

(
(f−1m)◦ ĉlF

(µ
∣∣
f−1m

)
p

)

= ∃
f
ĉlFµ((f

−1m)◦p) (∵, f−1m ∈ C
clFµ

and (3.10))

= ĉlFϕ∃f ((f−1m)◦p) (∵, f is closed and continuous)

= ĉlFϕ(m◦∃fmp)

= m◦ ĉlFϕ∃fmp (∵,m ∈ C
clFϕ

),

implying ∃
fm

ĉlF
(µ
∣∣
f−1m

)
p = ĉlF

(ϕ
∣∣
m
)
∃

fm
p; hence the corestriction fm is

closed and continuous, proving (d).
If g◦f is closed and f is formally surjective and continuous then for any

y ∈ SubM(Y ):

ĉlFψ∃gy = ĉlFψ∃g∃f f−1y (∵, f is formally surjective)

≤ ∃g∃f ĉlFµf
−1y (∵, g◦f is closed)

≤ ∃g ĉlFϕ∃f f−1y (∵, f is continuous)

= ∃g ĉlFϕy,

proving (e).

V. Definition 4.1 appears as an axiom on the set of closed morphisms
in [3, condition (F7), §11.1].

W. The (possibly large) set

AF
clemb =

⋃{
C
clFµ

: µ is a preneighbourhood system
}
= AF

cl ∩M
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is the set of all closed embeddings. Evidently AF
clemb is closed under inter-

sections, even large ones. The fact that closed embeddings are closed under
intersections (even large ones) appears as an axiom on the set of closed
morphisms in [3, condition (F6), §11.1].

5 Dense, proper, separated and perfect morphisms

Let A = (A,E,M) be a context.

Recall: given the preneighbourhood morphism (X,µ)
f−→ (X,µ), con-

sider the pullback square (kf , µ×ϕ µ)
f2
//

f1
��

(X,µ)

f

��

(X,µ)
f

// (Y, ϕ)

,

the kernel pair

(kf , µ×ϕ ϕ)
f1

//

f2
// (X,µ)

and their equaliser

(X,µ) //
df
// (kf , µ×ϕ µ)

f1
//

f2
// (X,µ)

note: ((µ×ϕ µ)
∣∣
df
) = µ, [6, §7].

Definition 5.1. Given the preneighbourhood spaces (X,µ), (Y, ϕ) and a

morphism X
f−→ Y :

(a) f is µ-ϕ dense, or simply dense, if f = m◦h with m ∈ C
clFϕ

implies m

is an isomorphism; the (possibly large) set of dense morphisms is AF
d .

(b) If (X,µ)
f−→ (Y, ϕ) then f is a proper morphism if for every (T, τ)

h−→ (Y, ϕ)

and the pullback (X ×Y T, µ×ϕ τ)
fh //

hf
��

(T, τ)

h
��

(X,µ)
f

// (Y, ϕ)

of h along f , the
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preneighbourhood morphism fh is a (µ×ϕ τ)-τ closed morphism; the
(possibly large) set of proper morphisms AF

pr.

(c) If (X,µ)
f−→ (Y, ϕ) then f is a separated morphism if df is a proper

morphism; the (possibly large) set of all separated morphisms is AF
sep.

(d) If (X,µ)
f−→ (Y, ϕ) then f is a perfect morphism if it is proper and

separated; the (possibly large) set of all perfect morphisms is AF
per.

A preneighbourhood space (X,µ) is:

(e) compact if (X,µ)
tX−−→ (1,∇1) is proper; the full subcategory of com-

pact preneighbourhood spaces is K( AF
cl).

(f) Hausdorff if (X,µ)
tX−−→ (1,∇1) is separated; the full subcategory of

Hausdorff preneighbourhood spaces is Haus( AF
cl).

(g) compact Hausdorff if (X,µ)
tX−−→ (1,∇1) is perfect; the full subcate-

gory of compact Hausdorff preneighbourhood spaces is KHaus( AF
cl).

5.1 Properties of dense morphisms The properties of closed mor-
phisms and their allies put forward in Definition 5.1 are exhibited in Table 1.
The proofs precisely depend on the statements in Theorem 4.2((c)-(e)) and
the hereditary property established in (3.9), and hence is exactly obtained
from proofs of similar statements in [6] or as detailed in [3].

Some terms need to be explained:
Given (possibly large) sets a, b of morphisms of A, the phrases b is

composition closed or b is (pullback) stable are well known; the set b shall
be said to be left a cancellative (respectively, right a cancellative) if g◦f ∈ b
and g ∈ a (respectively, f ∈ a) implies f ∈ b (respectively, g ∈ b). The

set b is stably in E if in the pullback · fg
//

��

·
g

��·
f
// ·

where f ∈ b and g is any

morphism, fg ∈ E. If b is a set of preneighbourhood morphisms then it
is said to be stably continuous if for any µ-ϕ continuous preneighbourhood

morphism (X,µ)
f−→ (Y, ϕ) in b, and for any preneighbourhood morphism
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(Z,ψ)
g−→ (Y, ϕ), the pullback (X ×Y Z, µ×ϕ ψ)

fg−→ (Z,ψ) of f along g is
(µ×ϕ ψ)-ψ continuous and is also in b.

The following definition appears in §2 [9]:

Definition 5.2. A pullback stable (possibly large) set a of morphisms of A
is called a topology if it contains isomorphisms and is closed under compo-
sitions.

If a is a topology and right a cancellative, a topology b is called an
a-topology if it is right a cancellative.

Drawing inspiration from [3], it is observed in [9, §2] that in case when
a finitely complete category A with a proper (E,M)-factorisation system
has a set Acl of closed morphisms described by axioms (see Axioms (F3)-
(F5) [3]), then the set of proper morphisms (i.e., morphisms stably in Acl)
is an s-topology, where s is the set of morphisms stably in E.

In terms of Definition, Table 1 shows the set Ast(E,c,cl) is a right Ast(E,c,cl)

cancellative topology and each of the sets Apr, Asep, Aper are Ast(E,c,cl)-
topologies. The difference between the two approaches arises from the fact
that in the present case Acl is right Afsc (⊂ E) cancellative, while the ax-
ioms of [3] assert Acl is right E cancellative. In case when A is RZC and E is
pullback stable the present case reduces to the situation considered in [3].

Regarding Table 1: the cells highlighted in this colour are the properties
where the continuity condition is required; the others do not require con-
tinuity of the involved preneighbourhood morphism, and hence are purely
consequences of the preneighbourhood morphism property.

5.2 Properties of compact preneighbourhood spaces This sec-
tion lists the properties of compact preneighbourhood spaces; proofs are
similar as in [3] or [6].

Theorem 5.3 (Compact preneighbourhood spaces). A preneighbourhood
space (X,µ) is compact if and only if for every preneighbourhood space

(Y, ϕ) the second product projection (X × Y, µ× ϕ) pY−−→ (Y, ϕ) is a closed
morphism. Furthermore:

(a) If (Y, ϕ) is a compact preneighbourhood space and (X,µ)
f−→ (Y, ϕ) is

a proper morphism then (X,µ) is a compact preneighbourhood space.
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(b) If (X,µ) is a compact preneighbourhood space and (X,µ)
f−→ (Y, ϕ) is

a preneighbourhood morphism with f continuously stably in E then
(Y, ϕ) is a compact preneighbourhood space.

(c) If every preneighbourhood morphism is continuous, (X,µ) is a compact

preneighbourhood space and
(
M, (µ

∣∣
m
)
)
// m // (X,µ) with m ∈ C

clFµ

then
(
M, (µ

∣∣
m
)
)
is a compact preneighbourhood space.

(d) The category K( AF
cl) is finitely productive.

5.3 Properties of Hausdorff preneighbourhood spaces This
section lists equivalents of Hausdorff preneighbourhood spaces and their
properties; proofs are similar as in [3] or [6].

Note the presence of proper -ness condition in Theorem, in contrast to
just closed -ness in [3].

Theorem 5.4 (Hausdorff preneighbourhood spaces). The following are
equivalent for any preneighbourhood space (X,µ):

(a) (X,µ) is a Hausdorff preneighbourhood space.

(b) The diagonal morphism (X,µ) //
dX // (X ×X,µ× µ) is a proper mor-

phism.

(c) Every preneighbourhood morphism with (X,µ) as domain is separated.

(d) There exists a separated preneighbourhood morphism from (X,µ) to a
Hausdorff preneighbourhood space.

(e) If (X,µ)
f−→ (Y, ϕ) is a proper preneighbourhood morphism with f con-

tinuously stably in E then (Y, ϕ) is a Hausdorff preneighbourhood space.

(f) The product projection (X × Y, µ× ϕ) pY−−→ (Y, ϕ) is a separated preneigh-
bourhood morphism.

(g) For every preneighbourhood space (Y, ϕ), (X × Y, µ× ϕ) is a Hausdorff
preneighbourhood space.

(h) If
(
E, (ψ

∣∣
e
)
)
// e // (Z,ψ)

f
//

g
// (X,µ) is the equaliser diagram then

e is a proper morphism.
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Corollary 5.5. The category Haus( AF
cl) of Hausdorff preneighbourhood spaces

is finitely complete. Furthermore, given the preneighbourhood morphisms

(M,←−mµ∃m) m // (X,µ)
f
// (Y, ϕ) the following statements are true:

(a) if m is a monomorphism, f is continuously stably in E and (X,µ) a
Hausdorff preneighbourhood space, then both (M,←−mµ∃m) and (Y, ϕ)
are Hausdorff spaces.

(b) if (X,µ) is a compact preneighbourhood space and (Y, ϕ) is a Hausdorff
preneighbourhood space then f is proper.

(c) if (Y, ϕ) is a compact and Hausdorff preneighbourhood space then f is
proper if and only if (X,µ) is compact.

(d) if (X,µ) is a Hausdorff preneighbourhood space, m ∈ M and
(
M, (µ

∣∣
m
)
)

is a compact preneighbourhood space then m ∈ C
clFµ

.
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contains stability
closed under com-
position

cancellation prop-
erties

AF
cl Iso(A)

m ∈ AF
clemb, f ∈

Aclc ⇒ fm ∈ AF
cl

m ∈ AF
clemb, f ∈ Ac

⇒ f−1m ∈ AF
clemb

composition
closed

right Afsc cancella-
tive

AF
d E

g ∈ Adc, f ∈ AF
d

⇒ g◦f ∈ AF
d

right A1 cancella-
tive

AF
pr

AF
clemb,

in
RZC

pullback stable
composition
closed

right Ast(E,c) can-
cellative

left Mono(A) can-
cellative

AF
sep Mono(A) pullback stable

composition
closed

right Ast(E,c,cl) can-
cellative
left A1 cancellative

AF
per

AF
clemb,

in
RZC

pullback stable
composition
closed

right Ast(E,c,cl) can-
cellative

left AF
per cancella-

tive
1 A1 is the (possibly large) set of all morphisms
2 AF

cl is the (possibly large) set of all closed morphisms
3 AF

clemb is the (possibly large) set of all closed embeddings
4 AF

d is the (possibly large) set of all dense preneighbourhood morphisms
5 AF

pr is the (possibly large) set of all proper preneighbourhood morphisms
6 AF

sep is the (possibly large) set of all separated preneighbourhood morphisms
7 AF

per is the (possibly large) set of all perfect preneighbourhood morphisms
8 Ac is the (possibly large) set of all continuous preneighbourhood morphisms
9 Adc is the (possibly large) set of all dense and continuous preneighbourhood morphisms
10 Afsc is the (possibly large) set of all formally surjective and continuous preneighbourhood morphisms
11 Aclc is the (possibly large) set of all closed and continuous preneighbourhood morphisms
11 Ast(E,c) is the (possibly large) set of all preneighbourhood morphisms which are stably continuous and
stably in E

12 Ast(E,c,cl) is the (possibly large) set of all preneighbourhood morphisms which are stably continuous,
stably in E and stably closed

13 RZC abbreviates reflecting zero context
14 the cells in this colour indicate the presence of continuity in the assertion
15 additionally, every RZC with continuous preneighbourhood morphisms has

(
AF
d ,A

F
clemb

)
factorisation

structure

Table 1: Comparative list of properties
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[10] Holgate, D. and Šlapal, J., Categorical neighborhood operators, Topology Appl.
158(17) (2011), 2356-2365.
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in Mathematics, Birkhäuser/Springer Basel AG, 2012.

[15] Razafindrakoto, A., Neighbourhood operators on categories, Ph.D. thesis, University
of Stellenbosch (2012).



Another closure operator 91

[16] Razafindrakoto, A., On coarse and fine neighbourhood operators, Topology Appl.
159(13) (2012), 3067-3079.

[17] Razafindrakoto, A., Neighbourhood operators: additivity, idempotency and conver-
gence, Appl. Categ. Structures 27(6) (2019), 703-721.

[18] Razafindrakoto, A. and Holgate, D., Interior and neighbourhood, Topology Appl.
168 (2014), 144-152.

[19] Razafindrakoto, A. and Holgate, D., A lax approach to neighbourhood operators,
Appl. Categ. Structures 25(3) (2017), 431-445.
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