. C
Categories and
General Algebraic Structures <+>

witn Applications A
Special issue dedicated to Professor Themba Dube WWW.CGASAIr
In press.

Generalised geometric logic

Purbita Jana

Abstract. This paper introduces a notion of generalised geometric logic.
Connections of generalised geometric logic with the L-topological system and
L-topological space are established.

1 Introduction

This work is motivated by S. Vickers’s work on topology via logic [21]. To il-
lustrate the relationship between topology and geometric logic, the concept
of a topological system played a crucial role. A topological system is a triple
(X, =, A), consisting of a non-empty set X, a frame A and a binary relation
= (known as satisfaction relation) between X and A satisfying certain con-
ditions. The notion of a topological system was introduced by S. Vickers
in 1989. A topological system is an interesting mathematical structure that
unifies the concepts of topology, algebra, and logic in a single framework. In
our earlier work [1], we introduced a notion of fuzzy geometric logic to an-
swer the question viz. “From which logic can fuzzy topology be studied?”.
For this purpose first of all we introduced the notion of fuzzy topological
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system [9] which is a triple (X, =, A) consisting of a non-empty set X, a
frame A and a fuzzy relation = (i.e. [0, 1] valued relation) from X to A. J.
Denniston et al. introduced the notion of lattice valued topological system
(L-topological system) by considering frame valued relation between X and
A. In [4], the categorical relationship of Lattice valued topological space
(L-topological space) with the frame was established using the categorical
relationships of them with the L-topological system. Moreover categorical
equivalence between spatial L-topological system with L-topological space
was shown. In this paper, the main focus is to answer the question viz.
“From which logic can L-topology be studied?”. From [1], it is clear that
the satisfaction relation = of the fuzzy topological system reflects the notion
of satisfiability (sat) of a geometric formula by a sequence over the domain
of interpretation of the corresponding logic. Hence we considered the grade
of satisfiability from [0, 1]. As for the L-topological system the satisfaction
relation is an L (frame)-valued relation, the natural tendency is to consider
the grade of satisfiability from L. Keeping this in mind, generalised geo-
metric logic (c.f. Section 3) is proposed to provide the answer to the raised
question successfully.

In [6], Michael Healy proposed a model theoretic study of a slightly
primitive machine learning algorithm known as the LAPART architecture
which consists of conjoining two ART systems. Healy helped establish the
association of a topological system and the connections formed between
the two ART systems in the LAPART architecture. In [3], we explained
the connection of LAPART with fuzzy geometric logic (c.f. [1]) and fuzzy
topological system. Consequently, it is quite expected to use the current
study in the area of artificial intelligence.

The paper is organised as follows. Section 2, includes some of the pre-
liminary definitions and results which are used in the sequel. Generalised
geometric logic is proposed and studied in detail in Section 3. Section 4,
explains the connection of the proposed logic with the L-topological system
whereas Section 5, contains the study of the connection of the proposed
logic with L-topological space. Section 6, concludes the work presented in
this article and provides some of the future directions.
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2 Preliminaries

In this section, we include a brief outline of relevant notions to develop our
proposed mathematical structures and results. In [1, 2, 4, 7, 10, 12, 17, 21,
22] one may find the details of the notions stated here.

Definition 2.1 (Frame). A frame is a complete lattice such that,

a:/\\/Y:\/{a:/\y\er}.

i.e., the binary meet distributes over the arbitrary join.

Definition 2.2 (L—topologica} space). Let X be a set, and 7 be a collection
of L-fuzzy subsets of X i.e., A: X — L, where L is a frame, s.t.

1. 0, X € 7, where O(z) = 0g, for all z € X and X(x) = 1z, for all
r € X,

2. A; € 7 for i € I implies |J A; € 7, where |J A;(z) = sup(A;(z));
iel i€l i€l

3. Ay, Ay € 7 implies A} N Ay € 7, where (A; N Ay)(z) = A1(z) A Ay().

Then (X, 1) is called an L-topological space. 7 is called an L-topology
over X.

Elements of 7 are called L-open sets of L-topological space (X, 7).

Definition 2.3. [21] A topological system is a triple, (X, =, 4), con-
sisting of a non-empty set X, a frame A and a binary relation =C X x A
from X to A such that:

1. for any finite subset S of A, x = A S if and only if z | a for all

a €S,
2. for any subset S of A, z |=\/ S if and only if z = a for some a € S.
Definition 2.4 (L-topological system). An L-topological system is a

triple (X, |, A), where X is a non-empty set, A is a frame and | is an
L-valued relation from X to A (F: X x A — L) such that

1. if S is a finite subset of A, then = (z, A S) = inf{E (x,s) | s € S};
2. if S is any subset of A, then = (z,\/ S) = sup{l= (x,s) | s € S}.
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Note that if L = [0, 1] then the triple is known as a fuzzy topological
system. Similarly considering L = {0,1}, we arrive at the notion of a
topological system.

Definition 2.5 (Spatial). An L-topological system (X, |=, A) is said to be
spatial if and only if (for any z € X, = (z,a) = = (x,b)) implies (a = b),
for any a,b € A.

Theorem 2.6. [4] The category of spatial L-topological systems, for a fized
L, is equivalent to the category of L-topological spaces.

3 Generalised geometric logic

In this section, we will introduce the notion of generalised geometric logic
which may be considered as a generalisation of fuzzy geometric logic and
consequently of so-called geometric logic. Detailed studies on fuzzy logic,
geometric logic and fuzzy geometric logic may be found in [1, 5, 13-16, 18-
21].

The alphabet of the language £ of generalised geometric logic com-
prises of the connectives A, \/, the existential quantifier 3, parentheses )
and ( as well as:

countably many individual constants ¢y, ca, .. .;

denumerably many individual variables 1, za,...;

e propositional constants T, 1;

for each ¢ > 0, countably many i-place predicate symbols p;-’s, includ-
ing at least the 2-place symbol “=" for identity;

e for each ¢ > 0, countably many i-place function symbols f;’s.
Definition 3.1 (Term). Terms are recursively defined in the usual way.

e every constant symbol ¢; is a term;
e every variable x; is a term;

e if f; is an i-place function symbol, and t1,ts,...,¢; are terms then
f;-tltg . tl' is a term;

e nothing else is a term.
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Definition 3.2 (Geometric formula). Geometric formulae are recur-
sively defined as follows:
e T, | are geometric formulae;

e if p; is an i-place predicate symbol, and 1,%s,...,¢; are terms then
pétltg ...t; is a geometric formula;

o if t;, t; are terms then (¢; = t;) is a geometric formula;
e if ¢ and ¢ are geometric formulae then (¢ A1) is a geometric formula;

o if ¢;’s (i € I) are geometric formulae then \/{¢;}ics is a geometric
formula, when I = {1, 2} then the above formula is written as ¢ V ¢g;

e if ¢ is a geometric formula and z; is a variable then Jz;¢ is a geometric
formula;

e nothing else is a geometric formula.

Definition 3.3 (Interpretation). An interpretation I consists of

a set D, called the domain of interpretation;

an element I(c;) € D for each constant c;;

a function I(f]’) : D' — D for each function symbol f]’,

an L-fuzzy relation I (p;) : D' — L, where L is a frame, for each
predicate symbol pé i.e. it is an L-fuzzy subset of D'.

Definition 3.4 (Graded Satisfiability). Let s = (s1,s2,...) be a sequence

over D where s1,89,... are all elements of D. Let d be an element of
D. Then s(d/z;) is the result of replacing i’th coordinate of s by d i.e.,
s(d/z;) = (s1,82,...,8i-1,d,Si+1,...). Let t be a term. Then s assigns an

element s(t) of D as follows:

e if t is the constant symbol ¢; then s(¢;) = I(¢;);

e if t is the variable z; then s(x;) = s;;

e if ¢ is the function symbol f;tltg ...t; then
s(fitita .. i) = I(f})(s(t1),s(t2), ..., s(t)).

Now we define grade of satisfiability of ¢ by s written as gr(s sat ¢), where
¢ is a geometric formula, as follows:
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o gr(s sat pé-tltg ct) = I(pé)(s(tl), s(ta),...,s(ti));
e gr(ssat T)=1p;
e gr(s sat L) =0p;

o gr(s satt;=t;) = {OL otherwise; ’

gr(s sat g1 A ¢2) = gr(s sat ¢1) A gr(s sat ¢2);
o gr(s sat g1V ¢2) = gr(s sat ¢1) V gr(s sat ¢2);
o gr(s sat \/{¢itier) = sup{gr(s sat ¢;) | i € I};

gr(s sat 3z;¢) = sup{gr(s(d/z;) sat ¢) | d € D}.

Throughout this article, A and V in L will stand for the meet and join
of the frame L respectively. The expression ¢ F 1, where ¢ and ) are
geometric formulae, is called a sequent. We now define the satisfiability of
a sequent.

Definition 3.5. 1. s sat ¢ - 9 iff gr(s sat ¢) < gr(s sat ).
2. ¢ is valid in [ iff s sat ¢ F v for all s in the domain of I.
3. ¢ 1 is universally valid iff it is valid in all interpretations.

Theorem 3.6 (Substitution Theorem). Let D be the domain of interpre-
tation I:

1. Lett and t' be terms. For every sequence s over D,
s(t[t'/zr]) = s(s(t')/xx) (D).

2. Let ¢ be a geometric formula and t be a term. For every sequence s
over D, gr(s sat ¢[t/xi]) = gr(s(s(t)/xy) sat ¢).

Proof. By induction on t and ¢ respectively. O

3.1 Rules of inference The rules of inference for generalised geomet-
ric logic are as follows.

1. ¢ F o,
, OFY  wky
P x ’
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3. () ok T, (i) pAvke, (i) pAvFy, (v) 2E¥ __¢0x

PEYAX
. . O all p € S
LG orVSees), - Lhl Moes
5. 9AVSEVIOAY | e S),
6. Tk (x=u),
To(@zn) = W un)) A E By, yn) [ (@1, )],
8. (i)m, (1l)m,yis not free in v,

9. oA Ty (Jy)(p A1), y is not free in ¢.

Note that the rule of inference (9) is known as Frobenius axiom [11] and the
converse of the Frobenius axiom is derivable in geometric logic [11].

Theorem 3.7. The rules of inference for generalised geometric logic are
universally valid.

Proof. To show the universal validity of the rules of inference is kind of a
routine check but for the sake of clarity we would like to provide the proof
in detail up to a certain extent.

1. gr(s sat ¢) = gr(s sat ¢), for any s. Hence ¢ F ¢ is valid.

2. Given ¢ F 9 and ¢ F x are valid. So gr(s sat ¢) < gr(s sat ) and
gr(ssat ) < gr(ssat x) for any s. Therefore gr(ssat ¢) < gr(ssat x)
for any s. Hence ¢ - x is valid when ¢ F v and v I x are valid.

3. (i) gr(ssat ¢) <1 = gr(ssat T) for any s. Hence ¢ - T is valid.

(ii) gr(s sat ¢ A1) = gr(s sat ¢) A gr(s sat o) < gr(s sat ¢) for any
s. Hence ¢ A = ¢ is valid.

(iii) gr(s sat ¢ A1) = gr(s sat ¢) A gr(s sat ¢) < gr(s sat ¢) for any
s. Hence ¢ A ¢ F 4 is valid.

(iv) Given ¢ 9 and ¢ F x are valid. So gr(s sat ¢) < gr(s sat )
and gr(s sat ¢) < gr(s sat x) for any s. So gr(s sat ¢) < gr(ssat ) A
gr(s sat x) = gr(s sat ¥ A x) for any s. Hence ¢ - 1 A x is valid when
¢ F 1 and ¢ | x are valid.

4. (i) gr(s sat ¢) < gr(s sat \/ S(¢ € S)) for any s. Hence ¢ F\/ S(¢
)

S
S) is valid. (ii) Given ¢ = 9 is valid for all ¢ € S. So gr(s sat ¢) <
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gr(s sat ¢) for all ¢ € S and any s. So, supges{gr(s sat ¢)} <
gr(s sat ¢) for any s. Hence gr(s sat \/S) < gr(s sat @) for any s.
So, \/ S F % is valid when ¢ F 9 is valid for all ¢ € S.

5. We have, gr(s sat pA\/ S) = gr(s sat ¢)Agr(ssat \/S) = gr(ssat ¢)A
supyes{gr(ssat )} = supyes{gr(ssat ¢)Agr(ssat )} = sup{gr(ssat pA
¥) | v €S}, for any s. Hence ¢ A\/ S F sup{d AN | ¢ € S} is valid.

6. gr(ssat T) =1 = gr(s sat © = z), for any s. Hence T 2 =z is
valid.

7. gr(ssat ((z1,...,2n) = WY1, Yn)) A @)
=gr(ssat ((z1,...,2n) = (Y1,---,Yn))) A gr(s sat ¢).
Now gr(s sat ¢[(y1,.-.,yn)/(z1,... ,xn)])
:gr(S(s((yl,...,yn))/(:r1,..., )) sat
When s((y1,...,yn)) = s((z1,...,2p))
then gr(s(s((y1,...,yn))/(x1,...,2n)) sat ¢) = gr(s sat ¢).
Hence, gr(s sat ((x1,...,2n) = (Y1,---,Yn)) N @)
< gr(ssat ¢[(y1,...,yn)/(x1,...,2p)]), for any s. So,
(@1, yxn) = (Wi, yn)) NG E D[y, -y yn) /(21 - - ., 2p)] 1s valid.
8. (i) ¢ F Y[z | y] is valid so, gr(s sat ¢) < gr(s sat 1/1[37 | y]), for
any s. Using Theorem 3.6(2) gr(s sat ¢) < gr(s(s(z)/y) sat ), for
any s, which implies that gr(s sat ¢) < sup{gr(s(d/y) sat ¥) | d €
D}, for any s. So, gr(s sat ¢) < gr(s sat Jyu») and hence ¢ - Jy) is
valid.
(ii) Jyo F @ is valid if and only if gr(s sat Jy¢) < gr(s sat ), for
any s. Hence sup{gr(s(d/y) sat ¢) | d € D} < gr(s sat v), for any
s. So, gr(s(s(z)/y) sat ¢) < gr(s sat ), for any s, using Theorem
3.6(2). Therefore gr(s sat ¢[x/y]) < gr(s sat ), for any s and hence
o[z /y] F 1 is valid provided Jy¢ + ¢ is valid.

9. Finally ¢ A (3y)v F (Jy)(é A1) is valid because of the following:

gr(s sat ¢ A (Jy)) = gr(s sat @) A gr(s sat Jyy)
= gr(s sat @) A jgg{gT(S(d/y) sat )}

= sup{gr(s sat ¢) A gT(S(d/y) sat ¢)}
deD

< jgg{gr(S(d/y) sat ¢) A gr(s(d/y) sat )}
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= sup{gr(s sat ¢ A1)}
deD

= gr(s sat (Jy)o A ), for any s.
0

3.2 Generalised logic of finite observations In this subsection,
we will consider the propositional fragment of the proposed generalised geo-
metric logic and call it the generalised logic of finite observations. Through-
out this part, the justification for choosing the name will be provided.
In [21], one may notice that the logic of finite observations is nothing but
the logic of affirmative assertions. Recall that an assertion is affirmative if
and only if the assertion is true precisely in the circumstances where it can
be affirmed. Note that we need to do the job in finite time, a finite amount
of work and based on what we can observe. In [21], it is nicely explained
why the logic of affirmative assertions allows the connectives A, \/, T, L but
not — and —. If we wish to make the idea of the logic of affirmative asser-
tions closer to real-life situations then discussing the validity (truth value)
of affirmative assertions up to some extent instead of, whether affirmative
assertions are valid (true) or not valid (false), is a better idea. To address
this issue we need to concentrate on the notion of valuation function. In this
stage, it is better to quickly recapture the propositional part of our proposed
generalised logic for better understanding. Let ® be a set of propositional
variables. The language GGL(®) of generalised logic of finite observations
of the propositional generalised geometric formula is given by

¢u=T|LIploinda| \{ditics

where p € ® and [ is some index set. The rules are given by

1. ¢ F ¢,
9 Y YFX

¢k X ’
3. ) o T, (i) gAY 6, (i) gAY Fw, (iv) wﬁw&w |
4. 1) pF VS (p€9), (i) oy alges

VS ’
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5. 0NV SEN{oAY | e S}
Proposition 3.8. \/{¢p Ay | € S} oA\ S is derivable.

pAYEY VS (Y eS)
dAYF @ pAYENS
Proof.  \{oAv¥|pe St o Vi{pny | eSEVS
V{igAy | eStFoAVS (allyh € 5)
VioAy [peSFoAVS

O]

The valuation function v : ® — L can be extended to ¢ : GGL(®) — L
defined by

o(T) =113

o(L) =0y

(o ANY) =10(9) AND();
o(\V{oi}ier) = sup{o(¢;) | i € T}.

Now notice that if we consider the range of the valuation function a frame
(L) instead of {0, 1} then mathematically we can reach our goal. Consider-
ation of the range as any frame allows us to think about the incomparable
truth values of affirmative assertions, which is a natural phenomenon that
arises in our daily life situations. If we think in this line then it is not
very hard to understand how the definition of the extended valuation func-
tion considered here is the expected one. In this sense, we will be able to
generalise the notion of the so-called logic of affirmative assertions or logic
of finite observations to address real-life situations in a better way. More-
over, this generalised version of the logic connects the desired mathematical
structures (L-topological space, L-topological system and frame) as well.

1.
2.
3.
4.

Definition 3.9. ¢ + ¢ is valid if and only if d(¢) < 6(¢) for all o :
GGL(®) — L.

Proposition 3.10. The rules of inference are valid.

The proposition stated above implies that \/[{¢ A | € S} oA\ S
is valid. We will use this piece of information in the next section.
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4 L-Topological system via generalised geometric logic

In this section, the way to get an L-topological system from generalised
geometric logic is provided. In this respect, it is to be noted that the
propositional fragment of the proposed generalised geometric logic is enough
to serve our purpose. Let us consider the triplet (X, =, A) where X is the
non-empty set of extended valuation functions, A is the set of geometric
formulae and = defined as = (0, ¢) = 0(¢).

Proposition 4.1. (i) = (0,0 AY) = = (0, 9)A = (0,9).
(i) = (0, V{@i}ier) = ?gﬂ: (0, i) }-

Proof. (i) E (0,0 AY) =0(p AY) =10(9) NO(¥) = | (D, 0)A | (0,9).
(ii) = (0, V{¢i}ier) = 0(V{@i}ier) = 'jg%?{@(@)} = S;Z?{F (0, 4)}- O

Definition 4.2. ¢ = ¢ iff = (0,¢) = = (0,9) for any v € X and ¢, € A.
The above defined “~x” is an equivalence relation. Thus we get A/x.

Proposition 4.3. (4/~,<,A,V) is a frame, where [¢p] < [¢] holds when
0(¢) < 0(¢) for all b : GGL(®) = L, [¢] A [¥] = [p A and V@il }ier =
[V{di}ier]-

Proof. First of all (¢) = 0(¢), for all v. So [¢] < [¢] holds for any [¢] € A/~.
Let [¢] < [¢] and [¢p] < [¢]. Then 0(¢) = v(¢), for all 0. Hence ¢ ~ v,
which indicates that [¢] = [¢] whenever [¢] < [¢] and [¢)] < [¢] holds.
Similarly, if [¢] < [¢] and [¢)] < [x] holds then [¢p] < [x] holds. Hence
(A/~,<) is a poset. It is easy to observe that A/~ is closed under A and
\/ (follows from Proposition 4.1). Moreover from the previous section we
have \[{o Ay | € S} E oAV S and oA\ S E V{pAY | €S} are
valid. Hence 0(¢ A S) = 0(\V{o Ay | ¢ € S}) for all 0 : GGL(®) — L.
Therefore p A\ S~ \/{p A |1 € S}. Consequently we have [¢p A\ S| =
Vo Ay [ e SY de., [0 AV [U1}pes = VE[9] A [¥]} yes. Consequently,
we arrive at the conclusion that finite meet distributes over arbitrary join,
i.e., the frame distributive property holds good. O

Propositions 4.1 and 4.3 provide the following theorem.
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Theorem 4.4. (X, ', A/~) is an L-topological system, where =" is defined
by ' (9,[4]) = = (0, 9).

Proposition 4.5. The L-topological system (X, =", A/~) defined as above,
s spatial.

Proof. Let for any v € X, |= (0,a) = |= (,b). Then 0(a) = 0(b) for all v €
X, which implies that a = b. Therefore for any ¢ € X, |= (0,a) = = (0,b)
implies (a = b), for any a,b € A. O

It is to be noted that in [11] it is remarked that “if we take T to be a ge-
ometric propositional theory, then T has a model in its Lindenbaum algebra
L, or equivalently in the topos Sh(X), where X is the locale corresponding
to L, and so it is consistent whenever L is non-degenerate. But its models
in Set are the same things as points of X, so if X is a nontrivial locale
without points, then T is a consistent geometric theory having no models in
Set.

Nevertheless, there is a ‘classical completeness theorem’ for geometric
logic, which asserts that any geometric theory has enough models to deter-
mine provability (not in Set but) in Boolean toposes...”

Therefore, considering the completeness issue for the proposed logic here
will be of great interest but it is in our future goal.

5 L-Topology via generalised geometric logic

We first construct the L-topological system (X, ', A/~) from generalised
geometric logic. Then (X, ext(A/~)) is constructed as follows:

ext(A/~) = {ext([¢])}gea/. Where ext([¢]) : X — L is such that, for
each (8] € A/, ext([8))(0) = ' (6, 18]) = &= (6,6).

It can be shown that ext(A/~) forms an L-topology on X as follows. Let
ext([¢]), ext([¢)]) € ext(A/~). Then

(ext([¢]) Next([4]))(0) = (ext([¢]))(D) A (ext([])) (D)
]

=
= (0,9 = (0,9)
=F(@,01NY)

= (0,[¢ A])
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= (ext([p A ¢]))(0).

Hence ext([¢]) N ext([y)]) = ext([¢p A Y]) € ext(A/~). Similarly, it can be
shown that ext(A/~) is closed under arbitrary union. Hence (X, ext(A/x~))
is an L-topological space obtained via generalised geometric logic.

Proposition 4.5 indicates that (X,=', A/~) is a spatial L-topological
system and hence from Theorem 2.6 we arrive at the conclusion that (X, =’
yA/~), (A ext(A/~)) are equivalent to each other. That is, (X,E', A/~)
and (X, €,ext(A/~)) represent the same L-topological system. The follow-
ing diagram summarises all the facts that we have proved till this stage:

Generalised logic of finite observations

|

Spatial L — Topological system +—— L — Topological space

Let X be an L-topological space, 7 is its L-topology. Then the corre-
sponding generalised geometric theory can be defined as follows:

for each L-open set T, a proposition Py,

if Tl - Tg, then an axiom

Pp = Pp

if §'is a family of L-open sets, then an axiom

Ryst \/ P;
Tes

if S is finite collection of L-open sets, then an axiom

N Prt Pns
TeS
All other axioms for the (propositional) generalised geometric logic will
follow from the above clauses.
If x € X, then z gives a model of the theory in which the truth value of
the interpretation of P; will be T(x).
Hence one may study L-topology via generalised geometric logic.
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6 Concluding remarks

In this paper, the notion of generalised geometric logic is introduced and
studied in detail. The connection between L-topological system and L-
topological space establishes the strong connection between the proposed
logic and L-topological space. The interpretation of the predicate symbols
for the generalised geometric logic is L (frame)-valued relations, so the pro-
posed logic is more expressible. The proposed logic can interpret situations
where the truth values are incomparable.

In [8], we have already indicated how the extension of 3-valued geometric
logic (a fragment of generalised geometric logic) can be seen as the stepping
stone to propose the logic of ethics. Hence, it will be helpful to use the
proposed generalised geometric logic to enhance the result of the work in [8].

As stated in the introduction, our future agenda is to enhance the re-
sults of M. J. Healy in [3] for the LAPART architecture. We would like to
expand the work to see whether geometric logic can be useful in extract-
ing knowledge from standard neural network structures or not, for exam-
ple feed-forward neural nets. Also, it is possible to use several metrics in
knowledge extraction to evaluate our method considered in [3], for exam-
ple, fidelity and expressiveness. Generalising the proposed logic considering
graded consequence relation is also on the future agenda.
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