[1] Adjei, I. and Dube, T., The Banaschewski extension and some variants of openness, Houston Journal of Mathematics 47, no.1, 2021, 245 - 261.
[2] Banaschewski, B., Dube, T., Gilmour, C. and Walters-Wayland, J., Oz in pointfree topology, Quaestiones Mathematicae, 32(2) (2009), 215 - 227.
[3] Bayih, T., Dube, T. and Ighedo, O., On the Menger and almost Menger properties in locales, Applied General Topology 22, no. 1 (2021), 199 - 221.
[4] Bhattacharjee, P. and Dube, T., On fraction-dense algebraic frames, Algebra Universalis (2022), 83:6,18 pages.
[5] Bhattacharjee, P. and Dube, T., On the sobriety of the inverse topology, Algebra Universalis 76 (2016), 445-454.
[6] Dube, T., Structures in Frames, PhD thesis, University of Durban-Westville (1992).
[7] Dube, T., Separability in locales, Quaestiones Mathematicae 17 (1994), no. 3, 333-338.
[8] Dube, T., The Tamano-Dowker type theorems for nearness frames, Journal of Pure and Applied Algebra 99 (1995) l - 7.
[9] Dube, T., Paracompact and locally fine nearness frames, Topology and its Applications 62 (1995), no. 3, 247–253.
[10] Dube, T., A short note on separable frames, Commentationes Mathematicae Universitatis Carolinae 37,2 (1996) 375-377.
[11] Dube, T., A note on complete regularity and normality, Quaestiones Mathematicae 19 (1996), no. 3-4, 467-478.
[12] Dube, T., Strong nearness frames, Proceedings Symposium on Categorical Topology (Rondebosch, 1994), 103–112, Univ. Cape Town, Rondebosch, 1999.
[13] Dube, T., Sigma-compactness via Nearness, Kyungpook Mathematical Journal. (39) 1999, 207 - 214.
[14] Dube, T. and Valov, V., Generalized tri-quotient maps and Cech-completeness, Commentationes Mathematicae Universitatis Carolinae, 42,1 (2001) 187-194.
[15] Dube, T. Balanced and closed-generated filters in frames, Quaestiones Mathematicae 26 (2003), 73 - 81.
[16] Dube, T., On Compactness of Frames, Algebra Universalis 51 (2004) 411 – 417.
[17] Dube, T., Irreducibility in pointfree topology, Quaestiones Mathematicae 27 (2004), no. 3, 231-241.
[18] Dube, T., Notes on uniform frames, Quaestiones Mathematicae 27 (2004), 9 - 20.
[19] Dube, T., Bounded quotients of frames, Quaestiones Mathematicae 28 (2005), 55-72.
[20] Dube, T., Submaximality in locales, Topology Proceedings 29 No. 2 (2005), pp. 431-444.
[21] Dube, T., An algebraic view of weaker forms of realcompactness, Algebra Universalis 55 (2006) 187 - 202.
[22] Dube, T., Katetov revisited: a frame-theoretic excursion, Quaestiones Mathematicae 30 (2007), 365 – 380.
[23] Dube, T., Pointfree functional compactness, Acta Mathematica Hungarica, 116(3) (2007), 223 - 237.
[24] Dube, T. and Matutu, P., Pointfree pseudocompactness revisited, Topology and its Applications 154 (2007) 2056-2062.
[25] Dube, T. and Matutu, P., A few points on pointfree pseudocompactness, Quaestiones Mathematicae 30 (2007), no. 4, 451 - 464.
[26] Dube, T. and Walters-Wayland, J., Coz-onto Frame Maps and Some Applications, Applied Categorical Structures (2007) 15: 119 - 133.
[27] Dube, T. and Walters-Wayland, J., Weakly Pseudocompact Frames, Applied Categorical Structures (2008) 16: 749-761.
[28] Dube, T., Realcompactness and certain types of subframes, Algebra Universalis 58 (2008) 181 - 202.
[29] Dube, T., A Little More on Coz-Unique Frames, Applied Categorical Structures (2009) 17: 63 - 73.
[30] Dube, T., Remote points and the like in pointfree topology, Acta Mathematica Hungarica 123 (2009), no. 3, 203 - 222.
[31] Dube, T., Some ring-theoretic properties of almost P-frames, Algebra Universalis 60 (2009) 145-162.
[32] Dube, T. and Matlabyana, M., Notes concerning characterizations of quasi-F frames, Quaestiones Mathematicae, 32 (2009), no. 4, 551- 567.
[33] Dube, T., Some algebraic characterizations of F-frames, Algebra Universalis, 62 (2009), 273-28.
[34] Dube, T., Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Universalis 61 (2009), no. 1,115 - 138.
[35] Dube, T. and Mugochi, M.M., Zero-dimensionality in structured frames, Far East Journal of Mathematical Sciences 40 (2010), no. 1, 121 - 136.
[36] Dube, T. and Naidoo, I., On openness and surjectivity of lifted frame homomorphisms, Topology and its Applications, 157 (2010), 2159 - 2171.
[37] Dube, T., Notes on Pointfree Disconnectivity with a Ring-theoretic Slant, Applied Categorical Structures 18 (2010), no.1, 55 - 72.
[38] Dube, T., Contracting the socle in rings of continuous functions, Rendiconti del Seminario Matematico della Universit`a di Padova, 123 (2010), 37 - 53.
[39] Dube, T., On the ideal of functions with compact support in pointfree function rings, Acta Mathematica Hungarica, 129(2010), 205 - 226.
[40] Dube, T. and Mugochi, M.M., Thoughts on quotient-fine nearness frames, Applied Categorical Structures, 19 (2011), 511 - 521.
[41] Dube, T. and Mugochi, M.M., A note on almost uniform nearness frames, Quaestiones Mathematicae, 34(2) (2011), 247 - 263.
[42] Dube, T. and Naidoo, I., Erratum to “On openness and surjectivity of lifted frame homomorphisms”, Topology and its Applications, 157 (2011), 2257 - 2259.
[43] Dube, T. and Matlabyana, M., Concerning variants of C-embedding in pointfree topology, Topology and its Applications, 158 (2011), 2307 - 2321.
[44] Dube, T., A broader view of the almost Lindelof property, Algebra Universalis, 65 (2011), 263 - 276.
[45] Dube, T., Real ideals in pointfree rings of continuous functions, Bulletin of the Australian Mathematical Society, 83 (2011), 338 - 352.
[46] Dube, T., Notes on the socle of certain types of f-rings, Bulletin of the Iranian Mathematical Society, Vol 38, No.2, (2012), 517 - 528.
[47] Dube, T. and Naidoo, I., When lifted frame homomorphisms are closed, Topology and its Applications, 159 (2012), 3049 - 3058.
[48] Dube, T., Extending and contracting maximal ideals in the function rings of pointfree topology, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie Tome 55 (103), No. 4, 2012, 365 - 374.
[49] Dube, T. and Naidoo, I., Round squares in the category of Frames, Houston Journal of Mathematics, 39 (2) (2013), 453-473.
[50] Dube, T., Coherence classes of ideals on normal lattices with applications to C(X), Mathematica Slovaca (2013), Vo. 63, Issue 4, 679 - 692.
[51] Dube, T., A note on relative pseudocompactness in the category of frames, Bulletin of the Australian Mathematical Society (2013), Vol. 87, Issue 01, 120 - 130.
[52] Dube, T., The hull-kernel and inverse topologies as frames, Algebra Universalis (2013) Vol. 70, Issue 2, 197 - 212.
[53] Dube, T., Iliadis, S., van Mill, J. and Naidoo, I., Universal frames, Topology and its Applications 160 (2013), 2454 - 2464.
[54] Dube, T. and Matlabyana, M., Cozero complemented frames, Topology and its Applications, 16 (2013), 1345 - 1352.
[55] Dube, T. and Ighedo, O., Comments regarding d-ideals of certain f-rings, Journal of Algebra and its Applications 12 (2013), 1350008 (16 pages).
[56] Dube, T., Mugochi, M.M. and Naidoo, I., Cech-completeness in pointfree topology, Quaestiones Mathematicae 37:1 (2014), 49 - 65.
[57] Dube, T., Naidoo, I. and Ncube, C., Isocompactness in the category of locales, Applied Categorical Structures 22 (2014), 727 -739.
[58] Dube, T., Iliadis, S., van Mill, J. and Naidoo, I., A pseudocompact completely regular frame which is not spatial, Order (2014) 31: 115 - 120.
[59] Dube, T., Naidoo, I. and Ncube, C., Nearly realcompact frames, Topology and its Applications 168 (2014), 25 - 39.
[60] Dube, T., Naidoo, I. and Ncube, C., On a generalization of pointfree realcompactness, Topology and its Applications 163 (2014), 80 - 92.
[61] Dube, T. and Ighedo, O., Two functors induced by certain ideals of function rings, Applied Categorical Structures 22 (2014), 663 - 681.
[62] Dube, T. and Ighedo, O., On z-ideals of pointfree function rings, Bulletin of the Iranian Mathematical Society 40 (2014), 657 - 675.
[63] Dube, T., Concerning maximal l-ideals of rings of continuous integer-valued functions, Algebra Universalis, 72 (2014), 359 - 370.
[64] Dube, T., Pseudocompact supports in pointfree topology, Houston Journal of Mathematics 40 (2014), 601 - 620.
[65] Dube, T. and Mugochi, M.M., Localic remote points revisited, Filomat, 29(1) (2015), 111 - 120.
[66] Dube, T. and Naidoo, I., More on uniform paracompactness in pointfree topology, Mathematica Slovaca, 65 (2015), 273-288.
[67] Dube, T. and Nsonde Nsayi, J., When rings of continuous functions are weakly regular, Bulletin of the Belgian Mathematical Society, Simon Stevin, 22 (2015), 213-226.
[68] Dube, T. and Nsonde Nsayi, J., When certain prime ideals in rings of continuous functions are minimal or maximal, Topology and its Applications 192 (2015), 98-112.
[69] Dube, T. and Ighedo, O., More ring-theoretic characterizations of P-frames, Journal of Algebra and its Applications 14(5) (2015), 150061 (8 pages).
[70] Dube, T. and Ighedo, O., Covering maximal ideals with minimal primes, Algebra Universalis, 74 (2015), 411 - 424.
[71] Dube, T., Georgiou, D.N., Megaritis, A.C. and Moshokoa, S.P., A study of covering dimension for the class of finite lattices, Discrete Mathematics 338 (2015), 1096-1110.
[72] Dube, T., Ideals associated with realcompactness in pointfree function rings, Quaestiones Mathematicae 38(6) (2015), 885 - 899.
[73] Dube, T. and Nsonde Nsayi, J., A note on spaces that are finitely an F-space, Topology and its Applications 202 (2016), 365-356.
[74] Dube, T. and Ighedo, O., Higher order z-ideals in commutative rings, Miskolc Mathematical Notes 17 (2016), 171-185.
[75] Dube, T. and Ighedo, O., More on locales in which every open sublocale is zembedded, Topology and its Applications 201 (2016), 110-123.
[76] Dube, T. and Ighedo, O., Characterising points which make P-frames, Topology and its Applications 200 (2016), 146-159.
[77] Dube, T. and Nsonde Nsayi, J., Another ring-theoretic characterization of boundary spaces, Houston Journal of Mathematics 42 (2016), 709 - 722.
[78] Dube, T., A note on lattices of z-ideals of f-rings, New York Journal of Mathematics 22 (2016), 351-361.
[79] Dube, T., On maps between Stone- ˇ Cech compactifications induced by lattice homomorphisms, Filomat 30 (2016) 2465-2474.
[80] Dube, T., Georgiou, D.N., Megaritis, A.C. and Sereti, F., Studying the Krull dimension of finite lattices under the prism of matrices, Filomat 31 (2017), 2901-2915.
[81] Dube, T., Naidoo, I. and Nasirzadeh, N., Pseudocompleteness in the category of locales, Topology and its Applications 231 (2017), 113 -127.
[82] Dube, T., A note on weakly pseudocompact locales, Applied General Topology 18 (2017), 131-141.
[83] Dube, T., When spectra of lattices of z-ideals are Stone-Cech compactifications, Mathematica Bohemica 142 (2017), 323 -336.
[84] Dube, T., Commutative rings in which zero-components of essential primes are essential, Journal of Algebra and its Applications 16 (2017), 17502024 (15 pages).
[85] Dube, T., When Boole commutes with Hewitt and Lindel¨of, Applied Categorical Structures 25 (2017), 1097- 1111.
[86] Dube, T. and Ighedo, O., On lattices of z-ideals of function rings, Mathematica Slovaca 68 (2018), 271 -284.
[87] Dube, T. and Ighedo, O., Concerning the summand intersection property in function rings, Houston Journal of Mathematics 44 (2018), 1029 - 1049.
[88] Dube, T., On quasi-normality of function rings, Rocky Mountain Journal of Mathematics 40 (2018) 157-179.
[89] Dube, T., Some connections between frames of radical ideals and frames of z-ideals, Algebra Universalis 79 (2018), 18 pages.
[90] Dube, T., Maximal Lindel¨of locales, Applied Categorical Structures (2019) 27:687–702.
[91] Dube, T., Rings in which sums of d-ideals are d-ideals, Journal of the Korean Mathematical Society 56 (2019), 539-558.
[92] Dube, T., and Sithole, L., On the sublocale of an algebraic frame induced by the d-nucleus, Topology and its Applications 263 (2019), 90 - 106.
[93] Dube, T., On the socle of an algebraic frame, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie Tome 110 (2019), 371 - 385.
[94] Dube, T., First steps going down on algebraic frames, Hacettepe Journal of Mathematical Statistics 48 (2019), 1792-1807.
[95] Dube, T., Concerning P-sublocales and disconnectivity, Applied Categorical Structures 27 (2019), 365 - 383.
[96] Dube, T., Ghirati, M. and Nazari, A., Rings in which idempotents generate maximal or minimal ideals, Algebra Universalis, 81 (2020), article 30.
[97] Dube, T., On the maximal regular ideal of pointfree function rings, and more, Topology and its Applications 273 (2020), 106960.
[98] Dube, T. and Sarpoushi Robat M., On densely normal sublocales, Topology and its Applications 275 (2020), 107015.
[99] Dube, T., Estaji, A.A. and Sarpoushi, Robat M., Some relative normality properties in locales, Mathematica Slovaca, 70 (2020), 779-794.
[100] Dube, T. and Stephen, D.N., On ideals of rings of continuous functions associated with sublocales, Topology and its Applications 284 (2020), 107360.
[101] Dube, T., Amenable and locally amenable algebraic frames, Order 37 (2020), 509-528.
[102] Dube, T., Characterizing realcompact locales via remainders, Georgian Mathematical Journal, vol. 28, no. 1, 2021, pp. 59-72.
[103] Dube, T. and Parsinia, M., On the Sum of z◦-Ideals in Two Classes of Subrings of C(X), Bulletin of the Iranian Mathematical Society 47, 1069–1080 (2021).
[104] Dube, T. and Taherifar, A., On the lattice of annihilator ideals and its applications, Communications in Algebra Vol. 49:6, 2021, 2444-2456.
[105] Dube, T. and Stephen, D.N., Mapping Ideals to Sublocales. Applied Categorical Structures Vol. 29, 747–772 (2021).
[106] Dube, T., Georgiou, D., Megaritis, A., Naidoo, I. and Sereti, F., Covering Dimension and Universality Property on Frames. Order 39, 187–208 (2022).
[107] Baboolal, D. and Ori, R.G. The Samuel Compactification and Uniform Coreflection of Nearness Frames, Proceedings of the Symposium on Categorical Topology, University of Cape Town, Cape Town, 17 - 20, 1994.
[108] Banaschewski, B., Another look at the localic Tychonoff Theorem, Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 4, 647–656.
[109] Banaschewski, B., Lectures on Cauchy points of nearness frames, University of Cape Town, 1990.
[110] Banaschewski B., The frame envelope of a σ-frame, Quaestiones Mathematicae., 16(1):51–60, 1993.
[111] Banaschewski, B., Completion in pointfree topology, Lecture Notes in Mathematics & Applied Mathematics, SoCAT94, University of Cape Town, 1996.
[112] Banaschewski, B., Booleanization, Cahiers de Topologie et G´eom´etrie Diff´erentielle Cat´egoriques, tome 37, no.1 (1996), p.41-60.
[113] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 3, 577–587.
[114] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Applied Categorical Structures 9 (2001), 395 - 417.
[115] Banaschewski, B. and Mulvey, C., Stone- ˇ Cech compactification of locales. I, Houston Journal of Mathematics 6 (1980), 301 - 312.
[116] Banaschewski, B and Pultr, A., Samuel compactification and completion of uniform frames, Mathematical Proceedings of the Cambridge Philosophical Society 108 (1990), 63 - 78.
[117] Banaschewski, B. and Pultr, A., Paracompactness Revisted, Applied Categorical Structures 1: 181-190,1993.
[118] Banaschewski, B. and Pultr, A., Cauchy points of uniform and nearness frames, Quaestiones Mathematicae, 19: 1 -2 (1996), 101 - 127.
[119] Banaschewski, B. and Pultr, A., A new look at pointfree metrization theorems, Commentationes Mathematicae Universitatis Carolinae, Vol.39 (1998), No.1, 167 -175.
[120] Banaschewski, B. and Pultr, A., Completion and Samuel compactification of nearness and uniform frames, Portugaliae Mathematica Vol. 69 (2012), No.2, pp. 113-126.
[121] Banaschewski, B., Hong, S.S. and Pultr, A., On the completion of nearness frames, Quaestiones Mathematicae, 21:1-2, 19-3, 1998.
[122] Bentley, H.L., Normal nearness spaces, Quaestiones Mathematicae, 2:1-3, 23-43 (1977).
[123] Bentley, H.L., Paracompact spaces, Topology and its Applications 39 (1991), 283-297.
[124] Bentley, H.L., and Hunsaker, W., ˇ Cech complete nearness spaces, Commentationes Mathematicae Universitatis Carolinae, Vol.33 (1992), No.2, 315 - 328.
[125] Borceux, F., Handbook of Categorical Algebra I, Basic Category Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990.
[126] Chen, X., On binary coproducts of frames, Commentationes Mathematicae Universitatis Carolinae, Vol. 33(4) (1992), 699–712 .
[127] Dowker, C.H. and Papert, D., Quotient frames and subspaces, Proceedings of the London Mathematical Society (3) 16 (1966), 275 - 296.
[128] Fr´echet, M.M., Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo (1884-1940) vol. 22, 1–72 (1906).
[129] Frith, J.L., Structured frames, PhD thesis, University of Cape Town, 1986.
[130] Frith, J.L., The category of uniform frames, Cahiers De Topologie Et G´eom´etrie Diff´erentielle Cat´egoriques, tome 31, no 4 (1990), p. 305-313.
[131] Frith, J.L. and Schauerte, A., A Method for Constructing Coreflections for Nearness Frames, Applied Categorical Structures (2014) 22:741–753.
[132] Haimene, M.N., An investigation of the strongness property for nearness frames, MSc mini-thesis, University of Namibia, 2018.
[133] Herrlich, H., A concept of nearness, General Topology and its Applications 5 (1974), 191 - 121,
[134] Herrlich, H. and Ori, R.G., Zero sets and complete regularity for nearness spaces, In: Categorical Topology and its Relations to Analysis, Algebra and Combinatorics, Prague, Czechoslovakia, 22 - 27 August 1988, Ed. Adamek, J. and MacLane, S.,World Scientific Publ. Co., Singapore, 1989, pp. 446-461.
[135] Hohti, A., On uniform paracompactness, Annales Academiae Scientiarum Fennicae Series A, I. Mathematica Dissertationes Vol. 36, 1981.
[136] Hong, S.S., Convergence in frames, Kyungpook Mathematical Journal 35 (1995), 85 - 93.
[137] Hong, S.S. and Kim, Y.K., Cauchy completions of nearness frames, Applied Categorical Structures, 3 (1995), pp. 371-377.
[138] Howes, N.R., Paracompactifications, preparacompactness and some problems of K. Morita and H. Tamano, Question and Answers in General Topology Vol. 10 (1992), 191-204.
[139] Isbell, J.R., Uniform Spaces, American Mathematical Society Mathematics Surveys 12, Providence, 1964.
[140] Isbell, J.R., Atomless parts of spaces, Mathematica Scandinavica 31 (1972), 5 - 32.
[141] Kˇr´ıˇz, I., A direct description of uniform completion in locales and a characterization of LT-groups, Cahiers de Topologie et G´eom´etrie Diff´erentielle Cat´egoriques, tome 27, no 1 (1986), p. 19-34.
[142] Kˇr´ıˇz, I. and Pultr, A., Peculiar behaviour of connected locales, Cahiers de Topologie et G´eom´etrie Diff´erentielle Cat´egoriques, tome 30, no 1 (1989), p. 25-43.
[143] Madden, J. and Vermeer, J., Lindel¨of locales and realcompactness, Mathematical Proceedings of the Cambridge Philosophical Society 99 (1986), 473 - 480.
[144] Marcus, N., Realcompactifications of frames, Master’s thesis, University of Cape Town, 1993.
[145] Marcus, N., Realcompactifications of frames, Commentationes Mathematicae Universitatis Carolinae, Vol.36(1995), No.2, 347–356.
[146] McKee, R.L., Zero-dimensional nearness spaces and extensions of topological spaces, Missouri Journal of Mathematical Sciences 6(2)(1994), 64–67.
[147] Michael, E., A note on paracompact spaces, Proceedings of the American Mathematical Society Vol. 8, No. 4 (1957), 822-828.
[148] Mugochi, M.M., Contributions to the theory of nearness in pointfree topology, PhD Thesis, University of South Africa, 2009.
[149] Mugochi, M.M., A short note on the role of grills in nearness frames, Hacettepe Journal of Mathematics and Statistics Vol. 41(1) (2012), 85–91.
[150] Naidoo, I., An interview with Themba Andrew Dube (A TAD Interview), Categories and General Algebraic Structures with Applications, Special Issue dedicated to Themba Dube, 2023.
[151] Naidoo, I., A note on precompact uniform frames, Topology and its Applications 153 (2005), 941–947.
[152] Naidoo, I., Strong Cauchy Completeness in Uniform Frames, Acta Mathematica Hungarica 116 (3), (2007), 273 - 284.
[153] Papert, D. and Papert, S., Sur les treillis des ouverts et les paratopologies, S´eminaire Ehresmann, Topologie Et G´eom´etrie Diff´erentielle, Tome 1 (1957-1958), 1 - 9.
[154] Picado, J. and Pultr, A., Frames and locales: Topology without points, Frontiers in Mathematics, Birkh¨auser/Springer Basel AG, Basel, 2012.
[155] Pultr, A., Pointless uniformities. I. Complete regularity, Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 91 - 104.
[156] Pultr, A., Pointless uniformities. II. (Dia)metrization, Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 105 - 120.
[157] Pultr, A., Remarks on metrizable locales, Rendiconti del Circolo Matematico di Palermo Series 2, 6 (1984), 247-158.
[158] Pultr, A. and Sichler, J., Frames: Topology without points, Lattice Theory: Special Topics and Applications: Volume 1, Chapter 2, 55 - 88, G. Gr¨atzer and F. Wehrung (eds.), Springer International Publishing Switzerland 2014.
[159] Reynolds, G., Alexandroff algebras and complete regularity, Proceedings of the American Mathematical Society 76, 322 - 326, 1979.
[160] Seo, J.R. and Lee, C.K., Categories of nearness frames, Communications of the Korean Mathematical Society 13 (1998), No. 4, pp. 847 - 854.
[161] Simmons, H., A framework for topology, Studies in Logic and the Foundations of Mathematics, Proceedings of the Wroclaw Logic Colloquium ’77, A. Macintyre, L. Pacholaki, J. Paris (eds.), North-Holland Publishing Company, 1978, 239-251.
[162] Simmons, H., Near-Discreteness of Modules and Spaces as measured by Gabriel and Cantor, Journal of pure and Applied Algebra 56 (1989), 119 -162.
[163] Simmons, H., An Introduction to Category Theory, Cambridge University Press, 2011.
[164] Sun, S.H., On paracompact locales and metric locales, Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 1, 101 - 107.
[165] Townsend, C.F., Preframe Techniques in Constructive Locale Theory, PhD. Thesis, University of London, 1996.
[166] Tukey, J.W., Convergence and Uniformity in Topology, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, NJ., 1940.
[167] Walters-Wayland, J.L., A Shirota Theorem for Frames, Applied Categorical Structures 7: 271 - 277, 1999.
[168] Weil, A., Sur les espaces `a structure uniforme et sur la topologie g´en´erale, Publications de L’Institut Math´ematique de L’Universit´e Strasbourg, Hermann & Cie, Paris 1937.