Categories and General Algebraic Structures with Applications Volume 21, Number 1, July 2024, 127-152.

https://doi.org/10.48308/cgasa.21.1.127

Characterization of monoids by (U-)GPW-flatness of right acts

Hamideh Rashidi^{*}, Akbar Golchin, and Hossein Mohammadzadeh Saany

Abstract. The authors in 2020 introduced GPW-flatness and gave a characterization of monoids by this property of their right acts. In this article we continue this investigation and will give a characterization of monoids by this condition of their right Rees factor acts. Also we give a characterization of monoids by comparing this property of their right acts with other properties. We also introduce U-GPW-flatness of acts, which is an extension of GPW-flatness and give some general properties and a characterization of monoids when this property of acts implies some others and vice versa.

1 Introduction and Preliminaries

In 1970, Kilp [10] initiated the study of flatness of acts. A right S-act A_S is called *flat* if the functor $A_S \otimes_S -$ preserves all monomorphisms. In 1983, Kilp [11] further investigated the (principal) weak version of flatness under the name of (principal) weak flatness. A right S-act A_S is called (*principally*)

^{*} Corresponding author

Keywords: GPW-flat, GPW-left stabilizing, U-GPW-flat.

Mathematics Subject Classification [2020]: 20M30.

Received: 12 September 2023, Accepted: 22 January 2024.

ISSN: Print 2345-5853 Online 2345-5861.

[©] Shahid Beheshti University

weakly flat if the functor $A_S \otimes S^-$ preserves all embeddings of (principal) left ideals into S.

It was shown in [13] and [2] that, if we require either bijectivity or surjectivity of φ for pullback diagrams of certain types, we obtain new properties such as pullback flatness (*PF*), weak pullback flatness (*WPF*), Condition (*WP*), Condition (*PWP*), weakly kernel flatness (*WKF*), principally weakly kernel flatness (*PWKF*) and translation kernel flatness (*TKF*).

In [15], we introduced GPW-flatness property as a generalization of principal weak flatness, and characterized monoids by this property of their right acts in some cases.

In this article we give a characterization of monoids S for which all GPW-flat right Rees factor S-acts satisfy other flatness properties. Also we give a characterization of monoids by comparing this property of their right acts with other properties.

We also introduce U-GPW-flatness of acts, which is an extension of GPW-flatness and give some general properties. Then we give a characterization of monoids when this property of acts implies some others and vice versa.

Throughout this paper S always will stand for a monoid and \mathbb{N} the set of natural numbers. Recall that a monoid S is called *right (left) reversible* if for every $s, t \in S$, there exist $u, v \in S$ such that us = vt (su = tv). A monoid S is called *left (right) collapsible* if for every $s, t \in S$ there exists $z \in S$ such that zs = zt (sz = tz). Also a monoid S is called *regular* if for every $s \in S$, there exists $x \in S$ such that s = sxs. A right ideal K of a monoid S is called *left stabilizing* if for every $k \in K$, there exists $l \in K$ such that lk = k. A nonempty set A is called a right S-act, usually denoted A_S , if S acts on A unitary from the right, that is, there exists a mapping $A \times S \to A$; $(a, s) \mapsto as$, satisfying conditions (as)t = a(st) and a1 = a, for all $a \in A$ and all $s, t \in S$. An act A_S is called *weakly flat* if the functor $A_S \otimes_S -$ preserves all embeddings of left ideals into S, or equivalently if for every $s, t \in S, a, a' \in A_S, a \otimes s = a' \otimes t$ in $A_S \otimes S$ implies $a \otimes s = a' \otimes t$ in $A_S \otimes {}_S(Ss \mid St)$ [12, III, Lemma 11.1]. An act A_S is called *principally* weakly flat if the functor $A_S \otimes_S -$ preserves all embeddings of principal left ideals into S, or equivalently, a right S-act A_S is principally weakly flat if and only if $a \otimes s = a' \otimes s$ in $A_S \otimes {}_SS$ implies $a \otimes s = a' \otimes s$ in $A_S \otimes {}_S(Ss)$ for all $s \in S, a, a' \in A_S$ [12, III, Lemma 10.1]. A right S-act A_S is torsion free if for $a, b \in A_S$ and a right cancellable element c of S the equality ac = bcimplies that a = b. A right S-act A_S satisfies Condition (E) if for every $a \in A_S, s, t \in S, as = at$ implies that there exist $a' \in A_S, u \in S$ such that a = a'u and us = ut. A right S-act A_S satisfies Condition (P) if for every $a, a' \in A_S, s, s' \in S, as = a't$ implies that there exist $a'' \in A_S, u, v \in S$ such that a = a''u, a' = a''v and us = vt. A right S-act A_S satisfies Condition (PWP) if for every $a, a' \in A_S, s \in S, as = a's$ implies that there exist $a'' \in A_S, u, v \in S$ such that a = a''u, a' = a''v and us = vs.

Definition 1.1. [15] A right S-act A_S is called GPW-flat if for every $s \in S$, there exists a natural number $n = n(s, A_S) \in \mathbb{N}$ such that the functor $A_S \otimes_S -$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$.

Clearly, every principally weakly flat right S-act is GPW-flat, but not the converse (see [15, Example 2.2]).

Also every GPW-flat right S-act is torsion free, but not the converse (see [15, Proposition 2.5 and Example 2.6]).

We recall from [14] that a right S-act A_S is called GP-flat if the equality $a \otimes s = a' \otimes s$ in $A_S \otimes {}_SS$, for every $s \in S$ and $a, a' \in A_S$ implies that there exists a natural number $n \in \mathbb{N}$ such that $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes_S (Ss^n)$.

Clearly *GPW*-flatness implies *GP*-flatness.

Thus we have

free \Rightarrow projective \Rightarrow projective generator \Rightarrow strongly flat \Rightarrow WPF \Rightarrow condition (P) \Rightarrow flat \Rightarrow weakly flat \Rightarrow principally weakly flat \Rightarrow GPW-flat \Rightarrow GP-flat \Rightarrow torsion free.

Definition 1.2. [15] An element $s \in S$ is called *eventually regular* if s^n is regular for some $n \in \mathbb{N}$. That is, $s^n = s^n x s^n$ for some $n \in \mathbb{N}$ and $x \in S$. A monoid S is called *eventually regular* if every $s \in S$ is eventually regular.

Obviously every regular monoid is eventually regular.

Definition 1.3. [15] An element $s \in S$ is called *eventually left almost regular* if

$$s_1c_1 = s^n r_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m$$

$$s^n = s_m rs^n,$$

for some $n \in \mathbb{N}$, elements $s_1, s_2, \ldots, s_m, r, r_1, \ldots, r_m \in S$ and right cancellable elements $c_1, c_2, \ldots, c_m \in S$. If every element of a monoid S is eventually left almost regular, then S is called *eventually left almost regular*.

It is clear that every left almost regular monoid is eventually left almost regular, and also every eventually regular monoid is eventually left almost regular.

2 Characterization of monoids by GPW-flatness of acts

In [15], we characterized monoids over which all right S-acts are GPW-flat and also monoids over which some other properties imply GPW-flatness and vice versa. We showed that all right S-acts are GPW-flat if and only if S is an eventually regular monoid. Also we showed that GPW-flatness implies torsion freeness, but not the converse. Then we proved that all torsion free right S-acts are GPW-flat if and only if S is an eventually left almost regular monoid.

Now we give a characterization of monoids by comparing this property of their right acts with other properties.

Definition 2.1. Let S be a monoid and K be a proper right ideal of S. The right ideal K of a monoid S is called *GPW-left stabilizing* if for every $s \in S$ there exists $n \in \mathbb{N}$ such that $ls^n \in K$, for $l \in S \setminus K$, implies that $ls^n = ks^n$ for some $k \in K$.

It is clear that every left stabilizing right ideal of S is GPW-left stabilizing.

Remark 2.2. If for $s \in S$ there exists $n \in \mathbb{N}$ such that the right ideal $s^n S$ is *GPW*-left stabilizing, then s is eventually regular.

Proof. Let for $s \in S$ there exists $n \in \mathbb{N}$ such that the right ideal $s^n S$ be GPW-left stabilizing. Since $s^n \in s^n S$, so there exists $k \in s^n S$ such that $s^n = ks^n$. Since $k \in s^n S$, there exists $x \in S$ such that $k = s^n x$, and so s is eventually regular.

Theorem 2.3. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts are free.
- (2) All finitely generated GPW-flat right S-acts are free.
- (3) All cyclic GPW-flat right S-acts are free.
- (4) All monocyclic GPW-flat right S-acts are free.
- (5) All GPW-flat right S-acts are projective generator.
- (6) All finitely generated GPW-flat right S-acts are projective generator.
- (7) All cyclic GPW-flat right S-acts are projective generator.
- (8) All monocyclic GPW-flat right S-acts are projective generator.
- (9) All GPW-flat right S-acts are projective.
- (10) All finitely generated GPW-flat right S-acts are projective.
- (11) All GPW-flat right S-acts are strongly flat.
- (12) All finitely generated GPW-flat right S-acts are strongly flat.
- (13) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (8)$, $(1) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8)$, $(1) \Rightarrow (9) \Rightarrow (10) \Rightarrow (12)$ and $(1) \Rightarrow (11) \Rightarrow (12)$ are obvious.

 $(8) \Rightarrow (13)$ If all monocyclic *GPW*-flat right *S*-acts are projective generator, then all monocyclic right *S*-acts satisfying Condition (*P*) are projective generator and so by [12, IV, Theorem 12.8], $S = \{1\}$.

 $(12) \Rightarrow (13)$ Assume all finitely generated *GPW*-flat right *S*-acts are strongly flat. Then all finitely generated right *S*-acts satisfying Condition (*P*) are strongly flat and so *S* is aperiodic by [12, IV, Theorem 10.2]. Let $1 \neq s \in S$, then there exists $n \in \mathbb{N}$ such that $s^n = s^{n+1}$ and so $e = s^n$ is an idempotent different from 1. It is easy to see that eS is a GPWleft stabilizing right ideal and so the right S-act $S_S \coprod^{eS} S_S$ is GPW-flat by [15, Theorem 2.10]. Thus by the assumption it is strongly flat (satisfies Condition (P)), which is a contradiction [12, III, Proposition 13.14]. So $S = \{1\}$.

 $(13) \Rightarrow (1)$ This is obvious.

Lemma 2.4. If all monocyclic GPW-flat right S-acts are strongly flat, then all monocyclic right S-acts are strongly flat.

Proof. Suppose that all GPW-flat monocyclic right S-acts are strongly flat, then all monocyclic right S-acts satisfying Condition (P) are strongly flat and so S is aperiodic by [12, IV, Theorem 10.2]. Thus for every $s \in S$ there exists $n \in N$ such that s^n is an idempotent, which gives that S is eventually regular. Now by [15, Theorem 4.5], all right S-acts are GPW-flat. \Box

Theorem 2.5. For any monoid S, the following statements are equivalent:

- (1) All cyclic GPW-flat right S-acts are projective.
- (2) All monocyclic GPW-flat right S-acts are projective.
- (3) All cyclic GPW-flat right S-acts are strongly flat.
- (4) All monocyclic GPW-flat right S-acts are strongly flat.
- (5) $S = \{1\}$ or $S = \{0, 1\}$.

Proof. Implications $(1) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ By the assumption all monocyclic *GPW*-flat right *S*-acts are strongly flat, and so by Lemma 2.4, all monocyclic right *S*-acts are strongly flat. Thus by [12, IV, Proposition 10.10], $S = \{1\}$ or $S = \{0, 1\}$.

- $(2) \Leftrightarrow (4)$ It follows from [12, III, Lemma 17.13].
- $(5) \Rightarrow (1)$ It follows from [12, IV, Theorem 11.14].

Theorem 2.6. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts are generator.
- (2) All finitely generated GPW-flat right S-acts are generator.
- (3) All cyclic GPW-flat right S-acts are generator.
- (4) All GPW-flat right Rees factor S-acts are generator.

(5) $S = \{1\}$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) Since $\Theta_S \cong S/S_S$ is *GPW*-flat by [15, Proposition 2.8], thus by the assumption, $\Theta_S \cong S/S_S$ is a generator. Therefore there exists an epimorphism $\pi : \Theta_S \longrightarrow S_S$, and so $S = \{1\}$.

 $(5) \Rightarrow (1)$ Since $S = \{1\}$, all right S-acts are generators, as desired. \Box

Theorem 2.7. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts are regular.
- (2) All finitely generated GPW-flat right S-acts are regular.
- (3) All cyclic GPW-flat right S-acts are regular.

(4)
$$S = \{1\}$$
 or $S = \{0, 1\}$.

Proof. This is obvious by [5, Theorem 1.12].

Theorem 2.8. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts satisfy Condition (E).
- (2) All finitely generated GPW-flat right S-acts satisfy Condition (E).
- (3) All cyclic GPW-flat right S-acts satisfy Condition (E).
- (4) All monocyclic GPW-flat right S-acts satisfy Condition (E).
- (5) $S = \{1\}$ or $S = \{0, 1\}$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) It follows from Theorem 2.5 and [12, IV, Proposition 10.10]. (5) \Rightarrow (1) It is straightforward.

We recall from [12] that a right S-act A_S is (strongly) faithful, if for $s, t \in S$ the equality as = at, for all (some) $a \in A_S$, implies that s = t. It is obvious that every strongly faithful act is faithful.

Theorem 2.9. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts are (strongly) faithful.
- (2) All finitely generated GPW-flat right S-acts are (strongly) faithful.

- (3) All cyclic GPW-flat right S-acts are (strongly) faithful.
- (4) All GPW-flat right Rees factor S-acts are (strongly) faithful.
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) By [15, Proposition 2.8], the one-element right S-act $\Theta_S \cong S/S_S$ is *GPW*-flat, and so by the assumption it is (strongly) faithful. Thus $S = \{1\}$, as required.

 $(5) \Rightarrow (1)$ This is obvious.

We recall from [12] that a right S-act A_S is called simple if it contains no subacts other than A_S itself, and A_S is called completely reducible if it is a disjoint union of simple subacts.

Theorem 2.10. For any monoid S, the following statements are equivalent:

- (1) All GPW-flat right S-acts are completely reducible
- (2) All finitely generated GPW-flat right S-acts are completely reducible.
- (3) All cyclic GPW-flat right S-acts are completely reducible.
- (4) All monocyclic GPW-flat right S-acts are completely reducible.
- (5) S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) By [15, Proposition 2.8], $S_S \cong S/\rho(1,1)$ is *GPW*-flat as a monocyclic right *S*-act, and so by the assumption S_S is completely reducible. Thus *S* is a group by [12, I, Lemma 5.33].

 $(5) \Rightarrow (1)$ It follows from [12, I, Proposition 5.34].

We recall from [17] that a right S-act A_S is \mathcal{R} -torsion free if ac = a'cand $a\mathcal{R}a'$, for $a, a' \in A_S$, $c \in S$, c right cancellable, imply that a = a'.

Theorem 2.11. For any monoid S, the following statements are equivalent:

- (1) All \mathcal{R} -torsion free right S-acts are GPW-flat.
- (2) S is eventually regular.

Proof. It follows from [15, Theorem 4.5] and [17, Lemma 4.1].

Example 2.12. Let $S = (\mathbb{N}, .)$ be the monoid of natural numbers with multiplication and let $A_S = S_S \coprod^{S \setminus \{1\}} S_S$. Since there exist no $x \in S \setminus \{1\}, n \in \mathbb{N}$ such that $2^n = x2^n$, A_S is not *GPW*-flat by [15, Theorem 2.10]. But A_S satisfies Condition (*E*) by [12, III, Exercise 14.3(3)]. Thus it is natural to ask for monoids over which Condition (*E*) implies *GPW*-flatness.

Recall from [6,7,13] that a right S-act A_S satisfies Condition (E') if for all $a \in A_S$, $s, s', z \in S$, as = as' and sz = s'z imply that there exist $a' \in A_S$ and $u \in S$ such that a = a'u and us = us'. A right S-act A_S satisfies Condition (EP) if for all $a \in A_S$, $s, t \in S$, as = at implies that there exist $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt. A right S-act A_S satisfies Condition (E'P) if for all $a \in A_S$, $s, t, z \in S$, as = at and sz = tzimply that there exist $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt. It is obvious that $(E) \Rightarrow (EP) \Rightarrow (E'P)$ and $(E) \Rightarrow (E') \Rightarrow (E'P)$.

Theorem 2.13. For any monoid S, the following statements are equivalent:

- (1) All right S-acts satisfying Condition (E'P) are GPW-flat.
- (2) All right S-acts satisfying Condition (EP) are GPW-flat.
- (3) All right S-acts satisfying Condition (E') are GPW-flat.
- (4) All right S-acts satisfying Condition (E) are GPW-flat.
- (5) S is eventually regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (4)$ and $(1) \Rightarrow (3) \Rightarrow (4)$ are obvious because $(E) \Rightarrow (EP) \Rightarrow (E'P)$ and $(E) \Rightarrow (E') \Rightarrow (E'P)$.

 $(4) \Rightarrow (5)$ Let $s \in S$. Since S_S is GPW-flat by [15, Proposition 2.8], there exists a natural number $n \in \mathbb{N}$ such that the functor $S_S \otimes_{S^-}$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$. If $s^nS = S$, then there exists $x \in S$ such that $s^nx = 1$, and so $s^nxs^n = s^n$. Thus s is an eventually regular element. Now assume that $s^nS \neq S$. Consider $A_S = S \coprod s^{n}S S$. Then by [12, III, Exercise 14.3(3)], A_S satisfies Condition (E) and by the assumption it is GPW-flat. Now by [15, Theorem 2.10], the right ideal s^nS is GPW-left stabilizing and so s is eventually regular by Remark 2.2.

 $(5) \Rightarrow (1)$ This is obvious, by [15, Theorem 4.5].

Note that above theorem is also true for finitely generated (at most (exactly) by two elements) right S-acts.

An element $s \in S$ is right semi-cancellable if the equality xs = ys for any $x, y \in S$ implies that there exists $r \in S$ such that rs = s and xr = yr. A monoid S is called *left PSF* if every element $s \in S$ is right semi-cancellable.

Theorem 2.14. Let S be a left PSF monoid. Then the following statements are equivalent:

- (1) All divisible right S-acts are GPW-flat.
- (2) All principally weakly injective right S-acts are GPW-flat.
- (3) All fg-weakly injective right S-acts are GPW-flat.
- (4) All weakly injective right S-acts are GPW-flat.
- (5) All injective right S-acts are GPW-flat.
- (6) All cofree right S-acts are GPW-flat.
- (7) S is eventually regular.

Proof. Since Cofree \Rightarrow Injective \Rightarrow weakly injective \Rightarrow finitely generated weakly injective \Rightarrow principally weakly injective \Rightarrow divisible, implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are obtained immediately.

 $(6) \Rightarrow (7)$ We know that every right S-act can be embedded into a corfree right S-act. So by the assumption, every right S-act is a subact of a *GPW*-flat right S-act. Since S is left PSF, every subact of a *GPW*-flat right S-act is *GPW*-flat (see [15, Proposition 2.12]). Therfore all right S-acts are *GPW*-flat and so by [15, Theorem 4.5], S is eventually regular.

 $(7) \Rightarrow (1)$ It follows from [15, Theorem 4.5].

Theorem 2.15. For any monoid S, the following statements are equivalent:

- (1) All faithful right S-acts are GPW-flat.
- (2) All finitely generated faithful right S-acts are GPW-flat.
- (3) All faithful right S-acts generated by two elements are GPW-flat.
- (4) S is eventually regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ Let $s \in S$. Since S_S is GPW-flat by [15, Proposition 2.8], there exists a natural number $n \in \mathbb{N}$ such that the functor $S_S \otimes_S -$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$. If $s^n S = S$, then there exists $x \in S$ such that $s^n x = 1$, and so $s^n x s^n = s^n$. Thus s is an eventually regular element. Now assume that $I = s^n S \neq S$. Consider $A_S = S \coprod^{s^n S} S$. As we know A_S is a faithful right S-act generated by two elements, and so by the assumption it is GPW-flat. Thus $s^n S$ is GPW-left stabilizing by [15, Theorem 2.10], and so s is eventually regular by Remark 2.2.

 $(4) \Rightarrow (1)$ This is obvious, by [15, Theorem 4.5].

Theorem 2.16. For any monoid S, the following statements are equivalent:

- (1) All strongly faithful right S-acts are GPW-flat.
- (2) All finitely generated strongly faithful right S-acts are GPW-flat.
- (3) All strongly faithful right S-acts generated by two elements are GPWflat.
- (4) S is not left cancellative or S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) Let S be a left cancellative monoid and $s \in S$. Since S_S is GPW-flat, there exists a natural number $n \in \mathbb{N}$ such that the functor $S_S \otimes_S -$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$. If $s^n S = S$, then there exists $x \in S$ such that $s^n x = 1$, and so $s^n x s^n = s^n$. Thus s is an eventually regular element.

Now assume that $I = s^n S \neq S$. Set

$$A_S = S \amalg^{s^n S} S = \{(l, x) \mid l \in S \setminus s^n S\} \stackrel{.}{\cup} s^n S \stackrel{.}{\cup} \{(t, y) \mid t \in S \setminus s^n S\}.$$

Clearly

$$B_S = \{(l,x) \mid l \in S \setminus s^n S\} \stackrel{.}{\cup} s^n S \cong S_S \cong \{(t,y) \mid t \in S \setminus s^n S\} \stackrel{.}{\cup} s^n S = C_S.$$

Since $A_S = B \bigcup C$, so A_S is generated by different two elements (1, x) and (1, y) and also $B_S \cong S_S \cong C_S$ and $A_S = B_S \bigcup C_S$, where B_S and C_S are subacts of A_S . Since S is left cancellative, so by [1, Lemma 2.10], S_S is strongly faithful. Hence by above isomorphism subacts B_S and C_S of A_S are strongly faithful. Therefore the equality $A_S = B_S \bigcup C_S$ implies that A_S is strongly faithful and so A_S is GPW-flat by the assumption. Thus $s^n S$ is GPW-left stabilizing by [15, Theorem 2.10], and so s is eventually regular by Remark 2.2.

Hence in two cases, s is eventually regular. Now since by the assumption S is left cancellative, so s is left invertible and we can say that every $s \in S$ is left invertible. Thus S is a group.

 $(4) \Rightarrow (1)$ If S is not left cancellative, then there exists no strongly faithful right S-act, by [1, Lemma 2.10]. Thus (1) is satisfied. If S is left cancellative, then there exists at least a strongly faithful right S-act, by [1, Lemma 2.10]. Since S is a group, it is eventually regular and so (1) is satisfied, by [15, Theorem 4.5].

We recall from [12] that an S-act A_S is called decomposable if there exist two subacts $B_S, C_S \subseteq A_S$ such that $A_S = B_S \cup C_S$ and $B_S \cap C_S = \emptyset$.

Theorem 2.17. For any monoid S, the following statements are equivalent:

- (1) All indecomposable right S-acts are GPW-flat.
- (2) All finitely generated indecomposable right S-acts are GPW-flat.
- (3) All indecomposable right S-acts generated by two elements are GPWflat.
- (4) S is eventually regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ By a similar argument which used in the proof $(3) \Rightarrow (4)$ of Proposition 2.16, we can conclude that S is eventually regular

 $(4) \Rightarrow (1)$ It follows from [15, Theorem 4.5].

3 Characterization of monoids by *GPW*-flatness property of right Rees factor *S*-acts

In this section we give a characterization of monoids by GPW-flatness property of their right Rees factor acts.

Lemma 3.1. Let S be a monoid and K be a proper right ideal of S. Then S/K is GPW-flat if and only if K is GPW-left stabilizing.

Proof. This is obvious by [15, Theorem 3.3].

Definition 3.2. Let S be a monoid. The right ideal K of a monoid S is called *GP*-left stabilizing if $ls \in K$ for $l \in S \setminus K$ and $s \in S$, implies that there exists $n \in \mathbb{N}$ such that $ls^n = ks^n$ for some $k \in K$.

Lemma 3.3. Let S be a monoid and K be a proper right ideal of S. Then S/K is GP-flat if and only if K is a GP-left stabilizing right ideal.

Proof. This is obvious by [14, Proposition 2.7].

Theorem 3.4. Let S be a monoid. Then all GP-flat right Rees factors of S are GPW-flat if and only if every GP-left stabilizing right ideal of S is GPW-left stabilizing.

Proof. Suppose that all GP-flat right Rees factor S-acts are GPW-flat and let K be a GP-left stabilizing right ideal of S. Then by Lemma 3.3, S/K is GP-flat, and so by the assumption S/K is GPW-flat. Hence by Lemma 3.1, K is GPW-left stabilizing.

Conversely, suppose that for the right ideal K of S, S/K is GP-flat. Then there are two cases as follows:

Case 1. K = S. Then $S/K \cong \Theta_S$ is *GPW*-flat by [15, Proposition 2.8]. **Case 2.** $K \neq S$. Then by Lemma 3.3, K is *GP*-left stabilizing, and so by the assumption K is *GPW*-left stabilizing. Thus S/K is *GPW*-flat by Lemma 3.1.

The proofs of the following theorems are similar to Theorem 3.4.

Theorem 3.5. Let S be a monoid. Then all GPW-flat right Rees factors of S are principally weakly flat if and only if every GPW-left stabilizing right ideal of S is left stabilizing.

Theorem 3.6. Let S be a monoid. Then all GPW-flat right Rees factors of S are (weakly) flat if and only if S is right reversible and the existence of a GPW-left stabilizing proper right ideal K of S implies that K is a left stabilizing ideal.

Recall from [13] that a right ideal K of a monoid S is called *left annihilating* if

$$(\forall t \in S)(\forall x, y \in S \setminus K)(xt, yt \in K \Rightarrow xt = yt).$$

Theorem 3.7. Let S be a monoid. Then all GPW-flat right Rees factors of S satisfy Condition (PWP) if and only if every GPW-left stabilizing right ideal of S is left annihilating and left stabilizing.

Proof. This is obvious by Lemma 3.1 and [13, Lemma 2.8].

Recall from [13] that a right S-act A_S satisfies Condition (WP) if af(s) = a'f(t), for $a, a' \in A_S, s, t \in S$, and homomorphism $f: {}_S(Ss \cup St) \to {}_SS$, implies that there exist $a'' \in A_S, u, v \in S$ and $s', t' \in \{s, t\}$ such that $f(us') = f(vt'), a \otimes s = a'' \otimes us'$ and $a' \otimes t = a'' \otimes vt'$ in $A_S \otimes {}_S(Ss \cup St)$. Also, we recall from [13] that a right ideal K of a monoid S is called strongly left annihilating if $f(s), f(t) \in K, s, t \in S \setminus K$ and homomorphism $f: {}_S(Ss \cup St) \to {}_SS$ imply that f(s) = f(t).

From Lemma 3.1 and [13, Lemma 2.13], we have the following theorem.

Theorem 3.8. Let S be a monoid. Then all GPW-flat right Rees factors of S satisfy Condition (WP) if and only if S is right reversible and every GPW-left stabilizing right ideal of S is strongly left annihilating and left stabilizing.

Theorem 3.9. Let S be a monoid. Then all GPW-flat right Rees factors of S satisfy Condition (P) if and only if S is right reversible and there is no GPW-left stabilizing proper right ideal K of S with $|K| \ge 2$.

Proof. Necessity. Suppose that all GPW-flat right Rees factor S-acts satisfy Condition (P) and let K be a GPW-left stabilizing proper right ideal of S. Then by Lemma 3.1, S/K is GPW-flat, and so by the assumption S/K satisfies Condition (P). Hence by [12, III, Proposition 13.9], |K| = 1. Since $\Theta_S \cong \frac{S}{S_S}$ is GPW-flat, it satisfies Condition (P) by the assumption, and so S is right reversible by [12, III, Corollary 13.7].

Sufficiency. Suppose that S/K is GPW-flat, for the right ideal K of S. Then there are two cases:

Case 1. K = S. Since S is right reversible and $S/K \cong \Theta_S$, S/K satisfies Condition (P) by [12, III, Corollary 13.7].

Case 2. $K \neq S$. Then by Lemma 3.1, K is *GPW*-left stabilizing. Thus by the assumption |K| = 1. Thus S/K satisfies Condition (*P*) by [12, III, Proposition 13.9].

Recall from [13] that a right S-act A_S is weakly pullback flat if and only if it satisfies Conditions (P) and (E'). Also we recall that a monoid S is weakly left collapsible if for every $s, t, z \in S$, the equality sz = tz, implies the existence of $u \in S$, such that us = ut.

The proof of following theorems are similar in nature as to that of Theorem 3.9.

Theorem 3.10. Let S be a monoid. Then all GPW-flat right Rees factors of S are weakly pullback flat if and only if S is weakly left collapsible and right reversible, and there exist no GPW-left stabilizing proper right ideal K of S with $|K| \ge 2$.

Theorem 3.11. Let S be a monoid. Then all GPW-flat right Rees factors of S are strongly flat if and only if S is left collapsible and there exist no GPW-left stabilizing proper right ideal K of S with $|K| \ge 2$.

Theorem 3.12. Let S be a monoid. Then all GPW-flat right Rees factors of S are projective if and only if S contains a left zero, and there exist no GPW-left stabilizing proper right ideal K of S with $|K| \ge 2$.

Theorem 3.13. All GPW-flat right Rees factors of S are free if and only if $S = \{1\}$.

Proof. This is obvious by [12, IV, Theorem 13.9].

Recall from [4] that a right S-act A_S satisfies Condition (P_E) if whenever $a, a' \in A, s, s' \in S$, and as = a's', there exist $a'' \in A$ and $u, v, e^2 = e, f^2 = f \in S$ such that ae = a''ue, a'f = a''vf, es = s, fs' = s' and us = vs'. A right ideal K of a monoid S is called (P_E) - left annihilating if for all $x, y, t, t' \in S$,

$$(xt \neq yt') \Rightarrow [(x \in K) \lor (y \in K) \lor (xt \notin K) \lor (yt' \notin K) \lor (\exists u, v \in S, e, f \in E(S), et = t, ft' = t', ut = vt' \\ xe \neq ue \Rightarrow ue, xe \in K, yf \neq vf \Rightarrow yf, vf \in K)]$$

It is clear that every right S-act satisfying Condition (P_E) is GPW-flat, but not the converse.

Theorem 3.14. Let S be a monoid. Then all GPW-flat right Rees factors of S satisfy Condition (P_E) if and only if S is right reversible and every GPW-left stabilizing right ideal of S is (P_E) -left annihilating.

Proof. This is obvious by Lemma 3.1 and [4, Theorem 3.5]. \Box

Recall from [3] that a right S-act A_S satisfies Condition (PWP_E) if whenever $a, a' \in A, s \in S$, and as = a's, there exist $a'' \in A$ and $u, v, e^2 = e, f^2 = f \in S$ such that ae = a''ue, a'f = a''vf, es = s = fs and us = vs. A right ideal K of a monoid S is called (E)-left annihilating, if for all $x, y, t, \in S$,

$$(xt \neq yt) \Rightarrow [(x \in K) \lor (y \in K) \lor (xt \notin K) \lor (yt \notin K) \lor (\exists u, v \in S, e, f \in E(S), et = t = ft, ut = vt) \\ (xe \neq ue) \Rightarrow ue, xe \in K, yf \neq vf \Rightarrow yf, vf \in K)]$$

It is clear that every right S-act satisfying Condition (PWP_E) is GPW-flat, but not the converse.

Theorem 3.15. Let S be a monoid. Then all GPW-flat right Rees factors of S satisfy Condition (PWP_E) if and only if every GPW-left stabilizing right ideal of S is left stabilizing and (E)-left annihilating.

Proof. This is obvious by Lemma 3.1 and [3, Theorem 4.2].

Recall from [9] that a right S-act A_S is called strongly (P)-cyclic if for every $a \in A_S$ there exists $z \in S$ such that $ker\lambda_a = ker\lambda_z$ and zS satisfies Condition (P). Because freeness does not imply strong (P)-cyclic property, so GPW-flatness does not imply strong (P)-cyclic.

Theorem 3.16. Let S be a monoid. Then all GPW-flat right Rees factors of S are strongly (P)-cyclic if and only if S contains a left zero, there is no GPW-left stabilizing proper right ideal K_S of S with $|K_S| \ge 2$ and every principal right ideal of S satisfies Condition (P).

Proof. This is obvious by Lemma 3.1 and [9, Theorem3.1].

Recall from [8] that a right S-act A_S is called P-regular if all cyclic subacts of A_S satisfy Condition (P). We know that a right S-act A_S is regular if every cyclic subact of A_S is projective. It is obvious that every regular right act is P-regular **Lemma 3.17.** [8] Θ_S is *P*-regular if and only if *S* is right reversible.

Theorem 3.18. For any monoid S the following statements are equivalent:

- 1) All GPW-flat right Rees factors of S are P-regular.
- 2) S is right reversible, no proper right ideal K_S of S with $|K_S| \ge 2$ is GPW-left stabilizing and all principal right ideals of S satisfy Condition (P).

Proof. This is obvious by Lemma 3.17 and [8, Theorem 3.1]. \Box

4 Characterization of monoids by U-GPW-flatness of right acts

In this section, we introduce property *U-GPW*-flatness of acts and give some general properties. Then we give a characterization of monoids when this property of acts implies some others.

Definition 4.1. Let S be a monoid. A right S-act A_S is U-GPW-flat if there exists a family $\{B_i \mid i \in I\}$ of subacts of A_S such that $A = \bigcup_{i \in I} B_i$ and B_i , $i \in I$ is GPW-flat.

Theorem 4.2. Let S be a monoid. Then

- (1) Every GPW-flat right S-act is U-GPW-flat.
- (2) If $\{B_i \mid i \in I\}$ is a family of subacts of a right S-act A_S such that for every $i \in I$, B_i is U-GPW-flat, then $\cup_{i \in I} B_i$ is U-GPW-flat.
- (3) A right S-act A_S is U-GPW-flat if and only if for every $a \in A_S$ there exists a subact B of A_S such that $a \in B$ and B is GPW-flat.
- (4) Every cyclic right S-act A_S is GPW-flat if and only if A_S is U-GPW-flat.
- (5) For every proper right ideal I of S, $A_S = S \coprod^I S$ is U-GPW-flat, where it is indecomposable and is generated by exactly two elements, but it is not locally cyclic.

Proof. The proofs of (1), (2), (3) and (4) are straightforward. (5) Let I be a proper right ideal of S and let

$$A_S = S \coprod^I S = \{(l, x) | l \in S \setminus I\} \dot{\cup} I \dot{\cup} \{(t, y) | t \in S \setminus I\},$$
$$B = \{(l, x) | l \in S \setminus I\} \dot{\cup} I, \quad C = \{(t, y) | t \in S \setminus I\} \dot{\cup} I.$$

It is easy to show that B and C are cyclic subacts of A_S such that

$$B = (1, x)S \cong S_S \cong (1, y)S = C,$$

$$A_S = \langle (1, x), (1, y) \rangle = (1, x) S \cup (1, y) S = B \cup C.$$

Now, since S_S is *GPW*-flat, subacts *B* and *C* are *GPW*-flat too, and so $A_S = B \cup C$ is U-GPW-flat.

Also since

$$A_S = (1, x)S \cup (1, y)S, \ (1, x)S \cap (1, y)S = I$$

it is easy to show that A_S is indecomposable, but it is not locally cyclic.

We know that *GPW*-flatness implies torsion freeness, but the following example shows that U-GPW-flatness of acts does not imply torsion freeness in general.

Example 4.3. Let $(\mathbb{N}, .)$ be the monoid of natural numbers under multiplication, and consider $A_S = \mathbb{N} \prod^{2\mathbb{N}} \mathbb{N}$. Then A_S is U-GPW-flat by Theorem 4.2. But $(1, x) \neq (1, y)$ and $(\overline{1}, x)^2 = 2 = (1, y)^2$ and so A_S is not torsion free.

Using the above example we can also show that for a commutative monoid S, there exists an indecomposable right S-act A_S generated by exactly two elements, such that A_S is U-GPW-flat, but it is neither locally cyclic nor torsion free.

Now it is natural to ask for monoids over which U-GPW-flatness of acts implies torsion freeness and other properties. In the following we answer these questions.

Theorem 4.4. For any monoid S the following statements are equivalent:

(1) All right S-acts are torsion free.

- (2) All U-GPW-flat right S-acts are torsion free.
- (3) All finitely generated U-GPW-flat right S-acts are torsion free.
- (4) All indecomposable right S-acts which are U-GPW-flat are torsion free.
- (5) All finitely generated indecomposable right S-acts which are U-GPWflat are torsion free.
- (6) All right cancellable elements of S are right invertible.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$, $(1) \Rightarrow (4) \Rightarrow (5)$ and $(3) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$ Let $c \in S$ be a right cancellable element such that $cS \neq S$ and consider $A_S = S \coprod^{cS} S$. Obviously, A_S is indecomposable which is generated by two elements (1, x) and (1, y). So A_S is *U-GPW*-flat by Theorem 4.2 and so by the assumption it is torsion free. Hence the equality (1, x)c = c = (1, y)c implies (1, x) = (1, y), which is a contradiction. Thus cS = S and so c is right invertible as required.

 $(6) \Rightarrow (1)$ It is obvious by [12, IV, Theorem 6.1].

Theorem 4.5. For any monoid S the following statements are equivalent:

- (1) All U-GPW-flat right S-acts are WPF.
- (2) All U-GPW-flat right S-acts are WKF.
- (3) All U-GPW-flat right S-acts are PWKF.
- (4) All U-GPW-flat right S-acts are TKF.
- (5) All U-GPW-flat right S-acts satisfy Condition (P).
- (6) All U-GPW-flat right S-acts satisfy Condition (WP).
- (7) All U-GPW-flat right S-acts satisfy Condition (PWP).
- (8) S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (7)$ and $(1) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ are obvious.

 $(7) \Rightarrow (8)$ Suppose for $s \in S$, $sS \neq S$. Consider $A_S = S \coprod^{sS} S$. By Theorem 4.2, A_S is U-GPW-flat and so by the assumption A_S satisfies Condition (PWP). Thus the equality (1, x)s = (1, y)s implies that there

exist $a \in A_S$ and $u, v \in S$ such that (1, x) = au, (1, y) = av and us = vs. Then the equalities (1, x) = au and (1, y) = av imply respectively that there exist $l, l' \in S \setminus I$ such that a = (l, x) and a = (l', y), a contradiction. Thus sS = S and so S is a group as required.

 $(8) \Rightarrow (1)$ This is obvious by [2, Proposition 9].

Theorem 4.6. For any monoid S the following statements are equivalent:

- (1) All U-GPW-flat right S-acts are free.
- (2) All U-GPW-flat right S-acts are projective generator.

(3) All U-GPW-flat right S-acts are projective.

- (4) All U-GPW-flat right S-acts are strongly flat.
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

 $(4) \Rightarrow (5)$ By the assumption, all *U*-*GPW*-flat right *S*-acts are *WPF* and so *S* is a group by Theorem 4.5. Thus all right *S*-acts satisfy Condition (*PWP*) by [2, Proposition 9] and so all right *S*-acts are *GPW*-flat, thus they are *U*-*GPW*-flat. Hence by the assumption all right *S*-acts are strongly flat and so $S = \{1\}$ by [12, IV, Theorem 10.5].

Theorem 4.7. For any monoid S the following statements are equivalent:

- (1) All right S-acts are principally weakly flat.
- (2) All U-GPW-flat right S-acts are principally weakly flat.
- (3) All finitely generated U-GPW-flat right S-acts are principally weakly flat.
- (4) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) Let $s \in S$. If sS = S, then it is obvious that s is regular. Thus we suppose that $sS \neq S$ and let $A_S = S \coprod^{sS} S$. By Theorem 4.2, A_S is *U*-*GPW*-flat, and so by the assumption A_S is principally weakly flat. Thus by [12, III, Proposition 12.19], sS is left stabilizing, and so there exists $l \in sS$ such that s = ls. Hence there exists $x \in S$ such that l = sx, and so s = ls = sxs, that is, S is regular.

 $(4) \Rightarrow (1)$ This is obvious by [12, IV, Theorem 6.6]

Recall from [14] that a monoid S is said to be generally regular if for every $s \in S$, there exist $x \in S, n \in \mathbb{N}$ such that $s^n = sxs^n$.

Theorem 4.8. For any monoid S the following statements are equivalent:

- (1) All right S-acts are GP-flat.
- (2) All U-GPW-flat right S-acts are GP-flat.
- (3) All finitely generated U-GPW-flat right S-acts are GP-flat.
- (4) S is generally regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) Let $s \in S$. If sS = S, then it is obvious that s is generally regular. Thus we suppose that $sS \neq S$ and let $A_S = S \coprod^{sS} S$. By Theorem 4.2, A_S is *U-GPW*-flat, and so by the assumption A_S is *GP*-flat. Thus by [14, Lemma 2.4], for $s \in sS$ there exist $n \in \mathbb{N}$ and $j \in sS$ such that $s^n = js^n$. Hence there exists $x \in S$ such that j = sx, that is, $s^n = sxs^n$.

 $(4) \Rightarrow (1)$ Since S is generally regular, by [14, Theorem 3.4], all right S-acts are GP-flat.

We recall from [12] that a right S-act A_S is *divisible* if for every element $a \in A_S$ and any left cancellable element $c \in S$ there exists $b \in A_S$ such that a = bc.

Theorem 4.9. For any monoid S the following statements are equivalent:

- (1) All right S-acts are divisible.
- (2) All U-GPW-flat right S-acts are divisible.
- (3) All left cancellable elements of S are left invertible.

Proof. Implication $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$ Since S_S is *U-GPW*-flat, so by the assumption it is divisible. Hence all left cancellable elements of *S* are left invertible by [12, III, Proposition 2.2].

 $(3) \Rightarrow (1)$ It is true by [12, III, Proposition 2.2].

Clearly for a non-trivial monoid S, Θ_S is U-GPW-flat but it is not faithful, because |S| > 1. Thus U-GPW-flatness of acts does not imply faithfulness in general.

Theorem 4.10. For any monoid S the following statements are equivalent:

- (1) All right S-acts are (strongly)faithful.
- (2) All U-GPW-flat right S-acts are (strongly)faithful.
- (3) All U-GPW-flat finitely generated right S-acts are (strongly)faithful.
- (4) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) For any monoid S, $A_S = \Theta_1 \cup \Theta_2$ is a *U-GPW*-flat finitely generated right S-act and so by the assumption A_S is (strongly)faithful. If $S \neq \{1\}$ then there exist $s, t \in S$ such that $s \neq t$. But it is obvious that for any $a \in A_S$, as = at which is a contradiction. Thus $S = \{1\}$ as required. (4) \Rightarrow (1) It is obvious.

Recall from [16] that a right S-act A_S is called *strongly torsion free* if the equality as = a's, for $a, a' \in A_S$ and $s \in S$ implies a = a'. It is clear that every strongly torsion free right S-act is *GPW*-flat, but not the converse.

Theorem 4.11. For any monoid S the following statements are equivalent:

- (1) All right S-acts are strongly torsion free.
- (2) All U-GPW-flat right S-acts are strongly torsion free.
- (3) All U-GPW-flat finitely generated right S-acts are strongly torsion free.
- (4) S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (4) Let $s \in S$ be such that $sS \neq S$ and suppose $A_S = S \coprod^{sS} S$. By Theorem 4.2, A_S is *U*-*GPW*-flat and so by the assumption A_S is strongly torsion free.

Now let

$$B = \{(l, x) \mid l \in S \setminus sS\} \stackrel{.}{\cup} sS \cong S_S \cong \{(t, y) \mid t \in S \setminus sS\} \stackrel{.}{\cup} sS = C.$$

Clearly $A_S = \langle (1, x), (1, y) \rangle = (1, x)S \cup (1, y)S = B \cup C$. Then by [16, Proposition 2.1], B as a subact of A_S is strongly torsion free, and so S_S is strongly torsion free. Hence S is right cancellative by [16, Proposition 2.1]. But in the case of right cancellability of S, strong torsion freeness and torsion freeness are the same. So by Theorem 4.4, every right cancellable element of S is right invertible, hence sS = S, which is a contradiction. Thus for every $s \in S$, sS = S and so S is a group as required.

 $(4) \Rightarrow (1)$ It is true by [16, Theorem 6.1].

Theorem 4.12. Let S be a right cancellative monoid. Then following statements are equivalent:

- (1) All right S-acts are flat.
- (2) All U-GPW-flat right S-acts are flat.
- (3) All finitely generated U-GPW-flat right S-acts are flat.
- (4) All right S-acts are weakly flat.
- (5) All U-GPW-flat right S-acts are weakly flat.
- (6) All finitely generated U-GPW-flat right S-acts are weakly flat.
- (7) S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6)$ and $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are obvious.

 $(6) \Rightarrow (7)$ Since, for right cancellative monoids, torsion freeness and strong torsion freeness of right acts coincide, and also weak flatness implies torsion freeness, thus all finitely generated *U*-*GPW*-flat right acts are strongly torsion free, and so *S* is a group by Theorem 4.11.

 $(7) \Rightarrow (1)$ This is obvious by [2, Proposition 9].

Now we consider monoids over which other properties of acts are U-GPW-flat.

Theorem 4.13. Let S be a monoid. Then:

- (1) All strongly faithful right S-acts are U-GPW-flat.
- (2) All P-regular right S-acts are U-GPW-flat.
- (3) All strongly P-cyclic right S-acts are U-GPW-flat.
- (4) All regular right S-acts are U-GPW-flat.

Proof. (1). Let A_S be a strongly faithful right *S*-act. For every $\alpha \in A_S$ define the mapping $\psi_{\alpha} : \alpha S \to S_S$ as $\psi_{\alpha}(\alpha s) = s$. It is obvious that ψ_{α} is an isomorphism and so for every $\alpha \in A_S$, $\alpha S \cong S_S$. Since S_S is *GPW*-flat by [15, Theorem 2.8], thus all cyclic subacts of A_S are *GPW*-flat. But $A_S = \bigcup_{\alpha \in A_S} \alpha S$, and so A_S is *U*-*GPW*-flat as required.

(2). Let A_S be a *P*-regular right *S*-act. By definition every cyclic subact of A_S satisfy Condition (*P*). Thus for every $\alpha \in A_S$, αS is *GPW*-flat and so $A_S = \bigcup_{\alpha \in A_S} \alpha S$ is *U*-*GPW*-flat as required.

Implications (3) and (4) are obvious from (2), because every strongly P-cyclic or regular right S-act is P-regular.

Theorem 4.14. For any monoid S the following statements are equivalent:

- (1) All right S-acts are U-GPW-flat.
- (2) All finitely generated right S-acts are U-GPW-flat.
- (3) All cyclic right S-acts are U-GPW-flat.
- (4) S is an eventually regular monoid.
- *Proof.* $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious. (3) \Leftrightarrow (4) It follows by (4) of Theorem 4.2 and [15, Theorem 4.5]. (3) \Rightarrow (1) It is clear.

Theorem 4.15. For any monoid S the following statements are equivalent:

- (1) All torsion free right S-acts are U-GPW-flat.
- (2) All torsion free finitely generated right S-acts are U-GPW-flat.
- (3) All torsion free cyclic right S-acts are GPW-flat.
- (4) S is an eventually left almost regular monoid.

Proof. Implication $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$ It is true by (4) of Theorem 4.2.

 $(3) \Rightarrow (1)$ Let the right S-act A_S be torsion free. It is obvious that every subact of A_S is also torsion free. Thus by the assumption, αS is GPW-flat for every $\alpha \in A_S$. Hence $A_S = \bigcup_{\alpha \in A_S} \alpha S$ is U-GPW-flat.

 $(3) \Leftrightarrow (4)$ It is obvious by [15, Theorem 4.4].

References

- Arabtash, M., Golchin, A., and Mohammadzadeh, H., On Condition (G PWP), Categ. Gen. Algebr. Struct. Appl. 5(1) (2016), 55-84.
- [2] Bulman-Fleming, S., Kilp, M., and Laan, V., Pullbacks and flatness properties of acts II, Comm. Algebra 29(2) (2001), 851-878.
- [3] Golchin, A. and Mohammadzadeh, H., On Condition (PWP_E) , Southeast Asian Bull. Math. 33 (2009), 245-256.
- [4] Golchin, A. and Mohammadzadeh, H., On homological classification of monoids by Condition (P_E) of right acts, Ital. J. Pure Appl. Math. 25 (2009), 175-186.
- [5] Golchin, A. and Mohammadzadeh, H., On regularity of Acts, J. Sci. I. R. Iran 19(4) (2008), 339-345.
- [6] Golchin, A. and Mohammadzadeh, H., On Condition (EP), Int. Math. Forum 2(19) (2007), 911-918.
- [7] Golchin, A. and Mohammadzadeh, H., On Condition (E'P), J. Sci. I. R. Iran 17(4) (2006), 343-349.
- [8] Golchin, A., Mohammadzade, H., and Rezaei, P., On P-regularity of acts, Adv. Pure Math. 2(02) (2012), 104-108.
- Golchin, A., Rezaei, P., and Mohammadzadeh, H., On Strongly (P)-cyclic acts, Czechoslov. Math. J. 59(314) (2009), 595-611.
- [10] Kilp, M., On flat acts (Russian), Tatru UL. Toimetisted 253 (1970), 66-72.
- [11] Kilp, M., Characterization of monoids by properties of their left Rees factors, Tatru UL. Toimetisted, 640 (1983), 29-37.
- [12] Kilp, M., Knauer, U., and Mikhalev, A., "Monoids, Acts and Categories with Application to Wreath Products and Graphs", A Handbook for Students and Researchers, Walter de Gruyter, 2000.
- [13] Laan, V., Pullbacks and flatness properties of acts, Ph.D. Thesis, Tartu, 1999.
- [14] Qiao, H. and Wei, Ch., On a generalization of principal weak flatness property, Semigroup Forum 85(2) (2012), 147-159.
- [15] Rashidi, H., Golchin, A., and Mohammadzadeh Saany, H., On GPW-flat acts, Categ. Gen. Algebr. Struct. Appl. 12(1) (2020), 175-197.
- [16] Zare, A., Golchin, A., and Mohammadzadeh, H., Strongly torsion free acts over monoids, Asian-Eur. J. Math. 6(3) (2013), 1350049 (22pages).

 [17] Zare, A., Golchin, A., and Mohammadzadeh, H., *R-torsion free acts over monoids*, J. Sci. I. R. Iran 24(3) (2013), 275–286.

Hamideh Rashidi Department of Mathematics, Faculty of Science, University of Jiroft, Jiroft, Iran.

 $Email:\ rashidi.hamidehh@gmail.com$

Akbar Golchin Department of Mathematics, University of Sistan and Bluchestan, Zahedan, Iran.

 $Email: \ agdm@hamoon.usb.ac.ir$

Hossein Mohammadzadeh Saany Department of Mathematics, University of Sistan and Bluchestan, Zahedan, Iran.

 $Email:\ hmsdm@math.usb.ac.ir$