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Idempotent 2 X 2 matrices over linearly
ordered abelian groups

Marilyn Kutti and Valdis Laan*

Abstract. In this paper we study the multiplicative semigroup of 2 x 2
matrices over a linearly ordered abelian group with an externally added bot-
tom element. The multiplication of such a semigroup is defined by replacing
addition and multiplication by join and addition in the usual formula defining
matrix multiplication. We show that there are four types of idempotents in
such a matrix semigroup and we determine which of them are O-primitive.
We also prove that the poset of idempotents of such a matrix semigroup with
respect to the natural order is a lattice. It turns out that such a matrix
semigroup is inverse or orthodox if and only if the abelian group is trivial.

1 Introduction

We start by recalling some terminology. A semiring is a set R with two
binary algebraic operations @ and ® such that (1) (R, ®) is a commutative
monoid with an identity element 0, (2) (R, ®) is a semigroup, (3) the dis-
tributivity laws hold, (4) 0©r =0=7r®0 for every r € R. If (R,®) is a
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monoid, then R is called a semiring with identity. A semifield is a semiring
(R,®,®), where (R\ {0}, ®) is a group. Matrix rings over semirings can be
defined in the same way as matrix rings over rings.

Let A = (A, +,<) be an ordered abelian group (see [3]). By adjoining
an external bottom element | and defining a4+ 1L = 1L +a =1+ 1 =
1 for all @ € A we obtain a commutative pomonoid AL. Moreover, if
A is a lattice-ordered abelian group, then (AL,V,—i-) is a semifield with
multiplicative identity 0 and additive identity L (cf. [7, Proposition 4.1]).
Hence the set M2(A™1) of 2 x 2 matrices over A~ is a semiring with respect
to componentwise joins of matrices and multiplication

(0 (0= (ergybro erpvlem

)

1
where I = <JO_ 0> is the multiplicative identity element (we call it the
. , ‘ L Ly, .
identity matriz) and © = ) the zero element (we call it the zero

matrizx).

One of the important special cases is the linearly ordered abelian group
(R, +, <). Usually the adjoined bottom element is denoted by —oo and the
semiring (R U {—oc},V,+) is called the tropical semiring. Matrices over it
are called tropical matrices. The study of such matrices is motivated by
numerous applications.

In [6], Johnson and Kambites initiated the systematic study of the mul-
tiplicative semigroup of tropical matrices of order 2. Using methods of
tropical geometry they described Green’s relations and proved that this
semigroup is regular. They also described all idempotents of this semigroup.

The aim of this paper is to continue that study, but in a more general
situation — we will (mostly) consider 2 x 2 matrices over a linearly ordered
abelian group with an adjoined bottom element. It is well known that there
is a natural partial order on the set of idempotents of any semigroup. We
will study that order on the set of idempotents of the semigroup (M (A1), )
where A is a linearly ordered abelian group. It will turn out that in this case
the poset of idempotents is a lattice (see Theorem 4.1) which, in general,
is not modular. We will also describe the O-primitive idempotents of the
semigroup (Mz(A1),-) in Proposition 3.5. In Section 5 we will examine
regularity and some related properties of this matrix semigroup.
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2 The description of idempotents

In [6, Theorem 4.1], Johnson and Kambites proved that the idempotent 2x 2
matrices over the tropical semiring are of exactly four types. We can give
an analogous description of idempotent elements of the multiplicative semi-
group Ms(A1), where A = (A, +,<) is a linearly ordered abelian group.
Although our proof is similar to that in [6], we include it for the sake of
completeness.

Theorem 2.1. Let A be a lattice-ordered abelian group. Then the matrices
from the set {©} U AUBUC, where

(e
{0 .5)
S

are idempotents in the semigroup (Ms(A™L),-). If A is a linearly ordered
abelian group, then every idempotent of the semigroup (Mo(A™L),-) belongs
to the set {O} UAUBUC.

Proof. Tt is easy to check that the matrices in the set {©@} U AU BUC are
idempotent.
Conversely, suppose that A is linearly ordered and

(Z fl) ' (Z Z) = (Z Z) e My(A*Y).

Then the following equalities must hold:

xayeAJ—vx—i_ySO}a

:U,yEAL,:U+y<O},

az,yEAJ‘,az+y<0},

(a+a)V(b+c)=a (1) (a+b)Vv(b+d)=b (2)

(a+c)V(c+d)=c (3) (b+c)V(d+d)=d (4).

From the equalities (1) and (4) it follows that a + a < a and d + d < d.
Since A is an ordered abelian group, we conclude that ¢ < 0 and d < 0.
For the element a we have two possibilities.
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1) a < 0. Then a+a < a and by (1) we must have a =b+c. If d =0,
then we have a matrix

(b—:c 8) , where b,c € At and b+ ¢ < 0.
On the other hand, if d < 0, then d 4+ d < d and by (4) we have b+ c = d.
If b € A, then a 4+ b,b +d < b, which contradicts (2). If ¢ € A, then
a+c,c+d < ¢, which contradicts (3). Henceb=c= 1. Nowa=d=b+c
implies a = d = L. Therefore we have obtained the matrix ©.

2) a = 0. From (1) we obtain b+ ¢ < 0 and (4) implies that either d = 0
or d = b+ c. Therefore we have the matrices

00 and 0 b , where b,c € A+ and b+ ¢ < 0.
c 0 c b+c

The proof is complete. O

We say that e is an idempotent of type A (type B, type C) if e € A (resp.
eeB,eel).

A semiring is called simple, if it has no nontrivial ideals. Precisely as in
the case of matrix rings over fields one can prove the following result.

Proposition 2.2. If R is a semifield and n € N, then the matriz semiring
M, (R) is simple.

An idempotent e of a semiring R is called full, if R = ReR, where

ReR = {Zneré |n €N, ry,7; € R}~

i=1
Similarly we call an idempotent e of a semigroup S full if S = SeS, where

SeS = {ses’ | s,s' € S}.

Corollary 2.3. If R is a semifield and n € N, then every non-zero idem-
potent of the semiring M, (R) is full.

Proof. 1f e € M, (R) is a non-zero idempotent, then M, (R) -e- M,(R) is a
non-zero ideal of the semiring M, (R). Simplicity implies that M, (R) - e -
M,(R) = M,(R). O
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In particular, the non-zero idempotents described in Theorem 2.1 are
full in the semiring Mo(A"L). It is natural to ask if they are full also in the
multiplicative semigroup (My(A1),-)? It turns out that they need not be.

Example 2.4. Suppose that the idempotent matrix X = (—?)0 :§> is

a full idempotent in the semigroup (Ms (R),-), where R = RU{—00}. Then
there exist a, b, c,d, e, f,g, h € R such that

0 0\ fa b 0 —oo\ (e f\ _ (a —oo\ (e f
o 9)-( o) 26 )26
_(a+e a+f
~\ct+e c+f)°
Consequently,
a+e =
a+f =

c+e =
c+f =

— o oo

These equalities imply that a,c, e, f are real numbers. From a +e =a + f
we conclude that e = f. But then 1 = ¢+ f = ¢+ e = 0, which is a
contradiction, showing that this system of linear equations cannot have a
solution. Thus X cannot be a full idempotent.

Idempotents (especially full idempotents) play an important role both in
the Morita theory of semigroups and semirings. Due to [2, Proposition 4.14],
if e is a full idempotent in a semiring R with an identity, then R is Morita
equivalent to its local subsemiring eRe.

Our matrix semiring M2(A~+) has the identity /. Hence we have the
following result.

Corollary 2.5. If A is a linearly ordered abelian group, then the semiring
Mo (A1) is Morita equivalent to all its non-zero local subsemirings.

In general, it is not easy to compute those local subsemirings. For some
idempotents, however, we can do this. We will give one such example.
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Proposition 2.6. If A is a linearly ordered abelian group, then the local

subsemiring induced by the idempotent e = (3 8) in the semiring R =

(My(A*1),-) is
eRez{(?3 Z) |c§a§b,c§d§b}.

Proof. Let H denote the set of matrices on the right hand side of the last
equality. First we prove that, for every matrix X € Ms(A"'), the product

eXe belongs to H. If X = <”§ i’;) € My(A1), then

0 0\ /z vy 0 0y [(xzVvVz yVw 0 0

L 0)\z w/\L 0/ \ =z w L0
_(xVz xVzVyVw
S\ 2z z2Vw '

From the definition of the least upper bound it follows that the last matrix

isin H. Thus eRe C H.

a b

Consider now a matrix Y = (c d) € H. Using the inequalities ¢ <

a<bandc<d<b we see that
0 0 a b aVe bVvd a b
= (00 )= )= ()=
a b 0 O a aVb a b
Ye_(c d> <J_ 0>_<c c\/d>_<c d>_Y'

Hence Y = eYe € eRe. O

3 The poset of idempotents

If S is a semigroup, then its set of idempotents F(S) is a poset with respect
to the natural order relation < which is defined by

f<e = ef=f=fe
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(see [1, Section 1.8]). As usual, we write f < e if f < e and f # e. In this
section we will investigate the structure of the poset F(M(AL)) where A
is a linearly ordered abelian group. It is clear that © is the bottom element
and [ is the top element in this poset.

Lemma 3.1. Let © # f < e for two idempotents e, f € E(My(A™L)). Then
eec A

0 a

b oa+ b> € B, so
a,be A+ and a+b < 0. We will show that this leads to a contradiction. A
similar proof gives a contradiction when e € C. We have three possibilities
for the matrix f.

Proof. We know that ef = f = fe. Suppose that e = <

1) fe A Let f = <2 g), where z,y € A+ and 2 +y < 0. Then

f = fe means that

0 z\ (0 z\(0 a \ _ (OV(x+d) aV(z+a+b)

y 0) \y 0)\b a+b) yVb (y+a)V(a+b))"
Therefore y =y Vb and 0 = (y +a) V (a + b). These equalities imply b < y
and y + a = 0. On the other hand, f = ef means that

<,2 95):(2 aj—b> <.2 :(?):(b\?\(/y(i—g?b) (m+ba)?§?a+b))'

In particular, y =bV (y+a+0b) =bV (0+b) = b. It follows that a + b =
a +y = 0. This contradicts the inequality a + b < 0.

0 T
2 B. Let f =
yrebres=() 1
f = fe means that

(2 xf—y>:<2 xiy) <2 aib)
:< 0V (x+b) aV(r+a+b) )
yVe+y+d wW+a)V(e+y+at+d)

), where z,y € A+ and 4+ y < 0. Then

In particular, z = a V (r + a + b). From a +b < 0 we conclude that
x4+ a+ b < z, so the definition of join implies z = a. On the other hand,
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f = ef means that

(o576 ob) (G 22)
:< 0V (y+a) zV(z+y+a) )
bV(y+a+b) (z+b)V(r+y+a+b)

In particular, y = bV (y+a+0b). Again a+b < 0 implies y +a+b < y, and
so y = b. We have shown that e = f, contradicting the assumption f < e.
3) fel. Let f= (x—zi/—y g), where z,y € ALt and 2+ y < 0. Then

f = fe means that

(7 )-(7 D6 5
_ ((a;+y)v(:c+b) (a:+y+a)\/(x+a+b)>
yVb (y+a)V(a+b)

Consequently, 0 = (y +a) V (a +b). Since a + b < 0, we have 0 = y + a.
On the other hand, f = ef means that

(=0 L) ()
_ (z+y)V (y+a) zVa .
((m+y+b)v(y+a+b) (a:—i—b)\/(a—l—b))

Therefore 0 = (z+b) V (a+b), where a+b < 0. We conclude that 0 = z+b.
Hence 0=y+a+2x+b=x+y+a+0b. But the inequalities x +y < 0 and
a+b<0imply x +y+ a+ b < 0. We have obtained a contradiction. [

Lemma 3.1 shows that there are no non-zero idempotents below elements
of B and C. So all idempotents of types B and C are atoms in the poset
E(Ma(A“)).

The next lemma describes when two idempotents are in the relation <.

Lemma 3.2. Let e, f € E(My(A'1)) be idempotents, where e is of type A.
Then
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(i)

0 a 0 ¢
= < = < <
A>f (b 0>_(d 0) e < c<a and d<b,

(i)

0 a 0 c
p— = <
B> f <b a—i—b)S(d 0) e < c<a and d<b,

(iii)

a+b a 0 ¢
= < = < < b.
Cof < b 0)_<d 0> e <= c<a and d<b

Proof. (i) Since f,e are of type A, a+b <0 and ¢+ d < 0.
Sufficiency. Assume that c<aandd <b. Thena+d<a+b <0,
b+c<b+a<0and

of = (2 g) <2 8) - <0vb(3§6) (aiZ)Cw) - <2 3) =7
Q6 - (1wt -€ D)
Thus f < e.

Necessity. If f < e, then aVc=a and bV d = b. Therefore ¢ < a
and d <b.

(ii) Since f is of type B and e is of type A, a+b < 0 and ¢+ d < 0.
Sufficiency. Assume that c<aandd <b. Thena+d<a+b <0,
b+c<b+a<0and

r=(3 ) (.0 - (05 erhot)

- (2 aj—b) =7
o= a2 G 8)= (0iss sy oedvioen)
- (2 aj—b) =7
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Thus f <e.
Necessity. If f < e, thenaVe=aand bV d=5b. Therefore c < a
and d < b.

(iii) This case is similar to the case (ii). O

Recall that a non-zero idempotent e of a semigroup S with zero is called
0-primitive if, for every non-zero idempotent f, f < e implies e = f.

Definition 3.3. We say that a matrix <Z b) € My(A*') is balanced if

d
at+d=b+ec.

Example 3.4. If A = (Z,+, <), then some of the balanced matrices are

(L0) G 1) (D) ()

Proposition 3.5. Let A be a linearly ordered abelian group. A mon-zero
idempotent of the semigroup (My(A™L),-) is O-primitive if and only if it is
balanced.

Proof. Necessity. If an idempotent is non-balanced, then it is of the
form (2 g) € A, where a + b < 0. Such idempotents are not O-primitive,
because

0 a 0 a
o7 (b a—kb) < (b o)'

Sufficiency. From Theorem 2.1 we see that the set of non-zero bal-

anced idempotents is
BUCU{(O “>|aeA}.
—a 0

Lemma 3.1 implies immediately that all idempotents in BUC are O-primitive.

a
—a 0
idempotent. We will prove that ef = f = fe implies e = f for all matrices
f of types A, B and C.

It remains to prove that each matrix e = ,a € A, is a O-primitive
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y 0
implies a <z and —a < y,s0 0 =a—a < x+y < 0. We conclude that
rz+y=0,s0a<x=—y < a, which implies a = x. Now a +y = 0 gives

1) f = <O x> € A, where 2,y € At and z +y < 0. Then f < e

y = —a, and we have proved that e = f.
2) f = (2 :I:j—y) € B, where z,y € At and  +y < 0. Then f <e

implies ¢ < x and —a < y,s800=a —a < x+y < 0. Similarly to the case
1) we obtain e = f.
3) f € C. This case is analogous to the case 2). O

4 The lattice of idempotents

It turns out that the poset of idempotent matrices has the structure of a
lattice.

Theorem 4.1. If A is a linearly ordered abelian group, then the poset of
idempotents of the semigroup Mo(A™L) is a lattice.

Proof. We must prove that any two non-equal idempotents of the semigroup
Ms(A*) have the least upper bound (supremum) and the greatest lower
bound (infimum). If one of the idempotents is © or I, then it is clear what
the supremum or infimum is. Therefore it suffices to consider the following
pairwise different idempotents:

e_Oa e_Oa: en— [FTW 2
AT\ 0) BT \y z+y)’ =\ w 0)

0 d 0 x 2 +w
fA_ (b/ 0)7 fB_ <y/ wl+y/>7 fc_ ( ,w/ 0)

We will prove that

0 and\ . 0 avad
1' Sup(eA7 fA) e (b/\ b/ 0 ), lnf(6A7 fA) = (b\/ b/ 0 >

ifavad +bVvY <0andinf(ey, fa) =0 ifavd +bVV >0,

0 anzT\ . 0 aVax
2. sup(eA,eB):<b/\y 0 >,1nf(eA,eB):<bvy 0 >

ifave+bVy<0andinf(eq,eg) =0 ifaVae+bVy >0,
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0 alNz\ . 0 aVz
3. sup(eq,ec) = <b/\w 0 >, inf(eq,ec) = (b\/w 0 )
ifaVz+bVw<0andinf(eq,ec) =0 ifaVz+bVw>0,

4. sup(eg, f) = <y TAT )» inf(egs, fg) = O,
TANzZ\ .

5. sup(eg, ec) <y A w >7 inf(es,ec) = O,

0 2N 72

6. sup(ec, fc) = (w A 0

), inf(ec, fc) = ©.
We have to look at 6 cases about the supremum and 6 cases about the

infimum. Let us start with the suprema.

0 aAnd

1. We want to prove that sup (e4, fa) = (b INY 0

). Since aAa’ <

a and b AV < b, by Lemma 3.2 we have

0 aAnd 0 and
<b/\b’ 0 )26A and <b/\b’ 0 )Zf““'

Suppose that a matrix g is also an upper bound of e 4 and f 4. By Lemma 3.1,
g must be of type A, so let g = (2 3), where u,v € At and u +v < 0.

Now ey < g implies u < a, v < b, and f4 < g implies u < da/, v < V. The
inequalities u < a and v < o’ imply u < a Ad’, and, similarly, v < bA Y. So
0 aAnd 0 aAnd
< h h h is the 1
(b/\b’ 0 >_gandwe ave shown that (b/\b’ 0 >1steeast
upper bound of e4 and f4.
0 alx

2. We want to prove that sup (e4,ep) = <b/\y 0 ) Again it

0 alAx
bAy 0
es. Suppose that a matrix ¢ is also an upper bound of e4 and ez. By

follows from Lemma 3.2 that < > is an upper bound of e4 and

Lemma 3.1, g must be of type A, so let g = (2 g), where u,v € At and

u+v < 0. Now eyqg < g implies u < a, v < b, and eg < g implies u < z,
v < y. The inequalities u < a and v < x imply u < a A x, and, similarly,
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0 alx
bAy 0
is the least upper bound of e4 and eg.

< .
v<bAy SO< bAy 0

> < g and we have shown that ( 0 an x)

In the cases 3-6, the proofs are similar.

Next, we look at the infima.
1. Consider first the case aVa' +bV Y < 0. Due to Lemma 3.2, the

/
matrix (b \(/) Y @ \(/)a > € A is a lower bound for e4 and f4. Suppose that

a matrix ¢ is also a lower bound of e4 and f4. Then either g = (2 15)’

v 0 vou+v
g < ey implies a < u, b < v, and g < f4 implies ' < u, ¥/ < v. The
inequalities @ < u and o’ < u imply a V a’ < u, and, similarly, b vVt < v.
0 avd
bvd 0
that the last matrix is the greatest lower bound of e4 and f4.

g = <u+v u> or g = (0 u >,whereu+’u<0- In all three cases

So, by Lemma 3.2 we have that g < , and we have shown

Now suppose that a Va' + bV bd > 0. We will show that in this case
© is the only lower bound of e4 and f4. Suppose that an idempotent

g = <€ :f) € AUBUC is a lower bound of e4 and f4. As above, we

conclude that aVa' < uand bVY <wv. Hence 0 < aVa +bVd <u+v <0,
a contradiction. Since © is the only lower bound of e4 and f4, it is the
infimum of e4 and f4.

The cases 2 and 3 are similar to the case 1.

The cases 4-6 are clear, because the idempotents of type B and type C
are O-primitive. [

Example 4.2. The following figure, which depicts the lower cone of the
matrix (_01 _01> in the lattice E(Mas(Z")), shows immediately that the

lattice of idempotents need not be modular. The lattice on this figure
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contains a pentagon sublattice.

O
O

071 071

")
/ \

) ()
\()/ \ ) G ()

5 On regularity and related properties

In [5, Theorem 4], II'in gave necessary and sufficient conditions for regularity
of the matrix semiring M, (R) over an arbitrary semiring R. In [6, Theorem
4.2], Johnson and Kambites proved that the multiplicative semigroup of 2x2
matrices over the tropical semiring is regular by showing that every R-class
contains an idempotent. This result was generalized by Gould, Johnson and
Naz to linearly ordered abelian groups as follows.

Theorem 5.1 ([4]). If A is a linearly ordered abelian group, then the matrix
semigroup (Ma(A*1L),-) is regular.

One could also consider the subsemigroup (Mz(A), -) of (Ma(A*),-) and
ask if it is regular. The answer is positive and this fact could be deduced
by a closer examination of [4, Remark 5.6]. However, we prefer to give an
explicit proof here.

Proposition 5.2. If A is a linearly ordered abelian group, then the matriz
semigroup (Ma(A),-) is regular.
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Proof. Consider a matrix X = (CCL 2

have either a+d > b+ cor a+d < b+ ¢. We will show that in both cases
there exists a matrix Y such that X = XY X.
1. Ifa+d>b+c, then

a b _ —a —a+b—d (a b
c d —a+c—d —d c d

OVib—a+c—d) (b—d)V(b—d) ><a b>

€ M5(A). As the order is linear, we

c—a)V(c—a) (c—a+b—d)VvO0 c d
(2 "))
2. Ifa+d£b—|—c,then
(O )
- <((zd_—bb; \(j zde—) Z)O 0(3 (_ac—) Z Eac_fzz)) ' <Ccl Z)

(% ) ()

O

If n > 3, then the semigroup (M, (A"),-) is not regular. It is not even
abundant (see [4, Remark 5.6]). We recall that a semigroup S is called
abundant if every R*-class and every L*-class of S contains an idempotent,
where R* and L* are certain generalized Green’s relations whose definitions
can be found, for example, in [4].

It is natural to ask if the semigroup (M2(A), ) has any other nice prop-
erties in addition to regularity.

Recall that a semigroup S is inverse if it is regular and its idempotents
commute. A semigroup is orthodoz if it is regular and the product of any
two idempotents is an idempotent.
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Proposition 5.3. For a lattice-ordered abelian group A = (A,+,<) the
following assertions are equivalent.

(i) The semigroup (M2(A),-) is inverse.

(ii) The semigroup (Ms(A),-) is orthodox.

(iii) |A] = 1.

Proof. Clearly (ili) = (i) and (iii) = (ii). We will prove the converses.
Suppose that |A| > 1. It is not difficult to see that then there exists
a € A such that a < 0. Then also 2a = a + a < 0. By Proposition 2.1, the

matrices
0 a 2a a
€= <a 2a> and - f = < a 0)

are idempotent. If they would commute, then

20 a 2a 3a
<3a 2a> —ef=Je= (a 2a>’
in particular ¢ = 3a, which implies 2a = 0. This contradicts with 2a < 0.
So (Ma2(A),-) is not inverse. Note also that

2a 3a 2a 3a 4a ba 2a 3a
(fe)2: <a 2a> . <a 2a> - <3a 4a> 7 <a 2a> = fe

so (M3(A), ) is orthodox neither. O
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