Combinatorial approach of the category Θ_{0} of cubical pasting diagrams

Camell Kachour

Abstract

In globular higher category theory the small category Θ_{0} of finite rooted trees plays an important role: for example the objects of Θ_{0} are the arities of the operations inside the free globular ω-operad \mathbb{B}^{0} of Batanin, which \mathbb{B}^{0}-algebras are models of globular weak ∞-categories; also this globular Θ_{0} is an important tool to build the coherator $\Theta_{W^{0}}^{\infty}$ of Grothendieck which Sets-models are globular weak ∞-groupoids. Cubical higher category needs similarly its Θ_{0}. In this work we describe, combinatorially, the small category Θ_{0} which objects are cubical pasting diagrams and which morphisms are morphisms of cubical sets.

1 Introduction

In globular higher category theory the small category Θ_{0} of globular pasting diagrams plays an important role: for example the objects of Θ_{0} are the arities of the operations inside the free globular ω-operad \mathbb{B}^{0} of Batanin, which \mathbb{B}^{0}-algebras are algebraic models of globular weak ∞-categories; also this small category Θ_{0} is an important tool to build the coherator $\Theta_{W^{0}}^{\infty}$

Keywords: Pasting diagrams, pasting schemes, sketch theory, higher order terms.
Mathematics Subject Classification [2010]: 03B15, 03B38, 03G99.
Received: 14 September 2023, Accepted: 29 October 2023.
ISSN: Print 2345-5853 Online 2345-5861.
(C) Shahid Beheshti University
of Grothendieck which Sets-models are globular weak ∞-groupoids. Cu bical higher category needs similarly its Θ_{0}. In this work we describe, combinatorially, the small category Θ_{0} which objects are cubical pasting diagrams and which morphisms are morphisms of cubical sets. The monad $\mathbb{R}=(R, i, m)$ acting on the category of cubical sets, which algebras are cubical sets equipped with degeneracies, exhibits the sorts $A \in R(1)(n)$ of operations of the cubical theory, and the cubical pasting diagrams play the role of arities for these operations. Cubical pasting diagrams of dimension $n \in \mathbb{N}^{*}$ are rectangular finite conglomerate of basic n-cubes ${ }^{1}$, where basic n-cubes are just elements $A \in R(1)(n)$. In order to build such conglomerate we need to have a good control of its basic n-cubes and a canonical way to control these basic cubical shapes is to equipped each basic n-cubes with a coordinate $\left(k_{1}, \cdots, k_{n}\right)$ in the network $\mathbb{Z}^{n}=\mathbb{Z} \times \cdots \times \mathbb{Z}(n$ times; \mathbb{Z} is the set of integers) in order it to be well located. Thus a basic n-cube is now a formal expression: $A\left(k_{1}, \cdots, k_{n}\right)$ which means that the n-cell $A \in R(1)(n)$ is located in the coordinate $\left(k_{1}, \cdots, k_{n}\right)$. But $A \in R(1)(n)$ is in particular an n-cube and it has faces which are $(n-1)$-cubes $s_{n-1, j}^{n}(A)$, and we can ask then what are the coordinate of it? The first approximation is to say that it is located in the coordinate $\left(k_{1}, \cdots, \widehat{k_{j}}, \cdots, k_{n}\right)$, which means that we removed k_{j} and it has the coordinate $\left(k_{1}, \cdots, k_{j-1}, k_{j+1}, \cdots, k_{n}\right)$ in the network \mathbb{Z}^{n-1}. Also $A \in R(1)(n)$ can be degenerate in the $(n+1)$-cube $1_{n+1, j}^{n}(A)$ (classical degeneracies) or in the $(n+1)$-cube $1_{n+1, j}^{n,-}(A)$ (connections), and here we are attempted to say, at first approximation, that both are located in the coordinate $\left(k_{1}, \cdots, k_{j-1}, 1, k_{j}, \cdots, k_{n}\right)$, which means that we added 1 and it has coordinate in the network \mathbb{Z}^{n+1}. Such remove and addition of coordinate is well-known for tensor calculus in differential geometry, under the names contraction of a tensor and dilatation of a tensor. Thus we have chosen to use this tensorial notation to describe coordinates attached to basic n-cubes: the expression $A d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ says that the n-cell $A \in R(1)(n)$ is located in the coordinate $\left(k_{1}, \cdots, k_{n}\right)$, and in our jargon the tensor $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ is called a coordinate. We shall often use the abbreviation $d x_{k_{i}}^{i}$ for the coordinate $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$. Also the face $s_{n-1, j}^{n}(A) \in R(1)(n-1)$ is located in the j-contraction of $d x_{k_{i}}^{i}$,

[^0]thus we write: $s_{n-1, j}^{n}(A) d x_{k_{1}}^{1} \otimes \cdots \otimes \widehat{d x_{k_{j}}^{j}} \otimes \cdots d x_{k_{n}}^{n}$, where here this j contraction means the tensor $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j-1}}^{j-1} \otimes d x_{k_{j+1}}^{j} \cdots d x_{k_{n}}^{n-1}$; also the coordinate of the basic $(n+1)$-cube $1_{n+1, j}^{n}(A)$ is given by the j-dilatation $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j-1}}^{j-1} \otimes d x_{1}^{j} \otimes d x_{k_{j}}^{j+1} \otimes \cdots d x_{k_{n}}^{n+1}$ of $d x_{k_{i}}^{i}$.

However we need to reinforce this tensorial formalism in order it feats perfectly with the basic datas needed for cubical higher category; as a matter of fact, if $A \in R(1)(n)$ has coordinate $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ then two different faces of A may be different but with the same coordinate; for example if A is the degenerate 2 -cube $1_{2,1}^{1,-}(1(1)) \in R(1)(2)$:

$$
A=\underset{1(1) \mid}{\left.1(0) \xrightarrow{\downarrow} \xrightarrow[1_{2,1}^{1,-}(1(1))]{1(0)}\right|_{1_{1}^{0}(1(0))} ^{1_{1}^{0}(1(0))} \quad 1(0)} 1 \xrightarrow{2}
$$

with coordinate $d x_{-4}^{1} \otimes d x_{1}^{2}$ (which means that A has coordinate $(-4,1)$ in \mathbb{Z}^{2}), then its faces: $s_{1,1}^{2}(A)=1(1)$ and $t_{1,1}^{2}(A)=1_{1}^{0}(1(0))$ have both the same coordinate $d x_{1}^{1}$ (it is reindexed after contraction). This example shows that the tensorial formalism alone leads to a lack of control of our cells, because we need that each part of our cubical pastings to be located individually. In order to remove such pathologies we are going to enriched the tensorial formalism with a concept of formal box which feats better with the entire shapes of each basic n-cubes in $R(1)(n)$. These formal boxes are specific degenerate n-cubes $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right.$, \equiv_{A}) called degenerate boxes which are equipped with coordinates $d x_{k_{i}}^{i}$ and whose aim is to contain any n-cubes which have the same degeneracies as $A \in R(1)(n)$. As we wrote above, the expression $A d x_{k_{i}}^{i}$ says that the n-cell $A(A \in R(1)(n))$ is located in the coordinate $d x_{k_{i}}^{i}$, and the expression $B\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)$ now means that the n-cube $B \in R(X)(n)$ (here X is any cubical set) has the same degeneracies as $A \in R(1)(n)$, and B is inside the degenerate box $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv{ }_{A}\right)$ which itself is located in the coordinate $d x_{k_{i}}^{i}$. When $B=A$ then $A\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv \equiv_{A}\right)$ is called a basic divisor.

Such basic divisors $A\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv \equiv_{A}\right)$ are written $A d x_{k_{i}}^{i}$ to simplify the notation after the Section 5. We take advantage of this formalism to describe the monad $\mathbb{R}=(R, i, m)$ of cubical reflexive sets with these basic divisors, and show that $\mathbb{R}=(R, i, m)$ is a cartesian monad (5).

The definition of the degenerate boxes $\left(\square_{1(n)}^{d x_{i} i_{i}}, \equiv_{A}\right)(A \in R(1)(n))$ in 4 are preceded by the definition of the basic one $\square_{1(n)}^{d x_{k_{i}}^{i}}$ in 3 called the basic boxes, i.e they are boxes with no degeneracies. These formal boxes (degenerates or not) are congruences of terms of a language $\mathcal{L}_{n}^{\prime}=\left(\mathbb{Z}^{n},\{-,+\}\right)$ containing tensors $d x_{k_{i}}^{i}$, contractions of these tensors, and elements in $\{-,+\}$, as basic datas. The terms that we consider for this language are called links because their role is to exhibit a link between such formal boxes with their faces. Basic n-divisors are terms for a language $\mathcal{L}_{n}=\left(\mathcal{L}_{n}^{\prime}, R(1)(n)\right)$, and they constitute the basic pieces for rectangular n-divisors. Rectangular n-divisors are defined inductively as terms of a language $\mathbb{L}_{n}=\left(\mathcal{L}_{n},\left(\circ_{j}^{n}\right)_{j \in \llbracket 1 ; n \rrbracket}\right)$. This inductive approach was possible thanks to the good control of the different faces that have the basic n-divisors. Rectangular n-divisors are written

$$
X=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+\cdots+A_{r} d x_{k_{i}^{r}}^{i}
$$

and are characterized by a rectangular n-configuration C_{n}, i.e a finite subset of \mathbb{Z}^{n} of the form

$$
C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket
$$

such that the set $\left\{A_{1} d x_{k_{i}^{1}}^{i}, \cdots, A_{l} d x_{k_{i}^{l}}^{i}, \cdots, A_{r} d x_{k_{i}^{r}}^{i}\right\}$ are the basic n-divisors of X, where now X can be seen as its n-configuration C_{n} weighted by this set of basic n-divisors. These rectangular n-divisors are our models of cubical pasting diagrams, and as we have expected they behave very well: thanks to their rectangular shapes they have a notion of sources and targets which allow them to be composed, but they can also be degenerated, etc. Thus they produce a cubical strict ∞-category ${ }^{2} \bullet-\mathbb{R e c t D i v}(6)$, and also the small category Θ_{0} of cubical pasting diagrams. The small category Θ_{0} is defined as the full subcategory of the category \mathbb{C} Sets of cubical sets which objects

[^1]are cubical pasting diagrams. The category Θ_{0} can be seen as a cubical variation of Lawvere theory. Also each rectangular n-divisor X has an internal notion of sources and targets, which lead to an inductive sketch \mathcal{E}_{X}. This inductive sketch is built with the help of the formal sketch $\mathcal{E}_{C_{n}}$ of its n configuration, which itself comes canonically from the lexicographical order on $C_{n}(6)$. Thus we see here another crucial roles of coordinates which is to exhibit in a canonical way (with their intrinsic lexicographical features) the sketches of rectangular divisors. Formally these inductive sketches behaves like rectangular divisors, thus they are cubical sets which can be degenerated, composed, etc. Thus these sketches lead to another presentation of Θ_{0} and to another presentation of the cubical strict ∞-category of cubical pasting diagrams. In the end of 7 we show that, for each rectangular n divisor X, its associated sketch \mathcal{E}_{X} is canonically a $(n-1)$-cubical object in the category Sketch of sketches.

We can summarize the main definitions here:

- $A d x_{k_{i}}^{i}$ means that the n-cube A is located at the coordinate $d x_{k_{i}}^{i}$, see 2 ; usually $A \in R(1)(n)$ where R is the underlying endofunctor of the $\operatorname{monad} \mathbb{R}=(R, i, m)$ of cubical reflexive sets; see 5 ;
- Basic box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ of a coordinate $d x_{k_{i}}^{i}$, see 3 ; and degenerate boxes $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv{ }_{A}\right)$, see 4 ; they are formal boxes whose aim is to contains n cubes. These formal boxes provide a better control of the coordinates, than the tensors, of the faces of the cubes they contain: their formalism allows to have an inductive definition of cubical pasting diagrams (6);
- Basic divisor: $B\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv{ }_{A}\right)$; see 5 ; this is an n-cube B inside the n-box $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)$;
- Rectangular n-divisors: formal sum $X=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+$ $\cdots+A_{r} d x_{k_{i}^{r}}^{i}$, of basic one with rectangular shape, see 6 ; they are our models of cubical pasting diagrams;
- for each rectangular divisor X we associate an inductive sketch \mathcal{E}_{X}, see 7.

Applications of this cubical $\Theta_{0}=(1 \downarrow S(1))$ are done in [5], where
the monad $\mathbb{S}=(S, \lambda, \mu)$ of cubical strict ∞-categories with connections is described with the objects of Θ_{0}, and it is shown that it is a cartesian monad, solving a conjecture in [6]. Also in [5], two cubical coherators are defined with our cubical Θ_{0} : the coherator $\Theta_{W^{0}}^{\infty}$ which Sets-models are cubical weak ∞-groupoids with connections, and the coherator Θ_{W}^{∞} which Sets-models are cubical weak ∞-categories with connections.

The author has done previous work on cubical higher categories, some of them are published, see [3, 4]; but others were archived in IHES and removed after five years, see $[6,6]$. We hope to make again available the work in $[6,6]$ very soon.

This article may be seen as an improved version of some aspects of the Arxiv version [2]. In [2] some materials were described for the question of pastings objects with cubical shapes in full generality, not only for the simpler cases of rectangular pastings as in the present work. Even if main ideas of this arxived version remain correct (like the idea of using coordinates to control the gluings), this article focuses only on rectangular gluings, which not only simplify the story, but is also more relevant for our main goals, i.e to capture objects in Θ_{0}.

2 Tensorial notation

The reader may read the first section in [3] for reminders of the basic definitions in cubical higher category theory: definition of cubical sets, definition of cubical strict ∞-categories with connections, etc.

Here we introduce tensorial notation and shall see that contraction and dilatation of tensors provide interesting structure for cubical sets, though trivial. This study (and introduction of tensorial notations) reveals the intrinsic cubical nature of tensorial calculus.

For each $n \in \mathbb{N}$, the n-dimensional network $\mathbb{Z}^{n}=\mathbb{Z} \times \cdots \times \mathbb{Z}(\mathbb{Z}$ is the set of integers) is used as a coordinate system; the elements $\left(k_{1}, \cdots, k_{n}\right) \in \mathbb{Z}^{n}$ are coordinates and are preferably denoted instead with the tensorial notation $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ in order to freely use the dilatations and contractions operations on it, where these operations are commonly used in tensor calculus. When no confusion occur we write $d x_{k_{i}}^{i}:=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$. These coordinates $d x_{k_{i}}^{i} \in \mathbb{Z}^{n}$ are used to indexed n-cubes, in order to well located them and to build conglomerates of n-cubes. Thus if A is an n -
cube, the notation $A d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ means that A has the coordinate $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$, which means that A is located at the depth $k_{j} \in \mathbb{Z}$ for the direction $j \in\{1, \cdots, n\}$.

Remark 2.1. It is easy to see that two coordinates $d x_{k_{i}}^{i}, d x_{k_{i}^{\prime}}^{i} \in \mathbb{Z}^{n}$ are linked by translations. For example any coordinates $d x_{k_{i}}^{i} \in \mathbb{Z}^{n}$ gives the coordinate $d x_{1}^{i}:=d x_{1}^{1} \otimes \cdots \otimes d x_{1}^{j} \otimes \cdots d x_{1}^{n}$ by translations along all directions $j \in \llbracket 1, n \rrbracket$. Usually we shall work with finite subsets $C_{n} \subset \mathbb{Z}^{n}$ named n-configurations below 6 , and these n-configurations must be thought up to their translations in the network \mathbb{Z}^{n}. For example we have the rectangular n-configurations 6 which are n-configurations with a specific shape. Any translation of a rectangular n-configuration is still rectangular, and in fact these translations give the same rectangular n-configuration but with different coordinates (see 6).

Two coordinates $d x_{k_{i}}^{i}=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ and $d x_{k_{i}^{\prime}}^{i}=d x_{k_{1}^{\prime}}^{1} \otimes \cdots \otimes d x_{k_{n}^{\prime}}^{n}$ are j-adjacent if for all $i \in \llbracket 1, n \rrbracket \backslash j, k_{i}=k_{i}^{\prime}$, and if $k_{j}=k_{j}^{\prime}+1$ or $k_{j}=k_{j}^{\prime}-1$.

The j-contraction of the coordinate $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j}}^{j} \otimes \cdots d x_{k_{n}}^{n}$ is defined as the coordinate

$$
d x_{k_{i}}^{i} \backslash j=d x_{k_{1}}^{1} \otimes \cdots \otimes \widehat{d x_{k_{j}}^{j}} \otimes \cdots d x_{k_{n}}^{n}
$$

in \mathbb{Z}^{n-1} defined by removing the direction j and re-indexing:

$$
d x_{k_{i}}^{i} \backslash j:=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j-1}}^{j-1} \otimes d x_{k_{j+1}}^{j} \otimes \cdots d x_{k_{n}}^{n-1}
$$

sometimes we use also the notation $c_{j}\left(d x_{k_{i}}^{i}\right)$ for $d x_{k_{i}}^{i} \backslash j$. If we apply these contractions p-times then we obtain the following coordinate in \mathbb{Z}^{n-p} :

$$
d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right)
$$

where the order of occurrences of the $j^{\prime} s$ in $\left(j_{1}, \cdots, j_{p}\right)$ is important just because if σ is an element of the permutation group S_{p} then the action

$$
\sigma \cdot d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right):=d x_{k_{i}}^{i} \backslash\left(j_{\sigma(1)}, \cdots, j_{\sigma(p)}\right),
$$

does not imply the equality between $d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right)$ and $d x_{k_{i}}^{i} \backslash\left(j_{\sigma(1)}, \cdots, j_{\sigma(p)}\right)$.

The j-dilatation of the coordinate $d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j}}^{j} \otimes \cdots d x_{k_{n}}^{n}$ is a coordinate in \mathbb{Z}^{n+1} defined by adding $d x_{1}^{j}$ in the direction j and re-indexing:

$$
d x_{k_{i}}^{i}+j:=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j-1}}^{j-1} \otimes d x_{k_{1}}^{j} \otimes d x_{k_{j}}^{j+1} \cdots d x_{k_{n}}^{n+1}
$$

sometimes we use the notation $d_{j}\left(d x_{k_{i}}^{i}\right)$ for $d x_{k_{i}}^{i}+j$; and if we apply these dilatations p-times then we obtain the following coordinate in \mathbb{Z}^{n+p} :

$$
d x_{k_{i}}^{i}+\left(j_{1}, \cdots, j_{p}\right)
$$

where the order of occurrences of the $j^{\prime} s$ in $\left(j_{1}, \cdots, j_{p}\right)$ is important.
Remark 2.2. The previous dilatation:

$$
d x_{k_{i}}^{i}+j:=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{j-1}}^{j-1} \otimes d x_{k_{1}}^{j} \otimes d x_{k_{j}}^{j+1} \cdots d x_{k_{n}}^{n+1}
$$

built by adding $d x_{1}^{j}$ is a convention, but we could add instead $d x_{k}^{j}(k \in \mathbb{Z})$ if necessary.

Consider now the following diagrams of different network \mathbb{Z}^{n} for all $n \in$ \mathbb{N}, such that \mathbb{Z}^{0} is the singleton set $\{*\}$:
where for all positive integers $n \geq 2$ and all direction $i \in \llbracket 1 ; n \rrbracket, \sigma_{n-1, i}^{n}=$
$\tau_{n-1, i}^{n}=c_{i}$ (the i-contractions); we also have the diagram:

$$
\mathbb{Z}^{0} \xrightarrow{1_{1}^{0}} \mathbb{Z} \xrightarrow[1_{2,2}^{1}]{1_{2,1}^{1}} \mathbb{Z}^{2} \xrightarrow[1_{3,3}^{2}]{\stackrel{1_{3,2}^{2}}{1_{3,1}^{2}}} \mathbb{Z}^{3} \xrightarrow[1_{4,3}^{3}]{\substack{1_{4,2}^{3}}} \mathbb{Z}^{4} \ldots
$$

where $1_{1}^{0}(*)=d x_{1}^{1}$, and for all $n \geq 1$ and all $i \in \llbracket 1 ; n+1 \rrbracket, 1_{n+1, i}^{n}=d_{i}$ (the i-dilatations), and the diagram:

where here for all $n \geq 1$, and all $i \in \llbracket 1 ; n \rrbracket, 1_{n+1, i}^{n, \gamma}=d_{i}$ (the i-dilatations), then it is straightforward to see that contractions and dilatations put a structure of cubical reflexive set (see [3]) on the collection of networks $\mathbb{Z}^{\bullet}=$ $\left(\mathbb{Z}^{n}\right)_{n \in \mathbb{N}}$.

3 The basic boxes $\square_{1(n)}^{d x_{k_{i}}^{i}}$ of coordinates $d x_{k_{i}}^{i}$

A crucial and straightforward fact from the previous section is that given a coordinate $d x_{k_{i}}^{i}$ in \mathbb{Z}^{n}, it has a trivial structure of n-cubical set ${ }^{3}$ where sources and targets are defined by contractions:

- $s_{n-1, j}^{n}\left(d x_{k_{i}}^{i}\right)=t_{n-1, j}^{n}\left(d x_{k_{i}}^{i}\right):=d x_{k_{i}}^{i} \backslash j$,

[^2]$$
\text { - } s_{n-p-1, k}^{n-p}\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right)\right)=t_{n-p-1, k}^{n-p}\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right)\right):=d x_{k_{i}}^{i} \backslash
$$ $\left(j_{1}, \cdots, j_{p}, k\right)$
thus different contractions of $d x_{k_{i}}^{i}$ are the faces of its underlying trivial n-cubical set.

However this structure of n-cube that $d x_{k_{i}}^{i}$ has is too trivial because it does not distinguished sources and targets with the same direction j. And this distinction is crucial because our idea is too label any n-cubical sets A with a coordinate $d x_{k_{i}}^{i}$ of \mathbb{Z}^{n}, such that faces of A must have new coordinates $d x_{k_{i}}^{i} \backslash\left(j_{1}, \cdots, j_{p}\right)$ build by contractions and weighted by a notion of sources and targets. In order to correct this default we are going to enriched the coordinates with a notion of link, which are roughly speaking coordinates equipped with the symbols $\{-,+\}$.

Thus for each coordinate $d x_{k_{i}}^{i}$ of the network \mathbb{Z}^{n} we shall associate an other n-cubical set $\square_{1(n)}^{d x_{k_{i}}^{i}}$ called the box of $d x_{k_{i}}^{i}$ and which formalise better the notion of n-cubical set A labelled by $d x_{k_{i}}^{i}$, in the sense that sources and targets of A are then labelled with weighted coordinates, which give the right information of the location of faces of A. Without these weights any p-face of A which is a source in the direction j has the same coordinate (because the trivial structure collapse this source-target information) as the other p-face of A which is a target in the same direction j, and this is counterintuitive: the role of $\square_{1(n)}^{d x_{k_{i}}^{2}}$ is to distinguished well coordinates of any faces of any n-cubical set labelled with the coordinate $d x_{k_{i}}^{i}$. This section is devoted to the description of these boxes $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

Given a coordinate $d x_{k_{i}}^{i}$ and the elementary n-cube $1(n)$ (which is the unique n-cell of the cubical site \mathbb{C}), we associate to it a formal free box ${ }^{4}$ $\square_{1(n)}^{d x_{k_{i}}^{i}}$ which is a non-degenerate n-cubical set which faces are congruences of terms for a language, and these terms are called here links. The datas of this language are the different contractions of $d x_{k_{i}}^{i}: d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{p}\right)$ plus two symbols $\{-,+\}$ which label these contractions. These symbols $\{-,+\}$ must be interpreted as sources and targets of the different contractions they equipped, and provide a good notion of sources and targets for $\square_{1(n)}^{d x_{k_{i}}^{i}}$. The

[^3]terms of this language are built inductively (see below) and congruences on it use notions of zigzag build with the cubical identities of sources and targets (see below). This n-cubical set $\square_{1(n)}^{d x_{k_{i}}^{i}}$ is called the basic box with coordinate $d x_{k_{i}}^{i}$. This box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ is not degenerate because it is build with $1(n)$ which is non degenerate, and its degeneracies are discussed in the next section where degenerate boxes will be defined.

Remark 3.1. An other possible description of faces of $\square_{1(n)}^{d x_{k_{i}}}$ is given in the remark below, which looks more natural (it uses the Reverse Polish Notation), but less intuitive for us. Perhaps in the future we would prefer these $R P N$ notations.

In this section we will describe only the underlying cubical set of the box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ and degeneracies of it shall be described only in the next section, because they are more subtile and involve notions of dilated free boxes equipped congruences for degeneracies (see below). As we wrote in the previous section the role of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ can be summarized as follow: if an n-cubical set X is labelled by a coordinate $d x_{k_{i}}^{i}$ it means that it is contained in the box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ which faces are congruences of links.

The box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ and all faces of $\square_{1(n)}^{d x_{k_{i}}}$ have underlying free boxes (see below). But when we consider the box associated to a face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ we forget that it was "linked" to $\square_{1(n)}^{d x_{k_{i}}^{i}}$ and then this box is named "free".

In order to keep the linked information of the faces of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ we write these links as finite sequences of the form:

$$
X=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{r}\right), \pm\right)\right)
$$

We can define them by finite decreasing induction:
Definition 3.2. - For any direction $j \in \llbracket 1, n \rrbracket$, the term $s_{n-1, j}^{n}\left(\square_{1(n)}^{d x_{k_{i}}}\right)=$ $\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j,-\right)\right)$ and the term $t_{n-1, j}^{n}\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right)=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j,+\right)\right)$
are 1-links which must be interpreted respectively as the j-source and the j-target of the box $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

- If $X=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)\right.\right.$,
$\pm)$) is an $(n-r)$-link of the box $\square_{1(n)}^{d x_{k_{i}}^{2}}$, then for any direction $j \in \llbracket 1, r \rrbracket$, the terms:

$$
\begin{aligned}
& s_{r-1, j}^{r}(X)=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots\right. \\
& \left.\quad\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j\right),-\right)\right) \\
& t_{r-1, j}^{r}(X)=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i} \backslash}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots\right. \\
& \left.\quad\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j\right),+\right)\right)
\end{aligned}
$$

are $(n-r-1)$-links of $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

- $(n-r)$-links of sources-targets of $\square_{1(n)}^{d x_{k_{i}}^{i}}$, or $(n-r)$-links of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ for short, are given by such sequences:

$$
\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)\right)
$$

Some notations shall be useful:

$$
s_{n_{2}, j^{1}}^{n}:=s_{n_{2}, j_{n_{2}+1}^{1}}^{n_{2}+1} \circ s_{n_{2}+1, j_{n_{2}+2}^{1}}^{n_{2}+2} \cdots \circ s_{n-2, j_{n-1}^{1}}^{n-1} \circ s_{n-1, j_{n}^{1}}^{n},
$$

where $j^{1}=\left(j_{n}^{1}, \cdots, j_{n_{2}+1}^{1}\right)$ and $j_{n}^{1} \in \llbracket 1, n \rrbracket, j_{n-1}^{1} \in \llbracket 1, n-1 \rrbracket, \cdots, j_{n_{2}+1}^{1}$ $\in \llbracket 1, n_{2}+1 \rrbracket ;$

$$
t_{n_{2}, j^{1}}^{n}:=t_{n_{2}, j_{n_{2}+1}^{1}}^{n_{2}+1} \circ t_{n_{2}+1, j_{n_{2}+2}^{1}}^{n_{2}+2} \cdots \circ t_{n-2, j_{n-1}^{1}}^{n-1} \circ t_{n-1, j_{n}^{1}}^{n}
$$

where $j^{1}=\left(j_{n}^{1}, \cdots, j_{n_{2}+1}^{1}\right)$ and $j_{n}^{1} \in \llbracket 1, n \rrbracket, j_{n-1}^{1} \in \llbracket 1, n-1 \rrbracket, \cdots, j_{n_{2}+1}^{1}$ $\in \llbracket 1, n_{2}+1 \rrbracket$.

Also for any partition $n_{p}<n_{p-1}<\cdots<n_{k}<\cdots<n_{2}<n_{1}=n$ with $(p-1)$ intervals $\llbracket n_{k+1}, n_{k} \rrbracket$ we have 6 different zigzags of sources and targets:

- $s_{n_{2}, j}^{n}:=s_{n_{2}, j_{n_{2}+1}}^{n_{2}+1} \circ s_{n_{2}+1, j_{n_{2}+2}}^{n_{2}+2} \cdots s_{n-2, j_{n-1}}^{n-1} \circ s_{n-1, j_{n}}^{n}$ where $j=\left(j_{n}, \cdots\right.$, $\left.j_{n_{2}+1}\right)$ and $j_{n} \in \llbracket 1, n \rrbracket, j_{n-1} \in \llbracket 1, n-1 \rrbracket, \cdots, j_{n_{2}+1} \in \llbracket 1, n_{2}+1 \rrbracket$ called string of sources (or string of type s);
- $t_{n_{2}, j}^{n}:=t_{n_{2}, j_{n_{2}+1}}^{n_{2}+1} \circ t_{n_{2}+1, j_{n_{2}+2}}^{n_{2}+2} \cdots \circ t_{n-2, j_{n-1}}^{n-1} \circ t_{n-1, j_{n}}^{n}$ where $j=\left(j_{n}, \cdots\right.$, $\left.j_{n_{2}+1}\right)$ and $j_{n} \in \llbracket 1, n \rrbracket, j_{n-1} \in \llbracket 1, n-1 \rrbracket, \cdots, j_{n_{2}+1} \in \llbracket 1, n_{2}+1 \rrbracket$, called string of targets (or string of type t);
- $s_{n_{p}, j^{p-1}}^{n_{p-1}} \circ t_{n_{p-1}, j^{p}}^{n_{p-2}} \cdots t_{n_{k+1}, j^{k}}^{n_{k}} \circ s_{n_{k}, j^{k-1}}^{n_{k-1}} \cdots t_{n_{3}, j^{2}}^{n_{2}} \circ s_{n_{2}, j^{1}}^{n}$, called zigzag of sources-targets of type (s, s);
- $s_{n_{p}, j^{p-1}}^{n_{p-1}} \circ t_{n_{p-1}, j^{p}}^{n_{p-2}} \cdots t_{n_{k+1}, j^{k}}^{n_{k}} \circ s_{n_{k}, j^{k-1}}^{n_{k-1}} \cdots s_{n_{3}, j^{2}}^{n_{2}} \circ t_{n_{2}, j^{1}}^{n}$, called zigzag of sources-targets of type (s, t);
- $t_{n_{p}, j^{p-1}}^{n_{p-1}} \circ s_{n_{p-1}, j^{p}}^{n_{p-2}} \cdots t_{n_{k+1}, j^{k}}^{n_{k}} \circ s_{n_{k}, j^{k-1}}^{n_{k-1}} \cdots s_{n_{3}, j^{2}}^{n_{2}} \circ t_{n_{2}, j^{1}}^{n}$, called zigzag of sources-targets of type (t, t);
- $t_{n_{p}, j^{p-1}}^{n_{p-1}} \circ s_{n_{p-1}, j^{p}}^{n_{p-2}} \cdots t_{n_{k+1}, j^{k}}^{n_{k}} \circ s_{n_{k}, j^{k-1}}^{n_{k-1}} \cdots t_{n_{3}, j^{2}}^{n_{2}} \circ s_{n_{2}, j^{1}}^{n}$, called zigzag of sources-targets of type (t, s).

The number of occurences of the s and of the t in a string or zigzag is called the size of the string or the size of the zigzag. If X is a r-link of $\square_{1(n)}^{d x_{k_{i}}^{i}}$:

$$
X=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{r}\right), \pm\right)\right)
$$

then it can be written:

$$
X=z_{X}\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right)
$$

where z_{X} denotes its underlying string or zigzag of sources-targets.
All these zigzags or strings build the $\left(n-n_{p}\right)$-faces of any n-cube. Thanks to the cubical identities two different zigzags or strings may be equal. And these equalities build congruences on the sequences defined below, such that equivalence relations of these sequences are the faces of the free box $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

More precisely consider two $(n-r)$-links $X=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\right.\right.$ $\left.\left.\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)\right)$ and $X^{\prime}=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}^{\prime}, \pm\right),\left(d x_{k_{i}}^{i}\right.\right.$ $\left.\left.\backslash\left(j_{1}^{\prime}, j_{2}^{\prime}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}^{\prime}, j_{2}^{\prime}, \cdots, j_{n-r}^{\prime}\right), \pm\right)\right)$. Denote by z_{X} the string or zigzag of sources-targets which gives X, i.e $X=z_{X}\left(\square_{1(n)}^{d x_{i} i}\right)$, and $z_{X^{\prime}}$ the string or zigzag of sources-targets which gives X^{\prime}, i.e $X^{\prime}=z_{X^{\prime}}\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right)$.

Definition 3.3. With the above notations, the $(n-r)$-link X is congruent to the $(n-r)$-link X^{\prime} if and only if $z_{X}=z_{X^{\prime}}$; in this case it is trivial to see that z_{X} and $z_{X^{\prime}}$ have the same size. Then we write $X \equiv X^{\prime}$. Equivalence classes of $(n-r)$-links of the free box $\square_{1(n)}^{d x_{k_{i}}^{i}}$ are r-faces of $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

In fact the terminal element of the $(n-r)-\operatorname{link} X$:

$$
\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)
$$

gives the precise information of an r-face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ that it can be a source or a target, depending on the sign in $\{-,+\}$: " - " means source and "+" means target.
Lemma 3.4. If two $(n-r)$-links of $\square_{1(n)}^{d x_{k_{i}}}$ are congruents then they have the same terminal element.

Proof. The proof is easy and is made by finite decreasing induction:

- We start the induction by proving it with sources and targets of $\left(d x_{k_{i}}^{i}\right)=\square_{1(n)}^{d x_{k_{i}}^{i}}$ (using the whole cubical identities $s s=s s$, $s t=t s$, etc.) and verify that indeed they give the same terminal coordinates: this step shows the magical role of the trivial cubical structure of the coordinates. See the section above;
- We suppose that this is true for two congruent $(n-r)$-links. When we apply sources and targets of these $(n-r)$-links then it is straightforward to see that they have the same terminal coordinates.

A simple consequence is the following fact:
Proposition 3.5. A face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ is thus an equivalent class of links of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ with the same terminal element.

We can have in mind also that $\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)$ is an r-face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ equipped with (or linked by) the link:

$$
\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)\right)
$$

thus when there is no confusion about the prescribed link of a face $\left(d x_{k_{i}}^{i} \backslash\right.$ $\left.\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)$ of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ we denote this r-face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ just by:

$$
\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right)
$$

without referring its link in $\square_{1(n)}^{d x_{k_{i}}}$.
The previous lemma allows to build the free boxes associate to any faces of $\square_{1(n)}^{d x_{k_{i}}^{i}}$.

Definition 3.6. The free box $\square_{1(r)}^{d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}=\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)\right)$ of the link $\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm\right.\right.$)) which represent an r-face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$, is the basic box with coordinate $d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)$ in \mathcal{Z}_{r}.

When working with this free box $\square_{1(r)}^{d x_{k_{r}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}$, we forget the previous information that it was linked to $\square_{1(n)}^{d x_{k_{i}}^{i}}$. Thus the link $\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash\right.\right.$ $\left.\left.j_{1}, \pm\right),\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \pm\right), \ldots,\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r-1}\right), \pm\right)\right)$ which represents a face of $\square_{1(n)}^{d x_{k_{i}}^{i}}$, represents also a face of the underlying free box $\square_{1(r)}^{d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}$, but with the simpler link $\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right),\left(d x_{k_{i}}^{i} \backslash\right.\right.$ $\left(j_{1}, j_{2}, \cdots, j_{n-r-1}\right), \pm$
)) when we see it as a face of the free box $\square_{1(r)}^{d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}$. But when we work with faces of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ we have to not forgot their links in order to have a complete informations about their locations. Thus faces of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ can be seen as free boxes equipped with their links.

Remark 3.7. We have others natural notations for links X of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ (Reverse Polish Notation, RPN):

$$
X=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), \pm, \cdots, \pm\right)
$$

this presentation allows the following definition of sources and targets of links of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ by using the underlying free boxes of it: $s_{n-1, j}^{n}\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right)=$ $\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j,-\right)\right)$, and

$$
\begin{aligned}
& s_{r-1, l}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.\left.d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r-1}\right), s_{r-1, l}^{r} \square_{1(r)}^{d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}\right), \pm, \cdots, \pm\right),
\end{aligned}
$$

thus

$$
\begin{aligned}
& \quad s_{r-1, l}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j_{n-(r-1)}=l\right),-\right), \pm, \cdots, \pm\right)
\end{aligned}
$$

that we rewrite when removing redondant occurrences of brackets

$$
\begin{aligned}
& s_{r-1, j}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j_{n-(r-1)}=l\right),-, \pm, \cdots, \pm\right)
\end{aligned}
$$

and for targets: $t_{n-1, j}^{n}\left(\square_{1(n)}^{d x_{k_{i}}^{i}}\right)=\left(d x_{k_{i}}^{i},\left(d x_{k_{i}}^{i} \backslash j,+\right)\right)$, and

$$
\begin{aligned}
& t_{r-1, l}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.\left.\quad d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r-1}\right), t_{r-1, l}^{r} \square_{1(r)}^{d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right)}\right), \pm, \cdots, \pm\right),
\end{aligned}
$$

thus

$$
\begin{aligned}
& \quad t_{r-1, l}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.\left(d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j_{n-(r-1)}=l\right),+\right), \pm, \cdots, \pm\right)
\end{aligned}
$$

that we rewrite when removing redondant occurrences of brackets:

$$
\begin{aligned}
& t_{r-1, j}^{r}(X)=\left(d x_{k_{i}}^{i}, d x_{k_{i}}^{i} \backslash j_{1}, d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}\right), \ldots\right. \\
& \left.d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}\right), d x_{k_{i}}^{i} \backslash\left(j_{1}, j_{2}, \cdots, j_{n-r}, j_{n-(r-1)}=l\right),+, \pm, \cdots, \pm\right)
\end{aligned}
$$

4 Degenerate boxes $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)$

We know that the following forgetful functor

$$
\left[\mathbb{C}_{r}^{o p}, \text { Sets }\right] \xrightarrow{U}\left[\mathbb{C}^{o p}, \mathbb{S e t s}\right]=\mathbb{C} \text { Sets }
$$

which sends cubical sets equipped with degeneracies and connections [3] to cubical sets is right adjoint. Its induced monad \mathbb{R} (described in 5) applied to the terminal object 1 of the category [$\left.\mathbb{C}^{o p}, \mathbb{S e t s}\right]$ of cubical sets, gives all kinds of degenerates n-cells $A \in \mathbb{R}(1)(n)$ (for all integers $n \in \mathbb{N}$) we need for cubical pasting diagrams. In Section 5 we shall describe this monad accurately in order to see that it is a cartesian monad.

Now for each $A \in R(1)(n)$ we are going to define a box $\square_{1(n)}^{d x_{k_{i}}^{i}} / \equiv_{A}$ which faces are modeled with those of A. For that purpose we are going to define a notion of zigzag of degeneracies in order to capture the depth of a degenerate n-cell $A \in \mathbb{R}(1)(n)$, which is the greatest integer r such that r-faces of A are of the form $1(r)$, i.e are non degenerate. We begin with the notations:

- $1_{n, i^{1}}^{n_{2}}:=1_{n, i_{1}^{1}}^{n-1} \circ 1_{n-1, i_{2}^{1}}^{n-2} \circ \cdots \circ 1_{n-k+1, i_{k}^{1}}^{n-k} \circ \cdots 1_{n_{2}+1, i_{n-n_{2}}^{1}}^{n_{2}}$, where $i^{1}=$ $\left(i_{1}^{1}, \cdots, i_{k}^{1}, \cdots, i_{n-n_{2}}^{1}\right), k \in \llbracket 1, n-n_{2} \rrbracket$ and $i_{1}^{1} \in \llbracket 1, n \rrbracket, \cdots, i_{k}^{1} \in \llbracket 1, n-$ $k+1 \rrbracket, \cdots, i_{n-n_{2}}^{1} \in \llbracket 1, n_{2}+1 \rrbracket$.
- $1_{n, j^{1}}^{n_{2}, \gamma}:=1_{n, j_{1}^{1}}^{n-1, \gamma} \circ 1_{n-1, j_{2}^{1}}^{n-2, \gamma} \circ \cdots \circ 1_{n-k+1, j_{k}^{1}}^{n-k, \gamma} \circ \cdots 1_{n_{2}+1, j_{n-n_{2}}^{1}}^{n_{2}, \gamma}$, where $j^{1}=$ $\left(j_{1}^{1}, \cdots, j_{k}^{1}, \cdots, j_{n-n_{2}}^{1}\right), k \in \llbracket 1, n-n_{2} \rrbracket$ and $j_{1}^{1} \in \llbracket 1, n-1 \rrbracket, \cdots, j_{k}^{1} \in$ $\llbracket 1, n-k \rrbracket, \cdots, j_{n-n_{2}}^{1} \in \llbracket 1, n_{2} \rrbracket$.

Also for any partition $n_{p}<n_{p-1}<\cdots<n_{k}<\cdots<n_{2}<n_{1}=n$ with ($p-1$) intervals $\llbracket n_{k+1}, n_{k} \rrbracket$ we have 6 different zigzags of reflexivities and connections:

- $1_{n, i}^{n_{2}}:=1_{n, i_{1}}^{n-1} \circ 1_{n-1, i_{2}}^{n-2} \circ \cdots \circ 1_{n-k+1, i_{k}}^{n-k} \circ \cdots 1_{n_{2}+1, i_{n-n_{2}}}^{n_{2}}$ where $i=\left(i_{1}, \cdots, i_{k}\right.$, $\left.\cdots, i_{n-n_{2}}\right), k \in \llbracket 1, n-n_{2} \rrbracket$ called strings of degeneracies of type 1 .
- $1_{n, j}^{n_{2}, \gamma}:=1_{n, j_{1}}^{n-1, \gamma} \circ 1_{n-1, j_{2}}^{n-2, \gamma} \circ \cdots \circ 1_{n-k+1, j_{k}}^{n-k, \gamma} \circ \cdots 1_{n_{2}+1, j_{n-n_{2}}}^{n_{2}, \gamma} \quad$ where $j=$ $\left(j_{1}, \cdots, j_{k}, \cdots, j_{n-n_{2}}\right), k \in \llbracket 1, n-n_{2} \rrbracket$ called strings of degeneracies of type γ.
- $1_{n, i^{1}}^{n_{2}} \circ 1_{n_{2}, i^{2}}^{n_{3}, \gamma} \circ \cdots \circ 1_{n_{k-1}, i^{k}}^{n_{k}, \gamma} \circ 1_{n_{k}, i^{k+1}}^{n_{k+1}} \circ \cdots \circ 1_{n_{p-2}, i^{p-2}}^{n_{p-1, \gamma}} \circ 1_{n_{p-1}, i^{p-1}}^{n_{p}}$ called zigzags of degeneracies of type $(1,1)$.
- $1_{n, i^{1}}^{n_{2}, \gamma} \circ 1_{n_{2}, i^{2}}^{n_{3}} \circ \cdots \circ 1_{n_{k-1}, i^{k}}^{n_{k}, \gamma} \circ 1_{n_{k}, i^{k+1}}^{n_{k+1}} \circ \cdots \circ 1_{n_{p-2}, i^{p-2}}^{n_{p-1,2}} \circ 1_{n_{p-1}, i^{p-1}}^{n_{p}}$ called zigzags of degeneracies of type $(\gamma, 1)$.
- $1_{n, i^{1}}^{n_{2}, \gamma} \circ 1_{n_{2}, i^{2}}^{n_{3}} \circ \cdots \circ 1_{n_{k-1}, i^{k}}^{n_{k}, \gamma} \circ 1_{n_{k}, i^{k+1}}^{n_{k+1}} \circ \cdots \circ 1_{n_{p-2}, i^{p-2}}^{n_{p-1}} \circ 1_{n_{p-1}, i^{p-1}}^{n_{p}, \gamma}$ called zigzags of degeneracies of type (γ, γ).
- $1_{n, i^{1}}^{n_{2}} \circ 1_{n_{2}, i^{2}}^{n_{3}, \gamma} \circ \cdots \circ 1_{n_{k-1}, i^{k}}^{n_{k}, \gamma} \circ 1_{n_{k}, i^{k+1}}^{n_{k+1}} \circ \cdots \circ 1_{n_{p-2}, i^{p-2}}^{n_{p-1}} \circ 1_{n_{p-1}, i^{p-1}}^{n_{p}, \gamma}$ called zigzags of degeneracies of type $(1, \gamma)$.

The number of occurrences of the operations $1_{r+1, i}^{r}, 1_{r+1, i}^{r, \gamma}$ in such zigzags or such strings are respectively called the size of a zigzag or the size of a string.

Definition 4.1. Consider an n-cell $A \in \mathbb{R}(1)(n)$ which is not equal to $1(n)$. Thus it is a degenerate n-cell and is build with zigzag or string of degeneracies as described just above. The depth of A is the integer $p \in \mathbb{N}$ such that A is equal to a zigzag of size $n-p$ or a string of size $n-p$ of degeneracies of the p-cell $1(p)$ of the cubical site, i.e $A=d_{A}(1(p))$ where d_{A} denotes its underlying string or zigzag of degeneracies and d_{A} has size equal to $n-p$.

Remark 4.2. Thanks to the axioms of degeneracies, the degenerate n-cell A has zigzags or strings of degeneracies with different shapes, which may be equals.

Suppose A is a degenerate n-cell in $\mathbb{R}(1)(n)$ with depth $p<n$. Zigzags or strings of sources-targets of A with sizes which are less or equal to $(n-p)$ are the one which build a congruence \equiv_{A} on faces of the basic n-box $\square_{1(n)}^{d x_{k_{i}}^{i}}$, and this congruence is defined as follow: if $p<q \leq n$, two q-faces x and y of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ are A-congruent: $x \equiv_{A} y$, if and only if any strings or zigzags of sourcestargets z_{x} of x (i.e z_{x} is the underlying string or the underlying zigzag of sources-targets of any link of $\square_{1(n)}^{d x_{k_{i}}}$, which gives the q-face x (any two such links are equivalent)) and any strings or zigzags of sources-targets z_{y} (i.e z_{y} is the underlying string or the underlying zigzag of sources-targets of any
link of $\square_{1(n)}^{d x_{k_{i}}^{i}}$ which gives the q-face y (any two such links are equivalent)) of y, equalize A i.e are such that $z_{x}(A)=z_{y}(A)$.
Definition 4.3. The quotient $\square_{1(n)}^{d x_{k_{i}}^{i}} / \equiv \equiv_{A}$ is called a degenerate box with coordinate $d x_{k_{i}}^{i}$. We denote it with the bracket notation $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv{ }_{A}\right)$.

Sources, targets and degeneracies of the box $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)$ agree with those of A, thus it has a canonical structure of n-cubical set with degeneracies inherited by A and defined as follow:

Definition 4.4. - Sources and targets of degenerate boxes:

$$
s_{n-1, j}^{n}\left(\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)\right):=\left(\square_{1(n-1)}^{d x_{k_{i}}^{i} \backslash j}, \equiv_{s_{n-1, j}^{n}(A)}\right)
$$

and

$$
t_{n-1, j}^{n}\left(\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)\right):=\left(\square_{1(n-1)}^{d x_{k_{i}}^{i} \backslash j}, \equiv_{t_{n-1, j}^{n}(A)}\right)
$$

- Degeneracies of degenerate boxes:

$$
1_{n+1, j}^{n}\left(\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)\right):=\left(\square_{1(n+1)}^{d x_{k_{i}}^{i}+j}, \equiv_{1_{n+1, j}^{n}(A)}\right)
$$

and

$$
1_{n+1, j}^{n, \gamma}\left(\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)\right):=\left(\square_{1(n+1)}^{d x_{k_{i}}^{i}+j}, \equiv_{1_{n+1, j}^{n, \gamma}(A)}\right)
$$

5 Basic divisors

The forgetful functor

$$
\left[\mathbb{C}_{r}^{o p}, \text { Sets }\right] \xrightarrow[U]{U}\left[\mathbb{C}^{o p}, \text { Sets }\right]
$$

which sends cubical sets equipped with degeneracies and connections [3] to cubical sets is right adjoint and its induced monad is written $\mathbb{R}=(R, i, m)$ where $1_{\mathbb{C S} \text { ets }} \xrightarrow{i} R$ is its unit and $R^{2} \xrightarrow{m} R$ is its multiplication.

Definition 5.1. A basic n-divisor is the formal expression $A d x_{k_{i}}^{i}$ where $A \in$ $R(1)(n)$. Its interpretation is just: the n-cell A is located in its degenerate box $\left(\square_{1(n)}^{d x_{k_{i}}^{i}}, \equiv_{A}\right)$.

Also we have the following simple fact.
Proposition 5.2. Any basic divisor has an underlying structure of reflexive cubical set with connections.

Proof. The definitions of sources, targets, degeneracies are as follow:

- $s_{n-1, j}^{n}\left(A d x_{k_{i}}^{i}\right):=s_{n-1, j}^{n}(A) d x_{k_{i}}^{i} \backslash j$
- $t_{n-1, j}^{n}\left(A d x_{k_{i}}^{i}\right):=t_{n-1, j}^{n}(A) d x_{k_{i}}^{i} \backslash j$
- $1_{n+1, j}^{n}\left(A d x_{k_{i}}^{i}\right):=1_{n+1, j}^{n}(A)\left(d x_{k_{i}}^{i}+j\right)$
- $1_{n+1, j}^{n, \gamma}\left(A d x_{k_{i}}^{i}\right):=1_{n+1, j}^{n, \gamma}(A)\left(d x_{k_{i}}^{i}+j\right)$

Definition 5.3. Two basic divisors $A d x_{k_{i}}^{i}, A^{\prime} d x_{k_{i}^{\prime}}^{i}$ located respectively in the coordinates $d x_{k_{i}}^{i}=d x_{k_{1}}^{1} \otimes \cdots \otimes d x_{k_{n}}^{n}$ and $d x_{k_{i}^{\prime}}^{i}=d x_{k_{1}^{\prime}}^{1} \otimes \cdots \otimes d x_{k_{n}^{\prime}}^{n}$ are j-adjacent for a direction $j \in \llbracket 1, n \rrbracket$ if their coordinates are j-adjacent and if $s_{n-1, j}^{n}(A)=t_{n-1, j}^{n}\left(A^{\prime}\right)$ if $k_{j}=k_{j}^{\prime}+1$ or $t_{n-1, j}^{n}(A)=s_{n-1, j}^{n}\left(A^{\prime}\right)$ if $k_{j}=k_{j}^{\prime}-1$.

The set of basic divisors is denoted by $\mathbb{B D i v}$ and by the previous proposition it is straightforward that it has an underlying structure of cubical set with connections where its n-cells (for all $n \in \mathbb{N}$) are the basic n-divisors.

Now we are going to use basic divisors to describe the monad $\mathbb{R}=$ (R, i, m) just above and show that it is a cartesian monad: consider the full subcategory $\Theta_{\mathbb{B} D i v} \subset \mathbb{C}$ Sets which objects are basic divisors. The Yoneda embedding ${ }^{5}$

$$
\Theta_{\mathbb{B D i v}} \longrightarrow \mathbb{C} \text { Sets }
$$

$$
X \longmapsto \operatorname{hom}_{\mathbb{C S e t s}}(X,-),
$$

provides the following description of $R(C)$ where $C \in \mathbb{C}$ Sets is a cubical set:

$$
R(C):=\coprod_{X \in \mathbb{B D D i v}} \operatorname{hom}_{\mathbb{C S e t s}}(\mathrm{Y}(X), C)
$$

[^4]The multiplication m of the monad \mathbb{R} is very simple: it is obtained with the concatenation of two strings of degeneracies, or one string of degeneracies with one zigzag of degeneracies, or with two zigzags of degeneracies. The unit i of the monad \mathbb{R} sends n-cells c to the decorated box $c d x_{k_{i}}^{i}$.

Let us be more precise: the multiplication $R^{2}(C) \longrightarrow \quad m(C)$ is defined as follow: the cubical set $R^{2}(C)$ is defined by the formula:

$$
R^{2}(C)=\coprod_{X \in \mathbb{B} D i v} \operatorname{hom}_{\mathbb{C S e t s}}\left(Y(X), R(C)=\coprod_{X^{\prime} \in \mathbb{B} D i v} \operatorname{hom}_{\mathbb{C S e t s}}\left(Y\left(X^{\prime}\right), C\right)\right)
$$

thus an n-cell x of $R^{2}(C)$ is an expression of the form: $z\left(z^{\prime}(c)\right)$ where c is a p-cell of $C, p \leq n$ (for the case $p=n$ it means that x is non-degenerate and equal to $c), z^{\prime}$ is a string or a zigzag of degeneracies which when apply to c gives a degenerate q-cell $z^{\prime}(c)$ of $R(C)(p<q \leq n)$, and where z is a string or a zigzag of degeneracies which degenerates again $z^{\prime}(c)$. The multiplication m sends $z\left(z^{\prime}(c)\right) \in R^{2}(C)$ to $\left(z+z^{\prime}\right)(c) \in R(C)$ where here $z+z^{\prime}$ is just the concatenation of z and z^{\prime}.

Proposition 5.4. The monad $\mathbb{R}=(R, i, m)$ of cubical reflexive sets with connections is cartesian.

Proof. The definition of the endofunctor R shows that it preserves fiber products.

We are going to prove that the multiplication m is cartesian, i.e we are going to prove that if $C \in \mathbb{C}$ Sets is a cubical set then the commutative diagram

is a cartesian square; consider the commutative diagram in $\mathbb{C S}$ ets.

Thus if x is an n-cell of C^{\prime} then $f(x)=z(c)$ where $c \in C(q)(q \leq$ n) and $R(!)(f(x))=R(!)(z(c))=z(1(q))$, and $g(x)=z^{\prime \prime}\left(z^{\prime}(1(p))\right)$, thus $m(1)(g(x))=m(1)\left(z^{\prime \prime}\left(z^{\prime}(1(p))\right)\right)=\left(z^{\prime \prime}+z^{\prime}\right)(1(p))$, thus the commutativity of the square gives $z=z^{\prime \prime}+z^{\prime}$ and $p=q$.

Thus the unique arrow l is defined as follow: $l(x)=z "\left(z^{\prime}(c)\right)$, and we can see that $m(C)\left(z^{\prime \prime}\left(z^{\prime}(c)\right)\right)=\left(z^{\prime \prime}+z^{\prime}\right)(c)=z(c)=f(x)$ and that $R^{2}(!)\left(z^{\prime \prime}\left(z^{\prime}(c)\right)\right)=z^{\prime \prime}\left(z^{\prime}(1(p))\right)=g(x)$.

The cartesianity of the unit

$$
C \xrightarrow{i} R(C),
$$

is easier and goes as follow: we start with a commutative diagram in \mathbb{C} Sets.

Let x be an n-cell of C^{\prime}, thus we have $f(x)=z(c)$, thus $R(!)(z(c))=$ $z(1(p))$ and the commutativity gives: $z(1(p))=i(1)(1(n))=1(n)$; which shows that $z=\emptyset$ and $p=n$, thus $f(x)=c$.

It shows that there is a unique map l

defined by $l(x)=f(x)$.

6 Rectangular divisors

Definition 6.1. An n-configuration is a finite subset $C_{n} \subset \mathbb{Z}^{n}$. A rectangular n-configuration is an n-configuration of the form

$$
C_{n}=\llbracket p_{1} ; q_{1} \rrbracket \times \cdots \times \llbracket p_{j} ; q_{j} \rrbracket \times \cdots \times \llbracket p_{n} ; q_{n} \rrbracket \subset \mathbb{Z}^{n}
$$

An n-configuration C_{n} must be thought up to its translations in the network \mathbb{Z}^{n}; the normalization of the rectangular n-configuration C_{n} just above is

$$
\llbracket 1 ; q_{1}-\left(p_{1}-1\right) \rrbracket \times \cdots \times \llbracket 1 ; q_{j}-\left(p_{j}-1\right) \rrbracket \times \cdots \times \llbracket 1 ; q_{n}-\left(p_{n}-1\right) \rrbracket
$$

and usually we will work with rectangular n-configurations with normalized shapes, i.e with n-configurations written as follow

$$
C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket .
$$

Now we are going to describe the sketch $\mathcal{E}_{C_{n}}$ of any rectangular n configuration C_{n} (all the time normalized for simplicity) as above. For that perspective we are going to highlight some canonical orders on rectangular
n-configurations, all inherited from the lexicographic orders. Consider the rectangular n-configuration $C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$ as just above; with it we get m_{n} rectangular n-configurations $C_{n}^{k_{n}}$:

$$
C_{n}^{k_{n}}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n-1} \rrbracket \times\left\{k_{n}\right\}
$$

where $k_{n} \in \llbracket 1 ; m_{n} \rrbracket$; and all these rectangular n-configurations $C_{n}^{k_{n}}$ are themselves ordered as follow

$$
C_{n}^{1}<_{n} \cdots<_{n} C_{n}^{k_{n}}<_{n} \cdots<_{n} C_{n}^{m_{n}}
$$

where the orders $<_{n}$ are induced by the lexicographic order on C_{n}; these orders $<_{n}$ indicates the formal composition \circ_{n} of these $C_{n}^{k_{n}}\left(k_{n} \in \llbracket 1 ; m_{n} \rrbracket\right)$ along the direction $j=n$, thus the n-configuration

$$
C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket=\bigcup_{k_{n} \in \llbracket 1 ; m_{n} \rrbracket} C_{n}^{k_{n}}
$$

is preferably denoted by

$$
C_{n}=C_{n}^{1} \circ_{n} \cdots \circ_{n} C_{n}^{k_{n}} \circ_{n} \cdots \circ_{n} C_{n}^{m_{n}}
$$

in order to keep the information of this formal \circ_{n}-composition of C_{n}; this also underlies the following sketch:

Remark 6.2. The sketch above is obtained by substituting all occurences $C_{n}^{k_{n}} \circ_{n} C_{n}^{k_{n}+1}$ in $C_{n}^{1} \circ_{n} \cdots \circ_{n} C_{n}^{k_{n}} \circ_{n} \cdots \circ_{n} C_{n}^{m_{n}}$ with the formal base:

and its dotted cocone shows the expected result (here C_{n}) of its colimit.
Remark 6.3. All our sketches are written with solid bases and dotted (co)cones.

This sketch is called the \circ_{n}-sketch of C_{n}, and it shows how to glue the $C_{n}^{k_{n}}\left(k_{n} \in \llbracket 1 ; m_{n} \rrbracket\right)$ together, and its gluing is just C_{n}; now with the rectangular n-configurations $C_{n}^{l_{n}}\left(l_{n} \in \llbracket 1 ; m_{n} \rrbracket\right.$ is fixed) we get m_{n-1} rectangular n-configurations $C_{n}^{l_{n}, k_{n-1}}$:

$$
C_{n}^{l_{n}, k_{n-1}}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n-2} \rrbracket \times\left\{k_{m-1}\right\} \times\left\{l_{n}\right\}
$$

where $k_{m-1} \in \llbracket 1 ; m_{n-1} \rrbracket$; and all these rectangular n-configurations $C_{n}^{l_{n}, k_{n-1}}$ are themselves ordered as follow

$$
C_{n}^{l_{n}, 1}<_{n-1} \cdots<_{n-1} C_{n}^{l_{n}, k_{n-1}}<_{n-1} \cdots<_{n-1} C_{n}^{l_{n}, m_{n-1}}
$$

where the orders $<_{n-1}$ are induced by the lexicographic order on C_{n}; these orders $<_{n-1}$ indicate the formal composition \circ_{n-1} of these $C_{n}^{l_{n}, k_{n-1}}\left(k_{n-1} \in\right.$ $\left.\llbracket 1 ; m_{n-1} \rrbracket\right)$ along the direction $j=n-1$, thus the n-configuration
$C_{n}^{l_{n}}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n-1} \rrbracket \times\left\{l_{n}\right\}=\bigcup_{k_{n-1} \in \llbracket 1 ; m_{n-1} \rrbracket} C_{n}^{l_{n}, k_{n-1}}$ is preferably denoted by

$$
C_{n}^{l_{n}}=C_{n}^{l_{n}, 1} \circ_{n-1} \cdots \circ_{n-1} C_{n}^{l_{n}, k_{n-1}} \circ_{n-1} \cdots \circ_{n-1} C_{n}^{l_{n}, m_{n-1}}
$$

in order to keep the information of this formal \circ_{n}-composition of C_{n}; they are m_{n} of such formal \circ_{n-1}-compositions for C_{n}; this also underlies the following sketch.

This sketch is called a \circ_{n-1}-sketch of C_{n}, and it shows how to glue the $C_{n}^{l_{n}, k_{m-1}}\left(k_{n-1} \in \llbracket 1 ; m_{n-1} \rrbracket\right)$ together, and its gluing is $C_{n}^{l_{n}}$; they are m_{n} of such \circ_{n-1}-sketches for C_{n}; we may iterate this process: consider the m_{j} rectangular n-configurations

$$
C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j-1} \rrbracket \times\left\{k_{j}\right\} \times\left\{l_{j+1}\right\} \cdots \times\left\{l_{n}\right\}
$$

where $k_{j} \in \llbracket 1 ; m_{j} \rrbracket$ and where $\left(l_{j+1}, \cdots, l_{n}\right) \in \llbracket 1 ; m_{j+1} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$ is fixed, then it is straightforward that these rectangular n-configurations are ordered as follow

$$
C_{n}^{l_{n}, \cdots, l_{j+1}, 1}<_{j} \cdots<_{j} C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}<_{j} \cdots<_{j} C_{n}^{l_{n}, \cdots, l_{j+1}, m_{j}}
$$

where the orders $<_{j}$ are induced by the lexicographic order on C_{n}; these orders $<_{j}$ indicate the formal composition \circ_{j} of these $C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}\left(k_{j} \in\right.$ $\left.\llbracket 1 ; m_{j} \rrbracket\right)$ along the direction j, thus the n-configuration
$C_{n}^{l_{n}, \cdots, l_{j+1}}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times\left\{l_{j+1}\right\} \cdots \times\left\{l_{n}\right\}=\bigcup_{k_{j} \in \llbracket 1 ; m_{j} \rrbracket} C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}$
is preferably denoted by

$$
C_{n}^{l_{n}, \cdots, l_{j+1}}=C_{n}^{l_{n}, \cdots, l_{j+1}, 1} \circ_{j} \cdots \circ_{j} C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}} \circ_{j} \cdots \circ_{j} C_{n}^{l_{n}, \cdots, l_{j+1}, m_{j}}
$$

in order to keep the information of this formal \circ_{j}-composition; they are $m_{j+1} \cdots m_{n}$ of such formal \circ_{j}-compositions for C_{n}; this also underlies the following sketch.

This sketch is called a \circ_{j}-sketch of C_{n}, and it shows how to glue the $C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}\left(k_{j} \in \llbracket 1 ; m_{j} \rrbracket\right)$ together, and its gluing is $C_{n}^{l_{n}, \cdots, l_{j+1}}$; they are
$m_{j+1} \cdots m_{n}$ of such \circ_{j}-sketches for C_{n}. This construction ends with the n-configurations

$$
C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}=\left\{k_{1}\right\} \times\left\{l_{2}\right\} \times \cdots \times\left\{l_{j}\right\} \times \cdots \times\left\{l_{n}\right\}
$$

where $k_{1} \in \llbracket 1 ; m_{1} \rrbracket$ and $\left(l_{2}, \cdots, l_{n}\right) \in \llbracket 1 ; m_{2} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$ is fixed, and where these m_{1} rectangular n-configurations are ordered as follow

$$
C_{n}^{l_{n}, \cdots, l_{2}, 1}<_{1} \cdots<_{1} C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}<_{1} \cdots<_{1} C_{n}^{l_{n}, \cdots, l_{2}, m_{1}},
$$

where the orders $<_{1}$ are induced by the lexicographic order on C_{n}. But all these n-configurations $C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}$ (for $k_{1} \in \llbracket 1 ; m_{1} \rrbracket$) are singletons, which means that they are just coordinates in C_{n}, and the order $<_{1}$ indicates the formal composition \circ_{1} of these $C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}$ along the direction $j=1$, thus the n-configuration

$$
C_{n}^{l_{n}, \cdots, l_{2}}=\llbracket 1 ; m_{1} \rrbracket \times\left\{l_{2}\right\} \times \cdots \times\left\{l_{n}\right\}=\bigcup_{k_{1} \in \llbracket 1 ; m_{1} \rrbracket} C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}
$$

is preferably denoted by

$$
C_{n}^{l_{n}, \cdots, l_{2}}=C_{n}^{l_{n}, \cdots, l_{2}, 1} \circ_{1} \cdots \circ_{1} C_{n}^{l_{n}, \cdots, l_{2}, k_{1}} \circ_{1} \cdots \circ_{1} C_{n}^{l_{n}, \cdots, l_{2}, m_{1}}
$$

in order to keep the information of this formal \circ_{1}-composition; there are $m_{2} \cdots m_{n}$ such formal \circ_{1}-compositions of C_{n}; this also underlies the following sketch.

This sketch is called a \circ_{1}-sketch of C_{n}, and it shows how to glue the $C_{n}^{l_{n}, \cdots, l_{2}, k_{1}}\left(k_{1} \in \llbracket 1 ; m_{1} \rrbracket\right)$ together, and its gluing is $C_{n}^{l_{n}, \cdots, l_{2}}$; there are $m_{2} \cdots m_{r}$ such \circ_{1}-sketches of C_{n}.

What we have done so far was to show how to reconstruct the n configuration C_{n} from its parts with respect to the directions $j \in \llbracket 1 ; n \rrbracket$. Let us explain the importance of this construction for a cubical strict ∞-category C. We can coherently weight the n-configuration C_{n} with n-cells of C, i.e in each coordinates of C_{n} we substitue an n-cell of C such that if two such n-cells $x, y \in C(n)$ have j-adjacents coordinates then $s_{n-1, j}^{n}(x)=t_{n-1, j}^{n}(y)$ or $t_{n-1, j}^{n}(x)=s_{n-1, j}^{n}(y)$. Such weighted C_{n} is called a composable array of n-cubes in [1] (page 350), and our n-configuration C_{n} can be seen as a formalization of the multi-dimensional arrays in [1]. From this weighted C_{n} and with respect to the structure of C, we get a unique n-cell $z \in C(n)$ which is the result obtained by applying the operations $\circ_{j}(j \in \llbracket 1 ; n \rrbracket)$ in this weighted n-configuration. However in [1] the authors did not describe a complete procedure to get such $z \in C(n)^{6}$, but the sketches described just above for C_{n} provide such procedure, but for that we need to care about the order to apply these sketches: we need to apply the o \circ_{1}-sketches of C_{n}, then the \circ_{2}-sketches of C_{n}, and so on, until the unique \circ_{n}-sketch of C_{n}. These kinds of sketches which have a hierarchical organization of their (co)cones have been studied before in [7] under the name Trames. Thus a trame is a sketch equipped with an ordered stratification of its set of (co)cones. In fact this way to ordered the computation of $z \in C(n)$ is already indicated by the formalism of the sketches of C_{n} because, following the terminology of Trames in [7]:

- The $m_{2} \cdots m_{n} \circ_{1}$-sketches of C_{n} are the first floor sketches of C_{n};
- The $m_{j+1} \cdots m_{n} \circ_{j}$-sketches of C_{n} are the j-floor sketches of C_{n};
- The unique \circ_{n}-sketch of C_{n} is the n-floor sketch of C_{n}.

Thus any realization of the sketch $\mathcal{E}_{C_{n}}$ of C_{n} must be thought in an inductive way, starting from the \circ_{1}-sketches of C_{n} until the \circ_{n}-sketch of C_{n}.

Remark 6.4. In [1] page 350, the authors defined composable array of n cubes in cubical strict ∞-groupoids, but of course this can be done also in any cubical strict ∞-category.

[^5]Remark 6.5. The decomposition of C_{n} above by its \circ_{n}-sketch, \circ_{n-1}-sketches, \cdots, \circ_{1}-sketches, was deliberate for simplicity. Let us call this simplification the $\left(\circ_{n}, \circ_{n-1}, \cdots, \circ_{1}\right)$-decomposition of C_{n}. We can do similar $\left(\circ j_{n}, \circ{ }_{j_{n-1}}, \cdots, \circ{ }_{j_{1}}\right)$-decompostion of C_{n}, where $j_{i} \in \llbracket 1 ; n \rrbracket$ and $j_{i} \neq j_{k}$ if $i \neq k$; in this case C_{n} has one $\circ_{j_{n}}$-sketch (the n-floor sketch), has $m_{j_{i+1}} m_{j_{i+2}} \cdots m_{j_{n}} \circ_{j_{i}}$-sketches (the (i)-floor skteches), and has $m_{j_{2}} \cdots m_{j_{n}}$ $\circ_{j_{1}}$-sketches (the first floor sketches). All these decompositions give the same information about how to glue C_{n}.

Now we are going to define by induction the cubical strict ∞-category $\bullet-\mathbb{R e c t D i v}$ (with connections) of rectangular divisors whose underlying cubical set is written as follow.

Thus we suppose that its underlying $(n-1)$-cubical set have already been defined; we start to build the set n - $\mathbb{R e c t D i v}$ plus the diagrams (for $j \in \llbracket 1 ; n \rrbracket)$:

$$
(n-1)-\mathbb{R e c t D i v} \underset{\tau_{n-1, j}^{n}}{\longleftarrow} n \text {-RectDiv }
$$

where n - $\mathbb{R e c t D i v}$ is a set of congruences of terms; the congruences of terms in n - $\mathbb{R e c t D i v}$ are specific n-cubes X named rectangular n-divisors, which faces are denoted by $\sigma_{n-1, j}^{n}(X)$ and $\tau_{n-1, j}^{n}(X)$; the induction goes as follow.

- If $X \in \mathbb{B D i v}$ is a basic n-divisor (see 5), then $X \in n$ - $\mathbb{R e c t D i v}$ such that $\sigma_{n-1, j}^{n}(X):=s_{n-1, j}^{n}(X)$ and $\tau_{n-1, j}^{n}(X):=t_{n-1, j}^{n}(X)$ (see 5 for the definition of $s_{n-1, j}^{n}$ and $\left.t_{n-1, j}^{n}\right)$;
- If $X, X^{\prime} \in n$-RectDiv are such that $\tau_{n-1, j}^{n}(X)=\sigma_{n-1, j}^{n}\left(X^{\prime}\right)$, then $X \circ_{j}^{n} X^{\prime} \in n$ - $\mathbb{R e c t D i v}$ such that

$$
\begin{aligned}
& -\sigma_{n-1, j}^{n}\left(X \circ_{j}^{n} X^{\prime}\right)=\sigma_{n-1, j}^{n}(X) \text { and } \tau_{n-1, j}^{n}\left(X \circ_{j} X^{\prime}\right)=\tau_{n-1, j}^{n}(X) \\
& \quad \text { for } 1 \leq j \leq n ; \\
& -\sigma_{n-1, i}^{n}\left(X \circ_{j}^{n} X^{\prime}\right)=\left\{\begin{array}{c}
\sigma_{n-1, i}^{n}(X) \circ_{j-1}^{n-1} \sigma_{n-1, i}^{n}\left(X^{\prime}\right) \text { if } 1 \leq i<j \leq n \\
\sigma_{n-1, i}^{n}(X) \circ_{j}^{n-1} \sigma_{n-1, i}^{n}\left(X^{\prime}\right) \text { if } 1 \leq j<i \leq n ;
\end{array}\right. \\
& -\tau_{n-1, i}^{n}\left(X \circ \circ_{j}^{n} X^{\prime}\right)=\left\{\begin{array}{c}
\tau_{n-1, i}^{n}(X) \circ_{j-1}^{n-1} \tau_{n-1, i}^{n}\left(X^{\prime}\right) \text { if } 1 \leq i<j \leq n \\
\tau_{n-1, i}^{n}(X) \circ_{j}^{n-1} \tau_{n-1, i}^{n}\left(X^{\prime}\right) \text { if } 1 \leq j<i \leq n .
\end{array}\right.
\end{aligned}
$$

We equip n - $\mathbb{R e c t D i v}$ with the congruences specific to the associativities and to the interchange laws.

Axioms 1 (Associativities). If $X, X^{\prime}, X^{\prime \prime} \in n$ - $\mathbb{R e c t D i v ~ s u c h ~ t h a t ~ t h e ~ t e r m ~}$ $\left(X \circ_{j}^{n} X^{\prime}\right) \circ_{j}^{n} X^{\prime \prime} \in n$ - $\mathbb{R e c t D i v}$ is well defined, then

$$
\left(X \circ_{j}^{n} X^{\prime}\right) \circ_{j}^{n} X^{\prime \prime} \equiv X \circ_{j}^{n}\left(X^{\prime} \circ_{j}^{n} X^{\prime \prime}\right) .
$$

Axioms 2 (Interchange Laws). If $X, X^{\prime}, X^{\prime \prime}, X^{(4)} \in n$ - $\mathbb{R e c t D i v}$ such that the term $\left(X \circ_{j}^{n} X^{\prime}\right) \circ_{i}^{n}\left(X^{"} \circ_{j}^{n} X^{(4)}\right) \in n$ - $\mathbb{R e c t D i v}$ is well defined, then

$$
\left(X \circ_{j}^{n} X^{\prime}\right) \circ_{i}^{n}\left(X^{\prime \prime} \circ_{j}^{n} X^{(4)}\right) \equiv\left(X \circ_{i}^{n} X^{\prime \prime}\right) \circ_{j}^{n}\left(X^{\prime} \circ_{j}^{n} X^{(4)}\right) .
$$

Remark 6.6. We could have postponed these congruences after the definition of the maps $\epsilon_{n, i}^{n-1}(X)(i \in \llbracket 1 ; n \rrbracket), \Gamma_{n, i}^{n-1,-}(X)$ and $\Gamma_{n, i}^{n-1,+}(X)(i \in$ $\llbracket 1 ; n-1 \rrbracket)$ for reflexivities defined just below; in this case we would have been obliged to chose a definition of the first transport law and the second transport law among their different presentations thanks to the interchange laws. See below.

The elements in $(n-1)$ - $\mathbb{R e c t D i v}$ which are congruences of terms, are defined by hypothesis: they are specific $(n-1)$-cubes X named rectangular ($n-1$)-divisors, which degeneracies (defined below) are denoted by $\epsilon_{n, i}^{n-1}(X)(i \in \llbracket 1 ; n \rrbracket), \Gamma_{n, i}^{n-1,-}(X)$ and $\Gamma_{n, i}^{n-1,+}(X)(i \in \llbracket 1 ; n-1 \rrbracket)$ which live in n-RectDiv.

$$
(n-1)-\mathbb{R e c t D i v} \xrightarrow{\stackrel{\Gamma_{n, i}^{n-1,-}}{\epsilon_{n, i}^{n-1}}} n \text {-RectDiv. }
$$

If $X \in(n-1)$-RectDiv, then $\epsilon_{n, i}^{n-1}(X)$ is defined inductively as follow.

- If $X \in(n-1)$ - $\mathbb{R e c t D i v}$ is a basic $(n-1)$-divisor, then we put $\epsilon_{n, i}^{n-1}(X):=$ $1_{n, i}^{n-1}(X)$ (if $X \in \mathbb{B D i v}$, see 5 for the definition of $1_{n, i}^{n-1}(X)$);
- If $X, X^{\prime} \in(n-1)$ - $\mathbb{R e c t D i v}$ such that $X \circ_{j}^{n-1} X^{\prime} \in(n-1)$-RectDiv is well defined, then

$$
\begin{aligned}
& -\epsilon_{n, i}^{n-1}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\epsilon_{n, i}^{n-1}(X) \circ_{j+1}^{n} \epsilon_{n, i}^{n-1}\left(X^{\prime}\right) \text { if } 1 \leq i \leq j \leq n-1 \\
& -\epsilon_{n, i}^{n-1}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\epsilon_{n, i}^{n-1}(X) \circ_{j}^{n} \epsilon_{n, i}^{n-1}\left(X^{\prime}\right) \text { if } 1 \leq j<i \leq n
\end{aligned}
$$

If $X \in(n-1)$ - $\mathbb{R e c t D i v}$, then $\Gamma_{n, i}^{n-1, \gamma}(X)(\gamma \in\{-,+\})$ is defined inductively as follow.

- If $X \in(n-1)$ - $\mathbb{R e c t D i v}$ is a basic $(n-1)$-divisor, then we put $\Gamma_{n, i}^{n-1, \gamma}(X)$ $:=1_{n, i}^{n-1, \gamma}(X)\left(\right.$ if $X \in \mathbb{B}$ Div, see 5 for the definition of $\left.1_{n, i}^{n-1, \gamma}(X)\right)$;
- If $X, X^{\prime} \in(n-1)$-RectDiv such that $X \circ_{j}^{n-1} X^{\prime} \in(n-1)$ - $\mathbb{R e c t D i v , ~ i s ~}$ well defined, then

$$
\begin{aligned}
- & \Gamma_{n, i}^{n-1, \gamma}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\Gamma_{n, i}^{n-1, \gamma}(X) \circ_{j+1}^{n} \Gamma_{n, i}^{n-1, \gamma}\left(X^{\prime}\right) \text { if } 1 \leq i<j \leq \\
& n-1 \\
& \Gamma_{n, i}^{n-1, \gamma}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\Gamma_{n, i}^{n-1, \gamma}(X) \circ{ }_{j}^{n} \Gamma_{n, i}^{n-1, \gamma}\left(X^{\prime}\right) \text { if } 1 \leq j<i \leq n-1
\end{aligned}
$$

- First transport laws: for $1 \leq j \leq n-1$

$$
\Gamma_{n, j}^{n-1,+}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\left[\begin{array}{cc}
\Gamma_{n, j}^{n-1,+}(X) & \epsilon_{n, j}^{n-1}(X) \\
\epsilon_{n, j+1}^{n-1}(X) & \Gamma_{n, j}^{n-1,+}\left(X^{\prime}\right)
\end{array}\right] \quad j+1 \downarrow \stackrel{j}{\longrightarrow}
$$

where this notation means:

$$
\begin{aligned}
\Gamma_{n, j}^{n-1,+}\left(X \circ_{j}^{n-1} X^{\prime}\right) & =\left(\Gamma_{n, j}^{n-1,+}(X) \circ_{j}^{n} \epsilon_{n, j}^{n-1}(X)\right) \circ_{j+1}^{n}\left(\epsilon_{n, j+1}^{n-1}(X) \circ_{j}^{n} \Gamma_{n, j}^{n-1,+}\left(X^{\prime}\right)\right) \\
& =\left(\Gamma_{n, j}^{n-1,+}(X) \circ_{j+1}^{n} \epsilon_{n, j+1}^{n-1}(X)\right) \circ_{j}^{n}\left(\epsilon_{n, j}^{n-1}(X) \circ_{j+1}^{n} \Gamma_{n, j}^{n-1,+}\left(X^{\prime}\right)\right)
\end{aligned}
$$

(interchange laws)

- Second transport laws: for $1 \leq j \leq n-1$

$$
\Gamma_{n, j}^{n-1,-}\left(X \circ_{j}^{n-1} X^{\prime}\right)=\left[\begin{array}{cc}
\Gamma_{n, j}^{n-1,-}(X) & \epsilon_{n, j+1}^{n-1}\left(X^{\prime}\right) \\
\epsilon_{n, j}^{n-1}\left(X^{\prime}\right) & \Gamma_{n, j}^{n-1,-}\left(X^{\prime}\right)
\end{array}\right] \quad j+1 \downarrow \stackrel{j}{\longrightarrow}
$$

where this notation means:

$$
\begin{aligned}
\Gamma_{n, j}^{n-1,-}\left(X \circ_{j}^{n-1} X^{\prime}\right) & =\left(\Gamma_{n, j}^{n-1,-}(X) \circ_{j}^{n} \epsilon_{n, j+1}^{n-1}\left(X^{\prime}\right)\right) \circ_{j+1}^{n}\left(\epsilon_{n, j}^{n-1}\left(X^{\prime}\right) \circ_{j}^{n} \Gamma_{n, j}^{n-1,-}\left(X^{\prime}\right)\right) \\
& =\left(\Gamma_{n, j}^{n-1,-}(X) \circ_{j+1}^{n} \epsilon_{n, j}^{n-1}\left(X^{\prime}\right)\right) \circ_{j}^{n}\left(\epsilon_{n, j+1}^{n-1}\left(X^{\prime}\right) \circ_{j+1}^{n} \Gamma_{n, j}^{n-1,-}\left(X^{\prime}\right)\right)
\end{aligned}
$$

(interchange laws)

We finish the definition of n - $\mathbb{R e c t D i v}$ by equipping it with the congruences specific to the unities.

Axioms 3 (Unities). If $X \in n$ - $\mathbb{R e c t D i v}$ then

$$
\begin{aligned}
& \quad X \circ_{j}^{n} \epsilon_{n, j}^{n-1}\left(\tau_{n-1, j}^{n}(X)\right) \equiv X, \text { and } \epsilon_{n, j}^{n-1}\left(\sigma_{n-1, j}^{n}(X)\right) \circ_{j}^{n} X \equiv X ; \\
& \Gamma_{n+1, j}^{n,+}(X) \circ_{j}^{n+1} \Gamma_{n+1, j}^{n,-}(X) \equiv \epsilon_{n+1, j+1}^{n}(X), \text { and } \Gamma_{n+1, j}^{n,+}(X) \circ_{j+1}^{n+1} \Gamma_{n+1, j}^{n,-}(X) \equiv \\
& \epsilon_{n+1, j}^{n}(X) .
\end{aligned}
$$

It is easy to see that the maps $\epsilon_{n, i}^{n-1}, \Gamma_{n, i}^{n-1,-}, \Gamma_{n, i}^{n-1,+}$:

$$
(n-1) \text {-RectDiv } \xrightarrow[\substack{\Gamma_{n, i}^{n-1,+}}]{\stackrel{\Gamma_{n, i}^{n-1,-}}{\epsilon_{n, i}^{n-1}}} n \text {-RectDiv, }
$$

are well defined because they respect congruences, i.e if $x \equiv y$ in $(n-$ 1)-RectDiv then $\epsilon_{n, i}^{n-1}(x) \equiv \epsilon_{n, i}^{n-1}(y)$ and $\Gamma_{n, i}^{n-1, \gamma}(x) \equiv \Gamma_{n, i}^{n-1, \gamma}(y)$ in n - $\mathbb{R e c t D i v}$. Let us denote by $\bullet-\mathbb{R}$ ectDiv this cubical strict ∞-category with connections, we have

Theorem 6.7. •- \mathbb{R} ectDiv is the free cubical strict ∞-category with connections on the terminal object $1 \in \mathbb{C}$ Sets.

The cells in the cubical strict ∞-category $\bullet-\mathbb{R e c t D i v}$ are our models of cubical pasting diagrams. Also for each $n \in \mathbb{N}$, elements of the set n - $\mathbb{R e c t D i v}$ are n-cubical sets, thus we put

Definition 6.8. The full subcategory $\Theta_{0} \subset \mathbb{C}$ Sets which objects are cells of the cubical strict ∞-category $\bullet-\mathbb{R e c t D i v}$ defined above is called the cubical Θ_{0}.

Remark 6.9. The axioms of unities describe above 3 by congruences of terms are expressible with commutative diagrams for a projective sketch, as the one described in [3] for the axioms of interchange laws. In [3] these axioms were expressed in the level of models, this is the reason why we used a projective sketch for such diagrammatical formulation. We can also use inductive sketches to express these axioms, for example the congruences $\epsilon_{n, j}^{n-1}\left(\sigma_{n-1, j}^{n}(X)\right) \circ_{j}^{n} X \equiv X$ are encoded by the following cocones.

Objects of Θ_{0} are built with inductive sketches (see 7) because Θ_{0} has to be seen as the main category of arities (in the sense of logic) for the theory of cubical ∞-category theory. The slogan of sketch theory could be: the syntax (logic) is diagrammatically governed by inductive sketches, and the semantic (structures, models) is diagrammatically governed by the projective sketches.

The inductive definition of cubical pasting diagrams shows the crucial role of coordinates which is to be guides to build terms with cubical shapes: if X and X^{\prime} are basic n-divisors such that $t_{n-1, j}^{n}(X)=s_{n-1, j}^{n}\left(X^{\prime}\right)$ then the term $X \circ_{j}^{n} X^{\prime}$ means that X and X^{\prime} are located in the network \mathbb{Z}^{n} with coordinates which are j-adjacent. The induction above plus the congruences show that rectangular n-divisors are first of all just rectangular filling of the network \mathbb{Z}^{n} by basic n-divisors. Thus each $X \in n$ - $\mathbb{R e c t D i v}$ is characterized by an n-configuration C_{n} in which in each coordinates $d x_{k_{i}}^{i} \in C_{n}$ is located a basic n-divisor $A d x_{k_{i}}^{i}$, such that if two basic n-divisors are located in two coordinates which are j-adjacent $(j \in \llbracket 1, n \rrbracket)$, then these basic n-divisors must be j-adjacent (see 5.3), and furthermore we demand that in these datas
some sub terms of X must be congruents (3). Let us write $X \in n$ - $\mathbb{R e c t D i v}$ as follow

$$
X=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+\cdots+A_{r} d x_{k_{i}^{r}}^{i}
$$

where this writing means that the $A_{l} d x_{k_{i}^{l}}^{i}\left(\right.$ for $\left.l \in \llbracket 1 ; \# C_{n} \rrbracket\right)$ are located in $d x_{k_{i}^{l}}^{i} \in C_{n}$, and where here the n-configuration C_{n} of X is written

$$
C_{n}=d x_{k_{i}^{1}}^{i}+\cdots+d x_{k_{i}^{l}}^{i}+\cdots+d x_{k_{i}^{r}}^{i}
$$

where here $r=\# C_{n}=m_{1} \cdots m_{n}$ if $C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times$ $\llbracket 1 ; m_{n} \rrbracket$. When we write

$$
X=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+\cdots+A_{r} d x_{k_{i}^{r}}^{i}
$$

then the elements of the set $\left\{A_{1} d x_{k_{i}^{1}}^{i}, \cdots, A_{l} d x_{k_{i}^{l}}^{i}, \cdots, A_{r} d x_{k_{i}^{r}}^{i}\right\}$ are the basic n-divisors of X, and X can be seen as its n-configuration C_{n} weighted by this set of basic n-divisors, where this set is also equipped with congruences coming from the axioms of unities. Thus X is given by the couple of sets $\left(\left\{A_{1} d x_{k_{i}^{1}}^{i}, \cdots, A_{r} d x_{k_{i}^{r}}^{i}\right\}, C_{n}\right)$ where $\left\{A_{1} d x_{k_{i}^{1}}^{i}, \cdots, A_{r} d x_{k_{i}^{r}}^{i}\right\}$ and C_{n} are in bijection, and this bijection comes from a morphism of n-cubical set (see also 6.10). When we say that $X^{\prime} \subset X$ is a sub rectangular n-divisor of X, it means that we considered X^{\prime} equipped with a sub n-configuration $C_{n}^{\prime} \subset C_{n}$ weighted by basic n-divisors $A^{\prime} d x_{k_{i}}^{i}$ such that $d x_{k_{i}}^{i} \in C_{n}^{\prime}$. The sketch $\mathcal{E}_{C_{n}}$ of C_{n} described above shows remarkable subsets of C_{n} : for example we defined the n-configuration $C_{n}^{l_{n}, \cdots, l_{j+1}} \subset C_{n}$, as a formal gluing along the direction $j \in \llbracket 1 ; n \rrbracket$ of the n-configurations $C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}} \subset C_{n}$, where $k_{j} \in \llbracket 1 ; m_{j} \rrbracket$ and where $\left(l_{j+1}, \cdots, l_{n}\right) \in \llbracket 1 ; m_{j+1} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$ was fixed, and we formally described the following \circ_{j}-cocone of $\mathcal{E}_{C_{n}}$.

When we weight these n-configurations with the basic n-divisors of X we obtain sub rectangular n-divisors of X corresponding to these sub n configurations; thus $X^{l_{n}, \cdots, l_{j+1}} \subset X$ is the sub rectangular n-divisor of X corresponding to the n-configuration $C_{n}^{l_{n}, \cdots, l_{j+1}}$; and $X^{l_{n}, \cdots, l_{j+1}, k_{j}}$ are the sub rectangular n-divisors of X corresponding to the n-configurations $C_{n}^{l_{n}, \cdots, l_{j+1}, k_{j}}\left(k_{j} \in \llbracket 1 ; m_{j} \rrbracket\right)$; and the \circ_{j}-cocone above of $\mathcal{E}_{C_{n}}$ gives the following \circ_{j}-cocone of \mathcal{E}_{X} (more precision are provided in 7):

when $\mathcal{E}_{C_{n}}$ is weighted by the set of basic n-divisors of X; here $\tau_{n-1, j}^{n}=$ $\sigma_{n-1, j}^{n}$ at the bottom left means $\tau_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, 1}\right)=\sigma_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, 2}\right)$, and $\tau_{n-1, j}^{n}=\sigma_{n-1, j}^{n}$ at the bottom right means $\tau_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, m_{j}-1}\right)=$ $\sigma_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, m_{j}}\right)$.
Remark 6.10. If $X \in n$ - $\mathbb{R e c t D i v , ~ t h e n ~ a n o t h e r ~ p o s s i b i l i t y ~ f o r ~ i t s ~ n o t a t i o n ~}$ is to describe it as a morphism of n-cubical set:

$$
C_{n} \xrightarrow{X} R(1)
$$

where $R(1)$ is the free reflexive cubical set on a terminal object $1 \in \mathbb{C}$ Sets, and where R is the underlying endofunctor of the monad $\mathbb{R}=(R, i, m)$ of cubical reflexive sets with connections described in 5 . We recall that the cubical structure on C_{n} is given by the contractions of coordinates. With this description, the underlying map of sets for n-cubes ${ }^{7}$ is

$$
C_{n} \xrightarrow{X(n)} R(1)(n)
$$

and we see that it induces a bijection of C_{n} on the image of $X(n)$. This description of X as morphism of n-cubical sets is interesting but for applications (see [5]) we need more concrete notation as the one given above.

[^6]
$7 \quad$ Cubical inductive sketches

Let $X=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+\cdots+A_{r} d x_{k_{i}^{r}}^{i}$ be an n-divisor where $C_{n}=$ $d x_{k_{i}^{1}}^{i}+\cdots+d x_{k_{i}^{l}}^{i}+\cdots+d x_{k_{i}^{r}}^{i}$ is its n-configuration given by

$$
C_{n}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{j} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket .
$$

The sketch ${ }^{8} \mathcal{E}_{X}$ associated to X is provided by several underlying sketches $\mathcal{E}_{C_{n}}$ associated to its n-configuration C_{n} (see 6) called the $\left(\circ_{j_{n}}, \circ j_{j_{n-1}}\right.$, $\cdots, \circ{ }_{j_{1}}$)-decompositions of C_{n} (see 6.5) where $j_{i} \in \llbracket 1 ; n \rrbracket$ and $j_{i} \neq j_{k}$ if $i \neq k$. Thanks to the congruences in 1 and 2 , all these sketches provide equivalent formulation of \mathcal{E}_{X}, and in order to simplify the theory we shall use the $\left(\circ_{n}, \circ_{n-1}, \cdots, \circ_{1}\right)$-decomposition of C_{n} which has been accurately described in the beginning of Section 6 . The sketch \mathcal{E}_{X} is thus given by the $\left(\circ_{n}, \circ_{n-1}, \cdots, \circ_{1}\right)$-decomposition of C_{n} weighted by the basic n-divisors of X. Thus \mathcal{E}_{X} consists of

- The $m_{2} \cdots m_{n} \circ_{1}$-cocones $\mathcal{E}_{X}^{l_{n}, \cdots, l_{2}}$ (first floor cocones), where $\left(l_{2}, \cdots, l_{n}\right) \in$ $\llbracket 1 ; m_{2} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$:

here $\tau_{n-1,1}^{n}=\sigma_{n-1,1}^{n}$ at the bottom left means

$$
\tau_{n-1,1}^{n}\left(X^{l_{n}, \cdots, l_{2}, 1}\right)=\sigma_{n-1,1}^{n}\left(X^{l_{n}, \cdots, l_{2}, 2}\right)
$$

and $\tau_{n-1,1}^{n}=\sigma_{n-1,1}^{n}$ at the bottom right means

$$
\tau_{n-1,1}^{n}\left(X^{l_{n}, \cdots, l_{2}, m_{1}-1}\right)=\sigma_{n-1,1}^{n}\left(X^{l_{n}, \cdots, l_{2}, m_{1}}\right)
$$

[^7]- The $m_{j+1} \cdots m_{n} \circ_{j}$-cocones $\mathcal{E}_{X}^{l_{n}, \cdots, l_{j+1}}$ (j-floor cocones), where $\left(l_{j+1}\right.$, $\left.\cdots, l_{n}\right) \in \llbracket 1 ; m_{j+1} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$:

here $\tau_{n-1, j}^{n}=\sigma_{n-1, j}^{n}$ at the bottom left means

$$
\tau_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, 1}\right)=\sigma_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, 2}\right)
$$

and $\tau_{n-1, j}^{n}=\sigma_{n-1, j}^{n}$ at the bottom right means

$$
\tau_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, m_{j}-1}\right)=\sigma_{n-1, j}^{n}\left(X^{l_{n}, \cdots, l_{j+1}, m_{j}}\right)
$$

- The unique \circ_{n}-cocone of X (n-floor cocone):

here $\tau_{n-1, n}^{n}=\sigma_{n-1, n}^{n}$ at the bottom left means

$$
\tau_{n-1, n}^{n}\left(X^{1}\right)=\sigma_{n-1, n}^{n}\left(X^{2}\right)
$$

and $\tau_{n-1, n}^{n}=\sigma_{n-1, n}^{n}$ at the bottom right means

$$
\tau_{n-1, n}^{n}\left(X^{m_{n}-1}\right)=\sigma_{n-1, n}^{n}\left(X^{m_{n}}\right)
$$

As we saw in 6 , the $m_{2} \cdots m_{n} \circ_{1}$-cocones $\mathcal{E}_{X}^{l_{n}, \cdots, l_{2}}$ (first floor cocones of X), where $\left(l_{2}, \cdots, l_{n}\right) \in \llbracket 1 ; m_{2} \rrbracket \times \cdots \times \llbracket 1 ; m_{n} \rrbracket$:

are such that the $m_{1} \cdots m_{n} n$-configurations $X^{l_{n}, \cdots, l_{2}, k_{1}}\left(k_{1} \in \llbracket 1 ; m_{1} \rrbracket\right)$ are singletons, and then, they are just the $m_{1} \cdots m_{n}$ basic n-divisors of X, where their sources are by definition $\sigma_{n-1,1}^{n}:=s_{n-1,1}^{n}$ and their targets are by definition $\tau_{n-1,1}^{n}:=t_{n-1,1}^{n}$ (see 5). And thus we can improve the description of the first floor of \mathcal{E}_{X} by writing its o o -cocones $\mathcal{E}_{X}^{l_{n}, \cdots, l_{2}}$ with their specific sources and targets:

By definition each rectangular n-divisor X is an n-cell of $\bullet-\mathbb{R e c t D i v , ~}$ it is therefore an n-cube; let us denote by $f_{p}(X)$ the finite set of p-faces $(0 \leq p \leq n-1)$ of this n-cube X, thus $f_{p}(X) \subset p$-RectDiv is a finite subset of rectangular p-divisors, and X seen as an n-cube may be depicted
diagrammatically as follow.

$$
\begin{aligned}
& \xrightarrow[\tau_{n-1, n}^{n}]{ }
\end{aligned}
$$

This n-cube structure on X transfers to an n-cube structure on its sketch \mathcal{E}_{X}; indeed if $x \in f_{p}(X)$ is a p-face of X thus it is a rectangular p-divisor which sketch is \mathcal{E}_{x}; therefore if we define the sets: $f_{p}\left(\mathcal{E}_{X}\right):=\left\{\mathcal{E}_{x} / x \in f_{p}(X)\right\}$ ($p \in \llbracket 0 ; n-1 \rrbracket$), it highlights the following n-cube in Sets:

$$
\tau_{n-1, n}^{n}
$$

where $\sigma_{p-1, k}^{p}\left(\mathcal{E}_{x}\right):=\mathcal{E}_{\sigma_{p-1, k}^{p}(x)}$ and $\tau_{p-1, k}^{p}\left(\mathcal{E}_{x}\right):=\mathcal{E}_{\tau_{p-1, k}^{p}(x)}$ if $\mathcal{E}_{x} \in f_{p}\left(\mathcal{E}_{X}\right)$; therefore the sources and targets of this n-cubical set \mathcal{E}_{X} send sketches to sketches.

Consider now the sketches $\mathcal{E}_{f_{p}(X)}:=\bigcup f_{p}\left(\mathcal{E}_{X}\right)=\bigcup_{x \in f_{p}(X)} \mathcal{E}_{x}$ for all $p \in$ $\llbracket 0 ; n-1 \rrbracket$, i.e we consider the sketch $\mathcal{E}_{f_{p}(X)}$ obtained as the union of all cocones inside all sketches \mathcal{E}_{x} where $x \in f_{p}(X)$ are the p-faces of X; in this case it highlights the following $(n-1)$-cubical object in the category $\mathbb{S k e t c h}$
of sketches.

$$
\begin{aligned}
& \xrightarrow{\sigma_{n \rightarrow 2, n-1}^{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[\tau_{n-2, n-1}^{n-1}]{ }
\end{aligned}
$$

As a matter of fact the cocones in $\mathcal{E}_{x} \subset \mathcal{E}_{f_{p}(X)}$ can be seen as ways of gluing of rectangular p-divisors along some rectangular $(p-1)$-divisors, and thus the integer $(p-1)$ is the dimension the sketch $\mathcal{E}_{f_{p}(X)}$ must have if we want to identify a cubical object in Sketch inherited from the rectangular n-divisor X.

In order to justify the existence of this cubical object in Sketch we need to describe the sources $\sigma_{p-2, k}^{p-1}$ and the targets $\tau_{p-2, k}^{p-1}$, which now must be morphisms of sketches, i.e are maps which send cocone to cocone. A $(p-1)$ cell in $\mathcal{E}_{f_{p}(X)}$ is a cocone in some \mathcal{E}_{x} where $x \in f_{p}(X)$, and cocones in \mathcal{E}_{x} are the one which belong to the first floor cocones until the p-floor cocones of \mathcal{E}_{x}; in fact we will show that $\sigma_{p-2, k}^{p-1}$ and $\tau_{p-2, k}^{p-1}$ send cocones of the first floor of \mathcal{E}_{x} to respectively cocones of the first floor of $\mathcal{E}_{\sigma_{p-1, k^{\prime}}^{p}(x)} \subset \mathcal{E}_{f_{p-1}(X)}$ and to cocones of the first floor of $\mathcal{E}_{\tau_{p-1, k^{\prime}}^{p}(x)} \subset \mathcal{E}_{f_{p-1}(X)}$, where k and k^{\prime} can be different or sometimes can be equal (see below). For cocones of the other floors the actions of $\sigma_{p-2, k}^{p-1}$ and $\tau_{p-2, k}^{p-1}$ are described similarly.

If $x=A_{1} d x_{k_{i}^{1}}^{i}+\cdots+A_{l} d x_{k_{i}^{l}}^{i}+\cdots+A_{r} d x_{k_{i}^{r}}^{i}$ is a rectangular p-divisor $\left(x \in f_{p}(X)\right)$ equipped with the p-configuration $C_{p}=\llbracket 1 ; m_{1} \rrbracket \times \cdots \times \llbracket 1 ; m_{p} \rrbracket$, as we see above $\mathcal{E}_{x}{ }^{9}$ has $m_{2} \cdots m_{p}{ }^{\circ}$-cocones $\mathcal{E}_{x}^{l_{p}, \cdots, l_{2}}$ (first floor cocones of

[^8]$x)$, where $\left(l_{2}, \cdots, l_{p}\right) \in \llbracket 1 ; m_{2} \rrbracket \times \cdots \times \llbracket 1 ; m_{p} \rrbracket$:

The bases of these cocones are such that $\sigma_{p-1,1}^{p}=s_{p-1,1}^{p}$ and $\tau_{p-1,1}^{p}=$ $t_{p-1,1}^{p}$ because for all $k_{1} \in \llbracket 1 ; m_{1} \rrbracket$, the rectangular p-divisors $x^{l_{p}, \cdots, l_{2}, k_{1}}$ are just basic p-divisors; a fragment d :

of these cocones is called a 1 -gluing data of x; more generally a j-gluing data d of x is a cocone of the following shape

where $A_{l} d x_{k_{i}^{l}}^{i}, A_{l^{\prime}} d x_{k_{i}^{l^{\prime}}}^{i}$ belong to the set of basic p-divisors of x; we are going to describe the action of $\sigma_{p-2, k}^{p-1}$ and $\tau_{p-2, k}^{p-1}$ on these j-gluing datas of x, because this action is similar and extend easily on its \circ_{1}-cocones $\mathcal{E}_{x}^{l_{p}, \cdots, l_{2}}$, and we also deliberately treat the general case of $j \in \llbracket 1 ; p \rrbracket$ (and not only
the case $j=1$ of the first floor above) because this general case cover all cocones in \mathcal{E}_{x} (for all floors). When in \mathcal{E}_{x} gluing of rectangular p-divisors are involved, we just replace s with σ and t with τ in the computations; here $\sigma_{p-2, k}^{p-1}=s_{p-2, k}^{p-1}$ and $\tau_{p-2, k}^{p-1}=t_{p-2, k}^{p-1}$ because only basic divisors are involved.

We describe these morphisms of sketches by defining cocones $s_{p-2, k}^{p-1}(d)$ and $t_{p-2, k}^{p-1}(d)$ as precomposition of the j-gluing data d just above

where we write $A^{\prime}=t_{p-1, j}^{p}\left(A_{l} d x_{k_{i}^{\prime}}^{i}\right)=s_{p-1, j}^{p}\left(A_{l^{\prime}} d x_{k_{i}^{\prime}}^{i}\right)$; consider now $A_{s} "=$ $s_{p-2, k}^{p-1}\left(A^{\prime}\right), A_{t} "=t_{p-2, k}^{p-1}\left(A^{\prime}\right)$, and the maps

$$
A_{s} " d x_{k^{\prime \prime \prime} i_{i}}^{i} \backslash(j, k) \xrightarrow{s_{p-2, k}^{p-1}} A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j, \quad A_{t} " d x_{k^{\prime \prime, l}}^{i} \backslash(j, k) \xrightarrow{t_{p-2, k}^{p-1}} A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j
$$

The maps $s_{p-2, k}^{p-1}, t_{p-2, k}^{p-1}$ send each cocone d of \mathcal{E}_{x} to cocones $s_{p-2, k}^{p-1}(d)$, $t_{p-2, k}^{p-1}(d)$ respectively in the sketches $\mathcal{E}_{s_{p-1, k^{\prime}}^{p}(x)} \subset \mathcal{E}_{f_{p-1}(X)}, \mathcal{E}_{t_{p-1, k^{\prime}}^{p}(x)} \subset$ $\mathcal{E}_{f_{p-1}(X)}$, by the precompositions

For this description of the maps $s_{p-2, k}^{p-1}, t_{p-2, k}^{p-1}$, we just use cubical identities as describe in [3].

- When $j=k$ we obtain $s_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A " d x_{k_{i}^{\prime \prime}}^{i} \backslash(j, k)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$.
Remark 7.1. Of course we have also

$$
t_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right),
$$

but in: $t_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{\prime}}^{i} \backslash j\right)=t_{p-2, j}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{i}}^{i} \backslash(j, j)$, and in: $s_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{i}}^{i} \backslash\right.$ $j)=s_{p-2, j}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{\prime}}^{i} \backslash(j, j)$, the basic divisors $A^{\prime \prime}, t_{p-2, j}^{p-1}\left(A^{\prime}\right)$ and $s_{p-2, j}^{p-1}\left(A^{\prime}\right)$ are not necessarily equals.

And thus the morphism of sketches $s_{p-2, k}^{p-1}$ sends d to the following cocone $s_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{s_{p-1, j+1}^{p}(x)}$:

And we obtain $t_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A^{"} d x_{k_{i}^{\prime \prime}}^{i} \backslash(j, k)=t_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$, and thus the morphism of sketches $t_{p-2, k}^{p-1}$ sends d to the following cocone $t_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{t_{p-1, j+1}^{p}(x)}$:

- When $k<j$ then we obtain $s_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A " d x_{k_{i}^{\prime \prime}}^{i} \backslash(j, k)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$.

Remark 7.2. Of course we have also

$$
t_{p-2, j-1}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, j-1}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)
$$

but in $t_{p-2, j-1}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=t_{p-2, j-1}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{l}}^{i} \backslash(j, j-1)$ and in $s_{p-2, j-1}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, j-1}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{l}}^{i} \backslash(j, j-1)$ the basic divisors $A^{\prime \prime}, t_{p-2, j-1}^{p-1}\left(A^{\prime}\right)$ and $s_{p-2, j-1}^{p-1}\left(A^{\prime}\right)$ are not necessarily equals.

And thus the morphism of sketches $s_{p-2, k}^{p-1}$ sends d to the following cocone $s_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{s_{p-1, k}^{p}(x)}$:

And we obtain $t_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A " d x_{k_{i}^{\prime \prime}}^{i} \backslash(j, k)=t_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$, and thus the morphism of sketches $t_{p-2, k}^{p-1}$ sends d to the following cocone $t_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{t_{p-1, k}^{p}(x)}$:

- When $k>j$ then we obtain $s_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A^{\prime \prime} d x_{k_{i}^{\prime,}}^{i} \backslash(j, k)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$.
Remark 7.3. Of course we have also

$$
t_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=s_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right),
$$

but in $t_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=t_{p-2, j}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{l}}^{i} \backslash(j, j)$ and $s_{p-2, j}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)=$ $s_{p-2, j}^{p-1}\left(A^{\prime}\right) d x_{k_{i}^{l}}^{i} \backslash(j, j)$ the basic divisors $A^{\prime \prime}, t_{p-2, j}^{p-1}\left(A^{\prime}\right)$ and $s_{p-2, j}^{p-1}\left(A^{\prime}\right)$ are not necessarily equals.

And thus the morphism of sketches $s_{p-2, k}^{p-1}$ sends d to the following cocone $s_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{s_{p-1, k+1}^{p}(x)}$:

And we obtain $t_{p-2, k}^{p-1}(d)$ by using the diagram

where we denote $A^{"} d x_{k_{i}^{\prime \prime}}^{i} \backslash(j, k)=t_{p-2, k}^{p-1}\left(A^{\prime} d x_{k_{i}^{l}}^{i} \backslash j\right)$, and thus the morphism of sketches $t_{p-2, k}^{p-1^{2}}$ sends d to the following cocone $t_{p-2, k}^{p-1}(d)$ of the sketch $\mathcal{E}_{t_{p-1, k+1}^{p}(x)}$:

which finalize our description of the $(n-1)$-cubical object in the category Sketch of sketches associated to the rectangular n-divisor X.

Remark 7.4. It is interesting to see that the 1 -faces $x \in f^{1}(X)$ of X are all of the form

$$
x=A_{0} d x_{0}^{1}+\cdots+A_{l} d x_{l}^{1} \cdots+A_{r} d x_{r}^{1}
$$

where any basic divisor $A_{l} d x_{l}^{1}$ of x can be $1(1) d x_{l}^{1}$ or $1_{1}^{0}(1(0)) d x_{l}^{1}$, and the sketch $\mathcal{E}_{f_{1}(X)}$ is a set of cocones of the form

where A denotes the unique 0 -cell $1(0)$ of the cubical site \mathbb{C}.

Acknowledgement

I thank mathematicians of the team AGA (Arithmétique et Géomètrie Algèbrique) who kindly organized me a talk on homotopy types, the 27th November 2019, and especially the good ambience provided in the LMO, Paris-Saclay, especially I want to mention Olivier Schiffmann, Benjamin Hennion, François Charles, Valentin Hernandez, and Patrick Massot. I also thank Ross Street, Michael Batanin, Mark Weber, Ronald Brown, Richard Steiner, with whom I interacted during the preparation of this article. I also thank a lot the precious work of the anonymous referee who helps us to improve this work. Especially we thank her/him to have warned us that the stratified inductive sketches \mathcal{E}_{X} describe in 7 are known under the name Trames and were invented by Christian Lair and widely studied by him
in [7] in order to understand better higher order logics through sketch theory. This article has been written in November 2019, and circulated through mathematicians who interacted with me listed just above.

I dedicate this work to my daughters, Leïli and Amina-Tassadit.

References

[1] Brown, R., Higgins, P.J., and Sivera, R., "Nonabelian Algebraic Topology", European Mathematical Society, Tracts in Mathematics Volume 15, 2011.
[2] Kachour, C., Combinatorial approach to the category Θ_{0} of cubical pasting diagrams. https://arxiv.org/pdf/2102.09787.pdf
[3] Kachour, C., Algebraic models of cubical weak ∞-categories with connections, Categ. General Alg. Structures Appl. 16(1) (2022), 143-187.
[4] Kachour, C., Algebraic models of cubical weak higher structures, Categ. General Alg. Structures Appl. 16(1) (2022), 189-220.
[5] Kachour, C., The coherator Θ_{W}^{∞} of cubical weak ∞-categories with connections, To appears in Categ. General Alg. Structures Appl. (2023).
[6] Camell Kachour, Introduction to Higher Cubical Operads. Prépublication de l'IHES, republished in HAL: https://hal.science/hal-04306455
[7] Lair, C., Trames et sémantiques catégoriques des systèmes de trames, Journal Diagrammes, 18 (1987), 47 pages.

Camell Kachour Laboratoire de Mathématiques d’Orsay, UMR 8628, Université de ParisSaclay and CNRS, Bâtiment 307, Faculté des Sciences d'Orsay, 94015 ORSAY Cedex, France. Email: camell.kachour@universite-paris-saclay.fr

[^0]: ${ }^{1}$ We shall consider also some basic 0 -cubes as 0 -dimensional cubical pasting diagram, but not amalgamation of it, just because it doesn't make sense to glue such 0 -cubes.

[^1]: ${ }^{2}$ In fact the free cubical strict ∞-category $S(1)$ on a terminal object of \mathbb{C} Sets, where S is the underlying endofunctor of the monad $\mathbb{S}=(S, \lambda, \mu)$ of cubical strict ∞-categories with connections described in $[3,5]$.

[^2]: ${ }^{3}$ And also a trivial structure of reflexive n-cubical set.

[^3]: ${ }^{4}$ Here free has not to be interpreted in the algebraic sense of "freeness", but instead it must be interpreted as a box not linked with a higher dimensional box.

[^4]: ${ }^{5}$ Of course, this is not a Yoneda embedding, stricto sensu, but because objects of $\Theta_{\mathbb{B} D i v}$ are terms build with representables, we have permitted ourself this abuse of language.

[^5]: ${ }^{6}$ They just write that this $z \in C(n)$ is obtained by applying the operations \circ_{i}, \circ_{j} in any well-formed fashion

[^6]: ${ }^{7}$ Here C_{n} is seen as a set.

[^7]: ${ }^{8}$ This kind of sketches are known under the name Trames in [7].

[^8]: ${ }^{9}$ We deliberately use similar notation for \mathcal{E}_{x} as for \mathcal{E}_{X}.

