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Idempotent 2× 2 matrices over linearly
ordered abelian groups

Marilyn Kutti and Valdis Laan∗

Abstract. In this paper we study the multiplicative semigroup of 2 × 2
matrices over a linearly ordered abelian group with an externally added bot-
tom element. The multiplication of such a semigroup is defined by replacing
addition and multiplication by join and addition in the usual formula defining
matrix multiplication. We show that there are four types of idempotents in
such a matrix semigroup and we determine which of them are 0-primitive.
We also prove that the poset of idempotents of such a matrix semigroup with
respect to the natural order is a lattice. It turns out that such a matrix
semigroup is inverse or orthodox if and only if the abelian group is trivial.

1 Introduction

We start by recalling some terminology. A semiring is a set R with two
binary algebraic operations ⊕ and ⊙ such that (1) (R,⊕) is a commutative
monoid with an identity element 0, (2) (R,⊙) is a semigroup, (3) the dis-
tributivity laws hold, (4) 0 ⊙ r = 0 = r ⊙ 0 for every r ∈ R. If (R,⊙) is a
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monoid, then R is called a semiring with identity. A semifield is a semiring
(R,⊕,⊙), where (R \{0},⊙) is a group. Matrix rings over semirings can be
defined in the same way as matrix rings over rings.

Let A = (A,+,≤) be an ordered abelian group (see [3]). By adjoining
an external bottom element ⊥ and defining a + ⊥ = ⊥ + a = ⊥ + ⊥ =
⊥ for all a ∈ A we obtain a commutative pomonoid A⊥. Moreover, if
A is a lattice-ordered abelian group, then (A⊥,∨,+) is a semifield with
multiplicative identity 0 and additive identity ⊥ (cf. [7, Proposition 4.1]).
Hence the set M2(A

⊥) of 2× 2 matrices over A⊥ is a semiring with respect
to componentwise joins of matrices and multiplication

(
a b
c d

)
·
(
e f
g h

)
=

(
(a+ e) ∨ (b+ g) (a+ f) ∨ (b+ h)
(c+ e) ∨ (d+ g) (c+ f) ∨ (d+ h)

)
,

where I =

(
0 ⊥
⊥ 0

)
is the multiplicative identity element (we call it the

identity matrix) and Θ =

(
⊥ ⊥
⊥ ⊥

)
is the zero element (we call it the zero

matrix).
One of the important special cases is the linearly ordered abelian group

(R,+,≤). Usually the adjoined bottom element is denoted by −∞ and the
semiring (R ∪ {−∞},∨,+) is called the tropical semiring. Matrices over it
are called tropical matrices. The study of such matrices is motivated by
numerous applications.

In [6], Johnson and Kambites initiated the systematic study of the mul-
tiplicative semigroup of tropical matrices of order 2. Using methods of
tropical geometry they described Green’s relations and proved that this
semigroup is regular. They also described all idempotents of this semigroup.

The aim of this paper is to continue that study, but in a more general
situation — we will (mostly) consider 2× 2 matrices over a linearly ordered
abelian group with an adjoined bottom element. It is well known that there
is a natural partial order on the set of idempotents of any semigroup. We
will study that order on the set of idempotents of the semigroup (M2(A

⊥), ·)
where A is a linearly ordered abelian group. It will turn out that in this case
the poset of idempotents is a lattice (see Theorem 4.1) which, in general,
is not modular. We will also describe the 0-primitive idempotents of the
semigroup (M2(A

⊥), ·) in Proposition 3.5. In Section 5 we will examine
regularity and some related properties of this matrix semigroup.
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2 The description of idempotents

In [6, Theorem 4.1], Johnson and Kambites proved that the idempotent 2×2
matrices over the tropical semiring are of exactly four types. We can give
an analogous description of idempotent elements of the multiplicative semi-
group M2(A

⊥), where A = (A,+,≤) is a linearly ordered abelian group.
Although our proof is similar to that in [6], we include it for the sake of
completeness.

Theorem 2.1. Let A be a lattice-ordered abelian group. Then the matrices
from the set {Θ} ∪ A ∪ B ∪ C, where

A =

{(
0 x
y 0

)∣∣∣∣ x, y ∈ A⊥, x+ y ≤ 0

}
,

B =

{(
0 x
y x+ y

)∣∣∣∣ x, y ∈ A⊥, x+ y < 0

}
,

C =
{(

x+ y x
y 0

)∣∣∣∣ x, y ∈ A⊥, x+ y < 0

}
,

are idempotents in the semigroup (M2(A
⊥), ·). If A is a linearly ordered

abelian group, then every idempotent of the semigroup (M2(A
⊥), ·) belongs

to the set {Θ} ∪ A ∪ B ∪ C.
Proof. It is easy to check that the matrices in the set {Θ} ∪ A ∪ B ∪ C are
idempotent.

Conversely, suppose that A is linearly ordered and
(
a b
c d

)
·
(
a b
c d

)
=

(
a b
c d

)
∈M2(A

⊥).

Then the following equalities must hold:

(a+ a) ∨ (b+ c) = a (1) (a+ b) ∨ (b+ d) = b (2)

(a+ c) ∨ (c+ d) = c (3) (b+ c) ∨ (d+ d) = d (4).

From the equalities (1) and (4) it follows that a + a ≤ a and d + d ≤ d.
Since A is an ordered abelian group, we conclude that a ≤ 0 and d ≤ 0.
For the element a we have two possibilities.
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1) a < 0. Then a+ a < a and by (1) we must have a = b+ c. If d = 0,
then we have a matrix

(
b+ c b
c 0

)
, where b, c ∈ A⊥ and b+ c < 0.

On the other hand, if d < 0, then d+ d < d and by (4) we have b+ c = d.
If b ∈ A, then a + b, b + d < b, which contradicts (2). If c ∈ A, then
a+ c, c+ d < c, which contradicts (3). Hence b = c = ⊥. Now a = d = b+ c
implies a = d = ⊥. Therefore we have obtained the matrix Θ.

2) a = 0. From (1) we obtain b+ c ≤ 0 and (4) implies that either d = 0
or d = b+ c. Therefore we have the matrices

(
0 b
c 0

)
and

(
0 b
c b+ c

)
, where b, c ∈ A⊥ and b+ c ≤ 0.

The proof is complete.

We say that e is an idempotent of type A (type B, type C) if e ∈ A (resp.
e ∈ B, e ∈ C).

A semiring is called simple, if it has no nontrivial ideals. Precisely as in
the case of matrix rings over fields one can prove the following result.

Proposition 2.2. If R is a semifield and n ∈ N, then the matrix semiring
Mn(R) is simple.

An idempotent e of a semiring R is called full, if R = ReR, where

ReR =

{
n∑

i=1

rier
′
i | n ∈ N, ri, r′i ∈ R

}
.

Similarly we call an idempotent e of a semigroup S full if S = SeS, where
SeS = {ses′ | s, s′ ∈ S}.

Corollary 2.3. If R is a semifield and n ∈ N, then every non-zero idem-
potent of the semiring Mn(R) is full.

Proof. If e ∈Mn(R) is a non-zero idempotent, then Mn(R) · e ·Mn(R) is a
non-zero ideal of the semiring Mn(R). Simplicity implies that Mn(R) · e ·
Mn(R) =Mn(R).
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In particular, the non-zero idempotents described in Theorem 2.1 are
full in the semiring M2(A

⊥). It is natural to ask if they are full also in the
multiplicative semigroup (M2(A

⊥), ·)? It turns out that they need not be.

Example 2.4. Suppose that the idempotent matrix X =

(
0 −∞
−∞ −∞

)
is

a full idempotent in the semigroup (M2(R), ·), where R = R∪{−∞}. Then
there exist a, b, c, d, e, f, g, h ∈ R such that

(
0 0
0 1

)
=

(
a b
c d

)(
0 −∞
−∞ −∞

)(
e f
g h

)
=

(
a −∞
c −∞

)(
e f
g h

)

=

(
a+ e a+ f
c+ e c+ f

)
.

Consequently, 



a+ e = 0
a+ f = 0
c+ e = 0
c+ f = 1.

These equalities imply that a, c, e, f are real numbers. From a+ e = a+ f
we conclude that e = f . But then 1 = c + f = c + e = 0, which is a
contradiction, showing that this system of linear equations cannot have a
solution. Thus X cannot be a full idempotent.

Idempotents (especially full idempotents) play an important role both in
the Morita theory of semigroups and semirings. Due to [2, Proposition 4.14],
if e is a full idempotent in a semiring R with an identity, then R is Morita
equivalent to its local subsemiring eRe.

Our matrix semiring M2(A
⊥) has the identity I. Hence we have the

following result.

Corollary 2.5. If A is a linearly ordered abelian group, then the semiring
M2(A

⊥) is Morita equivalent to all its non-zero local subsemirings.

In general, it is not easy to compute those local subsemirings. For some
idempotents, however, we can do this. We will give one such example.



6 M. Kutti, V. Laan

Proposition 2.6. If A is a linearly ordered abelian group, then the local

subsemiring induced by the idempotent e =

(
0 0
⊥ 0

)
in the semiring R =

(M2(A
⊥), ·) is

eRe =

{(
a b
c d

)
| c ≤ a ≤ b, c ≤ d ≤ b

}
.

Proof. Let H denote the set of matrices on the right hand side of the last
equality. First we prove that, for every matrix X ∈ M2(A

⊥), the product

eXe belongs to H. If X =

(
x y
z w

)
∈M2(A

⊥), then

(
0 0
⊥ 0

)(
x y
z w

)(
0 0
⊥ 0

)
=

(
x ∨ z y ∨ w
z w

)(
0 0
⊥ 0

)

=

(
x ∨ z x ∨ z ∨ y ∨ w
z z ∨ w

)
.

From the definition of the least upper bound it follows that the last matrix
is in H. Thus eRe ⊆ H.

Consider now a matrix Y =

(
a b
c d

)
∈ H. Using the inequalities c ≤

a ≤ b and c ≤ d ≤ b we see that

eY =

(
0 0
⊥ 0

)(
a b
c d

)
=

(
a ∨ c b ∨ d
c d

)
=

(
a b
c d

)
= Y,

Y e =

(
a b
c d

)(
0 0
⊥ 0

)
=

(
a a ∨ b
c c ∨ d

)
=

(
a b
c d

)
= Y.

Hence Y = eY e ∈ eRe.

3 The poset of idempotents

If S is a semigroup, then its set of idempotents E(S) is a poset with respect
to the natural order relation ≤ which is defined by

f ≤ e ⇐⇒ ef = f = fe
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(see [1, Section 1.8]). As usual, we write f < e if f ≤ e and f ̸= e. In this
section we will investigate the structure of the poset E(M2(A

⊥)) where A
is a linearly ordered abelian group. It is clear that Θ is the bottom element
and I is the top element in this poset.

Lemma 3.1. Let Θ ̸= f < e for two idempotents e, f ∈ E(M2(A
⊥)). Then

e ∈ A.

Proof. We know that ef = f = fe. Suppose that e =

(
0 a
b a+ b

)
∈ B, so

a, b ∈ A⊥ and a+ b < 0. We will show that this leads to a contradiction. A
similar proof gives a contradiction when e ∈ C. We have three possibilities
for the matrix f .

1) f ∈ A. Let f =

(
0 x
y 0

)
, where x, y ∈ A⊥ and x + y ≤ 0. Then

f = fe means that

(
0 x
y 0

)
=

(
0 x
y 0

)(
0 a
b a+ b

)
=

(
0 ∨ (x+ b) a ∨ (x+ a+ b)
y ∨ b (y + a) ∨ (a+ b)

)
.

Therefore y = y ∨ b and 0 = (y + a) ∨ (a+ b). These equalities imply b ≤ y
and y + a = 0. On the other hand, f = ef means that

(
0 x
y 0

)
=

(
0 a
b a+ b

)(
0 x
y 0

)
=

(
0 ∨ (y + a) x ∨ a

b ∨ (y + a+ b) (x+ b) ∨ (a+ b)

)
.

In particular, y = b ∨ (y + a+ b) = b ∨ (0 + b) = b. It follows that a+ b =
a+ y = 0. This contradicts the inequality a+ b < 0.

2) f ∈ B. Let f =

(
0 x
y x+ y

)
, where x, y ∈ A⊥ and x + y < 0. Then

f = fe means that

(
0 x
y x+ y

)
=

(
0 x
y x+ y

)(
0 a
b a+ b

)

=

(
0 ∨ (x+ b) a ∨ (x+ a+ b)

y ∨ (x+ y + b) (y + a) ∨ (x+ y + a+ b)

)
.

In particular, x = a ∨ (x + a + b). From a + b < 0 we conclude that
x + a + b < x, so the definition of join implies x = a. On the other hand,
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f = ef means that

(
0 x
y x+ y

)
=

(
0 a
b a+ b

)(
0 x
y x+ y

)

=

(
0 ∨ (y + a) x ∨ (x+ y + a)

b ∨ (y + a+ b) (x+ b) ∨ (x+ y + a+ b)

)
.

In particular, y = b∨ (y+ a+ b). Again a+ b < 0 implies y+ a+ b < y, and
so y = b. We have shown that e = f , contradicting the assumption f < e.

3) f ∈ C. Let f =

(
x+ y x
y 0

)
, where x, y ∈ A⊥ and x + y < 0. Then

f = fe means that

(
x+ y x
y 0

)
=

(
x+ y x
y 0

)(
0 a
b a+ b

)

=

(
(x+ y) ∨ (x+ b) (x+ y + a) ∨ (x+ a+ b)

y ∨ b (y + a) ∨ (a+ b)

)
.

Consequently, 0 = (y + a) ∨ (a+ b). Since a+ b < 0, we have 0 = y + a.

On the other hand, f = ef means that

(
x+ y x
y 0

)
=

(
0 a
b a+ b

)(
x+ y x
y 0

)

=

(
(x+ y) ∨ (y + a) x ∨ a

(x+ y + b) ∨ (y + a+ b) (x+ b) ∨ (a+ b)

)
.

Therefore 0 = (x+b)∨ (a+b), where a+b < 0. We conclude that 0 = x+b.
Hence 0 = y+ a+ x+ b = x+ y+ a+ b. But the inequalities x+ y < 0 and
a+ b < 0 imply x+ y + a+ b < 0. We have obtained a contradiction.

Lemma 3.1 shows that there are no non-zero idempotents below elements
of B and C. So all idempotents of types B and C are atoms in the poset
E(M2(A

⊥)).
The next lemma describes when two idempotents are in the relation ≤.

Lemma 3.2. Let e, f ∈ E(M2(A
⊥)) be idempotents, where e is of type A.

Then
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(i)

A ∋ f =

(
0 a
b 0

)
≤

(
0 c
d 0

)
= e ⇐⇒ c ≤ a and d ≤ b,

(ii)

B ∋ f =

(
0 a
b a+ b

)
≤

(
0 c
d 0

)
= e ⇐⇒ c ≤ a and d ≤ b,

(iii)

C ∋ f =

(
a+ b a
b 0

)
≤

(
0 c
d 0

)
= e ⇐⇒ c ≤ a and d ≤ b.

Proof. (i) Since f, e are of type A, a+ b ≤ 0 and c+ d ≤ 0.
Sufficiency. Assume that c ≤ a and d ≤ b. Then a + d ≤ a + b ≤ 0,

b+ c ≤ b+ a ≤ 0 and

ef =

(
0 c
d 0

)(
0 a
b 0

)
=

(
0 ∨ (b+ c) a ∨ c
b ∨ d (a+ d) ∨ 0

)
=

(
0 a
b 0

)
= f,

fe =

(
0 a
b 0

)(
0 c
d 0

)
=

(
0 ∨ (a+ d) a ∨ c
b ∨ d (b+ c) ∨ 0

)
=

(
0 a
b 0

)
= f.

Thus f ≤ e.
Necessity. If f ≤ e, then a ∨ c = a and b ∨ d = b. Therefore c ≤ a

and d ≤ b.
(ii) Since f is of type B and e is of type A, a+ b < 0 and c+ d ≤ 0.
Sufficiency. Assume that c ≤ a and d ≤ b. Then a + d ≤ a + b < 0,

b+ c ≤ b+ a < 0 and

ef =

(
0 c
d 0

)(
0 a
b a+ b

)
=

(
0 ∨ (b+ c) a ∨ (a+ b+ c)
b ∨ d (a+ d) ∨ (a+ b)

)

=

(
0 a
b a+ b

)
= f,

fe =

(
0 a
b a+ b

)(
0 c
d 0

)
=

(
0 ∨ (a+ d) a ∨ c

b ∨ (a+ b+ d) (b+ c) ∨ (a+ b)

)

=

(
0 a
b a+ b

)
= f.
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Thus f ≤ e.
Necessity. If f ≤ e, then a ∨ c = a and b ∨ d = b. Therefore c ≤ a

and d ≤ b.
(iii) This case is similar to the case (ii).

Recall that a non-zero idempotent e of a semigroup S with zero is called
0-primitive if, for every non-zero idempotent f , f ≤ e implies e = f .

Definition 3.3. We say that a matrix

(
a b
c d

)
∈ M2(A

⊥) is balanced if

a+ d = b+ c.

Example 3.4. If A = (Z,+,≤), then some of the balanced matrices are

(
0 2
−2 0

)
,

(
0 ⊥
5 ⊥

)
,

(
4 ⊥
⊥ ⊥

)
,

(
⊥ ⊥
⊥ ⊥

)
.

Proposition 3.5. Let A be a linearly ordered abelian group. A non-zero
idempotent of the semigroup (M2(A

⊥), ·) is 0-primitive if and only if it is
balanced.

Proof. Necessity. If an idempotent is non-balanced, then it is of the

form

(
0 a
b 0

)
∈ A, where a+ b < 0. Such idempotents are not 0-primitive,

because

Θ ̸=
(
0 a
b a+ b

)
<

(
0 a
b 0

)
.

Sufficiency. From Theorem 2.1 we see that the set of non-zero bal-
anced idempotents is

B ∪ C ∪
{(

0 a
−a 0

)
| a ∈ A

}
.

Lemma 3.1 implies immediately that all idempotents in B∪C are 0-primitive.

It remains to prove that each matrix e =

(
0 a
−a 0

)
, a ∈ A, is a 0-primitive

idempotent. We will prove that ef = f = fe implies e = f for all matrices
f of types A, B and C.
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1) f =

(
0 x
y 0

)
∈ A, where x, y ∈ A⊥ and x + y ≤ 0. Then f ≤ e

implies a ≤ x and −a ≤ y, so 0 = a − a ≤ x + y ≤ 0. We conclude that
x + y = 0, so a ≤ x = −y ≤ a, which implies a = x. Now a + y = 0 gives
y = −a, and we have proved that e = f .

2) f =

(
0 x
y x+ y

)
∈ B, where x, y ∈ A⊥ and x + y < 0. Then f ≤ e

implies a ≤ x and −a ≤ y, so 0 = a− a ≤ x+ y ≤ 0. Similarly to the case
1) we obtain e = f .

3) f ∈ C. This case is analogous to the case 2).

4 The lattice of idempotents

It turns out that the poset of idempotent matrices has the structure of a
lattice.

Theorem 4.1. If A is a linearly ordered abelian group, then the poset of
idempotents of the semigroup M2(A

⊥) is a lattice.

Proof. We must prove that any two non-equal idempotents of the semigroup
M2(A

⊥) have the least upper bound (supremum) and the greatest lower
bound (infimum). If one of the idempotents is Θ or I, then it is clear what
the supremum or infimum is. Therefore it suffices to consider the following
pairwise different idempotents:

eA =

(
0 a
b 0

)
, eB =

(
0 x
y x+ y

)
, eC =

(
z + w z
w 0

)
,

fA =

(
0 a′

b′ 0

)
, fB =

(
0 x′

y′ x′ + y′

)
, fC =

(
z′ + w′ z′

w′ 0

)
.

We will prove that

1. sup(eA, fA) =
(

0 a ∧ a′
b ∧ b′ 0

)
, inf(eA, fA) =

(
0 a ∨ a′

b ∨ b′ 0

)

if a ∨ a′ + b ∨ b′ ≤ 0 and inf(eA, fA) = Θ if a ∨ a′ + b ∨ b′ > 0,

2. sup(eA, eB) =
(

0 a ∧ x
b ∧ y 0

)
, inf(eA, eB) =

(
0 a ∨ x

b ∨ y 0

)

if a ∨ x+ b ∨ y ≤ 0 and inf(eA, eB) = Θ if a ∨ x+ b ∨ y > 0,
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3. sup(eA, eC) =
(

0 a ∧ z
b ∧ w 0

)
, inf(eA, eC) =

(
0 a ∨ z

b ∨ w 0

)

if a ∨ z + b ∨ w ≤ 0 and inf(eA, eC) = Θ if a ∨ z + b ∨ w > 0,

4. sup(eB, fB) =
(

0 x ∧ x′
y ∧ y′ 0

)
, inf(eB, fB) = Θ,

5. sup(eB, eC) =
(

0 x ∧ z
y ∧ w 0

)
, inf(eB, eC) = Θ,

6. sup(eC , fC) =
(

0 z ∧ z′
w ∧ w′ 0

)
, inf(eC , fC) = Θ.

We have to look at 6 cases about the supremum and 6 cases about the
infimum. Let us start with the suprema.

1. We want to prove that sup (eA, fA) =
(

0 a ∧ a′
b ∧ b′ 0

)
. Since a∧a′ ≤

a and b ∧ b′ ≤ b, by Lemma 3.2 we have

(
0 a ∧ a′

b ∧ b′ 0

)
≥ eA and

(
0 a ∧ a′

b ∧ b′ 0

)
≥ fA.

Suppose that a matrix g is also an upper bound of eA and fA. By Lemma 3.1,

g must be of type A, so let g =

(
0 u
v 0

)
, where u, v ∈ A⊥ and u + v ≤ 0.

Now eA ≤ g implies u ≤ a, v ≤ b, and fA ≤ g implies u ≤ a′, v ≤ b′. The
inequalities u ≤ a and u ≤ a′ imply u ≤ a∧ a′, and, similarly, v ≤ b∧ b′. So(

0 a ∧ a′
b ∧ b′ 0

)
≤ g and we have shown that

(
0 a ∧ a′

b ∧ b′ 0

)
is the least

upper bound of eA and fA.

2. We want to prove that sup (eA, eB) =

(
0 a ∧ x

b ∧ y 0

)
. Again it

follows from Lemma 3.2 that

(
0 a ∧ x

b ∧ y 0

)
is an upper bound of eA and

eB. Suppose that a matrix g is also an upper bound of eA and eB. By

Lemma 3.1, g must be of type A, so let g =

(
0 u
v 0

)
, where u, v ∈ A⊥ and

u + v ≤ 0. Now eA ≤ g implies u ≤ a, v ≤ b, and eB ≤ g implies u ≤ x,
v ≤ y. The inequalities u ≤ a and u ≤ x imply u ≤ a ∧ x, and, similarly,
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v ≤ b ∧ y. So

(
0 a ∧ x

b ∧ y 0

)
≤ g and we have shown that

(
0 a ∧ x

b ∧ y 0

)

is the least upper bound of eA and eB.

In the cases 3–6, the proofs are similar.

Next, we look at the infima.

1. Consider first the case a ∨ a′ + b ∨ b′ ≤ 0. Due to Lemma 3.2, the

matrix

(
0 a ∨ a′

b ∨ b′ 0

)
∈ A is a lower bound for eA and fA. Suppose that

a matrix g is also a lower bound of eA and fA. Then either g =

(
0 u
v 0

)
,

g =

(
u+ v u
v 0

)
or g =

(
0 u
v u+ v

)
, where u + v ≤ 0. In all three cases

g ≤ eA implies a ≤ u, b ≤ v, and g ≤ fA implies a′ ≤ u, b′ ≤ v. The
inequalities a ≤ u and a′ ≤ u imply a ∨ a′ ≤ u, and, similarly, b ∨ b′ ≤ v.

So, by Lemma 3.2 we have that g ≤
(

0 a ∨ a′
b ∨ b′ 0

)
, and we have shown

that the last matrix is the greatest lower bound of eA and fA.

Now suppose that a ∨ a′ + b ∨ b′ > 0. We will show that in this case
Θ is the only lower bound of eA and fA. Suppose that an idempotent

g =

(
p u
v r

)
∈ A ∪ B ∪ C is a lower bound of eA and fA. As above, we

conclude that a∨a′ ≤ u and b∨b′ ≤ v. Hence 0 < a∨a′+b∨b′ ≤ u+v ≤ 0,
a contradiction. Since Θ is the only lower bound of eA and fA, it is the
infimum of eA and fA.

The cases 2 and 3 are similar to the case 1.

The cases 4–6 are clear, because the idempotents of type B and type C
are 0-primitive.

Example 4.2. The following figure, which depicts the lower cone of the

matrix

(
0 −1
−1 0

)
in the lattice E(M2(Z⊥)), shows immediately that the

lattice of idempotents need not be modular. The lattice on this figure
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contains a pentagon sublattice.

(
0 −1
−1 0

)

(
0 −1
0 0

) (
0 0
−1 0

)

(
0 0
−1 −1

) (
0 −1
0 −1

) (
0 −1
1 0

) (
0 0
0 0

) (
0 1
−1 0

) (
−1 0
−1 0

) (
−1 −1
0 0

)

(
⊥ ⊥
⊥ ⊥

)

5 On regularity and related properties

In [5, Theorem 4], Il’in gave necessary and sufficient conditions for regularity
of the matrix semiringMn(R) over an arbitrary semiring R. In [6, Theorem
4.2], Johnson and Kambites proved that the multiplicative semigroup of 2×2
matrices over the tropical semiring is regular by showing that every R-class
contains an idempotent. This result was generalized by Gould, Johnson and
Naz to linearly ordered abelian groups as follows.

Theorem 5.1 ([4]). If A is a linearly ordered abelian group, then the matrix
semigroup (M2(A

⊥), ·) is regular.

One could also consider the subsemigroup (M2(A), ·) of (M2(A
⊥), ·) and

ask if it is regular. The answer is positive and this fact could be deduced
by a closer examination of [4, Remark 5.6]. However, we prefer to give an
explicit proof here.

Proposition 5.2. If A is a linearly ordered abelian group, then the matrix
semigroup (M2(A), ·) is regular.
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Proof. Consider a matrix X =

(
a b
c d

)
∈M2(A). As the order is linear, we

have either a+ d ≥ b+ c or a+ d < b+ c. We will show that in both cases
there exists a matrix Y such that X = XYX.

1. If a+ d ≥ b+ c, then
(
a b
c d

)
·
(

−a −a+ b− d
−a+ c− d −d

)
·
(
a b
c d

)

=

(
0 ∨ (b− a+ c− d) (b− d) ∨ (b− d)
(c− a) ∨ (c− a) (c− a+ b− d) ∨ 0

)
·
(
a b
c d

)

=

(
0 b− d

c− a 0

)
·
(
a b
c d

)

=

(
a b
c d

)
.

2. If a+ d < b+ c, then
(
a b
c d

)
·
(
−b− c+ d −c
−b a− b− c

)
·
(
a b
c d

)

=

(
(a− b− c+ d) ∨ 0 (a− c) ∨ (a− c)
(d− b) ∨ (d− b) 0 ∨ (a− b− c+ d)

)
·
(
a b
c d

)

=

(
0 a− c

d− b 0

)
·
(
a b
c d

)

=

(
a b
c d

)
.

If n ≥ 3, then the semigroup (Mn(A
⊥), ·) is not regular. It is not even

abundant (see [4, Remark 5.6]). We recall that a semigroup S is called
abundant if every R∗-class and every L∗-class of S contains an idempotent,
where R∗ and L∗ are certain generalized Green’s relations whose definitions
can be found, for example, in [4].

It is natural to ask if the semigroup (M2(A), ·) has any other nice prop-
erties in addition to regularity.

Recall that a semigroup S is inverse if it is regular and its idempotents
commute. A semigroup is orthodox if it is regular and the product of any
two idempotents is an idempotent.
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Proposition 5.3. For a lattice-ordered abelian group A = (A,+,≤) the
following assertions are equivalent.

(i) The semigroup (M2(A), ·) is inverse.
(ii) The semigroup (M2(A), ·) is orthodox.
(iii) |A| = 1.

Proof. Clearly (iii) =⇒ (i) and (iii) =⇒ (ii). We will prove the converses.
Suppose that |A| > 1. It is not difficult to see that then there exists

a ∈ A such that a < 0. Then also 2a = a+ a < 0. By Proposition 2.1, the
matrices

e =

(
0 a
a 2a

)
and f =

(
2a a
a 0

)

are idempotent. If they would commute, then
(
2a a
3a 2a

)
= ef = fe =

(
2a 3a
a 2a

)
,

in particular a = 3a, which implies 2a = 0. This contradicts with 2a < 0.
So (M2(A), ·) is not inverse. Note also that

(fe)2 =

(
2a 3a
a 2a

)
·
(
2a 3a
a 2a

)
=

(
4a 5a
3a 4a

)
̸=

(
2a 3a
a 2a

)
= fe,

so (M2(A), ·) is orthodox neither.
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