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Combinatorial approach of the category
Oy of cubical pasting diagrams

Camell Kachour

Abstract. In globular higher category theory the small category ©p of
finite rooted trees plays an important role: for example the objects of ©¢ are
the arities of the operations inside the free globular w-operad B° of Batanin,
which B°-algebras are models of globular weak co-categories; also this glob-
ular ©¢ is an important tool to build the coherator ©7, of Grothendieck
which Sets-models are globular weak oco-groupoids. Cubical higher category
needs similarly its ©¢. In this work we describe, combinatorially, the small
category ©p which objects are cubical pasting diagrams and which morphisms
are morphisms of cubical sets.

1 Introduction

In globular higher category theory the small category ©¢ of globular past-
ing diagrams plays an important role: for example the objects of ©¢ are the
arities of the operations inside the free globular w-operad BY of Batanin,
which B-algebras are algebraic models of globular weak co-categories; also
this small category ©p is an important tool to build the coherator ©y,
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of Grothendieck which Sets-models are globular weak co-groupoids. Cu-
bical higher category needs similarly its ©g. In this work we describe,
combinatorially, the small category ©g¢ which objects are cubical pasting
diagrams and which morphisms are morphisms of cubical sets. The monad
R = (R,i,m) acting on the category of cubical sets, which algebras are
cubical sets equipped with degeneracies, exhibits the sorts A € R(1)(n) of
operations of the cubical theory, and the cubical pasting diagrams play the
role of arities for these operations. Cubical pasting diagrams of dimension
n € N* are rectangular finite conglomerate of basic n-cubes!, where basic
n-cubes are just elements A € R(1)(n). In order to build such conglomerate
we need to have a good control of its basic n-cubes and a canonical way to
control these basic cubical shapes is to equipped each basic n-cubes with a
coordinate (ki,--- ,ky) in the network Z" = Z x --- X Z (n times; Z is the
set of integers) in order it to be well located. Thus a basic n-cube is now a
formal expression: A(ky,--- ,ky) which means that the n-cell A € R(1)(n)
is located in the coordinate (kq,--- ,ky). But A € R(1)(n) is in particular
an n-cube and it has faces which are (n — 1)-cubes sp_; ;(A4), and we can
ask then what are the coordinate of it? The first approximation is to say
that it is located in the coordinate (kq,-- - ,/%, -+, ky), which means that
we removed k; and it has the coordinate (ki,---,kj—1,kj41, -+ ,kp) in the
network Z"!. Also A € R(1)(n) can be degenerate in the (n + 1)-cube
15 414(A) (classical degeneracies) or in the (n + 1)-cube 12’4__17]- (A) (connec-
tions), and here we are attempted to say, at first approximation, that both
are located in the coordinate (k1,--- ,kj—1,1,k;j, -, ky), which means that
we added 1 and it has coordinate in the network Z"*!. Such remove and
addition of coordinate is well-known for tensor calculus in differential ge-
ometry, under the names contraction of a tensor and dilatation of a tensor.
Thus we have chosen to use this tensorial notation to describe coordinates
attached to basic n-cubes: the expression Aal:n,lgl ® - ®dzy says that the
n-cell A € R(1)(n) is located in the coordinate (ki,---,ky), and in our
jargon the tensor dmkl ® -+ @dxp is called a coordinate. We shall of-
ten use the abbreviation dm};i for the coordinate d:r,lg1 ® - @dxy . Also

the face s ;(4) € R(1)(n — 1) is located in the j-contraction of dx?cz_,

!We shall consider also some basic 0-cubes as 0-dimensional cubical pasting diagram,
but not amalgamation of it, just because it doesn’t make sense to glue such 0O-cubes.
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thus we write: s (A)ala:,l€1 Q- ® da:ij ® ---dxy , where here this j-

n
n—1,j
. —1 —
contraction means the tensor dzl ®---@dxl " Qdx) - dz? 1; also the
kll k]_l k]+1 kn

coordinate of the basic (n + 1)-cube Lot

dx,lv1 Q- dxij__ll ® d:r{ ® dmgl - 'da:Z:l of dac}cz

However we need to reinforce this tensorial formalism in order it feats
perfectly with the basic datas needed for cubical higher category; as a matter
of fact, if A € R(1)(n) has coordinate daz,lCl ® -+ @ dzy  then two different
faces of A may be different but with the same coordinate; for example if A
is the degenerate 2-cube 15;(1(1)) € R(1)(2):

(A) is given by the j-dilatation

100) — Y4 1(0) ,
—

A=aw| dra@) ooy

1(0
19(1(0)) ©

with coordinate dr!; ® do? (which means that A has coordinate (—4,1) in
Z?), then its faces: s7;(A) = 1(1) and ¢7 ; (4) = 19(1(0)) have both the same
coordinate dri (it is reindexed after contraction). This example shows that
the tensorial formalism alone leads to a lack of control of our cells, because
we need that each part of our cubical pastings to be located individually.
In order to remove such pathologies we are going to enriched the tensorial
formalism with a concept of formal box which feats better with the entire
shapes of each basic n-cubes in R(1)(n). These formal boxes are specific

7

dzj
degenerate n-cubes (le:;,z A) called degenerate bozes which are equipped
with coordinates dmii and whose aim is to contain any n-cubes which have

the same degeneracies as A € R(1)(n). As we wrote above, the expression
Adm};i says that the n-cell A (A € R(1)(n)) is located in the coordinate dx};i,

7

d
and the expression B(DIZI;; ,=4) now means that the n-cube B € R(X)(n)
(here X is any cubical set) has the same degeneracies as A € R(1)(n), and

d 3
B is inside the degenerate box (les;',z 4) which itself is located in the
d:r;fC

coordinate daz}% When B = A then A(Dl(n;,z A) is called a basic divisor.
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Such basic divisors A(fo;; ,=A) are written Adw}%i to simplify the notation
after the Section 5. We take advantage of this formalism to describe the
monad R = (R, i, m) of cubical reflexive sets with these basic divisors, and
show that R = (R, i, m) is a cartesian monad (5).

7

dx
The definition of the degenerate boxes <D1(:§ ,=4) (A€ R(1)(n))in4 are
),

d
preceded by the definition of the basic one [J; 3 in 3 called the basic boxes,

n
i.e they are boxes with no degeneracies. These( formal boxes (degenerates or
not) are congruences of terms of a language £/, = (Z",{—,+}) containing
tensors d:v}'%, contractions of these tensors, and elements in {—, +}, as basic
datas. The terms that we consider for this language are called links because
their role is to exhibit a link between such formal boxes with their faces.
Basic n-divisors are terms for a language £,, = (£}, R(1)(n)), and they
constitute the basic pieces for rectangular n-divisors. Rectangular n-divisors
are defined inductively as terms of a language Ly, = (Ly, (0})je[1;n)). This
inductive approach was possible thanks to the good control of the different
faces that have the basic n-divisors. Rectangular n-divisors are written

X = Aldmﬁcil -t Aldm;’cé 4ot Arda:ilr,

and are characterized by a rectangular n-configuration C,, i.e a finite subset
of Z™ of the form
Co = [1ma] % -+ x [1my] x -+« x [13m0]

such that the set {Aldazzl, e ,Ald:cil_, e ,Ard:cz,{} are the basic n-divisors
of X, where now X can be seen as its h—conﬁguration C,, weighted by this set
of basic n-divisors. These rectangular n-divisors are our models of cubical
pasting diagrams, and as we have expected they behave very well: thanks
to their rectangular shapes they have a notion of sources and targets which
allow them to be composed, but they can also be degenerated, etc. Thus
they produce a cubical strict co-category? e-RectDiv (6), and also the small
category ©g of cubical pasting diagrams. The small category ©g is defined
as the full subcategory of the category CSets of cubical sets which objects

2In fact the free cubical strict co-category S(1) on a terminal object of CSets, where
S is the underlying endofunctor of the monad S = (S, A, ) of cubical strict co-categories
with connections described in [3, 5].
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are cubical pasting diagrams. The category ©g can be seen as a cubical
variation of Lawvere theory. Also each rectangular n-divisor X has an in-
ternal notion of sources and targets, which lead to an inductive sketch Ex.
This inductive sketch is built with the help of the formal sketch ¢, of its n-
configuration, which itself comes canonically from the lexicographical order
on C,, (6). Thus we see here another crucial roles of coordinates which is to
exhibit in a canonical way (with their intrinsic lexicographical features) the
sketches of rectangular divisors. Formally these inductive sketches behaves
like rectangular divisors, thus they are cubical sets which can be degener-
ated, composed, etc. Thus these sketches lead to another presentation of
Op and to another presentation of the cubical strict co-category of cubical
pasting diagrams. In the end of 7 we show that, for each rectangular n-
divisor X, its associated sketch Ex is canonically a (n — 1)-cubical object
in the category Sketch of sketches.
We can summarize the main definitions here:

° Ada:}'% means that the n-cube A is located at the coordinate dx}'%, see
2; usually A € R(1)(n) where R is the underlying endofunctor of the
monad R = (R, i, m) of cubical reflexive sets; see 5;

dxt .
e Basic box Dl(:; of a coordinate dzj , see 3; and degenerate boxes
dz?
(DI?:;,E A), see 4; they are formal boxes whose aim is to contains n-
cubes. These formal boxes provide a better control of the coordinates,
than the tensors, of the faces of the cubes they contain: their formal-

ism allows to have an inductive definition of cubical pasting diagrams
(6);
dx?
e Basic divisor: B(Dlzf;,EA); see 5; this is an n-cube B inside the
dx};,
n-box (Dl(n;,EA);
e Rectangular n-divisors: formal sum X = Aldxz,_l + -+ Aldx;'d +

cee Arda:}'cr, of basic one with rectangular shape, see 6; they are our
models of cubical pasting diagrams;

e for each rectangular divisor X we associate an inductive sketch Ex,
see 7.

Applications of this cubical Oy = (1 | S(1)) are done in [5], where
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the monad S = (S5, A, ) of cubical strict oo-categories with connections
is described with the objects of O, and it is shown that it is a cartesian
monad, solving a conjecture in [6]. Also in [5], two cubical coherators are
defined with our cubical ©¢: the coherator Oy, which Sets-models are
cubical weak oo-groupoids with connections, and the coherator ©f; which
Sets-models are cubical weak oco-categories with connections.

The author has done previous work on cubical higher categories, some
of them are published, see [3, 4]; but others were archived in IHES and
removed after five years, see [6, 6]. We hope to make again available the
work in [6, 6] very soon.

This article may be seen as an improved version of some aspects of the
Arxiv version [2]. In [2] some materials were described for the question
of pastings objects with cubical shapes in full generality, not only for the
simpler cases of rectangular pastings as in the present work. Even if main
ideas of this arxived version remain correct (like the idea of using coordinates
to control the gluings), this article focuses only on rectangular gluings, which
not only simplify the story, but is also more relevant for our main goals, i.e
to capture objects in Oy.

2 Tensorial notation

The reader may read the first section in [3] for reminders of the basic defini-
tions in cubical higher category theory: definition of cubical sets, definition
of cubical strict oo-categories with connections, etc.

Here we introduce tensorial notation and shall see that contraction and
dilatation of tensors provide interesting structure for cubical sets, though
trivial. This study (and introduction of tensorial notations) reveals the
intrinsic cubical nature of tensorial calculus.

For each n € N, the n-dimensional network Z" = Z x - - - X Z (7 is the set
of integers) is used as a coordinate system; the elements (ki,--- , k) € Z"
are coordinates and are preferably denoted instead with the tensorial no-
tation daz,lgl ® -+ ®dzy in order to freely use the dilatations and contrac-
tions operations on it, where these operations are commonly used in tensor
calculus. When no confusion occur we write daz};i = da:,1Cl ® -+ Qdxy .
These coordinates dxi:i € Z™ are used to indexed n-cubes, in order to well
located them and to build conglomerates of n-cubes. Thus if A is an n-
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cube, the notation Ada:,l€ . ® - ®@dzy means that A has the coordinate
d:L‘,l'Cl ® -+ ® dry , which means that A is located at the depth k; € Z for
the direction j € {1,--- ,n}.

Remark 2.1. It is easy to see that two coordinates da:};i,dxi{ € Z" are
linked by translations. For example any coordinates dx};i € Z™ gives the

coordinate dz} :=dri ® - ® dm{ ® ---dx" by translations along all direc-
tions j € [1,n]. Usually we shall work with finite subsets C;,, C Z™ named
n-configurations below 6, and these n-configurations must be thought up
to their translations in the network Z". For example we have the rectan-
gular n-configurations 6 which are n-configurations with a specific shape.
Any translation of a rectangular n-configuration is still rectangular, and in
fact these translations give the same rectangular n-configuration but with
different coordinates (see 6).

Two coordinates da;}cl = da:,lc L ®- - ®@dxy and dx};; = dx,lﬂ/l ® & dx&
are j-adjacent if for all i € [1,n]\j, k; = ki, and if k; = K, +1 or k; = Kk}, — 1.

The j-contraction of the coordinate daj,l§ (@ ‘®da;ij ®---dry is defined
as the coordinate

—

dw}%i \j :da:,lgl ®---®dwij ®---dry
in Z"~! defined by removing the direction j and re-indexing:
i\ s j—1 j -1
dzj, \j=dzp, ® - ® dmij_l ® dl‘iﬂ_l ® - -day

sometimes we use also the notation Cj(dl';%) for d:z:};i \ j. If we apply these
contractions p-times then we obtain the following coordinate in Z"~P:

da, \ (1, -+ Jp),

where the order of occurrences of the j's in (ji,---,jp) is important just
because if ¢ is an element of the permutation group .S, then the action

g- dl‘zl \ (jla t ’jp) = dl‘i:l \ (j0(1)7 e 7ja(p))a

does not imply the equality between dx};i\(jl, -+, Jp) and dm};i\(jg(l), o Jo(p))
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The j-dilatation of the coordinate d:l:,lc [ ®® dari:j ®---dxy s a coor-

dinate in Z"*! defined by adding dx]i in the direction j and re-indexing:
dx}‘w +j= dav,lCl ®---® da:ijill ® dx{ﬂ ® dl‘ijl - d:UZ:l;

sometimes we use the notation dj(dx}'%) for d:c};,i + j; and if we apply these
dilatations p-times then we obtain the following coordinate in Z"*?:

dw;ﬂz + (jla e >jp)7
where the order of occurrences of the j's in (ji,--- ,jp) is important.
Remark 2.2. The previous dilatation:
d:z:?ei +j= da:,lgl ®:-® d:z:ij__ll ® dxil ® dxijl e da:Zjl,

built by adding dx{ is a convention, but we could add instead dxi; (keZ)
if necessary.

Consider now the following diagrams of different network Z" for all n €
N, such that Z° is the singleton set {*}:

n—1,n
4
N 03,4
n 4 3
On—1,i J33 923
— T 3 7 2
N 93,2 N 93,2 012
n 1 3 7 2 1
Opn—-1,1 I3 . 921 N o711 %
— 7 7 >
AL AL 1, Z4 Z3 Z? Zl ZO
> N N
n a4 3 2 P
n—1,1 3,1 2,1 1,1 0
> 4 7 3 7
T T T
3,2 2,2 1,2
— T o
Tn—1,i 73,3 73,3
> —
73,4
n
Tn—l,n

where for all positive integers n > 2 and all direction i € [1;n], oh 1=
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7' ; = ¢; (the i-contractions); we also have the diagram:
) 134
—_
15,
11 13
10 2,1 4,2
_
/. SN 72 g3 74 ..
2
_
11 1372 13
2,2 i3
12
3,3 3
14 4

where 19(x) = dz}, and for all n > 1 and all i € [1;n + 1], 11 = di (the
i-dilatations), and the diagram:

15
11 N
B2 Lz N
Ly N I BN
7 72 " 73 74 AR
AN AN
1 2 13 14t
125 137 1y
153 15y
15

where here for all n > 1, and all ¢ € [1;n], 1n+1 ; = d; (the i-dilatations),
then it is stralghtforward to see that contractions and dilatations put a
structure of cubical reflexive set (see [3]) on the collection of networks Z°* =

(Zn)nEN-
dx? .
3 The basic boxes D1(:§ of coordinates dz},

A crucial and straightforward fact from the previous section is that given
a coordinate dx}% in Z", it has a trivial structure of n-cubical set® where
sources and targets are defined by contractions:

* n l,j(d‘rk): n— lj(dxk) _dxk; \j?

3And also a trivial structure of reflexive n-cubical set.
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i 82:5—1,19(6&6;‘% \ (j17 T 7jp)) = tz:g—lk(d‘rii \ (jh' T 7jp)) = dw;ﬂ \
(1, Jp k)

thus different contractions of dm};i are the faces of its underlying trivial
n-cubical set.

However this structure of n-cube that daz};i has is too trivial because it
does not distinguished sources and targets with the same direction j. And
this distinction is crucial because our idea is too label any n-cubical sets A
with a coordinate dw}'ﬂ of Z™, such that faces of A must have new coordinates
daz};i \ (41, ,Jp) build by contractions and weighted by a notion of sources
and targets. In order to correct this default we are going to enriched the
coordinates with a notion of link, which are roughly speaking coordinates
equipped with the symbols {—, +}.

Thus for each coordinate dx};,i of the network Z"™ we shall associate an

1
L,

other n-cubical set Dlli(ng' called the box of d%i and which formalise better
the notion of n-cubical set A labelled by dxz,i, in the sense that sources and
targets of A are then labelled with weighted coordinates, which give the
right information of the location of faces of A. Without these weights any
p-face of A which is a source in the direction j has the same coordinate
(because the trivial structure collapse this source-target information) as
the other p-face of A which is a target in the same direction j, and this is

dx’
counterintuitive: the role of Dl?rl:ﬁ is to distinguished well coordinates of any
faces of any n-cubical set labelled with the coordinate daz}cz This section is
dzt
devoted to the description of these boxes Dl(s;.

Given a coordinate d:c}%i and the elementary n-cube 1(n) (which is the
unique n-cell of the cubical site C), we associate to it a formal free box 4

7

Df?ﬁ; which is a non-degenerate n-cubical set which faces are congruences of
terms for a language, and these terms are called here links. The datas of this
language are the different contractions of dﬂ?}ii : dx?ci \ (J1,72, - ,Jp) plus
two symbols {—, 4} which label these contractions. These symbols {—, +}

must be interpreted as sources and targets of the different contractions they

;. The

“Here free has not to be interpreted in the algebraic sense of “freeness”, but instead it
must be interpreted as a box not linked with a higher dimensional box.

dx’,
equipped, and provide a good notion of sources and targets for Dl(:i
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terms of this language are built inductively (see below) and congruences

on it use notions of zigzag build with the cubical identities of sources and
dx?

targets (see below). This n-cubical set lesg is called the basic box with

. dat

coordinate dzj . This box le;

1(n) which is non degenerate, and its degeneracies are discussed in the next

section where degenerate boxes will be defined.

; is not degenerate because it is build with

d 7
Remark 3.1. An other possible description of faces of Dlzg is given in

the remark below, which looks more natural (it uses the Reverse Polish
Notation), but less intuitive for us. Perhaps in the future we would prefer
these RPN notations.

In this section we will describe only the underlying cubical set of the

d 7
box les; and degeneracies of it shall be described only in the next sec-

tion, because they are more subtile and involve notions of dilated free boxes
equipped congruences for degeneracies (see below). As we wrote in the pre-

1
L,

dx; . . .
vious section the role of Dl 3 can be summarized as follow: if an n-cubical

(n ‘
set X is labelled by a coordinate dzj it means that it is contained in the

7

d
box Dlif; which faces are congruences of links.
dat dat
The box Dlzf; and all faces of DITJB have underlying free boxes (see
dxt
below). But when we consider the box associated to a face of Dlzﬂs)i we
i,

dzj
forget that it was “linked” to [J, ) and then this box is named “free”.

(n
d 1
In order to keep the linked information of the faces of Dl(xs)i we write

these links as finite sequences of the form:
X = (dzj, (day, \ jr, £), (dag, \ (1, g2), ), oo, (da, \ (g2, ), £)-

We can define them by finite decreasing induction:

dx’
ki _

Definition 3.2. e For any direction j € [1, n], the term s’ (Dl(n)) =

n_lu.]
i

; P\ n dz, i i\
(dxy,, (dxy, \ j,—)) and the term ¢ (Dl(:)) = (dxy,,, (dzy, \ j, +))

n—1,5
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are 1-links which must be interpreted respectively as the j-source and

d
the j-target of the box Dlm

i
(n)
o IfX = (dl‘}%, (dl’%z\jl, :l:)a (dl‘}gl\(]la]?)v :l:)a ) (d$§€l\(j1,]2, e 7jn7r>7
d. 1
+)) is an (n—r)-link of the box Dj:;, then for any direction j € [1,r],
the terms:

S:—l,j(X) - (dm}clv (dxﬁc, \jbi)? (dx}cl \ (.jlv.jQ)?:l:)? )
(dx%c2 \ (j17j27 T 7jTL—7’)7i)7 (dlel-;:Z \ (j17j27 T 7jn—7‘7j)7_))

:71,_]'(X) = (dleu (dl‘iz \jhi)v (dl‘;cl \ (jlujQ)):t)a sy
(dl‘z, \ (j17j27 e ajn—?“)7:t)7 (d$z;l \ (jlaj?u e 7jn—7’7j))+))

. dr;'v_
are (n —r — 1)-links of Oy

d dat
e (n — r)-links of sources-targets of [, n;, or (n — r)-links of Dl(:;)i for

short, are given by such sequences:
(dx;%, (d.CE}ﬁ \j17 i)? (dl’ijz \ (j17j2)7 i)? i) (dx}cl \ (j17j27 e 7jn—r)a :I:))

Some notations shall be useful:

n na+1 no—+2 n—1 n
o= . o . ... 0 . o .
Sn2,]1 Sng,jrllz_‘_l Sn2+1,]}L2+2 Sn—ZJTlL_l Sn—ld}ﬂ
1 _ (a1 ] 1 1 ]
where j° = (5, 5 Jn,q1) and j, € [1,n], 5, 1 € [L,n = 1], , 01
€ [1,ng + 1];
n . no+1 no—+2 . n—1 n
ol = tm’j}zgﬂ o tn2+1,ji2+2 o tn—Q,j}L_l Oty 141>
1 5l 1 1 -
where j' = (4, - ,]n2+1) and j, € [1,n],j,_1 € [L,n—1],--- Y
c [[1, no + 1]].
Also for any partition n, < np—1 < -+ < np < - < ng <N =n

with (p — 1) intervals [ngy1,nr] we have 6 different zigzags of sources and
targets:
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n na—+1 na+2 n—1 n : :
° R . o X e) ) o ) — .
Sngj - Sn2ajn2+1 Sn2+17]n2+2 Sn—2,jn—1°n—1,jn where j U”’ ’

jn2+1) and j, € Hlvn]]ajn—l € Hlvn - 1]]7 T 7jn2+1 € [[17 ng + 1]] called
string of sources (or string of type s);

n ._ 4n2tl na+2 . n—1 n S
® lnyy = n2,Jng+1 tn2+1jn2+2 ot 2,5n Ol 1,4n where j = (jn, )

Jnot1) and jn € [1,n], jn—1 € [L,n—1], -+, Jny+1 € [1,n2+ 1], called
string of targets (or string of type t);

Np—1 tnp72 . Nk o NEg—1 . tn2

n :
e s P PR L 0S8 T - , 058" ., called zigzag of
np,gP= T “np—1,5P 1,58 7 Tkt n3,j? 7 “ng,jt 738

sources-targets of type (s, s);
Np—1 Np—2 ng Nk—1 n2 n 1
e s ot P L 08 " L eee82 Lot ., called zigzag of
np,gP=1 7 np—1,4P Ny1,d%  Tng,gkl n3,j2 = “na,gt 8448
sources—targets of type (s,t);
Np— Np—2 ng Nk—1 n2 n :

° o P . g ) . lled zigz f
t JP 10 5n, 1,57 R LT L R bpg g1s €& ed zigzag o
sources-targets of type (¢,t);

Np— Np—2 ng Nk—1 n2 n 1
o Lyttt .. O . e .5 O .
t, Jp 108, g g1, © Sy b1 tnw2 Sy il called zigzag of

sources-targets of type (¢, s).

The number of occurences of the s and of the ¢ in a string or zigzag is
called the size of the string or the size of the zigzag. If X is a r-link of
o,

L(n)"
= (dx;cia (dﬂc \ j1, 1), (dﬂck \ (J1,72), ), - (dﬂck \ (41, d2, -+, Jr), £))

then it can be written:

dxi_
X = ZX(Dl(ni)’
where zx denotes its underlying string or zigzag of sources-targets.
All these zigzags or strings build the (n—n)-faces of any n-cube. Thanks
to the cubical identities two different zigzags or strings may be equal. And

these equalities build congruences on the sequences defined below, such that

d
equivalence relations of these sequences are the faces of the free box 51?:;'
More precisely consider two (n—7)-links X = (dxzi, (dx}ﬁ \ 71, %), (dx}% \
(jluj?)a i)a EEE) (dx;gl\(.717]27 o 7jn—7’)7 i)) and X' = (dlﬂll{;l? (dxi;l\jia i)a (dxﬂkl
\ (J1,78), £); s (dx, \ (41,795 -+ s Jn—r); £)). Denote by zx the string or

d 1
zigzag of sources-targets which gives X, i.e X = zX(DlzC:)i), and zxs the

dx
string or zigzag of sources-targets which gives X', i.e X’ = zX/(Dl(:;).
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Definition 3.3. With the above notations, the (n —r)-link X is congruent
to the (n —r)-link X’ if and only if zx = zx-; in this case it is trivial to see
that zx and zxs have the same size. Then we write X = X’. Equivalence

dat dat
classes of (n — r)-links of the free box Dfﬁf are r-faces of les;'.

In fact the terminal element of the (n — r)-link X:

(d:v;ﬁ \ (j17j27 o 7jnfr)a :l:),
dz’
gives the precise information of an r-face of U, k; that it can be a source

b

(n
or a target, depending on the sign in {—,+}: “—
means target.

means source and “+7

d 1
Lemma 3.4. If two (n — r)-links of DIZIX are congruents then they have
the same terminal element.

Proof. The proof is easy and is made by finite decreasing induction:

e We start the induction by proving it with sources and targets of

(d:c%l) = sz:; (using the whole cubical identities ss = ss, st = ts,
etc.) and verify that indeed they give the same terminal coordinates:
this step shows the magical role of the trivial cubical structure of the
coordinates. See the section above;

e We suppose that this is true for two congruent (n — r)-links. When
we apply sources and targets of these (n — r)-links then it is straight-
forward to see that they have the same terminal coordinates.

O

A simple consequence is the following fact:

dxt
Proposition 3.5. A face of Dlzcs; is thus an equivalent class of links of

dx}
le:; with the same terminal element.

We can have in mind also that (dm}% \ (J1,J2,* Jn—r), =) is an r-face

d
of Ell

i
X
ki

(n)' equipped with (or linked by) the link:

(d‘,ri;la (dﬂ?;‘cl \jlv :l:)a (dxlli;l \ (jl)j2)7i)7 ceey (dﬂf};l \ (jl)j27 e ’jn—r)u :l:))v



Combinatorial approach of the category ©q of cubical pasting ... 33

thus when there is no confusion about the prescribed link of a face (dx}cl \

d d
(J1,72+ s Jn—r), £) of Dl(n§ we denote this r-face of Dl(n) just by:

(dw}% \ (j17j27 e 7jn—7’)7 :I:)7

ki
(n)"
The previous lemma allows to build the free bores associate to any faces

dx
without referring its link in [J;

dm}%
of Dl(n).
oy dxzi\(jlvaV'an_r) ) ) ) ]
Definition 3.'6. Thg free box Dl(,r) = (d$ki\(lej2, oty Jn—r))
of the link (dl‘}mv (dxil\‘ha :l:)a (d-ﬁ}gz\(]l?JQ): :t)v sy (dfvzz\(ﬁ’??’ o ,jn—r)y +

)

dx;,.
)) which represent an r-face of Dl(:;’ is the basic box with coordinate

dxi)l \ (j17j27 T 7jn—7') ln ZT'

d f j 7‘ ""v’n—'r‘
When working with this free box lef)i\(ﬁ e ), we forget the pre-

dat . .
vious information that it was linked to Dlz::;. Thus the link (dzj, (dzj, \

J1, %), (d%l \ (J1,J2), ), - (dxﬁ% \ (J1,72, s jn—r—1), =)) which represents
d 1
a face of leSji, represents also a face of the underlying free box

NG
Dl(f)z 1,52 , but with the simpler link (daz:}cl_\(]l,h7 e Gner),s (dle\

(j17j27'” 7jn—7’—1)7i )
dal, \(j1,2, n—r)

)) when we see it as a face of the free box Oy . But when we
@},

d
work with faces of [, 5 we have to not forgot their links in order to have

(n
T},

dx;,
a complete informations about their locations. Thus faces of Dl(ng can be

seen as free boxes equipped with their links.

i
X
kq

d.
Remark 3.7. We have others natural notations for links X of Dl(n)

verse Polish Notation, RPN):

(Re-

X = (dl‘z;lvdxi;l \.717d',ri;l \ (j17j2)7 ,dﬂfi;l \ (jl)j?u T ’jn—r)ai’ T 7:l:)7



34 C. Kachour

this presentation allows the following definition of sources and targets of

7

da d
links of Dlz(vsj by using the underlying free boxes of it: 5271,3'(51?23) =

(da},, (dz, \ j,—)), and

S:fl,l(X) = (dx}clvdx;ﬁ \Jladxﬁgl \ <j17j2)7 )

dac}‘%\(jhjm"' Jn—r)

dx}cl \ (j17j27 e 7jn—7’—1)73;—1,l(‘:]1(7«) )7i7 e 7i)7

thus
(dm;ci\(jlaj% T ajnfr)7 d:l:}gi\(jlaj% T 7jn77‘7jn—(T—1) = l)a _)a :l:a T :l:)v

that we rewrite when removing redondant occurrences of brackets

sp_1,7(X) = (dag,, da, \ i, dag, \ (j1, J2), -
dx}q\(jlaj?a"' 7jn—r)7dl‘§gi\(j17j2)' o 7jn—r7jnf(r71) - l)7_):l:7'” ):l:)7

da? . .
and for targets: tZ_Lj(Dl(s;) = (dzy,, (dzy, \ j,+)), and

t:—l,l(X) = (dx;clﬂdwﬂicl \jlvdajﬂll{;l \ (j17j2)7 ey
; .. . dzi \(j1,j2, jn—r)
dxzi \ (1, d2, ,]n_r_l),t:_u([]l(:)l ), dy e, 1),
thus
tr_y (X)) = (daj,, dzj, \ j1, da, \ (1, j2); -
(dx}ci\(jla.j% . 7jn—'r)7 dw}q\(jl:j% T 7jn—T7jn—(7’—1) = l)a +)a +,000 i)?
that we rewrite when removing redondant occurrences of brackets:
dx;m \(j17j27 o 7jn—7’)7 dx%q\(jlaj?: o 7jn—7"7jn7(r71) = Z)v -+, :ta T 7:t)
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d:c]ic_
4 Degenerate boxes (Dl(ng,EA)

We know that the following forgetful functor

[CZ, Sets] ——Y—— [CP, Sets] = CSets,

which sends cubical sets equipped with degeneracies and connections [3]
to cubical sets is right adjoint. Its induced monad R (described in 5) applied
to the terminal object 1 of the category [C°P, Sets] of cubical sets, gives all
kinds of degenerates n-cells A € R(1)(n) (for all integers n € N) we need
for cubical pasting diagrams. In Section 5 we shall describe this monad
accurately in order to see that it is a cartesian monad.

Now for each A € R(1)(n) we are going to define a box D;l(s;/ =4 which
faces are modeled with those of A. For that purpose we are going to define a
notion of zigzag of degeneracies in order to capture the depth of a degenerate
n-cell A € R(1)(n), which is the greatest integer r such that r-faces of A

are of the form 1(r), i.e are non degenerate. We begin with the notations:

T

no . q1n—1 n—2 . n—k L. ne S
o L =1L aelfaeo 1n—k+1,i,1€ © 1”2“%7”2’ where i° =
- - - - -
(1, gy inn,)s B € [I,m—ng] and iy € [1,n],--- ,ip € [1,n—
q
k1], iy _p, € [1,n2 +1].
na,y n—1y n—2,y n—k,y na,y -]
e 1 :=1","01 L o---01 I ) where =
n,jt .51 n—1; n—k+1,5; na+Ljn_p,’ J

(.7117 7]‘]17”' 7]’1117112)7 ke [[Ln_nQ]] and .711 € [[1,77,— 1]]7 7]]% €
[1,n—k],-- 4t ., € [1,n2].

Also for any partition n, < n,—1 <--- <np <--- <ng <np =n with
(p — 1) intervals [ng41,nx] we have 6 different zigzags of reflexivities and
connections:
ng . qn—1_qn—2 n—k no . .
o 1% =177 0l ] ool i o 1n2+17in—n2 where i = (i1, - , i,

Ly in—ny), k € [1,n — ng] called strings of degeneracies of type 1.

n2,y ._ 1n—Ly n=2y .. n—k,y LLoqn2y .
o L =Ly oln 0o i 0 ik, L, Where j =
(J1, " yJky " »Jn-ny), k € [1,n — ng] called strings of degeneracies

of type ~.
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n2 n3,Y N, k41 Np—1,7y p
° 1n 1 1n2 200 1nk,1,z’k ol 4100 1np_2,ip—2 o 1np_1,ip—1 called
zigzags of degeneracies of type (1,1).
n2,Y n3 kY Nk+1 Mp—1,y np
° 1n,i1 o 171271‘2 o--+01l e ik © 17%1.,“r1 0---0 1np pin—2 © 1np_1,ip—1 called
zigzags of degeneracies of type (v, 1).
n2,Y n3 Nk Nk+1 Np—1 NipyY
° 17“1 ol 2000 1 SR SRR 1np yir—2 © 1%_172.1,_1 called
zigzags of degenerames of type (v,7).
n2 n3,y Ny Nk+1 Tp—1 TepyyY
° 1n 1 O 1n2 200 1nk,1,ik‘ o 1nk,ik+1 0---0 1np_2,ip—2 o 1np_1,i1’—1 called

zigzags of degeneracies of type (1,7).

The number of occurrences of the operations 17 140 1:’1” in such zigzags
or such strings are respectively called the size of a zigzag or the size of a
string.

Definition 4.1. Consider an n-cell A € R(1)(n) which is not equal to
1(n). Thus it is a degenerate n-cell and is build with zigzag or string of
degeneracies as described just above. The depth of A is the integer p € N
such that A is equal to a zigzag of size n — p or a string of size n — p of
degeneracies of the p-cell 1(p) of the cubical site, i.e A = d4(1(p)) where
da denotes its underlying string or zigzag of degeneracies and d4 has size
equal to n — p.

Remark 4.2. Thanks to the axioms of degeneracies, the degenerate n-cell
A has zigzags or strings of degeneracies with different shapes, which may
be equals.

Suppose A is a degenerate n-cell in R(1)(n) with depth p < n. Zigzags or
strings of sources-targets of A with sizes which are less or equal to (n - p) are

d T
the one which build a congruence =4 on faces of the basic n-box lerf;, and
dzt
this congruence is defined as follow: if p < ¢ < n, two g-faces z and y of [J; (:3
are A-congruent: x =4 y, if and only if any strings or zigzags of sources-

targets z, of x (i.e z, is the underlymg string or the underlying zigzag of

sources-targets of any link of D 1(n ; which gives the ¢-face x (any two such

links are equivalent)) and any strings or zigzags of sources-targets z, (i.e z,
is the underlying string or the underlying zigzag of sources-targets of any
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dzt
link of Dl?s;' which gives the g-face y (any two such links are equivalent))
of y, equalize A i.e are such that z,(A) = z,(A).
dzt
Definition 4.3. The quotient DIZIB/ =4 is called a degenerate box with

. d
coordinate dzj . We denote it with the bracket notation (lesi J=A).

d. 7

Sources, targets and degeneracies of the box (les; ,=4) agree with those
of A, thus it has a canonical structure of n-cubical set with degeneracies
inherited by A and defined as follow:

Definition 4.4. e Sources and targets of degenerate boxes:

n dz}'vi . ) d:r}'ci\j .
Sn—l,j((Dl(n) ’ :A)) = (Dl(n—l)’ :sz_l’j(A))

and _ .
dw}% . dm}% \j .
Z—l,j((‘jl(n) ) :A)) = (Dl(n71)7 =1, (A))
e Degeneracies of degenerate boxes:
dat da}, +j

Z+1,j((|:|1(n; 9 EA)) = (Dl(n—',-l) ’ El?hLLj(A))
and

n, dx};i o ) dx2i+j o
1n11,j((D1(n)’=A)) = (Dl(n+1)7:12’11,]-(14))

5 Basic divisors
The forgetful functor
[CP, Sets] ——Y—— [C, Sets]
which sends cubical sets equipped with degeneracies and connections [3]

to cubical sets is right adjoint and its induced monad is written R = (R, i,m)

where 1csets —— R is its unit and R%2 —"— R is its multiplication.
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Definition 5.1. A basic n-divisor is the formal expression Adm};i where A €
R(1)(n). Its interpretation is just: the n-cell A is located in its degenerate

7

dxki
box (Dl(n) J=A).
Also we have the following simple fact.

Proposition 5.2. Any basic divisor has an underlying structure of reflexive
cubical set with connections.

Proof. The definitions of sources, targets, degeneracies are as follow:

s I,J(Adm D= st (A)dag \
1 (Adal ) =10 (A)dzi \ j
. 1Q+1J(Admz) = 17,1, (A)(dzf, + )
o 1) (Adaf) =107, (A)(dai, + )

O]

Definition 5.3. Two basic divisors Adxi:i, A daci/,,_ located respectively in
the coordinates dazii = dx,il ® - ®@dry and dw};;: dx,lﬁ,l Q- ® de;L are
j-adjacent for a direction j € [1,n] if their coordinates are j-adjacent and if
spo1(A) =1,y j(A)ifkj =K +1ortp | (A)=s; 4 ;(A)if kj =k, —1.

The set of basic divisors is denoted by BDiv and by the previous propo-
sition it is straightforward that it has an underlying structure of cubical set
with connections where its n-cells (for all n € N) are the basic n-divisors.

Now we are going to use basic divisors to describe the monad R =
(R,i,m) just above and show that it is a cartesian monad: consider the full
subcategory Oppiy C CSets which objects are basic divisors. The Yoneda
embedding®

OBDIv Y CSets

X ———— homgses(X, ),

5Of course, this is not a Yoneda embedding, stricto sensu, but because objects of Oppiy
are terms build with representables, we have permitted ourself this abuse of language.
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provides the following description of R(C') where C' € CSets is a cubical set:

R(C) = H homcsets(Y(X), C).
XeBDiv

The multiplication m of the monad R is very simple: it is obtained with
the concatenation of two strings of degeneracies, or one string of degenera-
cies with one zigzag of degeneracies, or with two zigzags of degeneracies.
The unit ¢ of the monad R sends n-cells ¢ to the decorated box cd:c?%.

Let us be more precise: the multiplication R?*(C) —™—— R(C) is
defined as follow: the cubical set R?(C') is defined by the formula:

R*(C) = H homcgets<Y(X),R(C): H homﬁCSets(Y(X/)aC))
X eBDiv X'eBDiv

thus an n-cell z of R?(C) is an expression of the form: z(2’(c)) where c is a
p-cell of C, p < n (for the case p = n it means that = is non-degenerate and
equal to ¢), 2’ is a string or a zigzag of degeneracies which when apply to ¢
gives a degenerate g-cell 2’(c) of R(C) (p < ¢ < n), and where z is a string or
a zigzag of degeneracies which degenerates again z’(¢). The multiplication
m sends z(2'(c)) € R%(C) to (z+2')(c) € R(C) where here z + 2’ is just the
concatenation of z and 2’.

Proposition 5.4. The monad R = (R,i,m) of cubical reflexive sets with
connections is cartesian.

Proof. The definition of the endofunctor R shows that it preserves fiber
products.

We are going to prove that the multiplication m is cartesian, i.e we are
going to prove that if C' € CSets is a cubical set then the commutative
diagram
R*(1)
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is a cartesian square; consider the commutative diagram in CSets.

o —2 5 RY1)

Thus if z is an n-cell of C’ then f(x) = z(c) where ¢ € C(q) (¢ <
n) and RO)(f() = RO)(2(c)) = 2(1{q)), and g(z) = 2*((1(p))), thus
m(1)(g(x)) = m(1)(z"(Z'(1(p)))) = (z” + 2')(1(p)), thus the commutativity
of the square gives z = 2” + 2’ and p = q.

Thus the unique arrow [ is defined as follow: I(x) = 2”(2(¢)), and
we can see that m(C)(2"(#'(c))) = (2”7 + 2’)(¢) = z(c¢) = f(z) and that
RE()(2"(¢(c)) = 2" (' (1(p))) = g().

The cartesianity of the unit
¢ —'1— R(C),
is easier and goes as follow: we start with a commutative diagram in CSets.

¢t

1 o
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z(c), thus R(!)(z(c)) =
i(1)(1(n)) = 1(n); which

Let = be an n-cell of C’, thus we have f(z) =
2(1(p)) and the commutativity gives: z(l( ) =
shows that z = () and p = n, thus f(z) =

It shows that there is a unique map l

defined by I(x) = f(x). O

6 Rectangular divisors

Definition 6.1. An n-configuration is a finite subset C,, C Z™. A rectan-
gular n-configuration is an n-configuration of the form

Cn =[pi;q1] x - < [pjiq] x -+ x [pn;qn] C Z".

An n-configuration C,, must be thought up to its translations in the
network Z"; the normalization of the rectangular n-configuration C, just
above is

[Lgr—(pr =D x - x[15¢; — (pj = D] x -+ x [1;¢n — (pn — D],

and usually we will work with rectangular n-configurations with normalized
shapes, i.e with n-configurations written as follow

Cp = [L;ma] x -+ x [1;m;] x -+ x [1;my,].

Now we are going to describe the sketch £c, of any rectangular n-
configuration C), (all the time normalized for simplicity) as above. For that
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perspective we are going to highlight some canonical orders on rectangular
n-configurations, all inherited from the lexicographic orders. Consider the
rectangular n-configuration C,, = [1;mq] x -+ x [1;m;] x -+ x [1;my,] as
just above; with it we get m,, rectangular n-configurations Cﬁ":

Chn = [1;ma] % -+ x [1;my] X -+ x [;mn_1] X {kn},

where k, € [1;m,]; and all these rectangular n-configurations C*» are
themselves ordered as follow

Cl<, <, O <o <, O
where the orders <, are induced by the lexicographic order on C,; these

orders <, indicates the formal composition o, of these Cff” (kn € [1;my])
along the direction j = n, thus the n-configuration

Co=[Lma] x - x [Lmy] x - x [Lma] = | Cin
kn€ll;mn]

is preferably denoted by
Cn:C'rl]/OnOTLCfL;n On...oan’L"

in order to keep the information of this formal o,-composition of C,; this
also underlies the following sketch:

Cn .

1 2 J— Tl e
Cn Cn Cn n Cn n

N/ NS

{on} {on}

Remark 6.2. The sketch above is obtained by substituting all occurences
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Ckn o, CFntlin Clo, - -0, Ck

"oy -+ o CF' with the formal base:

k kn+1
Cnn Cnn

{on}
and its dotted cocone shows the expected result (here C),) of its colimit.

Remark 6.3. All our sketches are written with solid bases and dotted
(co)cones.

This sketch is called the o,-sketch of C,, and it shows how to glue the
Ckn (K, € [1;my]) together, and its gluing is just Cp; now with the rectan-
gular n-configurations Cln (1, € [1;m,] is fixed) we get m,,_1 rectangular

. L Ko
n-configurations Cy,"""~":

C,{b"’k“—l = [1;ma] x - x [1;m;] x -+ x [I;mp—2] X {km-1} % {ln},

where ky,—1 € [1;m,—1]; and all these rectangular n-configurations Cé”’k"’l

are themselves ordered as follow
CiLn,l <n71 . <n71 C,f{“kn71 <TL71 . <n71 C’Tllnymnfl

where the orders <,_; are induced by the lexicographic order on C,; these
orders <,_1 indicate the formal composition o,,_; of these C’,l{“k"*l (kn—1 €
[1;mp—1]) along the direction j = n — 1, thus the n-configuration

Cli = yml %o x [yl x - x [maa] <} = () Chkos
knfleﬂl;mnfl]]

is preferably denoted by
C7l7,n — szml Op_1 " Op_1 Cénykn—l Op—1 * " Op_1 Cfln,mnfl

in order to keep the information of this formal o,-composition of C,; they
are m,, of such formal o,_j-compositions for C,; this also underlies the
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following sketch.

ln
C

_n‘w'_"\ o

lmmn 1—1 lnymn 1

Ve

{on-1} {on-1}

This sketch is called a o,,_1-sketch of C),, and it shows how to glue the
C’,l{“kmfl (kn_1 € [1;my_1]) together, and its gluing is Cl; they are my,
of such o,,_1-sketches for C,,; we may iterate this process: con81der the m;
rectangular n-configurations

O R = [1ma ] x - x [myoa] x (k) x G} - x (I},

where k; € [1;m;] and where ([j41, - ,1,) € [1;mj41] X -+ X [1;my] is
fixed, then it is straightforward that these rectangular n-configurations are
ordered as follow

Sl

Inye 1 , b 1y
Ol o otk L Ol s

where the orders <; are induced by the lexicographic order on C,; these

orders <; indicate the formal composition o; of these Clprolitihs (k; €
[1;m;]) along the direction j, thus the n- conﬁguratlon

= ] x [yl x (L} x k= | oot

kje[1;my]
is preferably denoted by
[ Iy dy41,1 [ Lyl 1,m;
Cn j+1 — Cn J+1 Oj . Oj Cn J+1,kg Oj - Oj Cn F+1,1M5

in order to keep the information of this formal oj-composition; they are
mj41 - - my, of such formal oj-compositions for C,; this also underlies the
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following sketch.

Cln,“',lj+1
n
IR L
C,ang"'gljJrl’ Cina"'alj+l72 C'f{lﬂ""lj+17mj71 CLm"'JjJrl,mj

{o;} {os}

This sketch is called a oj-sketch of Cj,, and it shows how to glue the
Cyp itk (k; € [1;m,]) together, and its gluing is Clr ol they are
mjy1---my, of such oj-sketches for C),. This construction ends with the
n-configurations

C’fl"v"'7l2’k1 = {]{,‘1} X {ZQ} X X {ZJ} XX {ln}’

where ki1 € [1;m1] and (lg,--- ,1,) € [1;me] X -+ X [1;my] is fixed, and
where these m rectangular n-configurations are ordered as follow

C’flny"'al271 <1 .. <1 Cfln7"'7l27kl <1 .. <1 C’flnv"'vl27m1’

where the orders <; are induced by the lexicographic order on C),,. But
all these n-configurations C 2" (for k; € [1;m1]) are singletons, which
means that they are just coordinates in C),, and the order <; indicates the

formal composition o1 of these Ch 21 along the direction j = 1, thus
the n-configuration

Chr2 = [Lma] x {Io} x -+ x {ln} = | Choobhy
klE[[l;m1]]

is preferably denoted by
C',lan7 Jl2 — C"’l{lv 2,1 01 :++-01 C?l/an 2,k o1 -:-01 qu/l/na Jl2,ma

in order to keep the information of this formal oj-composition; there are
mg - - - My such formal oj-compositions of C),; this also underlies the follow-
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ing sketch.

Ol 2,1 Olnil22 . Ol loma—1 Ol olayma
n n

n n

N/ N/

{o1} {o1}

This sketch is called a oj-sketch of C),, and it shows how to glue the
Clpritnkr (k1 € [1;m1]) together, and its gluing is Cf{“m’lz; there are
mo - - - m, such oj-sketches of C,,.

What we have done so far was to show how to reconstruct the n-
configuration C,, from its parts with respect to the directions j € [1;n]. Let
us explain the importance of this construction for a cubical strict co-category
C. We can coherently weight the n-configuration C,, with n-cells of C, i.e
in each coordinates of C,, we substitue an n-cell of C such that if two such
n-cells z,y € C(n) have j-adjacents coordinates then sj,_; ;() =t} _; ;(v)
or ty_q(w) = s ;(y). Such weighted Cj, is called a composable array
of n-cubes in [1] (page 350), and our n-configuration C,, can be seen as a
formalization of the multi-dimensional arrays in [1]. From this weighted C,
and with respect to the structure of C, we get a unique n-cell z € C(n)
which is the result obtained by applying the operations o; (j € [1;n]) in
this weighted n-configuration. However in [1] the authors did not describe
a complete procedure to get such z € C(n)%, but the sketches described just
above for ()}, provide such procedure, but for that we need to care about the
order to apply these sketches: we need to apply the oj-sketches of C,,, then
the og-sketches of C,, and so on, until the unique o,-sketch of C,,. These
kinds of sketches which have a hierarchical organization of their (co)cones
have been studied before in [7] under the name Trames. Thus a trame is
a sketch equipped with an ordered stratification of its set of (co)cones. In
fact this way to ordered the computation of z € C(n) is already indicated

SThey just write that this z € C(n) is obtained by applying the operations o;,0; in
any well-formed fashion
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by the formalism of the sketches of C), because, following the terminology
of Trames in [7]:

e The my - --m,, o-sketches of (), are the first floor sketches of C,,;
e The mji1---my oj-sketches of C,, are the j-floor sketches of Cy;

e The unique o,-sketch of C,, is the n-floor sketch of C,,.

Thus any realization of the sketch £¢, of C, must be thought in an
inductive way, starting from the oj-sketches of C,, until the o,-sketch of C,.

Remark 6.4. In [1] page 350, the authors defined composable array of n-
cubes in cubical strict co-groupoids, but of course this can be done also in
any cubical strict co-category.

Remark 6.5. The decomposition of C,, above by its o,,-sketch, o,,_1-sketch-
es, -+, oj-sketches, was deliberate for simplicity. Let us call this sim-
plification the (o,,05-1,: - ,01)-decomposition of C,. We can do similar
(%jnr%jp_rs " 05 )-decompostion of Cy, where j; € [1;n] and j; # jg
if ¢ # k; in this case C, has one oj -sketch (the n-floor sketch), has
My, My, o -+ - My, oj,-sketches (the (i)-floor skteches), and has mj, - --m;,
oj,-sketches (the first floor sketches). All these decompositions give the
same information about how to glue C,,.

Now we are going to define by induction the cubical strict co-category
e-RectDiv (with connections) of rectangular divisors whose underlying cu-
bical set is written as follow.

Q
l::

|
-
3

Sl
33

3
=~ \L“v
&,
“iq
=
N
=

Tn—1,1 91,1 a0
e-RectDiv = n-RectDiv (n — 1)-RectDiv 2-RectDiv _~ 1-RectDiv  O-RectDiv

7 =7 -

n—1,1 T J

: T °

— 1,2

Tn—1j

ﬁ
Tnfl,n

Thus we suppose that its underlying (n — 1)-cubical set have already
been defined; we start to build the set n-RectDiv plus the diagrams (for
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j € [t;n]):

(n — 1)-RectDiv n-RectDiv,

n
Tn—1,5

where n-RectDiv is a set of congruences of terms; the congruences of terms
in n-RectDiv are specific n-cubes X named rectangular n-divisors, which
faces are denoted by o3,_; ;(X) and 7;7_; ;(X); the induction goes as follow.

e If X € BDiv is a basic n-divisor (see 5), then X € n-RectDiv such
that o)’ _ 1J(X) =81 (X)and 70 (X)) =17 ;(X) (see 5 for the

n—1,7 n—1,j

definition of s3_; ; and t;_ ;);
o If X, X" € n-RectDiv are such that 7 ;(X) = o, ; ;(X’), then
X o X" € n-RectDiv such that
— oy 1](X o X') = ol 1J(X) and 7, LJ'(X o; X') = 1)_ 1,3(X)
for 1 <j § n;

— ol (X"X') = Tn-14(X) o1 on 1 (XNif1<i<ji<n

n—1,1 J i —1 0_77;_172( ) lf]_ < j < i < n;

Tr?—l,(X) ;L__ll o (XNifl1<i<j<n
n n

— XTLX 7
sl )= {nl,i(X)O?IT1,¢(X’)if1§j<z'§n.

We equip n-RectDiv with the congruences specific to the associativities
and to the interchange laws.

Axioms 1 (Associativities). If X, X', X” € n-RectDiv such that the term
(X o} X') o X" € n-RectDiv is well defined, then

(XO?X)O X7 _Xo (X’onX”)

Axioms 2 (Interchange Laws). If X, X', X”, X € n-RectDiv such that
the term (X o X') off (X7 o X™) € n-RectDiv is well defined, then

(X o X') o (X7 o7 XW) = (X off X7) o (X' o X)),
Remark 6.6. We could have postponed these congruences after the def-

inition of the maps €, ; HX) (i € [1;n]), T7,57(X) and FZ;I’JF(X) (i €
[1;m — 1]) for reﬂexwltles defined just below in this case we would have
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been obliged to chose a definition of the first transport law and the second
transport law among their different presentations thanks to the interchange
laws. See below.

The elements in (n — 1)-RectDiv which are congruences of terms, are
defined by hypothesis: they are specific (n — 1)-cubes X named rectan-
gular (n — 1)-divisors, which degeneracies (defined below) are denoted by
" HX) (i € [1;n]), TPV (X) and 7,5 (X) (i € [1;n — 1]) which live
in n-RectDiv. 7 ,

n—1,—
Fn,i
_
n—1
€n

(n — 1)-RectDiv ——— n-RectDiv.

E—
F”*L‘F

n,i

If X € (n —1)-RectDiv, then ezgl(X ) is defined inductively as follow.
o If X € (n—1)-RectDiv is a basic (n—1)-divisor, then we put ezgl(X) =
12;1(X) (if X € BDiv, see 5 for the definition of IZEI(X));

e If X, X' € (n— 1)-RectDiv such that X ogl*l X' € (n — 1)-RectDiv is
well defined, then

— g (XTI X ) = (X))o e (X i1 <i<j<n—1;

6n,i
— e (XX =g (X) of 7 (X if 1< j<i<n.

7 J En,z

If X € (n— 1)-RectDiv, then FZ;LW(X) (v € {—,+}) is defined induc-
tively as follow.

e If X € (n—1)-RectDiv is a basic (n—1)-divisor, then we put I "7(X)

n,%

= lzgl’W(X) (if X € BDiv, see 5 for the definition of IZZI’W(X));

e If X, X' € (n—1)-RectDiv such that X o?_l X' € (n—1)-RectDiv, is
well defined, then
— I (X T X = T (X o T (X i1 < i< j <
n—1
(Xl X =T M (X)ol T M (X) i1 < j<i<n—1

n,i n,% 7 na
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— First transport laws: for 1 < j <n—1

L+ - —
Fn 1+(X n— 1X/)_ FZ,] <X> EZ,{I(X) )
n,j n—1 X) ™ Hr(X/) J+1l
En,JJrl( n,j

where this notation means:

(X)of Tho (X))
(X) oy Tt (X))

(interchange laws)

J *n,j

Fn 1+(Xon 1 ) (Fn 1+(X)On6n I(X))O;L+l (GZ;
= (PZ,jl +(X) Oj+1 Gn,j}kl(X)) O? (GZ

— Second transport laws: for 1 <j<n-—1

j
1, _ —
b (XonlxY) = L (X)) e (X) .
n,j j T i) (XY J“l
n?] n7]

where this notation means:

Do b (X o) X)) = (T (X) of en i1 (X)) oy (e, (X) of T b (X))
= (FZ,;L?(X) Oj+1 ezjl(x )) O? (6Z§i1(X) Oj+1 Fn b 7(X,))

(mterchange laws)

We finish the definition of n-RectDiv by equipping it with the congru-
ences specific to the unities.

Axioms 3 (Unities). If X € n-RectDiv then

X o} Ezjl(Tn 1;(X)) =X, and 6231(02_17j(X)) of X = X;

+ - - ~+ - _
FZHJ(X) ?H FZHJ (X) = €Z+1,j+1(X)a and FZHJ(X) O?Ll FZJrl,j(X) =

€Z+17j(X)'
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It is easy to see that the maps "%, 757 7 b+,

n,dg n,0

n—1,—
Fn,i
n—1

(n — 1)-RectDiv ——— n-RectDiv,

n—1,+
Fni

are well defined because they respect congruences, i.e if x = y in (n —
: -1 — n—1 n—1,y _ rn—1ly . .

1)-RectDiv then e " (z) = €, (y) and I';;'(z) = ')/ (y) in n-RectDiv.

Let us denote by e-RectDiv this cubical strict co-category with connections,

we have

Theorem 6.7. e-RectDiv is the free cubical strict oo-category with connec-
tions on the terminal object 1 € CSets.

The cells in the cubical strict co-category e-RectDiv are our models of
cubical pasting diagrams. Also for each n € N, elements of the set n-RectDiv
are n-cubical sets, thus we put

Definition 6.8. The full subcategory ©g C CSets which objects are cells of
the cubical strict oo-category e-RectDiv defined above is called the cubical
Oy.

Remark 6.9. The axioms of unities describe above 3 by congruences of
terms are expressible with commutative diagrams for a projective sketch,
as the one described in [3] for the axioms of interchange laws. In [3] these
axioms were expressed in the level of models, this is the reason why we
used a projective sketch for such diagrammatical formulation. We can also
use inductive sketches to express these axioms, for example the congruences

62;1(03_17j(X)) o X = X are encoded by the following cocones.
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n n—1,j
ol . (X > X
n 1/,\]( ) g v
on . oe 1
n—1 nobaTmd Tidx
€n.j B,
n—1
€n i ( X
Z*L]
n
Unfl,j(X)

Objects of O are built with inductive sketches (see 7) because Oy has
to be seen as the main category of arities (in the sense of logic) for the
theory of cubical oco-category theory. The slogan of sketch theory could
be: the syntax (logic) is diagrammatically governed by inductive sketches,
and the semantic (structures, models) is diagrammatically governed by the
projective sketches.

The inductive definition of cubical pasting diagrams shows the crucial
role of coordinates which is to be guides to build terms with cubical shapes:
if X and X' are basic n-divisors such that t;_; ;(X) = s;_; ;(X') then
the term X of X’ means that X and X' are located in the network Z" with
coordinates which are j-adjacent. The induction above plus the congruences
show that rectangular n-divisors are first of all just rectangular filling of the
network Z™ by basic n-divisors. Thus each X &€ n-RectDiv is characterized
by an n-configuration (), in which in each coordinates da:}%i € O, is located
a basic n-divisor Ada:}'%, such that if two basic n-divisors are located in two
coordinates which are j-adjacent (j € [1,n]), then these basic n-divisors
must be j-adjacent (see 5.3), and furthermore we demand that in these datas
some sub terms of X must be congruents (3). Let us write X € n-RectDiv
as follow

X = Ayda}y + -+ Adaly + -+ Ard:v};:;,

where this writing means that the Aldznzl_ (for I € [1;#C,]) are located in
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dl’;; € C,, and where here the n-configuration C), of X is written
Cy :da:j%l +---+d:c§cé +---+da:}'€;,

where here r = #C,, = my---m, if C, = [1;mq]] x -+ x [1;m;] x - x
[1;m,]. When we write

X = Aldx;il + oo Ay + -+ Arday,

then the elements of the set {Alda: Alda;kl, e A dazkr} are the basic

n-divisors of X, and X can be seen as its n- conﬁguratlon C weighted by
this set of basic n-divisors, where this set is also equipped with congruences
coming from the axioms of unities. Thus X is glven by the couple of sets
({Ald:n A dmkr} C),) where {Aldaj A dfck,} and C), are in bi-

jection, and this bijection comes from a morphlsm of n-cubical set (see also
6.10). When we say that X’ C X is a sub rectangular n-divisor of X, it
means that we considered X’ equipped with a sub n-configuration C}, C C’

weighted by basic n-divisors A’ dl’k such that d:nk € CJ. The Sketch &g, of

C,, described above shows remarkable subsets of C’ for example we defined
the n-configuration C moolitt - C’n, as a formal gluing along the direction

J € [1;n] of the n configurations chylivoks Ch, where k; € [1;m;] and
where (lj41, -+, 1) € [1;mjp1] x -+ x [1;my,] was fixed, and we formally
described the following o;-cocone of &, -

Cfln,'”,ljJrl
R oY

C’flny“',lj+1yl Cflnf“ylj-f—l»Q . C’flnv“'vlj-%—lv"nj_l Cﬁ{h"'vl.ﬂ-lami

N/ NS

{o;} {o;}

When we weight these n-configurations with the basic n-divisors of X
we obtain sub rectangular n divisors of X corresponding to these sub n-
configurations; thus X' b+ c X is the sub rectangular n-divisor of

X corresponding to the n-configuration C™ %+1. and Xt li+1ki gre
p g g n 9
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the sub rectangular n-divisors of X corresponding to the n-configurations

Clrolivioks 7 (kj € [1;m;]); and the oj-cocone above of Ec, gives the follow-

ing oj-cocone of £x (more precision are provided in 7):

Xlnoooliv
TR S U A
x! Xinoeoliv2 o0 Xeslip,mg—1 Xlnsoljrr,my

n J— n n J— n
Tn-1,j = On—1,5 Tn-1,j = On—1,5

when &c,, is weighted by the set of basic n-divisors of X; here 7}

—1,5 —

0;,_1; at the bottom left means 7,7 (Xl”’ lirnly = gn 13(Xl"’ RECARE

and T ; = an 1; at the bottom rlght means T, (Xl"’ wlirrmi—ly =
oy (X)),

Remark 6.10. If X € n-RectDiv, then another possibility for its notation
is to describe it as a morphism of n-cubical set:

C, —=— R(1)

where R(1) is the free reflexive cubical set on a terminal object 1 € CSets,
and where R is the underlying endofunctor of the monad R = (R,i,m) of
cubical reflexive sets with connections described in 5. We recall that the
cubical structure on C), is given by the contractions of coordinates. With
this description, the underlying map of sets for n-cubes’

c, X(n)

R(1)(n)

and we see that it induces a bijection of C), on the image of X (n). This
description of X as morphism of n-cubical sets is interesting but for appli-
cations (see [5]) we need more concrete notation as the one given above.

"Here C,, is seen as a set.
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7 Cubical inductive sketches

Let X = Alde‘;l 4o+ Aldx;'cl_ + o+ Ardazzr be an n-divisor where C,, =

d:c?vl +-ooF dxfg; +- dxizir is its n-configuration given by

Cp = [Lma] x -+ x [1;my] x -+ x [1;my,].

The sketch® £x associated to X is provided by several underlying sketches
Ec,, associated to its n-configuration C,, (see 6) called the (oj,,0;, ,,
-, 04, )-decompositions of C,, (see 6.5) where j; € [1;n] and j; # ji if
i # k. Thanks to the congruences in 1 and 2, all these sketches provide
equivalent formulation of £x, and in order to simplify the theory we shall
use the (o, 0,1, ,01)-decomposition of C,, which has been accurately
described in the beginning of Section 6. The sketch £x is thus given by the
(on, 0p—1,- - ,01)-decomposition of C), weighted by the basic n-divisors of
X. Thus £x consists of

e The my---m, oj-cocones Eé? A2 (first floor cocones), where (lg, - -+ ,1,,) €
[1;ma] x - X [1;ma]:

Xlnyosle
LT A Y
Xlnyol2,l Xlnyool2,2 00 Xln,osl2,ma—1 Xlnyslzyma
T 11 /11 \ /11
n—1,
Th-1,1=0p 11 = On_1,

n—

here 7' ; | = 03, ; at the bottom left means

T (Xl ly = g (X ele?),

n—1, ’

and 7 4 ; = o;_;; at the bottom right means

TTL

. I(Xln;",l%ml*l) =o" 1(Xln7"':l2,m1)
n—1, n—1, :

8This kind of sketches are known under the name Trames in [7].
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[ IR
e The mjtq -+ my oj-cocones £y 7 (j-floor cocones), where (141,

o 7ln) € Hl;mj+1]] Koo X Hl;mn]]:

Xlnyslir

[UUSEE A S A P

Xlnsoljp1,my

Xlns ol Xlnsoli+,2 000 Xlnoslivrmy =1
o,
T;,L—l,j 7'7?71,]' no
n — n n — n
Tn—1,j = On—1, Tn—1,j = On—1,
n — n
here 74 ; = op_; ; at the bottom left means
n I, l'+1 1 _ n lp,- l'+1 2
Tp1 g (X790 = o (XTmrs),
n — n 3
and 7 ; = oy, _4 ; at the bottom right means
— ,(le"' 7lj+17mj_1) ) ,(le"‘ alj+1:mj)
7’1—1,] - 'fl—l,_] .
e The unique o,-cocone of X (n-floor cocone):
X
YT
Xl : X2 an—l X™Mn
7_7,1,,_1)" 02—1,71 T::—l,n Tn_1n
n — n n — n
Tn—l,n - gn—l,n Tn—l,n - Un—l,n

here 7 ; , = o5, , at the bottom left means

T (Xl) = UZ—l,n(X2)7

n—1n

and 74, = 0,_q, at the bottom right means

T (X7 = oy (X,
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As we saw in 6, the ms - - - m,, o1-cocones é’é? 2 (first floor cocones of
X), where (lg,---,1,) € [1;ma] x -+ x [1;my]:

Xlnoo b

[PEEE A D A

X lnsee ol X lnseeol2,2 Xlnseila;mai—1 Xin l2,mq
‘7271,1 Gh 11
Th-1,1 Th-1,1
n n
Tn—1,1 = On—-1,1 Tpn—1,1 = On-1,1

are such that the mj ---m, n-configurations X' 2k (L € [1;m4])
are singletons, and then, they are just the mjq ---m, basic n-divisors of

X, where their sources are by definition o,;_;, := s;_;; and their targets
are by definition 7' ;, = ¢} _;; (see 5). And thus we can improve the

description of the first floor of £x by writing its oj-cocones Eé}“'"’b with
their specific sources and targets:

Xl oo

I - O

Xlnyla,l Xlnyol2,2 00 xln,osl2,ma—1 Xlnysl2,ma

n
o Sn—1,1
n—1,1

n n
ln—11="5n-11

By definition each rectangular n-divisor X is an n-cell of e-RectDiv,
it is therefore an n-cube; let us denote by f,(X) the finite set of p-faces
(0 < p < n—1) of this n-cube X, thus f,(X) C p-RectDiv is a finite
subset of rectangular p-divisors, and X seen as an n-cube may be depicted
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diagrammatically as follow.

n

O‘nfl,n

93,4
o — 3
On—1,5 033 02,3
y ‘73,2 ‘7%2 ‘7%,2
C’Z 1,1 o34 CER ‘Til %
{X } fr—1(X) - fa(X) f3(X) f2(X fi(X) Jo(X)
Fn " ( 4 3 ) 2 1 (
n—1,1 73,1 T2,1 T1,1 To
e 4 3 2
3,2 2,2 1,2
Tho1j 5 5
d i,s 2,3
73,4

This n-cube structure on X transfers to an n-cube structure on its sketch
Ex; indeed if x € fp(X) is a p-face of X thus it is a rectangular p-divisor
which sketch is &;; therefore if we define the sets: f,(Ex) = {&:/x € f,(X)}
(p € [0;n — 1]), it highlights the following n-cube in Sets:

Q
33

|
-
3

*} 4
‘7271j U§,3 ‘73,3
— I —3 2
93,2 T2.2 T1,2
o7 I = = 1
£ Ex) - fa(€ & & E E
{€x} — fn 1(Ex) - fa(Ex) S f3(Ex) s f2(Ex) s J1(€x) : Jo(€x)
N 73, T2, T1,2
Th-1,j 5 53
4 = '
73,4
Th—1,n

where Jgfl’k(&,) = gﬂgfl,k(l‘) and Tp 1x(E) = 87_571,}9(:6) if & € fp(Ex);
therefore the sources and targets of this n-cubical set £x send sketches to
sketches.

Consider now the sketches & (x) == U fp(€x) = U & forallp €

z€ fp(X)
[0;n — 1], i.e we consider the sketch £ (x) obtained as the union of all

cocones inside all sketches &, where x € f,(X) are the p-faces of X; in this
case it highlights the following (n — 1)-cubical object in the category Sketch
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of sketches.

|
(S
3

|
—

|

S
33

U§,4
n71> 4 3
Tn—2.j O3 3 02,3
— —a 3
03,2 02,2 01,2
Wi P 3 7 77 1
Tn—21 031 02,1 911 (o)

& £ & & E £ &

X X X X X X X
o fn—1(X) " f5(X) — fa(X) — f3(X) — f2(X) . f1(X)
Th—2.1 73,1 T21 Ti1 To

4 4 3 2
73,2 T2,2 T1,2
n—1 4 3
Th oy T3 Ty 3
? 4
73,4
—
n—1
Tn,72,n—1

As a matter of fact the cocones in & C & (x) can be seen as ways of
gluing of rectangular p-divisors along some rectangular (p — 1)-divisors, and
thus the integer (p — 1) is the dimension the sketch &, (x) must have if we
want to identify a cubical object in Sketch inherited from the rectangular
n-divisor X.

In order to justify the existence of this cubical object in Sketch we need
to describe the sources ap iy and the targets 7' 2 > Which now must be
morphisms of sketches, i. e are maps which send eocone to cocone. A (p—1)-
cell in &, (x) is a cocone in some &, where x € f,(X), and cocones in &, are
the one which belong to the ﬁrst floor cocones until the p-floor cocones of
&y in fact we will show that ap k and Tp - 2k send cocones of the first floor
of £, to respectively cocones of the first floor of Ep @) C &,y (x) and
to cocones of the first floor of £ » @ C Efp1(X)s Where k and k' can be

different or sometimes Can be equal (see below). For cocones of the other
floors the actions of 0’ 2 i and 7' 21 ;. are described similarly.

Ifx = Aldx' -+ Aldx -+ A dackr is a rectangular p-divisor
(x € fp(X)) equlpped with the p—conﬁguratlon C’p = [L;mq] x -+ x [1;my],
as we see above &;° has msg - - - My, 01-COCONES Em’” ol (first floor cocones of

IWe deliberately use similar notation for &, as for £x.



60 C. Kachour

x), where (la,--- ,1,) € [1;ma] x -+ x [1;mp]:
‘/I:lpv' 7l2
Yy oom f
pholal R A gl od2
5P 5P
p—1,1 p—1,1
fz 1,1 t£71,1
p _ 4P p _ 4P
tpfl,l - tpfl,l tpfl,l - tpfl,l

-1,1 =
ty 1, because for all ky € [1;my], the rectangular p-divisors :Elp" Ba are
just basic p-divisors; a fragment d:

The bases of these cocones are such that O'p 11 = sg 11 and T

lz,k‘l— l27k'1

N

—11—0

1

of these cocones is called a 1-gluing data of x; more generally a j-gluing
data d of x is a cocone of the following shape

Aldx;c Al/ d.’L‘Z l’
p 1,5
p 1,5
p 1J Aldx p 1, Al/dl‘kl/
where Alda:kl, Al/daci v belong to the set of basic p-divisors of xz; we are

going to describe the actlon of U % p and T 2 . on these j-gluing datas of

. S o
x, because this action is similar and extend easﬂy on its oj-cocones Ez” R

and we also deliberately treat the general case of j € [1;p] (and not only
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the case j = 1 of the first floor above) because this general case cover all

cocones in &, (for all floors). When in &, gluing of rectangular p-divisors

are involved, we just replace s With o and t with 7 in the computations; here
p—1 p— 1 p—
=t

Opok = Spok and Tp 2 k=1t 2 & because only basic divisors are involved.

We describe these morphisms of sketches by defining cocones s 5 k(d)

and tz é k(d) as precomposition of the j-gluing data d just above

Ald(L'Zi Al/d:cz%,
k2

P
p—1,j

A’dx?d \j
where we write A’ =t} g(Aldmié) = 35_1,3(Al’d$kz/) consider now As” =

oo LA, A = =t ;k(A ), and the maps

, Py . . th] ,
AT dri, \ (G F) —" " A, G, A, \ (k) — s Alda, \

The maps sgiik, tr~ ;k send each cocone d of &, to cocones s —1 (),
- zk(d) respectively in the sketches Esgil,k,(m) C & i(x) gtp,lkr(ﬂ?) C

& fp_1(X)» by the precompositions

A7 ydai, \ (5, k)
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P
tp 1,5

Aydal, \ (5. k)

For this description of the maps s” tg:; » We just use cubical iden-

tities as describe in [3].

p— 2k’

e When j = k we obtain sgié .(d) by using the diagram

Aldac L/dat
v
“p—1,+
p 1,5+1
Alda, \j Aldat, \ j Aldat) \ j
ki k{ ki
P~ p—1 bg:é J
P—2,j Sp—2,k=j

Arda; y \ (4, k)
7

where we denote A”dac/fc,,é \ (j, k) = sgiik(A/dmZé \ 7)-

Remark 7.1. Of course we have also

(A’dxkl \j) = sby (A dmkl \j) = ;,j(A'dx;‘% \ 5),
but in: ¢~ 2j(A’dackl\j) - ;](A')dxkl\(j j),and in: sp~ 2J(A’dackl\
J) = sp_ 2J(A’)dgukl\(j 7), the basic divisors A”, 7~ ;J(A’) and sp_ ;J(A')

are not necessarlly equals.
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And thus the morphism of sketches sg:é  sends d to the following

—1
cocone s;~, ; (d) of the sketch 555717j+1(x):

A’dle_ \j A’dle' \J

Avday \ (7, )

And we obtain tg:; .(d) by using the diagram

Aldw;L Alldl';l/
k3 [
P P
p—1,i4 . Tp—1 .
p—1,j p—1,j+1
Aldat )\ j Aldat) \ j Aldat, \ j
p—1
s
= P—2,j
t p—1
p—2,j D e 1\
P— =2

Avdz! 0\ (5, k)
where we denote A”dﬂ[:;;,,é \ (4, k) = tz:é’k(A/dl'Zé \ j), and thus the

morphism of sketches tﬁ:; i sends d to the following cocone ti:é w(d)
of the sketch &
-

1,541(2)°

Aldai, \ j Aldx;, \ j

A daiy\ ()
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e When k < j then we obtain Szié,k(d) by using the diagram

Aldal g\ Alday )\ j Aldalg \ g
Avdzl i\ G k)
where we denote A”dxz,,é \ (j, k) = Szié,k(A/dng \ 7).
Remark 7.2. Of course we have also
ti éj 1(A,d$§€§ \Jj) = Sz:;,k(A,dl“Zé \Jj) = p 2] 1(A/d93kl \ ),

but in t7~ éj 1(A/d$§€l \j) - ;J 1(A')dx2l \ (4,7 — 1) and in
s 2; I(A’da:kl \Jj) = s_ 2] l(A/)dxkl \ (j,7 — 1) the basic divisors

A ) j1(A") and s~ - j—1(4') are not necessarily equals.

And thus the morphism of sketches s k: sends d to the following
cocone s 5 k(d) of the sketch ESZ—l,k(‘T):

Aldal, \ j Aldz, \ j

Adrj \ (.= 1)
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And we obtain tg:; 1 (d) by using the diagram
Aldz l/dz

NP

A'dz"il. \J Adz? Wl \J A,dz;‘;l‘ \ Jj
i g K

T P21
2.1 -1 )
P—2.,j o— 2,k

Avdz? o\ (4, k)
;

where we denote A”d:n;'ﬂ,,l \ (4,k) = tz ;k(A'd:EZl \ j), and thus the

morphism of sketches t -1 o sends d to the following cocone tp é k(d)
of the sketch & ()
p—4

Alda, \ j Alday, \ j

A”de”l \ (],] —1

e When k > j then we obtain Sgié,k(d) by using the diagram

Aldz' Al/dz

Aldaty \ g A'dz? il \j Aldal \

Avdal )\ (G k)
k2

where we denote A”d:ci,,; \ (4, k) = s (A’da:kl \ j)-
Remark 7.3. Of course we have also

boa(Adayy \ j) = s) 75 (Aldayy \ ) = sy j(Aldajy \ ),
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but in ¢}~ ;](A’da:kl\])—tp : (A’)dxkl\(] j) and s, 2J(A’dxkl\j)

p=2,j
sp_ 2](A’)daskl \ (j,7) the basic divisors A7, t?~2 (A’) and s~} .(A")

’ Up=2,j p2J

are not necessarlly equals.

And thus the morphism of sketches sﬁié . sends d to the following

1
cocone sz 21 (d) of the sketch 58£_1,k+1(x):

Aldzi, \ j Aldzy, \ j

Avday \ (7, )

And we obtain tg:;’ . (d) by using the diagram

i i
Aldackl Alldxkl,

Ardal (G k)

where we denote A”d:nz,,l \ (4,k) = ti ;k(A’d:E;l \ j), and thus the
morphism of sketches tp ; ;. sends d to the following cocone tp ; k(d)

of the sketch & (@)

p—1,k+1

Aldai, \ j Aldx, \ j

A daiy\ ()



Combinatorial approach of the category ©q of cubical pasting ... 67

which finalize our description of the (n — 1)-cubical object in the cat-
egory Sketch of sketches associated to the rectangular n-divisor X.

Remark 7.4. It is interesting to see that the 1-faces x € f1(X) of X are
all of the form

x = Agday + - + Aydx] - + Aydry,

where any basic divisor 4;dz} of x can be 1(1)dz;{ or 19(1(0))dxz{, and the
sketch & (x) is a set of cocones of the form

T

Aodx(l) “ Aldx% Ar,ldx%_l Adz}

where A denotes the unique 0-cell 1(0) of the cubical site C.
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