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Combinatorial approach of the category
Θ0 of cubical pasting diagrams

Camell Kachour

Abstract. In globular higher category theory the small category Θ0 of
finite rooted trees plays an important role: for example the objects of Θ0 are
the arities of the operations inside the free globular ω-operad B0 of Batanin,
which B0-algebras are models of globular weak ∞-categories; also this glob-
ular Θ0 is an important tool to build the coherator Θ∞

W0 of Grothendieck
which Sets-models are globular weak ∞-groupoids. Cubical higher category
needs similarly its Θ0. In this work we describe, combinatorially, the small
category Θ0 which objects are cubical pasting diagrams and which morphisms
are morphisms of cubical sets.

1 Introduction

In globular higher category theory the small category Θ0 of globular past-
ing diagrams plays an important role: for example the objects of Θ0 are the
arities of the operations inside the free globular ω-operad B0 of Batanin,
which B0-algebras are algebraic models of globular weak ∞-categories; also
this small category Θ0 is an important tool to build the coherator Θ∞

W 0

Keywords: Pasting diagrams, pasting schemes, sketch theory, higher order terms.
Mathematics Subject Classification [2010]: 03B15, 03B38, 03G99.
Received: 14 September 2023, Accepted: 29 October 2023.

ISSN: Print 2345-5853 Online 2345-5861.

© Shahid Beheshti University

19



20 C. Kachour

of Grothendieck which Sets-models are globular weak ∞-groupoids. Cu-
bical higher category needs similarly its Θ0. In this work we describe,
combinatorially, the small category Θ0 which objects are cubical pasting
diagrams and which morphisms are morphisms of cubical sets. The monad
R = (R, i,m) acting on the category of cubical sets, which algebras are
cubical sets equipped with degeneracies, exhibits the sorts A ∈ R(1)(n) of
operations of the cubical theory, and the cubical pasting diagrams play the
role of arities for these operations. Cubical pasting diagrams of dimension
n ∈ N∗ are rectangular finite conglomerate of basic n-cubes1, where basic
n-cubes are just elements A ∈ R(1)(n). In order to build such conglomerate
we need to have a good control of its basic n-cubes and a canonical way to
control these basic cubical shapes is to equipped each basic n-cubes with a
coordinate (k1, · · · , kn) in the network Zn = Z× · · · × Z (n times; Z is the
set of integers) in order it to be well located. Thus a basic n-cube is now a
formal expression: A(k1, · · · , kn) which means that the n-cell A ∈ R(1)(n)
is located in the coordinate (k1, · · · , kn). But A ∈ R(1)(n) is in particular
an n-cube and it has faces which are (n − 1)-cubes snn−1,j(A), and we can
ask then what are the coordinate of it? The first approximation is to say
that it is located in the coordinate (k1, · · · , k̂j , · · · , kn), which means that
we removed kj and it has the coordinate (k1, · · · , kj−1, kj+1, · · · , kn) in the
network Zn−1. Also A ∈ R(1)(n) can be degenerate in the (n + 1)-cube
1nn+1,j(A) (classical degeneracies) or in the (n+ 1)-cube 1n,−n+1,j(A) (connec-
tions), and here we are attempted to say, at first approximation, that both
are located in the coordinate (k1, · · · , kj−1, 1, kj , · · · , kn), which means that
we added 1 and it has coordinate in the network Zn+1. Such remove and
addition of coordinate is well-known for tensor calculus in differential ge-
ometry, under the names contraction of a tensor and dilatation of a tensor.
Thus we have chosen to use this tensorial notation to describe coordinates
attached to basic n-cubes: the expression Adx1k1 ⊗ · · · ⊗ dxnkn says that the
n-cell A ∈ R(1)(n) is located in the coordinate (k1, · · · , kn), and in our
jargon the tensor dx1k1 ⊗ · · · ⊗ dxnkn is called a coordinate. We shall of-

ten use the abbreviation dxiki for the coordinate dx1k1 ⊗ · · · ⊗ dxnkn . Also

the face snn−1,j(A) ∈ R(1)(n − 1) is located in the j-contraction of dxiki ,

1We shall consider also some basic 0-cubes as 0-dimensional cubical pasting diagram,
but not amalgamation of it, just because it doesn’t make sense to glue such 0-cubes.
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thus we write: snn−1,j(A)dx
1
k1
⊗ · · · ⊗ d̂xjkj ⊗ · · · dx

n
kn
, where here this j-

contraction means the tensor dx1k1 ⊗· · ·⊗dx
j−1
kj−1
⊗dxjkj+1

· · · dxn−1
kn

; also the

coordinate of the basic (n + 1)-cube 1nn+1,j(A) is given by the j-dilatation

dx1k1 ⊗ · · · ⊗ dx
j−1
kj−1
⊗ dxj1 ⊗ dxj+1

kj
⊗ · · · dxn+1

kn
of dxiki .

However we need to reinforce this tensorial formalism in order it feats
perfectly with the basic datas needed for cubical higher category; as a matter
of fact, if A ∈ R(1)(n) has coordinate dx1k1 ⊗ · · · ⊗ dxnkn then two different
faces of A may be different but with the same coordinate; for example if A
is the degenerate 2-cube 11,−2,1 (1(1)) ∈ R(1)(2):

A =

1(0) 1(0)

1(0) 1(0)

1(1) 11,−2,1 (1(1))

1(1)

101(1(0))

101(1(0))

1

2

with coordinate dx1−4 ⊗ dx21 (which means that A has coordinate (−4, 1) in
Z2), then its faces: s21,1(A) = 1(1) and t21,1(A) = 101(1(0)) have both the same

coordinate dx11 (it is reindexed after contraction). This example shows that
the tensorial formalism alone leads to a lack of control of our cells, because
we need that each part of our cubical pastings to be located individually.
In order to remove such pathologies we are going to enriched the tensorial
formalism with a concept of formal box which feats better with the entire
shapes of each basic n-cubes in R(1)(n). These formal boxes are specific

degenerate n-cubes (□
dxi

ki

1(n) ,≡A) called degenerate boxes which are equipped

with coordinates dxiki and whose aim is to contain any n-cubes which have
the same degeneracies as A ∈ R(1)(n). As we wrote above, the expression
Adxiki says that the n-cell A (A ∈ R(1)(n)) is located in the coordinate dxiki ,

and the expression B(□
dxi

ki

1(n) ,≡A) now means that the n-cube B ∈ R(X)(n)

(here X is any cubical set) has the same degeneracies as A ∈ R(1)(n), and
B is inside the degenerate box (□

dxi
ki

1(n) ,≡A) which itself is located in the

coordinate dxiki . When B = A then A(□
dxi

ki

1(n) ,≡A) is called a basic divisor.
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Such basic divisors A(□
dxi

ki

1(n) ,≡A) are written Adx
i
ki

to simplify the notation
after the Section 5. We take advantage of this formalism to describe the
monad R = (R, i,m) of cubical reflexive sets with these basic divisors, and
show that R = (R, i,m) is a cartesian monad (5).

The definition of the degenerate boxes (□
dxi

ki

1(n) ,≡A) (A ∈ R(1)(n)) in 4 are

preceded by the definition of the basic one □
dxi

ki

1(n) in 3 called the basic boxes,

i.e they are boxes with no degeneracies. These formal boxes (degenerates or
not) are congruences of terms of a language L′n = (Zn, {−,+}) containing
tensors dxiki , contractions of these tensors, and elements in {−,+}, as basic
datas. The terms that we consider for this language are called links because
their role is to exhibit a link between such formal boxes with their faces.
Basic n-divisors are terms for a language Ln = (L′n, R(1)(n)), and they
constitute the basic pieces for rectangular n-divisors. Rectangular n-divisors
are defined inductively as terms of a language Ln = (Ln, (◦nj )j∈J1;nK). This
inductive approach was possible thanks to the good control of the different
faces that have the basic n-divisors. Rectangular n-divisors are written

X = A1dx
i
k1i

+ · · ·+Aldx
i
kli
+ · · ·+Ardx

i
kri
,

and are characterized by a rectangular n-configuration Cn, i.e a finite subset
of Zn of the form

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK

such that the set {A1dx
i
k1i
, · · · , Aldx

i
kli
, · · · , Ardx

i
kri
} are the basic n-divisors

ofX, where nowX can be seen as its n-configuration Cn weighted by this set
of basic n-divisors. These rectangular n-divisors are our models of cubical
pasting diagrams, and as we have expected they behave very well: thanks
to their rectangular shapes they have a notion of sources and targets which
allow them to be composed, but they can also be degenerated, etc. Thus
they produce a cubical strict∞-category2 •-RectDiv (6), and also the small
category Θ0 of cubical pasting diagrams. The small category Θ0 is defined
as the full subcategory of the category CSets of cubical sets which objects

2In fact the free cubical strict ∞-category S(1) on a terminal object of CSets, where
S is the underlying endofunctor of the monad S = (S, λ, µ) of cubical strict ∞-categories
with connections described in [3, 5].
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are cubical pasting diagrams. The category Θ0 can be seen as a cubical
variation of Lawvere theory. Also each rectangular n-divisor X has an in-
ternal notion of sources and targets, which lead to an inductive sketch EX .
This inductive sketch is built with the help of the formal sketch ECn of its n-
configuration, which itself comes canonically from the lexicographical order
on Cn (6). Thus we see here another crucial roles of coordinates which is to
exhibit in a canonical way (with their intrinsic lexicographical features) the
sketches of rectangular divisors. Formally these inductive sketches behaves
like rectangular divisors, thus they are cubical sets which can be degener-
ated, composed, etc. Thus these sketches lead to another presentation of
Θ0 and to another presentation of the cubical strict ∞-category of cubical
pasting diagrams. In the end of 7 we show that, for each rectangular n-
divisor X, its associated sketch EX is canonically a (n − 1)-cubical object
in the category Sketch of sketches.

We can summarize the main definitions here:

• Adxiki means that the n-cube A is located at the coordinate dxiki , see
2; usually A ∈ R(1)(n) where R is the underlying endofunctor of the
monad R = (R, i,m) of cubical reflexive sets; see 5;

• Basic box □
dxi

ki

1(n) of a coordinate dxiki , see 3; and degenerate boxes

(□
dxi

ki

1(n) ,≡A), see 4; they are formal boxes whose aim is to contains n-
cubes. These formal boxes provide a better control of the coordinates,
than the tensors, of the faces of the cubes they contain: their formal-
ism allows to have an inductive definition of cubical pasting diagrams
(6);

• Basic divisor: B(□
dxi

ki

1(n) ,≡A); see 5; this is an n-cube B inside the

n-box (□
dxi

ki

1(n) ,≡A);

• Rectangular n-divisors: formal sum X = A1dx
i
k1i

+ · · · + Aldx
i
kli

+

· · ·+Ardx
i
kri
, of basic one with rectangular shape, see 6; they are our

models of cubical pasting diagrams;

• for each rectangular divisor X we associate an inductive sketch EX ,
see 7.

Applications of this cubical Θ0 = (1 ↓ S(1)) are done in [5], where
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the monad S = (S, λ, µ) of cubical strict ∞-categories with connections
is described with the objects of Θ0, and it is shown that it is a cartesian
monad, solving a conjecture in [6]. Also in [5], two cubical coherators are
defined with our cubical Θ0: the coherator Θ∞

W 0 which Sets-models are
cubical weak ∞-groupoids with connections, and the coherator Θ∞

W which
Sets-models are cubical weak ∞-categories with connections.

The author has done previous work on cubical higher categories, some
of them are published, see [3, 4]; but others were archived in IHES and
removed after five years, see [6, 6]. We hope to make again available the
work in [6, 6] very soon.

This article may be seen as an improved version of some aspects of the
Arxiv version [2]. In [2] some materials were described for the question
of pastings objects with cubical shapes in full generality, not only for the
simpler cases of rectangular pastings as in the present work. Even if main
ideas of this arxived version remain correct (like the idea of using coordinates
to control the gluings), this article focuses only on rectangular gluings, which
not only simplify the story, but is also more relevant for our main goals, i.e
to capture objects in Θ0.

2 Tensorial notation

The reader may read the first section in [3] for reminders of the basic defini-
tions in cubical higher category theory: definition of cubical sets, definition
of cubical strict ∞-categories with connections, etc.

Here we introduce tensorial notation and shall see that contraction and
dilatation of tensors provide interesting structure for cubical sets, though
trivial. This study (and introduction of tensorial notations) reveals the
intrinsic cubical nature of tensorial calculus.

For each n ∈ N, the n-dimensional network Zn = Z×· · ·×Z (Z is the set
of integers) is used as a coordinate system; the elements (k1, · · · , kn) ∈ Zn

are coordinates and are preferably denoted instead with the tensorial no-
tation dx1k1 ⊗ · · · ⊗ dxnkn in order to freely use the dilatations and contrac-
tions operations on it, where these operations are commonly used in tensor
calculus. When no confusion occur we write dxiki := dx1k1 ⊗ · · · ⊗ dxnkn .

These coordinates dxiki ∈ Zn are used to indexed n-cubes, in order to well
located them and to build conglomerates of n-cubes. Thus if A is an n-
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cube, the notation Adx1k1 ⊗ · · · ⊗ dxnkn means that A has the coordinate
dx1k1 ⊗ · · · ⊗ dxnkn , which means that A is located at the depth kj ∈ Z for
the direction j ∈ {1, · · · , n}.

Remark 2.1. It is easy to see that two coordinates dxiki , dx
i
k′i
∈ Zn are

linked by translations. For example any coordinates dxiki ∈ Zn gives the

coordinate dxi1 := dx11 ⊗ · · · ⊗ dxj1 ⊗ · · · dxn1 by translations along all direc-
tions j ∈ J1, nK. Usually we shall work with finite subsets Cn ⊂ Zn named
n-configurations below 6, and these n-configurations must be thought up
to their translations in the network Zn. For example we have the rectan-
gular n-configurations 6 which are n-configurations with a specific shape.
Any translation of a rectangular n-configuration is still rectangular, and in
fact these translations give the same rectangular n-configuration but with
different coordinates (see 6).

Two coordinates dxiki = dx1k1 ⊗ · · · ⊗ dxnkn and dxik′i
= dx1k′1

⊗ · · · ⊗ dxnk′n
are j-adjacent if for all i ∈ J1, nK\j, ki = k′i, and if kj = k′j+1 or kj = k′j−1.

The j-contraction of the coordinate dx1k1⊗· · ·⊗dx
j
kj
⊗· · · dxnkn is defined

as the coordinate

dxiki \ j = dx1k1 ⊗ · · · ⊗ d̂x
j
kj
⊗ · · · dxnkn ,

in Zn−1 defined by removing the direction j and re-indexing:

dxiki \ j := dx1k1 ⊗ · · · ⊗ dx
j−1
kj−1
⊗ dxjkj+1

⊗ · · · dxn−1
kn

;

sometimes we use also the notation cj(dx
i
ki
) for dxiki \ j. If we apply these

contractions p-times then we obtain the following coordinate in Zn−p:

dxiki \ (j1, · · · , jp),

where the order of occurrences of the j′s in (j1, · · · , jp) is important just
because if σ is an element of the permutation group Sp then the action

σ · dxiki \ (j1, · · · , jp) := dxiki \ (jσ(1), · · · , jσ(p)),

does not imply the equality between dxiki\(j1, · · · , jp) and dx
i
ki
\(jσ(1), · · · , jσ(p)).
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The j-dilatation of the coordinate dx1k1 ⊗ · · · ⊗ dx
j
kj
⊗ · · · dxnkn is a coor-

dinate in Zn+1 defined by adding dxj1 in the direction j and re-indexing:

dxiki + j := dx1k1 ⊗ · · · ⊗ dx
j−1
kj−1
⊗ dxjk1 ⊗ dx

j+1
kj
· · · dxn+1

kn
;

sometimes we use the notation dj(dx
i
ki
) for dxiki + j; and if we apply these

dilatations p-times then we obtain the following coordinate in Zn+p:

dxiki + (j1, · · · , jp),

where the order of occurrences of the j′s in (j1, · · · , jp) is important.

Remark 2.2. The previous dilatation:

dxiki + j := dx1k1 ⊗ · · · ⊗ dx
j−1
kj−1
⊗ dxjk1 ⊗ dx

j+1
kj
· · · dxn+1

kn
,

built by adding dxj1 is a convention, but we could add instead dxjk (k ∈ Z)
if necessary.

Consider now the following diagrams of different network Zn for all n ∈
N, such that Z0 is the singleton set {∗}:

· · ·Zn Zn−1 · · ·Z4 Z3 Z2 Z1 Z0

σn
n−1,1

τnn−1,1

σn
n−1,i

τnn−1,i

σn
n−1,n

τnn−1,n

σ4
3,1

τ43,1

σ4
3,2

τ43,2

σ4
3,3

τ43,3

σ4
3,4

τ43,4

σ3
2,1

τ32,1

σ3
2,2

τ32,2

σ3
2,3

τ32,3

σ2
1,1

τ21,1

σ2
1,2

τ21,2

σ1
0

τ10

where for all positive integers n ≥ 2 and all direction i ∈ J1;nK, σnn−1,i =
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τnn−1,i = ci (the i-contractions); we also have the diagram:

Z0 Z Z2 Z3 Z4 · · ·101

112,1

112,2
123,2

123,1

123,3

134,2

134,3

134,1

134,4

where 101(∗) = dx11, and for all n ≥ 1 and all i ∈ J1;n+ 1K, 1nn+1,i = di (the
i-dilatations), and the diagram:

Z Z2 Z3 Z4 Z5 · · ·
11,−2,1

11,+2,1

12,−3,1

12,+3,1

12,−3,2

12,+3,2

13,−4,1

13,+4,1

13,−4,2

13,+4,2

13,−4,3

13,+4,3

14,−5,1

14,+5,1

14,−5,2

14,+5,2

14,−5,3

14,+5,3

14,−5,4

14,+5,4

where here for all n ≥ 1, and all i ∈ J1;nK, 1n,γn+1,i = di (the i-dilatations),
then it is straightforward to see that contractions and dilatations put a
structure of cubical reflexive set (see [3]) on the collection of networks Z• =
(Zn)n∈N.

3 The basic boxes □
dxi

ki

1(n) of coordinates dxi
ki

A crucial and straightforward fact from the previous section is that given
a coordinate dxiki in Zn, it has a trivial structure of n-cubical set3 where
sources and targets are defined by contractions:

• snn−1,j(dx
i
ki
) = tnn−1,j(dx

i
ki
) := dxiki \ j,

3And also a trivial structure of reflexive n-cubical set.
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• sn−p
n−p−1,k(dx

i
ki
\ (j1, · · · , jp)) = tn−p

n−p−1,k(dx
i
ki
\ (j1, · · · , jp)) := dxiki \

(j1, · · · , jp, k)
thus different contractions of dxiki are the faces of its underlying trivial
n-cubical set.

However this structure of n-cube that dxiki has is too trivial because it
does not distinguished sources and targets with the same direction j. And
this distinction is crucial because our idea is too label any n-cubical sets A
with a coordinate dxiki of Z

n, such that faces of Amust have new coordinates

dxiki \ (j1, · · · , jp) build by contractions and weighted by a notion of sources
and targets. In order to correct this default we are going to enriched the
coordinates with a notion of link, which are roughly speaking coordinates
equipped with the symbols {−,+}.

Thus for each coordinate dxiki of the network Zn we shall associate an

other n-cubical set □
dxi

ki

1(n) called the box of dxiki and which formalise better

the notion of n-cubical set A labelled by dxiki , in the sense that sources and
targets of A are then labelled with weighted coordinates, which give the
right information of the location of faces of A. Without these weights any
p-face of A which is a source in the direction j has the same coordinate
(because the trivial structure collapse this source-target information) as
the other p-face of A which is a target in the same direction j, and this is

counterintuitive: the role of □
dxi

ki

1(n) is to distinguished well coordinates of any

faces of any n-cubical set labelled with the coordinate dxiki . This section is

devoted to the description of these boxes □
dxi

ki

1(n) .

Given a coordinate dxiki and the elementary n-cube 1(n) (which is the

unique n-cell of the cubical site C), we associate to it a formal free box 4

□
dxi

ki

1(n) which is a non-degenerate n-cubical set which faces are congruences of
terms for a language, and these terms are called here links. The datas of this
language are the different contractions of dxiki : dxiki \ (j1, j2, · · · , jp) plus
two symbols {−,+} which label these contractions. These symbols {−,+}
must be interpreted as sources and targets of the different contractions they

equipped, and provide a good notion of sources and targets for □
dxi

ki

1(n) . The

4Here free has not to be interpreted in the algebraic sense of “freeness”, but instead it
must be interpreted as a box not linked with a higher dimensional box.
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terms of this language are built inductively (see below) and congruences
on it use notions of zigzag build with the cubical identities of sources and

targets (see below). This n-cubical set □
dxi

ki

1(n) is called the basic box with

coordinate dxiki . This box □
dxi

ki

1(n) is not degenerate because it is build with

1(n) which is non degenerate, and its degeneracies are discussed in the next
section where degenerate boxes will be defined.

Remark 3.1. An other possible description of faces of □
dxi

ki

1(n) is given in

the remark below, which looks more natural (it uses the Reverse Polish
Notation), but less intuitive for us. Perhaps in the future we would prefer
these RPN notations.

In this section we will describe only the underlying cubical set of the

box □
dxi

ki

1(n) and degeneracies of it shall be described only in the next sec-
tion, because they are more subtile and involve notions of dilated free boxes
equipped congruences for degeneracies (see below). As we wrote in the pre-

vious section the role of □
dxi

ki

1(n) can be summarized as follow: if an n-cubical

set X is labelled by a coordinate dxiki it means that it is contained in the

box □
dxi

ki

1(n) which faces are congruences of links.

The box □
dxi

ki

1(n) and all faces of □
dxi

ki

1(n) have underlying free boxes (see

below). But when we consider the box associated to a face of □
dxi

ki

1(n) we

forget that it was “linked” to □
dxi

ki

1(n) and then this box is named “free”.

In order to keep the linked information of the faces of □
dxi

ki

1(n) we write
these links as finite sequences of the form:

X = (dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ..., (dx

i
ki
\ (j1, j2, · · · , jr),±)).

We can define them by finite decreasing induction:

Definition 3.2. • For any direction j ∈ J1, nK, the term snn−1,j(□
dxi

ki

1(n) ) =

(dxiki , (dx
i
ki
\ j,−)) and the term tnn−1,j(□

dxi
ki

1(n) ) = (dxiki , (dx
i
ki
\ j,+))
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are 1-links which must be interpreted respectively as the j-source and

the j-target of the box □
dxi

ki

1(n) .

• IfX = (dxiki , (dx
i
ki
\j1,±), (dxiki\(j1, j2),±), ..., (dx

i
ki
\(j1, j2, · · · , jn−r),

±)) is an (n−r)-link of the box □
dxi

ki

1(n) , then for any direction j ∈ J1, rK,
the terms:

srr−1,j(X) = (dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ...,

(dxiki \ (j1, j2, · · · , jn−r),±), (dxiki \ (j1, j2, · · · , jn−r, j),−))

trr−1,j(X) = (dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ...,

(dxiki \ (j1, j2, · · · , jn−r),±), (dxiki \ (j1, j2, · · · , jn−r, j),+))

are (n− r − 1)-links of □
dxi

ki

1(n) .

• (n − r)-links of sources-targets of □
dxi

ki

1(n) , or (n − r)-links of □
dxi

ki

1(n) for
short, are given by such sequences:

(dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ..., (dx

i
ki
\ (j1, j2, · · · , jn−r),±)).

Some notations shall be useful:

snn2,j1
:= sn2+1

n2,j1n2+1
◦ sn2+2

n2+1,j1n2+2
· · · ◦ sn−1

n−2,j1n−1
◦ snn−1,j1n

,

where j1 = (j1n, · · · , j1n2+1) and j
1
n ∈ J1, nK, j1n−1 ∈ J1, n− 1K, · · · , j1n2+1

∈ J1, n2 + 1K;

tnn2,j1
:= tn2+1

n2,j1n2+1
◦ tn2+2

n2+1,j1n2+2
· · · ◦ tn−1

n−2,j1n−1
◦ tnn−1,j1n

,

where j1 = (j1n, · · · , j1n2+1) and j
1
n ∈ J1, nK, j1n−1 ∈ J1, n− 1K, · · · , j1n2+1

∈ J1, n2 + 1K.
Also for any partition np < np−1 < · · · < nk < · · · < n2 < n1 = n

with (p − 1) intervals Jnk+1, nkK we have 6 different zigzags of sources and
targets:
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• snn2,j
:= sn2+1

n2,jn2+1
◦sn2+2

n2+1,jn2+2
· · ·◦sn−1

n−2,jn−1
◦snn−1,jn

where j = (jn, · · · ,
jn2+1) and jn ∈ J1, nK, jn−1 ∈ J1, n− 1K, · · · , jn2+1 ∈ J1, n2 + 1K called
string of sources (or string of type s);

• tnn2,j
:= tn2+1

n2,jn2+1
◦ tn2+2

n2+1,jn2+2
· · · ◦ tn−1

n−2,jn−1
◦ tnn−1,jn

where j = (jn, · · · ,
jn2+1) and jn ∈ J1, nK, jn−1 ∈ J1, n−1K, · · · , jn2+1 ∈ J1, n2+1K, called
string of targets (or string of type t);

• s
np−1

np,jp−1 ◦ tnp−2

np−1,jp
· · · tnk

nk+1,jk
◦ snk−1

nk,jk−1 · · · tn2

n3,j2
◦ snn2,j1

, called zigzag of

sources-targets of type (s, s);

• s
np−1

np,jp−1 ◦ tnp−2

np−1,jp
· · · tnk

nk+1,jk
◦ snk−1

nk,jk−1 · · · sn2

n3,j2
◦ tnn2,j1

, called zigzag of

sources-targets of type (s, t);

• t
np−1

np,jp−1 ◦ snp−2

np−1,jp
· · · tnk

nk+1,jk
◦ snk−1

nk,jk−1 · · · sn2

n3,j2
◦ tnn2,j1

, called zigzag of

sources-targets of type (t, t);

• t
np−1

np,jp−1 ◦ snp−2

np−1,jp
· · · tnk

nk+1,jk
◦ snk−1

nk,jk−1 · · · tn2

n3,j2
◦ snn2,j1

, called zigzag of

sources-targets of type (t, s).

The number of occurences of the s and of the t in a string or zigzag is
called the size of the string or the size of the zigzag. If X is a r-link of

□
dxi

ki

1(n) :

X = (dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ..., (dx

i
ki
\ (j1, j2, · · · , jr),±))

then it can be written:

X = zX(□
dxi

ki

1(n) ),

where zX denotes its underlying string or zigzag of sources-targets.
All these zigzags or strings build the (n−np)-faces of any n-cube. Thanks

to the cubical identities two different zigzags or strings may be equal. And
these equalities build congruences on the sequences defined below, such that

equivalence relations of these sequences are the faces of the free box □
dxi

ki

1(n) .

More precisely consider two (n−r)-links X = (dxiki , (dx
i
ki
\j1,±), (dxiki \

(j1, j2),±), ..., (dxiki\(j1, j2, · · · , jn−r),±)) andX ′ = (dxiki , (dx
i
ki
\j′1,±), (dxiki

\ (j′1, j′2),±), ..., (dxiki \ (j
′
1, j

′
2, · · · , j′n−r),±)). Denote by zX the string or

zigzag of sources-targets which gives X, i.e X = zX(□
dxi

ki

1(n) ), and zX′ the

string or zigzag of sources-targets which gives X ′, i.e X ′ = zX′(□
dxi

ki

1(n) ).
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Definition 3.3. With the above notations, the (n− r)-link X is congruent
to the (n− r)-link X ′ if and only if zX = zX′ ; in this case it is trivial to see
that zX and zX′ have the same size. Then we write X ≡ X ′. Equivalence

classes of (n− r)-links of the free box □
dxi

ki

1(n) are r-faces of □
dxi

ki

1(n) .

In fact the terminal element of the (n− r)-link X:

(dxiki \ (j1, j2, · · · , jn−r),±),

gives the precise information of an r-face of □
dxi

ki

1(n) that it can be a source

or a target, depending on the sign in {−,+}: “− ” means source and “ + ”
means target.

Lemma 3.4. If two (n − r)-links of □
dxi

ki

1(n) are congruents then they have
the same terminal element.

Proof. The proof is easy and is made by finite decreasing induction:

• We start the induction by proving it with sources and targets of

(dxiki) = □
dxi

ki

1(n) (using the whole cubical identities ss = ss, st = ts,

etc.) and verify that indeed they give the same terminal coordinates:
this step shows the magical role of the trivial cubical structure of the
coordinates. See the section above;

• We suppose that this is true for two congruent (n − r)-links. When
we apply sources and targets of these (n− r)-links then it is straight-
forward to see that they have the same terminal coordinates.

A simple consequence is the following fact:

Proposition 3.5. A face of □
dxi

ki

1(n) is thus an equivalent class of links of

□
dxi

ki

1(n) with the same terminal element.

We can have in mind also that (dxiki \ (j1, j2, · · · , jn−r),±) is an r-face
of □

dxi
ki

1(n) equipped with (or linked by) the link:

(dxiki , (dx
i
ki
\ j1,±), (dxiki \ (j1, j2),±), ..., (dx

i
ki
\ (j1, j2, · · · , jn−r),±));
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thus when there is no confusion about the prescribed link of a face (dxiki \
(j1, j2, · · · , jn−r),±) of □

dxi
ki

1(n) we denote this r-face of □
dxi

ki

1(n) just by:

(dxiki \ (j1, j2, · · · , jn−r),±),

without referring its link in □
dxi

ki

1(n) .

The previous lemma allows to build the free boxes associate to any faces

of □
dxi

ki

1(n) .

Definition 3.6. The free box □
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) = (dxiki \(j1, j2, · · · , jn−r))

of the link (dxiki , (dx
i
ki
\j1,±), (dxiki\(j1, j2),±), ..., (dx

i
ki
\(j1, j2, · · · , jn−r),±

)) which represent an r-face of □
dxi

ki

1(n) , is the basic box with coordinate

dxiki \ (j1, j2, · · · , jn−r) in Zr.

When working with this free box □
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) , we forget the pre-

vious information that it was linked to □
dxi

ki

1(n) . Thus the link (dxiki , (dx
i
ki
\

j1,±), (dxiki \ (j1, j2),±), ..., (dx
i
ki
\ (j1, j2, · · · , jn−r−1),±)) which represents

a face of □
dxi

ki

1(n) , represents also a face of the underlying free box

□
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) , but with the simpler link (dxiki \(j1, j2, · · · , jn−r), (dx
i
ki
\

(j1, j2, · · · , jn−r−1),±
)) when we see it as a face of the free box □

dxi
ki
\(j1,j2,··· ,jn−r)

1(r) . But when we

work with faces of □
dxi

ki

1(n) we have to not forgot their links in order to have

a complete informations about their locations. Thus faces of □
dxi

ki

1(n) can be
seen as free boxes equipped with their links.

Remark 3.7. We have others natural notations for links X of □
dxi

ki

1(n) (Re-

verse Polish Notation, RPN):

X = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ..., dx

i
ki
\ (j1, j2, · · · , jn−r),±, · · · ,±);
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this presentation allows the following definition of sources and targets of

links of □
dxi

ki

1(n) by using the underlying free boxes of it: snn−1,j(□
dxi

ki

1(n) ) =

(dxiki , (dx
i
ki
\ j,−)), and

srr−1,l(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

dxiki \ (j1, j2, · · · , jn−r−1), s
r
r−1,l(□

dxi
ki
\(j1,j2,··· ,jn−r)

1(r) ),±, · · · ,±),

thus

srr−1,l(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

(dxiki\(j1, j2, · · · , jn−r), dx
i
ki
\(j1, j2, · · · , jn−r, jn−(r−1) = l),−),±, · · · ,±),

that we rewrite when removing redondant occurrences of brackets

srr−1,j(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

dxiki \(j1, j2, · · · , jn−r), dx
i
ki
\(j1, j2, · · · , jn−r, jn−(r−1) = l),−,±, · · · ,±);

and for targets: tnn−1,j(□
dxi

ki

1(n) ) = (dxiki , (dx
i
ki
\ j,+)), and

trr−1,l(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

dxiki \ (j1, j2, · · · , jn−r−1), t
r
r−1,l(□

dxi
ki
\(j1,j2,··· ,jn−r)

1(r) ),±, · · · ,±),

thus

trr−1,l(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

(dxiki\(j1, j2, · · · , jn−r), dx
i
ki
\(j1, j2, · · · , jn−r, jn−(r−1) = l),+),±, · · · ,±),

that we rewrite when removing redondant occurrences of brackets:

trr−1,j(X) = (dxiki , dx
i
ki
\ j1, dxiki \ (j1, j2), ...,

dxiki \(j1, j2, · · · , jn−r), dx
i
ki
\(j1, j2, · · · , jn−r, jn−(r−1) = l),+,±, · · · ,±).
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4 Degenerate boxes (□
dxi

ki

1(n) ,≡A)

We know that the following forgetful functor

[Cop
r , Sets] [Cop, Sets] = CSets,U

which sends cubical sets equipped with degeneracies and connections [3]
to cubical sets is right adjoint. Its induced monad R (described in 5) applied
to the terminal object 1 of the category [Cop, Sets] of cubical sets, gives all
kinds of degenerates n-cells A ∈ R(1)(n) (for all integers n ∈ N) we need
for cubical pasting diagrams. In Section 5 we shall describe this monad
accurately in order to see that it is a cartesian monad.

Now for each A ∈ R(1)(n) we are going to define a box □
dxi

ki

1(n)/ ≡A which
faces are modeled with those of A. For that purpose we are going to define a
notion of zigzag of degeneracies in order to capture the depth of a degenerate
n-cell A ∈ R(1)(n), which is the greatest integer r such that r-faces of A
are of the form 1(r), i.e are non degenerate. We begin with the notations:

• 1n2

n,i1
:= 1n−1

n,i11
◦ 1n−2

n−1,i12
◦ · · · ◦ 1n−k

n−k+1,i1k
◦ · · · 1n2

n2+1,i1n−n2

, where i1 =

(i11, · · · , i1k, · · · , i1n−n2
), k ∈ J1, n−n2K and i11 ∈ J1, nK, · · · , i1k ∈ J1, n−

k + 1K, · · · , i1n−n2
∈ J1, n2 + 1K.

• 1n2,γ
n,j1

:= 1n−1,γ
n,j11

◦ 1n−2,γ
n−1,j12

◦ · · · ◦ 1n−k,γ
n−k+1,j1k

◦ · · · 1n2,γ
n2+1,j1n−n2

, where j1 =

(j11 , · · · , j1k , · · · , j1n−n2
), k ∈ J1, n − n2K and j11 ∈ J1, n − 1K, · · · , j1k ∈

J1, n− kK, · · · , j1n−n2
∈ J1, n2K.

Also for any partition np < np−1 < · · · < nk < · · · < n2 < n1 = n with
(p − 1) intervals Jnk+1, nkK we have 6 different zigzags of reflexivities and
connections:

• 1n2
n,i := 1n−1

n,i1
◦1n−2

n−1,i2
◦· · ·◦1n−k

n−k+1,ik
◦· · · 1n2

n2+1,in−n2
where i = (i1, · · · , ik,

· · · , in−n2), k ∈ J1, n− n2K called strings of degeneracies of type 1.

• 1n2,γ
n,j := 1n−1,γ

n,j1
◦ 1n−2,γ

n−1,j2
◦ · · · ◦ 1n−k,γ

n−k+1,jk
◦ · · · 1n2,γ

n2+1,jn−n2
where j =

(j1, · · · , jk, · · · , jn−n2), k ∈ J1, n − n2K called strings of degeneracies
of type γ.
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• 1n2

n,i1
◦ 1n3,γ

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1nk+1

nk,ik+1 ◦ · · · ◦ 1np−1,γ

np−2,ip−2 ◦ 1np

np−1,ip−1 called

zigzags of degeneracies of type (1, 1).

• 1n2,γ
n,i1
◦ 1n3

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1nk+1

nk,ik+1 ◦ · · · ◦ 1np−1,γ

np−2,ip−2 ◦ 1np

np−1,ip−1 called

zigzags of degeneracies of type (γ, 1).

• 1n2,γ
n,i1
◦ 1n3

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1nk+1

nk,ik+1 ◦ · · · ◦ 1np−1

np−2,ip−2 ◦ 1np,γ

np−1,ip−1 called

zigzags of degeneracies of type (γ, γ).

• 1n2

n,i1
◦ 1n3,γ

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1nk+1

nk,ik+1 ◦ · · · ◦ 1np−1

np−2,ip−2 ◦ 1np,γ

np−1,ip−1 called

zigzags of degeneracies of type (1, γ).

The number of occurrences of the operations 1rr+1,i, 1
r,γ
r+1,i in such zigzags

or such strings are respectively called the size of a zigzag or the size of a
string.

Definition 4.1. Consider an n-cell A ∈ R(1)(n) which is not equal to
1(n). Thus it is a degenerate n-cell and is build with zigzag or string of
degeneracies as described just above. The depth of A is the integer p ∈ N
such that A is equal to a zigzag of size n − p or a string of size n − p of
degeneracies of the p-cell 1(p) of the cubical site, i.e A = dA(1(p)) where
dA denotes its underlying string or zigzag of degeneracies and dA has size
equal to n− p.

Remark 4.2. Thanks to the axioms of degeneracies, the degenerate n-cell
A has zigzags or strings of degeneracies with different shapes, which may
be equals.

Suppose A is a degenerate n-cell in R(1)(n) with depth p < n. Zigzags or
strings of sources-targets of A with sizes which are less or equal to (n−p) are
the one which build a congruence ≡A on faces of the basic n-box □

dxi
ki

1(n) , and

this congruence is defined as follow: if p < q ≤ n, two q-faces x and y of□
dxi

ki

1(n)
are A-congruent: x ≡A y, if and only if any strings or zigzags of sources-
targets zx of x (i.e zx is the underlying string or the underlying zigzag of

sources-targets of any link of □
dxi

ki

1(n) which gives the q-face x (any two such

links are equivalent)) and any strings or zigzags of sources-targets zy (i.e zy
is the underlying string or the underlying zigzag of sources-targets of any
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link of □
dxi

ki

1(n) which gives the q-face y (any two such links are equivalent))

of y, equalize A i.e are such that zx(A) = zy(A).

Definition 4.3. The quotient □
dxi

ki

1(n)/ ≡A is called a degenerate box with

coordinate dxiki . We denote it with the bracket notation (□
dxi

ki

1(n) ,≡A).

Sources, targets and degeneracies of the box (□
dxi

ki

1(n) ,≡A) agree with those
of A, thus it has a canonical structure of n-cubical set with degeneracies
inherited by A and defined as follow:

Definition 4.4. • Sources and targets of degenerate boxes:

snn−1,j((□
dxi

ki

1(n) ,≡A)) := (□
dxi

ki
\j

1(n−1),≡snn−1,j(A))

and

tnn−1,j((□
dxi

ki

1(n) ,≡A)) := (□
dxi

ki
\j

1(n−1),≡tnn−1,j(A))

• Degeneracies of degenerate boxes:

1nn+1,j((□
dxi

ki

1(n) ,≡A)) := (□
dxi

ki
+j

1(n+1) ,≡1nn+1,j(A))

and

1n,γn+1,j((□
dxi

ki

1(n) ,≡A)) := (□
dxi

ki
+j

1(n+1) ,≡1n,γ
n+1,j(A))

5 Basic divisors

The forgetful functor

[Cop
r ,Sets] [Cop,Sets]U

which sends cubical sets equipped with degeneracies and connections [3]
to cubical sets is right adjoint and its induced monad is written R = (R, i,m)

where 1CSets Ri is its unit and R2 Rm is its multiplication.
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Definition 5.1. A basic n-divisor is the formal expression Adxiki where A ∈
R(1)(n). Its interpretation is just: the n-cell A is located in its degenerate

box (□
dxi

ki

1(n) ,≡A).

Also we have the following simple fact.

Proposition 5.2. Any basic divisor has an underlying structure of reflexive
cubical set with connections.

Proof. The definitions of sources, targets, degeneracies are as follow:

• snn−1,j(Adx
i
ki
) := snn−1,j(A)dx

i
ki
\ j

• tnn−1,j(Adx
i
ki
) := tnn−1,j(A)dx

i
ki
\ j

• 1nn+1,j(Adx
i
ki
) := 1nn+1,j(A)(dx

i
ki
+ j)

• 1n,γn+1,j(Adx
i
ki
) := 1n,γn+1,j(A)(dx

i
ki
+ j)

Definition 5.3. Two basic divisors Adxiki , A
′dxik′i

located respectively in

the coordinates dxiki = dx1k1 ⊗ · · · ⊗ dxnkn and dxik′i
= dx1k′1

⊗ · · · ⊗ dxnk′n are

j-adjacent for a direction j ∈ J1, nK if their coordinates are j-adjacent and if
snn−1,j(A) = tnn−1,j(A

′) if kj = k′j+1 or tnn−1,j(A) = snn−1,j(A
′) if kj = k′j−1.

The set of basic divisors is denoted by BDiv and by the previous propo-
sition it is straightforward that it has an underlying structure of cubical set
with connections where its n-cells (for all n ∈ N) are the basic n-divisors.

Now we are going to use basic divisors to describe the monad R =
(R, i,m) just above and show that it is a cartesian monad: consider the full
subcategory ΘBDiv ⊂ CSets which objects are basic divisors. The Yoneda
embedding5

ΘBDiv CSets

X homCSets(X,−),

Y

5Of course, this is not a Yoneda embedding, stricto sensu, but because objects of ΘBDiv

are terms build with representables, we have permitted ourself this abuse of language.
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provides the following description of R(C) where C ∈ CSets is a cubical set:

R(C) :=
∐

X∈BDiv

homCSets(Y(X), C).

The multiplication m of the monad R is very simple: it is obtained with
the concatenation of two strings of degeneracies, or one string of degenera-
cies with one zigzag of degeneracies, or with two zigzags of degeneracies.
The unit i of the monad R sends n-cells c to the decorated box cdxiki .

Let us be more precise: the multiplication R2(C) R(C)m is

defined as follow: the cubical set R2(C) is defined by the formula:

R2(C) =
∐

X∈BDiv

homCSets

(
Y (X), R(C) =

∐

X′∈BDiv

homCSets(Y (X ′), C)
)

thus an n-cell x of R2(C) is an expression of the form: z(z′(c)) where c is a
p-cell of C, p ≤ n (for the case p = n it means that x is non-degenerate and
equal to c), z′ is a string or a zigzag of degeneracies which when apply to c
gives a degenerate q-cell z′(c) of R(C) (p < q ≤ n), and where z is a string or
a zigzag of degeneracies which degenerates again z′(c). The multiplication
m sends z(z′(c)) ∈ R2(C) to (z+ z′)(c) ∈ R(C) where here z+ z′ is just the
concatenation of z and z′.

Proposition 5.4. The monad R = (R, i,m) of cubical reflexive sets with
connections is cartesian.

Proof. The definition of the endofunctor R shows that it preserves fiber
products.

We are going to prove that the multiplication m is cartesian, i.e we are
going to prove that if C ∈ CSets is a cubical set then the commutative
diagram

R2(C) R2(1)

R(C) R(1)

m(C)

R2(!)

m(1)

R(!)
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is a cartesian square; consider the commutative diagram in CSets.

C ′ R2(1)

R(C) R(1)

f

g

m(1)

R(!)

Thus if x is an n-cell of C ′ then f(x) = z(c) where c ∈ C(q) (q ≤
n) and R(!)(f(x)) = R(!)(z(c)) = z(1(q)), and g(x) = z”(z′(1(p))), thus
m(1)(g(x)) = m(1)(z”(z′(1(p)))) = (z” + z′)(1(p)), thus the commutativity
of the square gives z = z” + z′ and p = q.

C ′

R2(C) R2(1)

R(C) R(1)

l

f

g

m(C)

R2(!)

m(1)

R(!)

Thus the unique arrow l is defined as follow: l(x) = z”(z′(c)), and
we can see that m(C)(z”(z′(c))) = (z” + z′)(c) = z(c) = f(x) and that
R2(!)(z”(z′(c))) = z”(z′(1(p))) = g(x).

The cartesianity of the unit

C R(C),i

is easier and goes as follow: we start with a commutative diagram in CSets.

C ′ 1

R(C) R(1)

f

!

i(1)

R(!)
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Let x be an n-cell of C ′, thus we have f(x) = z(c), thus R(!)(z(c)) =
z(1(p)) and the commutativity gives: z(1(p)) = i(1)(1(n)) = 1(n); which
shows that z = ∅ and p = n, thus f(x) = c.

It shows that there is a unique map l

C ′

C 1

R(C) R(1)

l

f

!

i(C)

!

i(1)

R(!)

defined by l(x) = f(x).

6 Rectangular divisors

Definition 6.1. An n-configuration is a finite subset Cn ⊂ Zn. A rectan-
gular n-configuration is an n-configuration of the form

Cn = Jp1; q1K× · · · × Jpj ; qjK× · · · × Jpn; qnK ⊂ Zn.

An n-configuration Cn must be thought up to its translations in the
network Zn; the normalization of the rectangular n-configuration Cn just
above is

J1; q1 − (p1 − 1)K× · · · × J1; qj − (pj − 1)K× · · · × J1; qn − (pn − 1)K,

and usually we will work with rectangular n-configurations with normalized
shapes, i.e with n-configurations written as follow

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK.

Now we are going to describe the sketch ECn of any rectangular n-
configuration Cn (all the time normalized for simplicity) as above. For that
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perspective we are going to highlight some canonical orders on rectangular
n-configurations, all inherited from the lexicographic orders. Consider the
rectangular n-configuration Cn = J1;m1K × · · · × J1;mjK × · · · × J1;mnK as
just above; with it we get mn rectangular n-configurations Ckn

n :

Ckn
n = J1;m1K× · · · × J1;mjK× · · · × J1;mn−1K× {kn},

where kn ∈ J1;mnK; and all these rectangular n-configurations Ckn
n are

themselves ordered as follow

C1
n <n · · · <n C

kn
n <n · · · <n C

mn
n

where the orders <n are induced by the lexicographic order on Cn; these
orders <n indicates the formal composition ◦n of these Ckn

n (kn ∈ J1;mnK)
along the direction j = n, thus the n-configuration

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK =
⋃

kn∈J1;mnK
Ckn
n

is preferably denoted by

Cn = C1
n ◦n · · · ◦n Ckn

n ◦n · · · ◦n Cmn
n

in order to keep the information of this formal ◦n-composition of Cn; this
also underlies the following sketch:

Cn

C1
n C2

n · · · Cmn−1
n Cmn

n

{◦n} {◦n}

Remark 6.2. The sketch above is obtained by substituting all occurences
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Ckn
n ◦n Ckn+1

n in C1
n ◦n · · · ◦n Ckn

n ◦n · · · ◦n Cmn
n with the formal base:

Ckn
n Ckn+1

n

{◦n}

and its dotted cocone shows the expected result (here Cn) of its colimit.

Remark 6.3. All our sketches are written with solid bases and dotted
(co)cones.

This sketch is called the ◦n-sketch of Cn, and it shows how to glue the
Ckn
n (kn ∈ J1;mnK) together, and its gluing is just Cn; now with the rectan-

gular n-configurations C ln
n (ln ∈ J1;mnK is fixed) we get mn−1 rectangular

n-configurations C
ln,kn−1
n :

C ln,kn−1
n = J1;m1K× · · · × J1;mjK× · · · × J1;mn−2K× {km−1} × {ln},

where km−1 ∈ J1;mn−1K; and all these rectangular n-configurations C
ln,kn−1
n

are themselves ordered as follow

C ln,1
n <n−1 · · · <n−1 C

ln,kn−1
n <n−1 · · · <n−1 C

ln,mn−1
n

where the orders <n−1 are induced by the lexicographic order on Cn; these

orders <n−1 indicate the formal composition ◦n−1 of these C
ln,kn−1
n (kn−1 ∈

J1;mn−1K) along the direction j = n− 1, thus the n-configuration

C ln
n = J1;m1K×· · ·× J1;mjK×· · ·× J1;mn−1K×{ln} =

⋃

kn−1∈J1;mn−1K
C ln,kn−1
n

is preferably denoted by

C ln
n = C ln,1

n ◦n−1 · · · ◦n−1 C
ln,kn−1
n ◦n−1 · · · ◦n−1 C

ln,mn−1
n

in order to keep the information of this formal ◦n-composition of Cn; they
are mn of such formal ◦n−1-compositions for Cn; this also underlies the
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following sketch.

C ln
n

C ln,1
n C ln,2

n · · · C
ln,mn−1−1
n C

ln,mn−1
n

{◦n−1} {◦n−1}

This sketch is called a ◦n−1-sketch of Cn, and it shows how to glue the

C
ln,km−1
n (kn−1 ∈ J1;mn−1K) together, and its gluing is C ln

n ; they are mn

of such ◦n−1-sketches for Cn; we may iterate this process: consider the mj

rectangular n-configurations

C
ln,··· ,lj+1,kj
n = J1;m1K× · · · × J1;mj−1K× {kj} × {lj+1} · · · × {ln},

where kj ∈ J1;mjK and where (lj+1, · · · , ln) ∈ J1;mj+1K × · · · × J1;mnK is
fixed, then it is straightforward that these rectangular n-configurations are
ordered as follow

C
ln,··· ,lj+1,1
n <j · · · <j C

ln,··· ,lj+1,kj
n <j · · · <j C

ln,··· ,lj+1,mj
n ,

where the orders <j are induced by the lexicographic order on Cn; these

orders <j indicate the formal composition ◦j of these C
ln,··· ,lj+1,kj
n (kj ∈

J1;mjK) along the direction j, thus the n-configuration

C
ln,··· ,lj+1
n = J1;m1K×· · ·× J1;mjK×{lj+1} · · ·×{ln} =

⋃

kj∈J1;mjK
C

ln,··· ,lj+1,kj
n

is preferably denoted by

C
ln,··· ,lj+1
n = C

ln,··· ,lj+1,1
n ◦j · · · ◦j C ln,··· ,lj+1,kj

n ◦j · · · ◦j C ln,··· ,lj+1,mj
n

in order to keep the information of this formal ◦j-composition; they are
mj+1 · · ·mn of such formal ◦j-compositions for Cn; this also underlies the
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following sketch.

C
ln,··· ,lj+1
n

C
ln,··· ,lj+1,1
n C

ln,··· ,lj+1,2
n · · · C

ln,··· ,lj+1,mj−1
n C

ln,··· ,lj+1,mj
n

{◦j} {◦j}

This sketch is called a ◦j-sketch of Cn, and it shows how to glue the

C
ln,··· ,lj+1,kj
n (kj ∈ J1;mjK) together, and its gluing is C

ln,··· ,lj+1
n ; they are

mj+1 · · ·mn of such ◦j-sketches for Cn. This construction ends with the
n-configurations

C ln,··· ,l2,k1
n = {k1} × {l2} × · · · × {lj} × · · · × {ln},

where k1 ∈ J1;m1K and (l2, · · · , ln) ∈ J1;m2K × · · · × J1;mnK is fixed, and
where these m1 rectangular n-configurations are ordered as follow

C ln,··· ,l2,1
n <1 · · · <1 C

ln,··· ,l2,k1
n <1 · · · <1 C

ln,··· ,l2,m1
n ,

where the orders <1 are induced by the lexicographic order on Cn. But
all these n-configurations C ln,··· ,l2,k1

n (for k1 ∈ J1;m1K) are singletons, which
means that they are just coordinates in Cn, and the order <1 indicates the
formal composition ◦1 of these C ln,··· ,l2,k1

n along the direction j = 1, thus
the n-configuration

C ln,··· ,l2
n = J1;m1K× {l2} × · · · × {ln} =

⋃

k1∈J1;m1K
C ln,··· ,l2,k1
n ,

is preferably denoted by

C ln,··· ,l2
n = C ln,··· ,l2,1

n ◦1 · · · ◦1 C ln,··· ,l2,k1
n ◦1 · · · ◦1 C ln,··· ,l2,m1

n

in order to keep the information of this formal ◦1-composition; there are
m2 · · ·mn such formal ◦1-compositions of Cn; this also underlies the follow-
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ing sketch.

Cln,··· ,l2
n

Cln,··· ,l2,1
n Cln,··· ,l2,2

n · · · Cln,··· ,l2,m1−1
n Cln,··· ,l2,m1

n

{◦1} {◦1}

This sketch is called a ◦1-sketch of Cn, and it shows how to glue the
C ln,··· ,l2,k1
n (k1 ∈ J1;m1K) together, and its gluing is C ln,··· ,l2

n ; there are
m2 · · ·mr such ◦1-sketches of Cn.

What we have done so far was to show how to reconstruct the n-
configuration Cn from its parts with respect to the directions j ∈ J1;nK. Let
us explain the importance of this construction for a cubical strict∞-category
C. We can coherently weight the n-configuration Cn with n-cells of C, i.e
in each coordinates of Cn we substitue an n-cell of C such that if two such
n-cells x, y ∈ C(n) have j-adjacents coordinates then snn−1,j(x) = tnn−1,j(y)
or tnn−1,j(x) = snn−1,j(y). Such weighted Cn is called a composable array
of n-cubes in [1] (page 350), and our n-configuration Cn can be seen as a
formalization of the multi-dimensional arrays in [1]. From this weighted Cn

and with respect to the structure of C, we get a unique n-cell z ∈ C(n)
which is the result obtained by applying the operations ◦j (j ∈ J1;nK) in
this weighted n-configuration. However in [1] the authors did not describe
a complete procedure to get such z ∈ C(n)6, but the sketches described just
above for Cn provide such procedure, but for that we need to care about the
order to apply these sketches: we need to apply the ◦1-sketches of Cn, then
the ◦2-sketches of Cn, and so on, until the unique ◦n-sketch of Cn. These
kinds of sketches which have a hierarchical organization of their (co)cones
have been studied before in [7] under the name Trames. Thus a trame is
a sketch equipped with an ordered stratification of its set of (co)cones. In
fact this way to ordered the computation of z ∈ C(n) is already indicated

6They just write that this z ∈ C(n) is obtained by applying the operations ◦i, ◦j in
any well-formed fashion
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by the formalism of the sketches of Cn because, following the terminology
of Trames in [7]:

• The m2 · · ·mn ◦1-sketches of Cn are the first floor sketches of Cn;

• The mj+1 · · ·mn ◦j-sketches of Cn are the j-floor sketches of Cn;

• The unique ◦n-sketch of Cn is the n-floor sketch of Cn.

Thus any realization of the sketch ECn of Cn must be thought in an
inductive way, starting from the ◦1-sketches of Cn until the ◦n-sketch of Cn.

Remark 6.4. In [1] page 350, the authors defined composable array of n-
cubes in cubical strict ∞-groupoids, but of course this can be done also in
any cubical strict ∞-category.

Remark 6.5. The decomposition of Cn above by its ◦n-sketch, ◦n−1-sketch-
es, · · · , ◦1-sketches, was deliberate for simplicity. Let us call this sim-
plification the (◦n, ◦n−1, · · · , ◦1)-decomposition of Cn. We can do similar
(◦jn , ◦jn−1 , · · · , ◦j1)-decompostion of Cn, where ji ∈ J1;nK and ji ̸= jk
if i ̸= k; in this case Cn has one ◦jn-sketch (the n-floor sketch), has
mji+1mji+2 · · ·mjn ◦ji-sketches (the (i)-floor skteches), and has mj2 · · ·mjn

◦j1-sketches (the first floor sketches). All these decompositions give the
same information about how to glue Cn.

Now we are going to define by induction the cubical strict ∞-category
•-RectDiv (with connections) of rectangular divisors whose underlying cu-
bical set is written as follow.

•-RectDiv = n-RectDiv (n− 1)-RectDiv 2-RectDiv 1-RectDiv 0-RectDiv

σn
n−1,1

τn
n−1,1

σn
n−1,j

τn
n−1,j

σn
n−1,n

τn
n−1,n

σ2
1,1

τ2
1,1

σ2
1,2

τ2
1,2

σ1
0

τ1
0

Thus we suppose that its underlying (n − 1)-cubical set have already
been defined; we start to build the set n-RectDiv plus the diagrams (for
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j ∈ J1;nK):

(n− 1)-RectDiv n-RectDiv,
τnn−1,j

σn
n−1,j

where n-RectDiv is a set of congruences of terms; the congruences of terms
in n-RectDiv are specific n-cubes X named rectangular n-divisors, which
faces are denoted by σnn−1,j(X) and τnn−1,j(X); the induction goes as follow.

• If X ∈ BDiv is a basic n-divisor (see 5), then X ∈ n-RectDiv such
that σnn−1,j(X) := snn−1,j(X) and τnn−1,j(X) := tnn−1,j(X) (see 5 for the
definition of snn−1,j and tnn−1,j);

• If X,X ′ ∈ n-RectDiv are such that τnn−1,j(X) = σnn−1,j(X
′), then

X ◦nj X ′ ∈ n-RectDiv such that

– σnn−1,j(X ◦nj X ′) = σnn−1,j(X) and τnn−1,j(X ◦j X ′) = τnn−1,j(X)
for 1 ≤ j ≤ n;

– σnn−1,i(X◦njX ′) =
{

σnn−1,i(X) ◦n−1
j−1 σ

n
n−1,i(X

′) if 1 ≤ i < j ≤ n
σnn−1,i(X) ◦n−1

j σnn−1,i(X
′) if 1 ≤ j < i ≤ n;

– τnn−1,i(X ◦nj X ′) =
{

τnn−1,i(X) ◦n−1
j−1 τ

n
n−1,i(X

′) if 1 ≤ i < j ≤ n
τnn−1,i(X) ◦n−1

j τnn−1,i(X
′) if 1 ≤ j < i ≤ n.

We equip n-RectDiv with the congruences specific to the associativities
and to the interchange laws.

Axioms 1 (Associativities). If X,X ′, X” ∈ n-RectDiv such that the term
(X ◦nj X ′) ◦nj X” ∈ n-RectDiv is well defined, then

(X ◦nj X ′) ◦nj X” ≡ X ◦nj (X ′ ◦nj X”).

Axioms 2 (Interchange Laws). If X,X ′, X”, X(4) ∈ n-RectDiv such that
the term (X ◦nj X ′) ◦ni (X” ◦nj X(4)) ∈ n-RectDiv is well defined, then

(X ◦nj X ′) ◦ni (X” ◦nj X(4)) ≡ (X ◦ni X”) ◦nj (X ′ ◦nj X(4)).

Remark 6.6. We could have postponed these congruences after the def-
inition of the maps ϵn−1

n,i (X) (i ∈ J1;nK), Γn−1,−
n,i (X) and Γn−1,+

n,i (X) (i ∈
J1;n − 1K) for reflexivities defined just below; in this case we would have
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been obliged to chose a definition of the first transport law and the second
transport law among their different presentations thanks to the interchange
laws. See below.

The elements in (n − 1)-RectDiv which are congruences of terms, are
defined by hypothesis: they are specific (n − 1)-cubes X named rectan-
gular (n − 1)-divisors, which degeneracies (defined below) are denoted by
ϵn−1
n,i (X) (i ∈ J1;nK), Γn−1,−

n,i (X) and Γn−1,+
n,i (X) (i ∈ J1;n − 1K) which live

in n-RectDiv.

(n− 1)-RectDiv n-RectDiv.
ϵn−1
n,i

Γn−1,+
n,i

Γn−1,−
n,i

If X ∈ (n− 1)-RectDiv, then ϵn−1
n,i (X) is defined inductively as follow.

• IfX ∈ (n−1)-RectDiv is a basic (n−1)-divisor, then we put ϵn−1
n,i (X) :=

1n−1
n,i (X) (if X ∈ BDiv, see 5 for the definition of 1n−1

n,i (X));

• If X,X ′ ∈ (n− 1)-RectDiv such that X ◦n−1
j X ′ ∈ (n− 1)-RectDiv is

well defined, then

– ϵn−1
n,i (X ◦n−1

j X ′) = ϵn−1
n,i (X) ◦nj+1 ϵ

n−1
n,i (X ′) if 1 ≤ i ≤ j ≤ n− 1;

– ϵn−1
n,i (X ◦n−1

j X ′) = ϵn−1
n,i (X) ◦nj ϵn−1

n,i (X ′) if 1 ≤ j < i ≤ n.

If X ∈ (n − 1)-RectDiv, then Γn−1,γ
n,i (X) (γ ∈ {−,+}) is defined induc-

tively as follow.

• IfX ∈ (n−1)-RectDiv is a basic (n−1)-divisor, then we put Γn−1,γ
n,i (X)

:= 1n−1,γ
n,i (X) (if X ∈ BDiv, see 5 for the definition of 1n−1,γ

n,i (X));

• If X,X ′ ∈ (n− 1)-RectDiv such that X ◦n−1
j X ′ ∈ (n− 1)-RectDiv, is

well defined, then

– Γn−1,γ
n,i (X ◦n−1

j X ′) = Γn−1,γ
n,i (X) ◦nj+1 Γ

n−1,γ
n,i (X ′) if 1 ≤ i < j ≤

n− 1

Γn−1,γ
n,i (X ◦n−1

j X ′) = Γn−1,γ
n,i (X)◦nj Γn−1,γ

n,i (X ′) if 1 ≤ j < i ≤ n−1
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– First transport laws: for 1 ≤ j ≤ n− 1

Γn−1,+
n,j (X◦n−1

j X ′) =

[
Γn−1,+
n,j (X) ϵn−1

n,j (X)

ϵn−1
n,j+1(X) Γn−1,+

n,j (X ′)

]
j+1

j

where this notation means:

Γn−1,+
n,j (X ◦n−1

j X ′) = (Γn−1,+
n,j (X) ◦nj ϵn−1

n,j (X)) ◦nj+1 (ϵ
n−1
n,j+1(X) ◦nj Γn−1,+

n,j (X ′))

= (Γn−1,+
n,j (X) ◦nj+1 ϵ

n−1
n,j+1(X)) ◦nj (ϵn−1

n,j (X) ◦nj+1 Γ
n−1,+
n,j (X ′))

(interchange laws)

– Second transport laws: for 1 ≤ j ≤ n− 1

Γn−1,−
n,j (X◦n−1

j X ′) =

[
Γn−1,−
n,j (X) ϵn−1

n,j+1(X
′)

ϵn−1
n,j (X ′) Γn−1,−

n,j (X ′)

]
j+1

j

where this notation means:

Γn−1,−
n,j (X ◦n−1

j X ′) = (Γn−1,−
n,j (X) ◦nj ϵn−1

n,j+1(X
′)) ◦nj+1 (ϵ

n−1
n,j (X ′) ◦nj Γn−1,−

n,j (X ′))

= (Γn−1,−
n,j (X) ◦nj+1 ϵ

n−1
n,j (X ′)) ◦nj (ϵn−1

n,j+1(X
′) ◦nj+1 Γ

n−1,−
n,j (X ′))

(interchange laws)

We finish the definition of n-RectDiv by equipping it with the congru-
ences specific to the unities.

Axioms 3 (Unities). If X ∈ n-RectDiv then

X ◦nj ϵn−1
n,j (τnn−1,j(X)) ≡ X, and ϵn−1

n,j (σnn−1,j(X)) ◦nj X ≡ X;

Γn,+
n+1,j(X) ◦n+1

j Γn,−
n+1,j(X) ≡ ϵnn+1,j+1(X), and Γn,+

n+1,j(X) ◦n+1
j+1 Γn,−

n+1,j(X) ≡

ϵnn+1,j(X).
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It is easy to see that the maps ϵn−1
n,i , Γn−1,−

n,i , Γn−1,+
n,i :

(n− 1)-RectDiv n-RectDiv,
ϵn−1
n,i

Γn−1,+
n,i

Γn−1,−
n,i

are well defined because they respect congruences, i.e if x ≡ y in (n −
1)-RectDiv then ϵn−1

n,i (x) ≡ ϵn−1
n,i (y) and Γn−1,γ

n,i (x) ≡ Γn−1,γ
n,i (y) in n-RectDiv.

Let us denote by •-RectDiv this cubical strict∞-category with connections,
we have

Theorem 6.7. •-RectDiv is the free cubical strict ∞-category with connec-
tions on the terminal object 1 ∈ CSets.

The cells in the cubical strict ∞-category •-RectDiv are our models of
cubical pasting diagrams. Also for each n ∈ N, elements of the set n-RectDiv
are n-cubical sets, thus we put

Definition 6.8. The full subcategory Θ0 ⊂ CSets which objects are cells of
the cubical strict ∞-category •-RectDiv defined above is called the cubical
Θ0.

Remark 6.9. The axioms of unities describe above 3 by congruences of
terms are expressible with commutative diagrams for a projective sketch,
as the one described in [3] for the axioms of interchange laws. In [3] these
axioms were expressed in the level of models, this is the reason why we
used a projective sketch for such diagrammatical formulation. We can also
use inductive sketches to express these axioms, for example the congruences
ϵn−1
n,j (σnn−1,j(X)) ◦nj X ≡ X are encoded by the following cocones.
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σnn−1,j(X) X

ϵn−1
n,j (σnn−1,j(X)) X

σnn−1,j(X)

σn
n−1,j

ϵn−1
n,j

σn
n−1,j◦ϵn−1

n,j idX

τnn−1,j

σn
n−1,j

Objects of Θ0 are built with inductive sketches (see 7) because Θ0 has
to be seen as the main category of arities (in the sense of logic) for the
theory of cubical ∞-category theory. The slogan of sketch theory could
be: the syntax (logic) is diagrammatically governed by inductive sketches,
and the semantic (structures, models) is diagrammatically governed by the
projective sketches.

The inductive definition of cubical pasting diagrams shows the crucial
role of coordinates which is to be guides to build terms with cubical shapes:
if X and X ′ are basic n-divisors such that tnn−1,j(X) = snn−1,j(X

′) then
the term X ◦nj X ′ means that X and X ′ are located in the network Zn with
coordinates which are j-adjacent. The induction above plus the congruences
show that rectangular n-divisors are first of all just rectangular filling of the
network Zn by basic n-divisors. Thus each X ∈ n-RectDiv is characterized
by an n-configuration Cn in which in each coordinates dxiki ∈ Cn is located

a basic n-divisor Adxiki , such that if two basic n-divisors are located in two
coordinates which are j-adjacent (j ∈ J1, nK), then these basic n-divisors
must be j-adjacent (see 5.3), and furthermore we demand that in these datas
some sub terms of X must be congruents (3). Let us write X ∈ n-RectDiv
as follow

X = A1dx
i
k1i

+ · · ·+Aldx
i
kli
+ · · ·+Ardx

i
kri
,

where this writing means that the Aldx
i
kli

(for l ∈ J1;#CnK) are located in
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dxi
kli
∈ Cn, and where here the n-configuration Cn of X is written

Cn = dxik1i
+ · · ·+ dxi

kli
+ · · ·+ dxikri ,

where here r = #Cn = m1 · · ·mn if Cn = J1;m1K × · · · × J1;mjK × · · · ×
J1;mnK. When we write

X = A1dx
i
k1i

+ · · ·+Aldx
i
kli
+ · · ·+Ardx

i
kri
,

then the elements of the set {A1dx
i
k1i
, · · · , Aldx

i
kli
, · · · , Ardx

i
kri
} are the basic

n-divisors of X, and X can be seen as its n-configuration Cn weighted by
this set of basic n-divisors, where this set is also equipped with congruences
coming from the axioms of unities. Thus X is given by the couple of sets
({A1dx

i
k1i
, · · · , Ardx

i
kri
}, Cn) where {A1dx

i
k1i
, · · · , Ardx

i
kri
} and Cn are in bi-

jection, and this bijection comes from a morphism of n-cubical set (see also
6.10). When we say that X ′ ⊂ X is a sub rectangular n-divisor of X, it
means that we considered X ′ equipped with a sub n-configuration C ′

n ⊂ Cn

weighted by basic n-divisors A′dxiki such that dxiki ∈ C
′
n. The sketch ECn of

Cn described above shows remarkable subsets of Cn: for example we defined

the n-configuration C
ln,··· ,lj+1
n ⊂ Cn, as a formal gluing along the direction

j ∈ J1;nK of the n-configurations C ln,··· ,lj+1,kj
n ⊂ Cn, where kj ∈ J1;mjK and

where (lj+1, · · · , ln) ∈ J1;mj+1K× · · · × J1;mnK was fixed, and we formally
described the following ◦j-cocone of ECn .

C
ln,··· ,lj+1
n

C
ln,··· ,lj+1,1
n C

ln,··· ,lj+1,2
n · · · C

ln,··· ,lj+1,mj−1
n C

ln,··· ,lj+1,mj
n

{◦j} {◦j}

When we weight these n-configurations with the basic n-divisors of X
we obtain sub rectangular n-divisors of X corresponding to these sub n-
configurations; thus X ln,··· ,lj+1 ⊂ X is the sub rectangular n-divisor of

X corresponding to the n-configuration C
ln,··· ,lj+1
n ; and X ln,··· ,lj+1,kj are
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the sub rectangular n-divisors of X corresponding to the n-configurations

C
ln,··· ,lj+1,kj
n (kj ∈ J1;mjK); and the ◦j-cocone above of ECn gives the follow-

ing ◦j-cocone of EX (more precision are provided in 7):

X ln,··· ,lj+1

X ln,··· ,lj+1,1 X ln,··· ,lj+1,2 · · · X ln,··· ,lj+1,mj−1 X ln,··· ,lj+1,mj

τnn−1,j = σn
n−1,j τnn−1,j = σn

n−1,j

τn
n−1,j

σn
n−1,j

τn
n−1,j

σn
n−1,j

when ECn is weighted by the set of basic n-divisors of X; here τnn−1,j =

σnn−1,j at the bottom left means τnn−1,j(X
ln,··· ,lj+1,1) = σnn−1,j(X

ln,··· ,lj+1,2),

and τnn−1,j = σnn−1,j at the bottom right means τnn−1,j(X
ln,··· ,lj+1,mj−1) =

σnn−1,j(X
ln,··· ,lj+1,mj ).

Remark 6.10. If X ∈ n-RectDiv, then another possibility for its notation
is to describe it as a morphism of n-cubical set:

Cn R(1)X

where R(1) is the free reflexive cubical set on a terminal object 1 ∈ CSets,
and where R is the underlying endofunctor of the monad R = (R, i,m) of
cubical reflexive sets with connections described in 5. We recall that the
cubical structure on Cn is given by the contractions of coordinates. With
this description, the underlying map of sets for n-cubes7 is

Cn R(1)(n)
X(n)

and we see that it induces a bijection of Cn on the image of X(n). This
description of X as morphism of n-cubical sets is interesting but for appli-
cations (see [5]) we need more concrete notation as the one given above.

7Here Cn is seen as a set.
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7 Cubical inductive sketches

Let X = A1dx
i
k1i

+ · · ·+Aldx
i
kli
+ · · ·+Ardx

i
kri

be an n-divisor where Cn =

dxi
k1i

+ · · ·+ dxi
kli
+ · · ·+ dxikri

is its n-configuration given by

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK.

The sketch8 EX associated toX is provided by several underlying sketches
ECn associated to its n-configuration Cn (see 6) called the (◦jn , ◦jn−1 ,
· · · , ◦j1)-decompositions of Cn (see 6.5) where ji ∈ J1;nK and ji ̸= jk if
i ̸= k. Thanks to the congruences in 1 and 2, all these sketches provide
equivalent formulation of EX , and in order to simplify the theory we shall
use the (◦n, ◦n−1, · · · , ◦1)-decomposition of Cn which has been accurately
described in the beginning of Section 6. The sketch EX is thus given by the
(◦n, ◦n−1, · · · , ◦1)-decomposition of Cn weighted by the basic n-divisors of
X. Thus EX consists of

• Them2 · · ·mn ◦1-cocones E ln,··· ,l2X (first floor cocones), where (l2, · · · , ln) ∈
J1;m2K× · · · × J1;mnK:

X ln,··· ,l2

X ln,··· ,l2,1 X ln,··· ,l2,2 · · ·X ln,··· ,l2,m1−1 X ln,··· ,l2,m1

τnn−1,1 = σn
n−1,1 τnn−1,1 = σn

n−1,1

τn
n−1,1

σn
n−1,1

τn
n−1,1

σn
n−1,1

here τnn−1,1 = σnn−1,1 at the bottom left means

τnn−1,1(X
ln,··· ,l2,1) = σnn−1,1(X

ln,··· ,l2,2),

and τnn−1,1 = σnn−1,1 at the bottom right means

τnn−1,1(X
ln,··· ,l2,m1−1) = σnn−1,1(X

ln,··· ,l2,m1).

8This kind of sketches are known under the name Trames in [7].
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• The mj+1 · · ·mn ◦j-cocones E ln,··· ,lj+1

X (j-floor cocones), where (lj+1,
· · · , ln) ∈ J1;mj+1K× · · · × J1;mnK:

X ln,··· ,lj+1

X ln,··· ,lj+1,1 X ln,··· ,lj+1,2 · · · X ln,··· ,lj+1,mj−1 X ln,··· ,lj+1,mj

τnn−1,j = σn
n−1,j τnn−1,j = σn

n−1,j

τn
n−1,j

σn
n−1,j

τn
n−1,j

σn
n−1,j

here τnn−1,j = σnn−1,j at the bottom left means

τnn−1,j(X
ln,··· ,lj+1,1) = σnn−1,j(X

ln,··· ,lj+1,2),

and τnn−1,j = σnn−1,j at the bottom right means

τnn−1,j(X
ln,··· ,lj+1,mj−1) = σnn−1,j(X

ln,··· ,lj+1,mj ).

• The unique ◦n-cocone of X (n-floor cocone):

X

X1 X2 · · · Xmn−1 Xmn

τnn−1,n = σn
n−1,n τnn−1,n = σn

n−1,n

τn
n−1,n

σn
n−1,n

τn
n−1,n

σn
n−1,n

here τnn−1,n = σnn−1,n at the bottom left means

τnn−1,n(X
1) = σnn−1,n(X

2),

and τnn−1,n = σnn−1,n at the bottom right means

τnn−1,n(X
mn−1) = σnn−1,n(X

mn).
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As we saw in 6, the m2 · · ·mn ◦1-cocones E ln,··· ,l2X (first floor cocones of
X), where (l2, · · · , ln) ∈ J1;m2K× · · · × J1;mnK:

X ln,··· ,l2

X ln,··· ,l2,1 X ln,··· ,l2,2 · · · X ln,··· ,l2,m1−1 X ln,··· ,l2,m1

τnn−1,1 = σn
n−1,1 τnn−1,1 = σn

n−1,1

τn
n−1,1

σn
n−1,1

τn
n−1,1

σn
n−1,1

are such that the m1 · · ·mn n-configurations X ln,··· ,l2,k1 (k1 ∈ J1;m1K)
are singletons, and then, they are just the m1 · · ·mn basic n-divisors of
X, where their sources are by definition σnn−1,1 := snn−1,1 and their targets

are by definition τnn−1,1 := tnn−1,1 (see 5). And thus we can improve the

description of the first floor of EX by writing its ◦1-cocones E ln,··· ,l2X with
their specific sources and targets:

X ln,··· ,l2

X ln,··· ,l2,1 X ln,··· ,l2,2 · · ·X ln,··· ,l2,m1−1 X ln,··· ,l2,m1

tnn−1,1 = snn−1,1 tnn−1,1 = snn−1,1

tnn−1,1

snn−1,1
tnn−1,1

snn−1,1

By definition each rectangular n-divisor X is an n-cell of •-RectDiv,
it is therefore an n-cube; let us denote by fp(X) the finite set of p-faces
(0 ≤ p ≤ n − 1) of this n-cube X, thus fp(X) ⊂ p-RectDiv is a finite
subset of rectangular p-divisors, and X seen as an n-cube may be depicted
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diagrammatically as follow.

{X} fn−1(X) · · · f4(X) f3(X) f2(X) f1(X) f0(X)

σn
n−1,1

τn
n−1,1

σn
n−1,j

τn
n−1,j

σn
n−1,n

τn
n−1,n

σ4
3,1

τ4
3,1

σ4
3,2

τ4
3,2

σ4
3,3

τ4
3,3

σ4
3,4

τ4
3,4

σ3
2,1

τ3
2,1

σ3
2,2

τ3
2,2

σ3
2,3

τ3
2,3

σ2
1,1

τ2
1,1

σ2
1,2

τ2
1,2

σ1
0

τ1
0

This n-cube structure onX transfers to an n-cube structure on its sketch
EX ; indeed if x ∈ fp(X) is a p-face of X thus it is a rectangular p-divisor
which sketch is Ex; therefore if we define the sets: fp(EX) := {Ex/x ∈ fp(X)}
(p ∈ J0;n− 1K), it highlights the following n-cube in Sets:

{EX} fn−1(EX) · · · f4(EX) f3(EX) f2(EX) f1(EX) f0(EX)

σn
n−1,1

τn
n−1,1

σn
n−1,j

τn
n−1,j

σn
n−1,n

τn
n−1,n

σ4
3,1

τ4
3,1

σ4
3,2

τ4
3,2

σ4
3,3

τ4
3,3

σ4
3,4

τ4
3,4

σ3
2,1

τ3
2,1

σ3
2,2

τ3
2,2

σ3
2,3

τ3
2,3

σ2
1,1

τ2
1,1

σ2
1,2

τ2
1,2

σ1
0

τ1
0

where σpp−1,k(Ex) := Eσp
p−1,k(x)

and τpp−1,k(Ex) := Eτpp−1,k(x)
if Ex ∈ fp(EX);

therefore the sources and targets of this n-cubical set EX send sketches to
sketches.

Consider now the sketches Efp(X) :=
⋃
fp(EX) =

⋃
x∈fp(X)

Ex for all p ∈

J0;n − 1K, i.e we consider the sketch Efp(X) obtained as the union of all
cocones inside all sketches Ex where x ∈ fp(X) are the p-faces of X; in this
case it highlights the following (n−1)-cubical object in the category Sketch
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of sketches.

EX Efn−1(X) · · · Ef5(X) Ef4(X) Ef3(X) Ef2(X) Ef1(X)

σn−1
n−2,1

τn−1
n−2,1

σn−1
n−2,j

τn−1
n−2,j

σn−1
n−2,n−1

τn−1
n−2,n−1

σ4
3,1

τ4
3,1

σ4
3,2

τ4
3,2

σ4
3,3

τ4
3,3

σ4
3,4

τ4
3,4

σ3
2,1

τ3
2,1

σ3
2,2

τ3
2,2

σ3
2,3

τ3
2,3

σ2
1,1

τ2
1,1

σ2
1,2

τ2
1,2

σ1
0

τ1
0

As a matter of fact the cocones in Ex ⊂ Efp(X) can be seen as ways of
gluing of rectangular p-divisors along some rectangular (p−1)-divisors, and
thus the integer (p− 1) is the dimension the sketch Efp(X) must have if we
want to identify a cubical object in Sketch inherited from the rectangular
n-divisor X.

In order to justify the existence of this cubical object in Sketch we need
to describe the sources σp−1

p−2,k and the targets τp−1
p−2,k, which now must be

morphisms of sketches, i.e are maps which send cocone to cocone. A (p−1)-
cell in Efp(X) is a cocone in some Ex where x ∈ fp(X), and cocones in Ex are
the one which belong to the first floor cocones until the p-floor cocones of
Ex; in fact we will show that σp−1

p−2,k and τp−1
p−2,k send cocones of the first floor

of Ex to respectively cocones of the first floor of Eσp

p−1,k′ (x)
⊂ Efp−1(X) and

to cocones of the first floor of Eτp
p−1,k′ (x)

⊂ Efp−1(X), where k and k′ can be

different or sometimes can be equal (see below). For cocones of the other
floors the actions of σp−1

p−2,k and τp−1
p−2,k are described similarly.

If x = A1dx
i
k1i

+ · · · + Aldx
i
kli
+ · · · + Ardx

i
kri

is a rectangular p-divisor

(x ∈ fp(X)) equipped with the p-configuration Cp = J1;m1K×· · ·× J1;mpK,
as we see above Ex9 has m2 · · ·mp ◦1-cocones E lp,··· ,l2x (first floor cocones of

9We deliberately use similar notation for Ex as for EX .



60 C. Kachour

x), where (l2, · · · , lp) ∈ J1;m2K× · · · × J1;mpK:

xlp,··· ,l2

xlp,··· ,l2,1 xlp,··· ,l2,2 · · · xlp,··· ,l2,m1−1 xlp,··· ,l2,m1

tpp−1,1 = tpp−1,1 tpp−1,1 = tpp−1,1

tpp−1,1

spp−1,1
tpp−1,1

spp−1,1

The bases of these cocones are such that σpp−1,1 = spp−1,1 and τpp−1,1 =

tpp−1,1 because for all k1 ∈ J1;m1K, the rectangular p-divisors xlp,··· ,l2,k1 are
just basic p-divisors; a fragment d:

xlp,··· ,l2,k1−1 xlp,··· ,l2,k1

τpp−1,1 = σpp−1,1

tpp−1,1

spp−1,1

of these cocones is called a 1-gluing data of x; more generally a j-gluing
data d of x is a cocone of the following shape

Aldx
i
kli

Al′dx
i
kl

′
i

tpp−1,j(Aldx
i
kli
) = spp−1,j(Al′dx

i
kl

′
i

)

tpp−1,j

spp−1,j

where Aldx
i
kli
, Al′dx

i
kl

′
i

belong to the set of basic p-divisors of x; we are

going to describe the action of σp−1
p−2,k and τp−1

p−2,k on these j-gluing datas of

x, because this action is similar and extend easily on its ◦1-cocones E lp,··· ,l2x ,
and we also deliberately treat the general case of j ∈ J1; pK (and not only
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the case j = 1 of the first floor above) because this general case cover all
cocones in Ex (for all floors). When in Ex gluing of rectangular p-divisors
are involved, we just replace s with σ and t with τ in the computations; here
σp−1
p−2,k = sp−1

p−2,k and τp−1
p−2,k = tp−1

p−2,k because only basic divisors are involved.

We describe these morphisms of sketches by defining cocones sp−1
p−2,k(d)

and tp−1
p−2,k(d) as precomposition of the j-gluing data d just above

Aldx
i
kli

Al′dx
i
kl

′
i

A′dxi
kli
\ j

tpp−1,j

spp−1,j

where we write A′ = tpp−1,j(Aldx
i
kli
) = spp−1,j(Al′dx

i
kl

′
i

); consider now As” =

sp−1
p−2,k(A

′), At” = tp−1
p−2,k(A

′), and the maps

As”dx
i
k”li
\ (j, k) A′dxi

kl
i
\ j,

sp−1
p−2,k

At”dx
i
k”li
\ (j, k) A′dxi

kl
i
\ j

tp−1
p−2,k

The maps sp−1
p−2,k, t

p−1
p−2,k send each cocone d of Ex to cocones sp−1

p−2,k(d),

tp−1
p−2,k(d) respectively in the sketches Esp

p−1,k′ (x)
⊂ Efp−1(X), Etp

p−1,k′ (x)
⊂

Efp−1(X), by the precompositions

Aldx
i
kli

Al′dx
i
kl

′
i

A′dxi
kli
\ j

A”sdx
i
k”li
\ (j, k)

tpp−1,j

spp−1,j

sp−1
p−2,k
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Aldx
i
kli

Al′dx
i
kl

′
i

A′dxi
kli
\ j

A”tdx
i
k”li
\ (j, k)

tpp−1,j

spp−1,j

tp−1
p−2,k

For this description of the maps sp−1
p−2,k, t

p−1
p−2,k, we just use cubical iden-

tities as describe in [3].

• When j = k we obtain sp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

s
p
p−1,j+1

t
p
p−1,j

s
p
p−1,j

s
p
p−1,j+1

t
p−1
p−2,j s

p−1
p−2,k=j

s
p−1
p−2,j

where we denote A”dxi
k”li
\ (j, k) = sp−1

p−2,k(A
′dxi

kli
\ j).

Remark 7.1. Of course we have also

tp−1
p−2,j(A

′dxi
kli
\ j) = sp−1

p−2,k(A
′dxi

kli
\ j) = sp−1

p−2,j(A
′dxi

kli
\ j),

but in: tp−1
p−2,j(A

′dxi
kli
\j) = tp−1

p−2,j(A
′)dxi

kli
\(j, j), and in: sp−1

p−2,j(A
′dxi

kli
\

j) = sp−1
p−2,j(A

′)dxi
kli
\(j, j), the basic divisorsA”, tp−1

p−2,j(A
′) and sp−1

p−2,j(A
′)

are not necessarily equals.
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And thus the morphism of sketches sp−1
p−2,k sends d to the following

cocone sp−1
p−2,k(d) of the sketch Espp−1,j+1(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j)

tp−1
p−2,j

sp−1
p−2,j

And we obtain tp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

t
p
p−1,j+1

t
p
p−1,j

s
p
p−1,j

t
p
p−1,j+1

t
p−1
p−2,j t

p−1
p−2,k=j

s
p−1
p−2,j

where we denote A”dxi
k”li
\ (j, k) = tp−1

p−2,k(A
′dxi

kli
\ j), and thus the

morphism of sketches tp−1
p−2,k sends d to the following cocone tp−1

p−2,k(d)
of the sketch Etpp−1,j+1(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j)

tp−1
p−2,j

sp−1
p−2,j
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• When k < j then we obtain sp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

s
p
p−1,k t

p
p−1,j

s
p
p−1,j

s
p
p−1,k

t
p−1
p−2,j−1 s

p−1
p−2,k

s
p−1
p−2,j−1

where we denote A”dxi
k”li
\ (j, k) = sp−1

p−2,k(A
′dxi

kli
\ j).

Remark 7.2. Of course we have also

tp−1
p−2,j−1(A

′dxi
kli
\ j) = sp−1

p−2,k(A
′dxi

kli
\ j) = sp−1

p−2,j−1(A
′dxi

kli
\ j),

but in tp−1
p−2,j−1(A

′dxi
kli
\ j) = tp−1

p−2,j−1(A
′)dxi

kli
\ (j, j − 1) and in

sp−1
p−2,j−1(A

′dxi
kli
\ j) = sp−1

p−2,j−1(A
′)dxi

kli
\ (j, j − 1) the basic divisors

A”, tp−1
p−2,j−1(A

′) and sp−1
p−2,j−1(A

′) are not necessarily equals.

And thus the morphism of sketches sp−1
p−2,k sends d to the following

cocone sp−1
p−2,k(d) of the sketch Espp−1,k(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j − 1)

tp−1
p−2,j−1

sp−1
p−2,j−1
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And we obtain tp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

t
p
p−1,k t

p
p−1,j

s
p
p−1,j

t
p
p−1,k

t
p−1
p−2,j−1 t

p−1
p−2,k

s
p−1
p−2,j−1

where we denote A”dxi
k”li
\ (j, k) = tp−1

p−2,k(A
′dxi

kli
\ j), and thus the

morphism of sketches tp−1
p−2,k sends d to the following cocone tp−1

p−2,k(d)
of the sketch Etpp−1,k(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j − 1)

tp−1
p−2,j−1

sp−1
p−2,j−1

• When k > j then we obtain sp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

s
p
p−1,k+1 t

p
p−1,j

s
p
p−1,j

s
p
p−1,k+1

t
p−1
p−2,j s

p−1
p−2,k

s
p−1
p−2,j

where we denote A”dxi
k”li
\ (j, k) = sp−1

p−2,k(A
′dxi

kli
\ j).

Remark 7.3. Of course we have also

tp−1
p−2,j(A

′dxi
kli
\ j) = sp−1

p−2,k(A
′dxi

kli
\ j) = sp−1

p−2,j(A
′dxi

kli
\ j),
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but in tp−1
p−2,j(A

′dxi
kli
\j) = tp−1

p−2,j(A
′)dxi

kli
\(j, j) and sp−1

p−2,j(A
′dxi

kli
\j) =

sp−1
p−2,j(A

′)dxi
kli
\ (j, j) the basic divisors A”, tp−1

p−2,j(A
′) and sp−1

p−2,j(A
′)

are not necessarily equals.

And thus the morphism of sketches sp−1
p−2,k sends d to the following

cocone sp−1
p−2,k(d) of the sketch Espp−1,k+1(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j)

tp−1
p−2,j

sp−1
p−2,j

And we obtain tp−1
p−2,k(d) by using the diagram

Aldx
i

kl
i

Al′dx
i

kl′
i

A′dxi

kl
i

\ j A′dxi

kl
i

\ j A′dxi

kl
i

\ j

A”dxi

k”l
i

\ (j, k)

t
p
p−1,k+1 t

p
p−1,j

s
p
p−1,j

t
p
p−1,k+1

t
p−1
p−2,j t

p−1
p−2,k

s
p−1
p−2,j

where we denote A”dxi
k”li
\ (j, k) = tp−1

p−2,k(A
′dxi

kli
\ j), and thus the

morphism of sketches tp−1
p−2,k sends d to the following cocone tp−1

p−2,k(d)
of the sketch Etpp−1,k+1(x)

:

A′dxi
kli
\ j A′dxi

kli
\ j

A”dxi
k”li
\ (j, j)

tp−1
p−2,j

sp−1
p−2,j



Combinatorial approach of the category Θ0 of cubical pasting ... 67

which finalize our description of the (n− 1)-cubical object in the cat-
egory Sketch of sketches associated to the rectangular n-divisor X.

Remark 7.4. It is interesting to see that the 1-faces x ∈ f1(X) of X are
all of the form

x = A0dx
1
0 + · · ·+Aldx

1
l · · ·+Ardx

1
r ,

where any basic divisor Aldx
1
l of x can be 1(1)dx1l or 101(1(0))dx

1
l , and the

sketch Ef1(X) is a set of cocones of the form

x

A0dx
1
0 A1dx

1
1 · · · Ar−1dx

1
r−1 Ardx

1
r

A A

t10
s10

t10

s10

where A denotes the unique 0-cell 1(0) of the cubical site C.
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