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Characterization of monoids by
(U-)GPW -flatness of right acts

Hamideh Rashidi∗, Akbar Golchin, and Hossein Mohammadzadeh
Saany

Abstract. The authors in 2020 introduced GPW -flatness and gave a char-
acterization of monoids by this property of their right acts. In this article we
continue this investigation and will give a characterization of monoids by this
condition of their right Rees factor acts. Also we give a characterization of
monoids by comparing this property of their right acts with other properties.
We also introduce U -GPW -flatness of acts, which is an extension of GPW -
flatness and give some general properties and a characterization of monoids
when this property of acts implies some others and vice versa.

1 Introduction and Preliminaries

In 1970, Kilp [10] initiated the study of flatness of acts. A right S-act AS

is called flat if the functor AS ⊗ S− preserves all monomorphisms. In 1983,
Kilp [11] further investigated the (principal) weak version of flatness under
the name of (principal) weak flatness. A right S-act AS is called (principally)
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weakly flat if the functor AS ⊗ S− preserves all embeddings of (principal)
left ideals into S.

It was shown in [13] and [2] that, if we require either bijectivity or sur-
jectivity of φ for pullback diagrams of certain types, we obtain new proper-
ties such as pullback flatness (PF ), weak pullback flatness (WPF ), Condi-
tion (WP ), Condition (PWP ), weakly kernel flatness (WKF ), principally
weakly kernel flatness (PWKF ) and translation kernel flatness (TKF ).

In [15], we introduced GPW -flatness property as a generalization of
principal weak flatness, and characterized monoids by this property of their
right acts in some cases.

In this article we give a characterization of monoids S for which all
GPW -flat right Rees factor S-acts satisfy other flatness properties. Also
we give a characterization of monoids by comparing this property of their
right acts with other properties.

We also introduce U -GPW -flatness of acts, which is an extension of
GPW -flatness and give some general properties. Then we give a character-
ization of monoids when this property of acts implies some others and vice
versa.

Throughout this paper S always will stand for a monoid and N the set
of natural numbers. Recall that a monoid S is called right (left) reversible
if for every s, t ∈ S, there exist u, v ∈ S such that us = vt (su = tv). A
monoid S is called left (right) collapsible if for every s, t ∈ S there exists
z ∈ S such that zs = zt (sz = tz). Also a monoid S is called regular if
for every s ∈ S, there exists x ∈ S such that s = sxs. A right ideal K of
a monoid S is called left stabilizing if for every k ∈ K, there exists l ∈ K
such that lk = k. A nonempty set A is called a right S-act, usually denoted
AS , if S acts on A unitary from the right, that is, there exists a mapping
A× S → A; (a, s) 7→ as, satisfying conditions (as)t = a(st) and a1 = a, for
all a ∈ A and all s, t ∈ S. An act AS is called weakly flat if the functor
AS ⊗ S− preserves all embeddings of left ideals into S, or equivalently if for
every s, t ∈ S, a, a′ ∈ AS , a ⊗ s = a′ ⊗ t in AS ⊗ S implies a ⊗ s = a′ ⊗ t
in AS ⊗ S(Ss

⋃
St) [12, III, Lemma 11.1]. An act AS is called principally

weakly flat if the functor AS ⊗ S− preserves all embeddings of principal left
ideals into S, or equivalently, a right S-act AS is principally weakly flat if



Characterization of monoids by (U -)GPW -flatness of right acts 129

and only if a⊗s = a′⊗s in AS⊗SS implies a⊗s = a′⊗s in AS⊗S(Ss) for
all s ∈ S, a, a′ ∈ AS [12, III, Lemma 10.1]. A right S-act AS is torsion free
if for a, b ∈ AS and a right cancellable element c of S the equality ac = bc
implies that a = b. A right S-act AS satisfies Condition (E) if for every
a ∈ AS , s, t ∈ S, as = at implies that there exist a′ ∈ AS , u ∈ S such that
a = a′u and us = ut. A right S-act AS satisfies Condition (P ) if for every
a, a′ ∈ AS , s, s

′ ∈ S, as = a′t implies that there exist a′′ ∈ AS , u, v ∈ S such
that a = a′′u, a′ = a′′v and us = vt. A right S-act AS satisfies Condition
(PWP ) if for every a, a′ ∈ AS , s ∈ S, as = a′s implies that there exist
a′′ ∈ AS , u, v ∈ S such that a = a′′u, a′ = a′′v and us = vs.

Definition 1.1. [15] A right S-act AS is called GPW -flat if for every
s ∈ S, there exists a natural number n = n(s,AS) ∈ N such that the
functor AS ⊗ S− preserves the embedding of the principal left ideal S(Ss

n)
into SS.

Clearly, every principally weakly flat right S-act is GPW -flat, but not
the converse (see [15, Example 2.2]).

Also every GPW -flat right S-act is torsion free, but not the converse
(see [15, Proposition 2.5 and Example 2.6]).

We recall from [14] that a right S-act AS is called GP -flat if the equal-
ity a ⊗ s = a′ ⊗ s in AS ⊗ SS, for every s ∈ S and a, a′ ∈ AS implies that
there exists a natural number n ∈ N such that a⊗sn = a′⊗sn in AS⊗S(Ss

n).

Clearly GPW -flatness implies GP -flatness.

Thus we have

free ⇒ projective ⇒ projective generator ⇒ strongly flat ⇒ WPF ⇒
condition (P) ⇒ flat⇒ weakly flat ⇒ principally weakly flat ⇒ GPW -flat
⇒ GP -flat ⇒ torsion free.

Definition 1.2. [15] An element s ∈ S is called eventually regular if sn is
regular for some n ∈ N. That is, sn = snxsn for some n ∈ N and x ∈ S. A
monoid S is called eventually regular if every s ∈ S is eventually regular.

Obviously every regular monoid is eventually regular.
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Definition 1.3. [15] An element s ∈ S is called eventually left almost
regular if

s1c1 = snr1

s2c2 = s1r2
...

smcm = sm−1rm

sn = smrs
n,

for some n ∈ N, elements s1, s2, . . . , sm, r, r1, . . . , rm ∈ S and right can-
cellable elements c1, c2, . . . , cm ∈ S. If every element of a monoid S is
eventually left almost regular, then S is called eventually left almost regu-
lar.

It is clear that every left almost regular monoid is eventually left almost
regular, and also every eventually regular monoid is eventually left almost
regular.

2 Characterization of monoids by GPW -flatness of acts

In [15], we characterized monoids over which all right S-acts are GPW -flat
and also monoids over which some other properties imply GPW -flatness
and vice versa. We showed that all right S-acts are GPW -flat if and only
if S is an eventually regular monoid. Also we showed that GPW -flatness
implies torsion freeness, but not the converse. Then we proved that all
torsion free right S-acts are GPW -flat if and only if S is an eventually left
almost regular monoid.

Now we give a characterization of monoids by comparing this property
of their right acts with other properties.

Definition 2.1. Let S be a monoid and K be a proper right ideal of S.
The right ideal K of a monoid S is called GPW -left stabilizing if for every
s ∈ S there exists n ∈ N such that lsn ∈ K, for l ∈ S \ K, implies that
lsn = ksn for some k ∈ K.

It is clear that every left stabilizing right ideal of S is GPW -left stabi-
lizing.
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Remark 2.2. If for s ∈ S there exists n ∈ N such that the right ideal snS
is GPW -left stabilizing, then s is eventually regular.

Proof. Let for s ∈ S there exists n ∈ N such that the right ideal snS be
GPW -left stabilizing. Since sn ∈ snS, so there exists k ∈ snS such that
sn = ksn. Since k ∈ snS, there exists x ∈ S such that k = snx, and so s is
eventually regular.

Theorem 2.3. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts are free.

(2) All finitely generated GPW -flat right S-acts are free.

(3) All cyclic GPW -flat right S-acts are free.

(4) All monocyclic GPW -flat right S-acts are free.

(5) All GPW -flat right S-acts are projective generator.

(6) All finitely generated GPW -flat right S-acts are projective generator.

(7) All cyclic GPW -flat right S-acts are projective generator.

(8) All monocyclic GPW -flat right S-acts are projective generator.

(9) All GPW -flat right S-acts are projective.

(10) All finitely generated GPW -flat right S-acts are projective.

(11) All GPW -flat right S-acts are strongly flat.

(12) All finitely generated GPW -flat right S-acts are strongly flat.

(13) S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (8), (1) ⇒ (5) ⇒ (6) ⇒
(7)⇒ (8), (1)⇒ (9)⇒ (10)⇒ (12) and (1)⇒ (11)⇒ (12) are obvious.

(8)⇒ (13) If all monocyclic GPW -flat right S-acts are projective gener-
ator, then all monocyclic right S-acts satisfying Condition (P ) are projective
generator and so by [12, IV, Theorem 12.8], S = {1}.

(12) ⇒ (13) Assume all finitely generated GPW -flat right S-acts are
strongly flat. Then all finitely generated right S-acts satisfying Condition
(P ) are strongly flat and so S is aperiodic by [12, IV, Theorem 10.2]. Let
1 ̸= s ∈ S, then there exists n ∈ N such that sn = sn+1 and so e = sn
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is an idempotent different from 1. It is easy to see that eS is a GPW -
left stabilizing right ideal and so the right S-act SS

∐eS SS is GPW -flat
by [15, Theorem 2.10]. Thus by the assumption it is strongly flat (satisfies
Condition (P )), which is a contradiction [12, III, Proposition 13.14]. So
S = {1}.

(13)⇒ (1) This is obvious.

Lemma 2.4. If all monocyclic GPW -flat right S-acts are strongly flat, then
all monocyclic right S-acts are strongly flat.

Proof. Suppose that all GPW -flat monocyclic right S-acts are strongly flat,
then all monocyclic right S-acts satisfying Condition (P ) are strongly flat
and so S is aperiodic by [12, IV, Theorem 10.2]. Thus for every s ∈ S there
exists n ∈ N such that sn is an idempotent, which gives that S is eventually
regular. Now by [15, Theorem 4.5], all right S-acts are GPW -flat.

Theorem 2.5. For any monoid S, the following statements are equivalent:

(1) All cyclic GPW -flat right S-acts are projective.

(2) All monocyclic GPW -flat right S-acts are projective.

(3) All cyclic GPW -flat right S-acts are strongly flat.

(4) All monocyclic GPW -flat right S-acts are strongly flat.

(5) S = {1} or S = {0, 1}.

Proof. Implications (1)⇒ (3)⇒ (4) are obvious.
(4)⇒ (5) By the assumption all monocyclic GPW -flat right S-acts are

strongly flat, and so by Lemma 2.4, all monocyclic right S-acts are strongly
flat. Thus by [12, IV, Proposition 10.10], S = {1} or S = {0, 1}.

(2)⇔ (4) It follows from [12, III, Lemma 17.13].
(5)⇒ (1) It follows from [12, IV, Theorem 11.14].

Theorem 2.6. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts are generator.

(2) All finitely generated GPW -flat right S-acts are generator.

(3) All cyclic GPW -flat right S-acts are generator.

(4) All GPW -flat right Rees factor S-acts are generator.
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(5) S = {1}

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.

(4) ⇒ (5) Since ΘS
∼= S/SS is GPW -flat by [15, Proposition 2.8], thus

by the assumption, ΘS
∼= S/SS is a generator. Therefore there exists an

epimorphism π : ΘS −→ SS , and so S = {1}.
(5)⇒ (1) Since S = {1}, all right S-acts are generators, as desired.

Theorem 2.7. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts are regular.

(2) All finitely generated GPW -flat right S-acts are regular.

(3) All cyclic GPW -flat right S-acts are regular.

(4) S = {1} or S = {0, 1}.

Proof. This is obvious by [5, Theorem 1.12].

Theorem 2.8. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts satisfy Condition (E).

(2) All finitely generated GPW -flat right S-acts satisfy Condition (E).

(3) All cyclic GPW -flat right S-acts satisfy Condition (E).

(4) All monocyclic GPW -flat right S-acts satisfy Condition (E).

(5) S = {1} or S = {0, 1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.

(4)⇒ (5) It follows from Theorem 2.5 and [12, IV, Proposition 10.10].

(5)⇒ (1) It is straightforward.

We recall from [12] that a right S-act AS is (strongly) faithful, if for
s, t ∈ S the equality as = at, for all (some) a ∈ AS , implies that s = t. It is
obvious that every strongly faithful act is faithful.

Theorem 2.9. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts are (strongly) faithful.

(2) All finitely generated GPW -flat right S-acts are (strongly) faithful.
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(3) All cyclic GPW -flat right S-acts are (strongly) faithful.

(4) All GPW -flat right Rees factor S-acts are (strongly) faithful.

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.

(4) ⇒ (5) By [15, Proposition 2.8], the one-element right S-act ΘS
∼=

S/SS is GPW -flat, and so by the assumption it is (strongly) faithful. Thus
S = {1}, as required.

(5)⇒ (1) This is obvious.

We recall from [12] that a right S-act AS is called simple if it contains
no subacts other than AS itself, and AS is called completely reducible if it
is a disjoint union of simple subacts.

Theorem 2.10. For any monoid S, the following statements are equivalent:

(1) All GPW -flat right S-acts are completely reducible

(2) All finitely generated GPW -flat right S-acts are completely reducible.

(3) All cyclic GPW -flat right S-acts are completely reducible.

(4) All monocyclic GPW -flat right S-acts are completely reducible.

(5) S is a group.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.

(4) ⇒ (5) By [15, Proposition 2.8], SS ∼= S/ρ(1, 1) is GPW -flat as a
monocyclic right S-act, and so by the assumption SS is completely reducible.
Thus S is a group by [12, I, Lemma 5.33].

(5)⇒ (1) It follows from [12, I, Proposition 5.34].

We recall from [17] that a right S-act AS is R-torsion free if ac = a′c
and aRa′, for a, a′ ∈ AS , c ∈ S, c right cancellable, imply that a = a′.

Theorem 2.11. For any monoid S, the following statements are equivalent:

(1) All R-torsion free right S-acts are GPW -flat.

(2) S is eventually regular.

Proof. It follows from [15, Theorem 4.5] and [17, Lemma 4.1].
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Example 2.12. Let S = (N, .) be the monoid of natural numbers with

multiplication and let AS = SS
∐S\{1} SS . Since there exist no x ∈ S \

{1}, n ∈ N such that 2n = x2n, AS is not GPW -flat by [15, Theorem 2.10].
But AS satisfies Condition (E) by [12, III, Exercise 14.3(3)]. Thus it is
natural to ask for monoids over which Condition (E) implies GPW -flatness.

Recall from [6, 7, 13] that a right S-act AS satisfies Condition (E′) if for
all a ∈ AS , s, s

′, z ∈ S, as = as′ and sz = s′z imply that there exist a′ ∈ AS

and u ∈ S such that a = a′u and us = us′. A right S-act AS satisfies
Condition (EP ) if for all a ∈ AS , s, t ∈ S, as = at implies that there exist
a′ ∈ AS and u, v ∈ S such that a = a′u = a′v and us = vt. A right S-act AS

satisfies Condition (E′P ) if for all a ∈ AS , s, t, z ∈ S, as = at and sz = tz
imply that there exist a′ ∈ AS and u, v ∈ S such that a = a′u = a′v and
us = vt. It is obvious that (E)⇒ (EP )⇒ (E′P ) and (E)⇒ (E′)⇒ (E′P ).

Theorem 2.13. For any monoid S, the following statements are equivalent:

(1) All right S-acts satisfying Condition (E′P ) are GPW -flat.

(2) All right S-acts satisfying Condition (EP ) are GPW -flat.

(3) All right S-acts satisfying Condition (E′) are GPW -flat.

(4) All right S-acts satisfying Condition (E) are GPW -flat.

(5) S is eventually regular.

Proof. Implications (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4) are obvious
because (E)⇒ (EP )⇒ (E′P ) and (E)⇒ (E′)⇒ (E′P ).

(4)⇒ (5) Let s ∈ S. Since SS isGPW -flat by [15, Proposition 2.8], there
exists a natural number n ∈ N such that the functor SS ⊗ S− preserves the
embedding of the principal left ideal S(Ss

n) into SS. If s
nS = S, then there

exists x ∈ S such that snx = 1, and so snxsn = sn. Thus s is an eventually
regular element. Now assume that snS ̸= S. Consider AS = S

∐snS S.
Then by [12, III, Exercise 14.3(3)], AS satisfies Condition (E) and by the
assumption it is GPW -flat. Now by [15, Theorem 2.10], the right ideal snS
is GPW -left stabilizing and so s is eventually regular by Remark 2.2.

(5)⇒ (1) This is obvious, by [15, Theorem 4.5].

Note that above theorem is also true for finitely generated (at most
(exactly) by two elements) right S-acts.
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An element s ∈ S is right semi-cancellable if the equality xs = ys for
any x, y ∈ S implies that there exists r ∈ S such that rs = s and xr = yr. A
monoid S is called left PSF if every element s ∈ S is right semi-cancellable.

Theorem 2.14. Let S be a left PSF monoid. Then the following state-
ments are equivalent:

(1) All divisible right S-acts are GPW -flat.

(2) All principally weakly injective right S-acts are GPW -flat.

(3) All fg-weakly injective right S-acts are GPW -flat.

(4) All weakly injective right S-acts are GPW -flat.

(5) All injective right S-acts are GPW -flat.

(6) All cofree right S-acts are GPW -flat.

(7) S is eventually regular.

Proof. Since Cofree ⇒ Injective ⇒ weakly injective ⇒ finitely generated
weakly injective ⇒ principally weakly injective ⇒ divisible, implications
(1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6) are obtained immediately.

(6) ⇒ (7) We know that every right S-act can be embedded into a
corfree right S-act. So by the assumption, every right S-act is a subact of a
GPW -flat right S-act. Since S is left PSF, every subact of a GPW -flat right
S-act is GPW -flat (see [15, Proposition 2.12]). Therfore all right S-acts are
GPW -flat and so by [15, Theorem 4.5], S is eventually regular.

(7)⇒ (1) It follows from [15, Theorem 4.5].

Theorem 2.15. For any monoid S, the following statements are equivalent:

(1) All faithful right S-acts are GPW -flat.

(2) All finitely generated faithful right S-acts are GPW -flat.

(3) All faithful right S-acts generated by two elements are GPW -flat.

(4) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) Let s ∈ S. Since SS is GPW -flat by [15, Proposition 2.8],

there exists a natural number n ∈ N such that the functor SS⊗S− preserves
the embedding of the principal left ideal S(Ss

n) into SS. If snS = S, then
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there exists x ∈ S such that snx = 1, and so snxsn = sn. Thus s is an
eventually regular element. Now assume that I = snS ̸= S. Consider
AS = S

∐snS S. As we know AS is a faithful right S-act generated by two
elements, and so by the assumption it is GPW -flat. Thus snS is GPW -left
stabilizing by [15, Theorem 2.10], and so s is eventually regular by Remark
2.2.

(4)⇒ (1) This is obvious, by [15, Theorem 4.5].

Theorem 2.16. For any monoid S, the following statements are equivalent:

(1) All strongly faithful right S-acts are GPW -flat.

(2) All finitely generated strongly faithful right S-acts are GPW -flat.

(3) All strongly faithful right S-acts generated by two elements are GPW -
flat.

(4) S is not left cancellative or S is a group.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) Let S be a left cancellative monoid and s ∈ S. Since SS

is GPW -flat, there exists a natural number n ∈ N such that the functor
SS ⊗ S− preserves the embedding of the principal left ideal S(Ss

n) into SS.
If snS = S, then there exists x ∈ S such that snx = 1, and so snxsn = sn.
Thus s is an eventually regular element.

Now assume that I = snS ̸= S. Set

AS = S ⨿snS S = {(l, x)| l ∈ S \ snS} ∪̇ snS ∪̇ {(t, y)| t ∈ S \ snS}.

Clearly

BS = {(l, x)| l ∈ S \ snS} ∪̇ snS ∼= SS ∼= {(t, y)| t ∈ S \ snS} ∪̇ snS = CS .

Since AS = B
⋃
C, so AS is generated by different two elements (1, x) and

(1, y) and also BS
∼= SS ∼= CS and AS = BS

⋃
CS , where BS and CS are

subacts of AS . Since S is left cancellative, so by [1, Lemma 2.10], SS is
strongly faithful. Hence by above isomorphism subacts BS and CS of AS

are strongly faithful. Therefore the equality AS = BS
⋃
CS implies that AS

is strongly faithful and so AS is GPW -flat by the assumption. Thus snS is
GPW -left stabilizing by [15, Theorem 2.10], and so s is eventually regular
by Remark 2.2.
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Hence in two cases, s is eventually regular. Now since by the assumption
S is left cancellative, so s is left invertible and we can say that every s ∈ S
is left invertible. Thus S is a group.

(4) ⇒ (1) If S is not left cancellative, then there exists no strongly
faithful right S-act, by [1, Lemma 2.10]. Thus (1) is satisfied. If S is
left cancellative, then there exists at least a strongly faithful right S-act,
by [1, Lemma 2.10]. Since S is a group, it is eventually regular and so (1)
is satisfied, by [15, Theorem 4.5].

We recall from [12] that an S-act AS is called decomposable if there
exist two subacts BS , CS ⊆ AS such that AS = BS ∪ CS and BS ∩ CS = ∅.

Theorem 2.17. For any monoid S, the following statements are equivalent:

(1) All indecomposable right S-acts are GPW -flat.

(2) All finitely generated indecomposable right S-acts are GPW -flat.

(3) All indecomposable right S-acts generated by two elements are GPW -
flat.

(4) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.

(3) ⇒ (4) By a similar argument which used in the proof (3) ⇒ (4) of
Proposition 2.16, we can conclude that S is eventually regular

(4)⇒ (1) It follows from [15, Theorem 4.5].

3 Characterization of monoids by GPW -flatness property of
right Rees factor S-acts

In this section we give a characterization of monoids by GPW -flatness prop-
erty of their right Rees factor acts.

Lemma 3.1. Let S be a monoid and K be a proper right ideal of S. Then
S/K is GPW -flat if and only if K is GPW -left stabilizing.

Proof. This is obvious by [15, Theorem 3.3].
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Definition 3.2. Let S be a monoid . The right ideal K of a monoid S is
called GP -left stabilizing if ls ∈ K for l ∈ S \ K and s ∈ S, implies that
there exists n ∈ N such that lsn = ksn for some k ∈ K.

Lemma 3.3. Let S be a monoid and K be a proper right ideal of S. Then
S/K is GP -flat if and only if K is a GP -left stabilizing right ideal.

Proof. This is obvious by [14, Proposition 2.7].

Theorem 3.4. Let S be a monoid. Then all GP -flat right Rees factors of
S are GPW -flat if and only if every GP -left stabilizing right ideal of S is
GPW -left stabilizing.

Proof. Suppose that all GP -flat right Rees factor S-acts are GPW -flat and
let K be a GP -left stabilizing right ideal of S. Then by Lemma 3.3, S/K
is GP -flat, and so by the assumption S/K is GPW -flat. Hence by Lemma
3.1, K is GPW -left stabilizing.
Conversely, suppose that for the right ideal K of S, S/K is GP -flat. Then
there are two cases as follows:
Case 1. K = S. Then S/K ∼= ΘS is GPW -flat by [15, Proposition 2.8].
Case 2. K ̸= S. Then by Lemma 3.3, K is GP -left stabilizing, and so
by the assumption K is GPW -left stabilizing. Thus S/K is GPW -flat by
Lemma 3.1.

The proofs of the following theorems are similar to Theorem 3.4.

Theorem 3.5. Let S be a monoid. Then all GPW -flat right Rees factors
of S are principally weakly flat if and only if every GPW -left stabilizing
right ideal of S is left stabilizing.

Theorem 3.6. Let S be a monoid. Then all GPW -flat right Rees factors
of S are (weakly) flat if and only if S is right reversible and the existence
of a GPW -left stabilizing proper right ideal K of S implies that K is a left
stabilizing ideal.

Recall from [13] that a right ideal K of a monoid S is called left annihi-
lating if

(∀t ∈ S)(∀x, y ∈ S \K)(xt, yt ∈ K ⇒ xt = yt).
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Theorem 3.7. Let S be a monoid. Then all GPW -flat right Rees factors of
S satisfy Condition (PWP ) if and only if every GPW -left stabilizing right
ideal of S is left annihilating and left stabilizing.

Proof. This is obvious by Lemma 3.1 and [13, Lemma 2.8].

Recall from [13] that a right S-act AS satisfies Condition (WP ) if
af(s) = a′f(t), for a, a′ ∈ AS , s, t ∈ S, and homomorphism f : S(Ss ∪ St)→
SS, implies that there exist a′′ ∈ AS , u, v ∈ S and s′, t′ ∈ {s, t} such that
f(us′) = f(vt′), a⊗ s = a′′ ⊗ us′ and a′ ⊗ t = a′′ ⊗ vt′ in AS ⊗ S(Ss ∪ St).
Also, we recall from [13] that a right ideal K of a monoid S is called
strongly left annihilating if f(s), f(t) ∈ K, s, t ∈ S \ K and homomor-
phism f : S(Ss ∪ St)→ SS imply that f(s) = f(t).

From Lemma 3.1 and [13, Lemma 2.13], we have the following theorem.

Theorem 3.8. Let S be a monoid. Then all GPW -flat right Rees factors
of S satisfy Condition (WP ) if and only if S is right reversible and every
GPW -left stabilizing right ideal of S is strongly left annihilating and left
stabilizing.

Theorem 3.9. Let S be a monoid. Then all GPW -flat right Rees factors
of S satisfy Condition (P ) if and only if S is right reversible and there is
no GPW -left stabilizing proper right ideal K of S with |K| ≥ 2.

Proof. Necessity. Suppose that allGPW -flat right Rees factor S-acts satisfy
Condition (P ) and let K be a GPW -left stabilizing proper right ideal of S.
Then by Lemma 3.1, S/K is GPW -flat, and so by the assumption S/K
satisfies Condition (P ). Hence by [12, III, Proposition 13.9], |K| = 1. Since

ΘS
∼= S

SS
is GPW -flat, it satisfies Condition (P ) by the assumption, and

so S is right reversible by [12, III, Corollary 13.7].
Sufficiency. Suppose that S/K is GPW -flat, for the right ideal K of S.
Then there are two cases:
Case 1. K = S. Since S is right reversible and S/K ∼= ΘS , S/K satisfies
Condition (P ) by [12, III, Corollary 13.7].
Case 2. K ̸= S. Then by Lemma 3.1, K is GPW -left stabilizing. Thus
by the assumption |K| = 1. Thus S/K satisfies Condition (P ) by [12, III,
Proposition 13.9].
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Recall from [13] that a right S-act AS is weakly pullback flat if and only
if it satisfies Conditions (P ) and (E′). Also we recall that a monoid S is
weakly left collapsible if for every s, t, z ∈ S, the equality sz = tz, implies
the existence of u ∈ S, such that us = ut.

The proof of following theorems are similar in nature as to that of The-
orem 3.9.

Theorem 3.10. Let S be a monoid. Then all GPW -flat right Rees factors
of S are weakly pullback flat if and only if S is weakly left collapsible and
right reversible, and there exist no GPW -left stabilizing proper right ideal
K of S with |K| ≥ 2.

Theorem 3.11. Let S be a monoid. Then all GPW -flat right Rees factors
of S are strongly flat if and only if S is left collapsible and there exist no
GPW -left stabilizing proper right ideal K of S with |K| ≥ 2.

Theorem 3.12. Let S be a monoid. Then all GPW -flat right Rees factors
of S are projective if and only if S contains a left zero, and there exist no
GPW -left stabilizing proper right ideal K of S with |K| ≥ 2.

Theorem 3.13. All GPW -flat right Rees factors of S are free if and only
if S = {1}.

Proof. This is obvious by [12, IV, Theorem 13.9].

Recall from [4] that a right S-act AS satisfies Condition (PE) if whenever
a, a′ ∈ A, s, s′ ∈ S, and as = a′s′, there exist a′′ ∈ A and u, v, e2 = e, f2 =
f ∈ S such that ae = a′′ue, a′f = a′′vf, es = s, fs′ = s′ and us = vs′.
A right ideal K of a monoid S is called (PE)- left annihilating if for all
x, y, t, t′ ∈ S,

(xt ̸= yt′)⇒ [(x ∈ K) ∨ (y ∈ K) ∨ (xt /∈ K) ∨ (yt′ /∈ K)∨
(∃u, v ∈ S, e, f ∈ E(S), et = t, ft′ = t′, ut = vt′

xe ̸= ue⇒ ue, xe ∈ K, yf ̸= vf ⇒ yf, vf ∈ K)]

It is clear that every right S-act satisfying Condition (PE) is GPW -flat, but
not the converse.
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Theorem 3.14. Let S be a monoid. Then all GPW -flat right Rees factors
of S satisfy Condition (PE) if and only if S is right reversible and every
GPW -left stabilizing right ideal of S is (PE)-left annihilating.

Proof. This is obvious by Lemma 3.1 and [4, Theorem 3.5].

Recall from [3] that a right S-act AS satisfies Condition (PWPE) if
whenever a, a′ ∈ A, s ∈ S, and as = a′s, there exist a′′ ∈ A and u, v, e2 =
e, f2 = f ∈ S such that ae = a′′ue, a′f = a′′vf, es = s = fs and us = vs.
A right ideal K of a monoid S is called (E)-left annihilating, if for all
x, y, t,∈ S,

(xt ̸= yt)⇒ [(x ∈ K) ∨ (y ∈ K) ∨ (xt /∈ K) ∨ (yt /∈ K)∨
(∃u, v ∈ S, e, f ∈ E(S), et = t = ft, ut = vt)

(xe ̸= ue)⇒ ue, xe ∈ K, yf ̸= vf ⇒ yf, vf ∈ K)]

It is clear that every right S-act satisfying Condition (PWPE) is GPW -flat,
but not the converse.

Theorem 3.15. Let S be a monoid. Then all GPW -flat right Rees factors
of S satisfy Condition (PWPE) if and only if every GPW -left stabilizing
right ideal of S is left stabilizing and (E)-left annihilating.

Proof. This is obvious by Lemma 3.1 and [3, Theorem 4.2].

Recall from [9] that a right S-act AS is called strongly (P )-cyclic if for
every a ∈ AS there exists z ∈ S such that kerλa = kerλz and zS satisfies
Condition (P ). Because freeness does not imply strong (P )-cyclic property,
so GPW -flatness does not imply strong (P )-cyclic.

Theorem 3.16. Let S be a monoid. Then all GPW -flat right Rees factors
of S are strongly (P )-cyclic if and only if S contains a left zero, there is no
GPW -left stabilizing proper right ideal KS of S with |KS | ≥ 2 and every
principal right ideal of S satisfies Condition (P ).

Proof. This is obvious by Lemma 3.1 and [9, Theorem3.1].

Recall from [8] that a right S-act AS is called P -regular if all cyclic
subacts of AS satisfy Condition (P ). We know that a right S-act AS is
regular if every cyclic subact of AS is projective. It is obvious that every
regular right act is P -regular



Characterization of monoids by (U -)GPW -flatness of right acts 143

Lemma 3.17. [8] ΘS is P -regular if and only if S is right reversible.

Theorem 3.18. For any monoid S the following statements are equivalent:

1) All GPW -flat right Rees factors of S are P -regular.

2) S is right reversible, no proper right ideal KS of S with |KS | ≥ 2 is
GPW -left stabilizing and all principal right ideals of S satisfy Condi-
tion (P ).

Proof. This is obvious by Lemma 3.17 and [8, Theorem 3.1].

4 Characterization of monoids by U-GPW -flatness of right
acts

In this section, we introduce property U -GPW -flatness of acts and give
some general properties. Then we give a characterization of monoids when
this property of acts implies some others.

Definition 4.1. Let S be a monoid. A right S-act AS is U -GPW -flat if
there exists a family {Bi | i ∈ I} of subacts of AS such that A = ∪i∈I Bi

and Bi, i ∈ I is GPW -flat.

Theorem 4.2. Let S be a monoid. Then

(1) Every GPW -flat right S-act is U -GPW -flat.

(2) If {Bi | i ∈ I} is a family of subacts of a right S-act AS such that for
every i ∈ I, Bi is U -GPW -flat, then ∪i∈I Bi is U -GPW -flat.

(3) A right S-act AS is U -GPW -flat if and only if for every a ∈ AS there
exists a subact B of AS such that a ∈ B and B is GPW -flat.

(4) Every cyclic right S-act AS is GPW -flat if and only if AS is U -GPW -
flat.

(5) For every proper right ideal I of S, AS = S
∐I S is U -GPW -flat,

where it is indecomposable and is generated by exactly two elements,
but it is not locally cyclic.
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Proof. The proofs of (1), (2), (3) and (4) are straightforward.
(5) Let I be a proper right ideal of S and let

AS = S

I∐
S = {(l, x)| l ∈ S \ I} ∪̇ I ∪̇ {(t, y)| t ∈ S \ I},

B = {(l, x)| l ∈ S \ I} ∪̇ I, C = {(t, y)| t ∈ S \ I} ∪̇ I.
It is easy to show that B and C are cyclic subacts of AS such that

B = (1, x)S ∼= SS ∼= (1, y)S = C,

AS = ⟨(1, x), (1, y)⟩ = (1, x)S ∪ (1, y)S = B ∪ C.
Now, since SS is GPW -flat, subacts B and C are GPW -flat too, and so
AS = B ∪ C is U -GPW -flat.
Also since

AS = (1, x)S ∪ (1, y)S, (1, x)S ∩ (1, y)S = I

it is easy to show that AS is indecomposable, but it is not locally cyclic.

We know that GPW -flatness implies torsion freeness, but the following
example shows that U -GPW -flatness of acts does not imply torsion freeness
in general.

Example 4.3. Let (N, .) be the monoid of natural numbers under multipli-
cation, and consider AS = N

∐2NN. Then AS is U -GPW -flat by Theorem
4.2. But (1, x) ̸= (1, y) and (1, x)2 = 2 = (1, y)2 and so AS is not torsion
free.

Using the above example we can also show that for a commutative
monoid S, there exists an indecomposable right S-act AS generated by
exactly two elements, such that AS is U -GPW -flat, but it is neither locally
cyclic nor torsion free.

Now it is natural to ask for monoids over which U -GPW -flatness of acts
implies torsion freeness and other properties. In the following we answer
these questions.

Theorem 4.4. For any monoid S the following statements are equivalent:

(1) All right S-acts are torsion free.
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(2) All U -GPW -flat right S-acts are torsion free.

(3) All finitely generated U -GPW -flat right S-acts are torsion free.

(4) All indecomposable right S-acts which are U -GPW -flat are torsion
free.

(5) All finitely generated indecomposable right S-acts which are U -GPW -
flat are torsion free.

(6) All right cancellable elements of S are right invertible.

Proof. Implications (1) ⇒ (2) ⇒ (3), (1) ⇒ (4) ⇒ (5) and (3) ⇒ (5) are
obvious.

(5) ⇒ (6) Let c ∈ S be a right cancellable element such that cS ̸=
S and consider AS = S

∐cS S. Obviously, AS is indecomposable which
is generated by two elements (1, x) and (1, y). So AS is U -GPW -flat by
Theorem 4.2 and so by the assumption it is torsion free. Hence the equality
(1, x)c = c = (1, y)c implies (1, x) = (1, y), which is a contradiction. Thus
cS = S and so c is right invertible as required.

(6)⇒ (1) It is obvious by [12, IV, Theorem 6.1].

Theorem 4.5. For any monoid S the following statements are equivalent:

(1) All U -GPW -flat right S-acts are WPF .

(2) All U -GPW -flat right S-acts are WKF .

(3) All U -GPW -flat right S-acts are PWKF .

(4) All U -GPW -flat right S-acts are TKF .

(5) All U -GPW -flat right S-acts satisfy Condition (P ).

(6) All U -GPW -flat right S-acts satisfy Condition (WP ).

(7) All U -GPW -flat right S-acts satisfy Condition (PWP ).

(8) S is a group.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (7) and (1) ⇒ (5) ⇒ (6) ⇒
(7) are obvious.

(7) ⇒ (8) Suppose for s ∈ S, sS ̸= S. Consider AS = S
∐sS S. By

Theorem 4.2, AS is U -GPW -flat and so by the assumption AS satisfies
Condition (PWP ). Thus the equality (1, x)s = (1, y)s implies that there
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exist a ∈ AS and u, v ∈ S such that (1, x) = au, (1, y) = av and us = vs.
Then the equalities (1, x) = au and (1, y) = av imply respectively that there
exist l, l′ ∈ S \ I such that a = (l, x) and a = (l′, y), a contradiction. Thus
sS = S and so S is a group as required.

(8)⇒ (1) This is obvious by [2, Proposition 9].

Theorem 4.6. For any monoid S the following statements are equivalent:

(1) All U -GPW -flat right S-acts are free.

(2) All U -GPW -flat right S-acts are projective generator.

(3) All U -GPW -flat right S-acts are projective.

(4) All U -GPW -flat right S-acts are strongly flat.

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) and (5)⇒ (1) are obvious.
(4) ⇒ (5) By the assumption, all U -GPW -flat right S-acts are WPF

and so S is a group by Theorem 4.5. Thus all right S-acts satisfy Condition
(PWP ) by [2, Proposition 9] and so all right S-acts are GPW -flat, thus they
are U -GPW -flat. Hence by the assumption all right S-acts are strongly flat
and so S = {1} by [12, IV, Theorem 10.5].

Theorem 4.7. For any monoid S the following statements are equivalent:

(1) All right S-acts are principally weakly flat.

(2) All U -GPW -flat right S-acts are principally weakly flat.

(3) All finitely generated U -GPW -flat right S-acts are principally weakly
flat.

(4) S is regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) Let s ∈ S. If sS = S, then it is obvious that s is regular.

Thus we suppose that sS ̸= S and let AS = S
∐sS S. By Theorem 4.2,

AS is U -GPW -flat, and so by the assumption AS is principally weakly flat.
Thus by [12, III, Proposition 12.19], sS is left stabilizing, and so there exists
l ∈ sS such that s = ls. Hence there exists x ∈ S such that l = sx, and so
s = ls = sxs, that is, S is regular.

(4)⇒ (1) This is obvious by [12, IV, Theorem 6.6]
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Recall from [14] that a monoid S is said to be generally regular if for
every s ∈ S, there exist x ∈ S, n ∈ N such that sn = sxsn.

Theorem 4.8. For any monoid S the following statements are equivalent:

(1) All right S-acts are GP -flat.

(2) All U -GPW -flat right S-acts are GP -flat.

(3) All finitely generated U -GPW -flat right S-acts are GP -flat.

(4) S is generally regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) Let s ∈ S. If sS = S, then it is obvious that s is generally

regular. Thus we suppose that sS ̸= S and let AS = S
∐sS S. By Theorem

4.2, AS is U -GPW -flat, and so by the assumption AS is GP -flat. Thus
by [14, Lemma 2.4], for s ∈ sS there exist n ∈ N and j ∈ sS such that
sn = jsn. Hence there exists x ∈ S such that j = sx, that is, sn = sxsn.

(4) ⇒ (1) Since S is generally regular, by [14, Theorem 3.4], all right
S-acts are GP -flat.

We recall from [12] that a right S-act AS is divisible if for every element
a ∈ AS and any left cancellable element c ∈ S there exists b ∈ AS such that
a = bc.

Theorem 4.9. For any monoid S the following statements are equivalent:

(1) All right S-acts are divisible.

(2) All U -GPW -flat right S-acts are divisible.

(3) All left cancellable elements of S are left invertible.

Proof. Implication (1)⇒ (2) is obvious.
(2) ⇒ (3) Since SS is U -GPW -flat, so by the assumption it is divisi-

ble. Hence all left cancellable elements of S are left invertible by [12, III,
Proposition 2.2].

(3)⇒ (1) It is true by [12, III, Proposition 2.2].

Clearly for a non-trivial monoid S, ΘS is U -GPW -flat but it is not
faithful, because |S| > 1. Thus U -GPW -flatness of acts does not imply
faithfulness in general.
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Theorem 4.10. For any monoid S the following statements are equivalent:

(1) All right S-acts are (strongly)faithful.

(2) All U -GPW -flat right S-acts are (strongly)faithful.

(3) All U -GPW -flat finitely generated right S-acts are (strongly)faithful.

(4) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4) For any monoid S, AS = Θ1 ∪̇ Θ2 is a U -GPW -flat finitely

generated right S-act and so by the assumption AS is (strongly)faithful. If
S ̸= {1} then there exist s, t ∈ S such that s ̸= t. But it is obvious that for
any a ∈ AS , as = at which is a contradiction. Thus S = {1} as required.

(4)⇒ (1) It is obvious.

Recall from [16] that a right S-act AS is called strongly torsion free if
the equality as = a′s, for a, a′ ∈ AS and s ∈ S implies a = a′. It is clear that
every strongly torsion free right S-act is GPW -flat, but not the converse.

Theorem 4.11. For any monoid S the following statements are equivalent:

(1) All right S-acts are strongly torsion free.

(2) All U -GPW -flat right S-acts are strongly torsion free.

(3) All U -GPW -flat finitely generated right S-acts are strongly torsion
free.

(4) S is a group.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (4) Let s ∈ S be such that sS ̸= S and suppose AS = S

∐sS S.
By Theorem 4.2, AS is U -GPW -flat and so by the assumption AS is strongly
torsion free.
Now let

B = {(l, x)| l ∈ S \ sS} ∪̇ sS ∼= SS ∼= {(t, y)| t ∈ S \ sS} ∪̇ sS = C.

Clearly AS = ⟨(1, x), (1, y)⟩ = (1, x)S ∪ (1, y)S = B ∪ C. Then by [16,
Proposition 2.1], B as a subact of AS is strongly torsion free, and so SS
is strongly torsion free. Hence S is right cancellative by [16, Proposition
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2.1]. But in the case of right cancellability of S, strong torsion freeness and
torsion freeness are the same. So by Theorem 4.4, every right cancellable
element of S is right invertible, hence sS = S, which is a contradiction.
Thus for every s ∈ S, sS = S and so S is a group as required.

(4)⇒ (1) It is true by [16, Theorem 6.1].

Theorem 4.12. Let S be a right cancellative monoid. Then following state-
ments are equivalent:

(1) All right S-acts are flat.

(2) All U -GPW -flat right S-acts are flat.

(3) All finitely generated U -GPW -flat right S-acts are flat.

(4) All right S-acts are weakly flat.

(5) All U -GPW -flat right S-acts are weakly flat.

(6) All finitely generated U -GPW -flat right S-acts are weakly flat.

(7) S is a group.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (6) and (1) ⇒ (4) ⇒ (5) ⇒ (6) are
obvious.

(6) ⇒ (7) Since, for right cancellative monoids, torsion freeness and
strong torsion freeness of right acts coincide, and also weak flatness im-
plies torsion freeness, thus all finitely generated U -GPW -flat right acts are
strongly torsion free, and so S is a group by Theorem 4.11.

(7)⇒ (1) This is obvious by [2, Proposition 9].

Now we consider monoids over which other properties of acts are U -
GPW -flat.

Theorem 4.13. Let S be a monoid. Then:

(1) All strongly faithful right S-acts are U -GPW -flat.

(2) All P -regular right S-acts are U -GPW -flat.

(3) All strongly P -cyclic right S-acts are U -GPW -flat.

(4) All regular right S-acts are U -GPW -flat.
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Proof. (1). Let AS be a strongly faithful right S-act. For every α ∈ AS

define the mapping ψα : αS → SS as ψα(αs) = s. It is obvious that ψα

is an isomorphism and so for every α ∈ AS , αS ∼= SS . Since SS is GPW -
flat by [15, Theorem 2.8], thus all cyclic subacts of AS are GPW -flat. But
AS = ∪α∈AS

αS, and so AS is U -GPW -flat as required.

(2). Let AS be a P -regular right S-act. By definition every cyclic subact
of AS satisfy Condition (P ). Thus for every α ∈ AS , αS is GPW -flat and
so AS = ∪α∈AS

αS is U -GPW -flat as required.

Implications (3) and (4) are obvious from (2), because every strongly
P -cyclic or regular right S-act is P -regular.

Theorem 4.14. For any monoid S the following statements are equivalent:

(1) All right S-acts are U -GPW -flat.

(2) All finitely generated right S-acts are U -GPW -flat.

(3) All cyclic right S-acts are U -GPW -flat.

(4) S is an eventually regular monoid.

Proof. (1)⇒ (2)⇒ (3) are obvious.

(3)⇔ (4) It follows by (4) of Theorem 4.2 and [15, Theorem 4.5].

(3)⇒ (1) It is clear.

Theorem 4.15. For any monoid S the following statements are equivalent:

(1) All torsion free right S-acts are U -GPW -flat.

(2) All torsion free finitely generated right S-acts are U -GPW -flat.

(3) All torsion free cyclic right S-acts are GPW -flat.

(4) S is an eventually left almost regular monoid.

Proof. Implication (1)⇒ (2) is obvious.

(2)⇒ (3) It is true by (4) of Theorem 4.2.

(3)⇒ (1) Let the right S-act AS be torsion free. It is obvious that every
subact of AS is also torsion free. Thus by the assumption, αS is GPW -flat
for every α ∈ AS . Hence AS = ∪α∈AS

αS is U -GPW -flat.

(3)⇔ (4) It is obvious by [15, Theorem 4.4].
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