[1] Ball, R.N. and Walters-Wayland, J., C- and C∗-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.) 412 (2002), 62 pp.
[2] Banaschewski, B., “The real numbers in pointfree topology”, Textos de Matem´atica S´erie B, No. 12, Departamento de Matem´atica da Universidade de Coimbra, 1997.
[3] Banaschewski, B. and Gilmour, C., Stone– ˇ Cech compactification and dimension theory for regular σ-frames, J. Lond. Math. Soc. 39(2) (1989), 1-8.
[4] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin 37 (1996), 579-589.
[5] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Structures 9 (2001), 395-417.
[6] Banaschewski, B. and Pultr, A., Paracompactness revisited, Appl. Categ. Structures 1 (1993), 181-190.
[7] Dube, T., Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categ. Structures 18 (2010), 55-72.
[8] Dube, T., A broader view of the almost Lindel¨of property, Algebra Universalis 65 (2011), 63–276.
[9] Dube, T., Concerning P-sublocales and disconnectivity, Appl. Categ. Structures 27 (2019), 365-383.
[10] Dube, T., On the maximal regular ideal of pointfree function rings, and more, Topology Appl. 273 (2020), 106960.
[11] Dube, T. and Stephen, D.N., On ideals of rings of continuous functions associated with sublocales, Topology Appl. 284 (2020), 107360.
[12] Dube, T. and Stephen, D.N., Mapping ideals to sublocales, Appl. Categ. Structures 29 (2021), 747-772.
[13] Gillman, L. and Jerison, M., “Rings of Continuous Functions”, Van Nostrand, Princeton, 1960.
[14] Johnson, D.G. and Mandelker, M., Functions with pseudocompact support, Gen. Topology Appl. 3 (1971), 331-338.
[15] Johnstone, P.T., “Stone Spaces”, Cambridge University Press, 1982.
[16] Madden, J. and Vermeer, J., Lindel¨of locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480.
[17] Picado, J. and Pultr, A., “Frames and Locales: topology without points”, Frontiers in Mathematics, Springer, 2012