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Morita equivalence of certain crossed
products

Adriana Mejia Castaño

Abstract. We introduce an alternative criterion for Morita equivalence
over graded tensor categories using equivariant centers and equivariantiza-
tions.

1 Introduction and Preliminaries

The concept of Morita equivalence in tensor categories shares similarities
with its counterpart in ring theory. In ring theory, two rings are considered
Morita equivalent if there exists an invertible bimodule category connect-
ing them. Similarly, in tensor categories, the notion of Morita equivalence
arises when an invertible bimodule category can be established between two
categories. This relationship provides valuable insights into the structure of
the categories themselves.

While Morita equivalence has been extensively studied in the context
of fusion categories, primarily through the examination of their centers, re-
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cent advancements [7] have broadened its scope to encompass graded tensor
categories. This paper presents a novel criterion for characterizing Morita
equivalence in graded tensor categories by leveraging equivariant centers
and equivariantizations. Notably, the identification of Morita equivalence
can be expedited when the Brauer Picard groups are known, offering an
efficient approach to establishing the equivalence relationship.

To generalize the properties of fusion categories to finite tensor cate-
gories, we utilize the concept of an exact module category, which was intro-
duced by Etingof and Ostrik [5, Section 3]. Exact module categories offer
an intermediary restriction between the semisimple module categories of a
fusion category and more general cases that may not be semisimple or finite.
This work contributes by providing comprehensive proofs for certain results
that were previously established solely in the semisimple setting.

First, building upon the work of [8], we describe the center of a G-
graded tensor category in terms of its trivial component. Consequently, the
center can be understood in relation to a smaller category

Z(C) ≃ ZC1(C)G.

Second, inspired by [9], we provide an explicit description of tensor
functors between categorical duals. As a valuable application, we establish
conditions under which two equivariantizations become equivalent. By com-
bining these results, we demonstrate that two G-graded tensor categories, C
and D, possess equivalent centers if and only if certain conditions are met.
Specifically, there must exist:

1. S a G-equivariant ZC1(C)-module category,

2. a faithfull Gop-grading in EndeZC1 (C⋊G)(S) such that

(EndeZC1 (C⋊G)(S))1 ≃ D.

Then, as a Corollary, we stablish an alternative criterion to prove
Morita equivalence over graded tensor categories.
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2 Center of a tensor category

In this section, we generalized and proved in detail some results of Gelaki,
Naidu and Nikshych [8] about the center of a tensor category. In partic-
ular we show an equivalence of braided categories between the center of a
category and an equivariantization of a certain relative center.

Definition 2.1. Let C be a finite tensor category and D be a full tensor
subcategory of C. The relative center ZC(D) (or equivariant center following
the notation of [7]) is the tensor category where

• objects: are the pairs (M,γ) where M is an object of D and {γX :
X⊗M → M⊗X}X∈C is a natural family of isomorphism, called the
central structure such that

(γX⊗ idY )α
−1
X,M,Y (idX ⊗γY ) = α−1

M,X,Y γX⊗Y α
−1
X,Y,M , (2.1)

where α denotes the associativity constraints in C.
• arrows from (M,γ) → (M ′, γ′): are morphisms f :M →M ′ in C such
that (f⊗ idX)γX = γ′X(idX ⊗f), for all X ∈ C.

• tensor product for (X, γ), (X ′, γ′) ∈ ZD(C) given by

(X, γ)⊗(X ′, γ′) := (X⊗X ′, α−1
X,X′.−(idX ⊗γ′)αX,−,X′(γ⊗ idX′)α−1

−,X,X′),

• unit object (1, id),

• duals (X, γ)∗ := (X∗, γ∗∗(−)).

This construction is a special case of a more general construction
considered by Majid in [12, Definition 3.2], and it is a generalization of the
categorical center Z(C) := ZC(C), or Drinfeld center of C. Making an abuse
of notation, denoted each element (X, γ) in ZD(C) by X.

Definition 2.2. Let G be a finite group and G be the monoidal category
whose objects are elements of G, morphisms are identities and the tensor
product is given by the multiplication in G. An action of G over C is
a monoidal functor (∗, µ) : G → Aut⊗(C) with monoidal structure ξg,h :

(gh)∗ → g∗h∗ for all g, h ∈ G; and the tensor structure of g∗ is µX,Y
g :

g∗(X⊗Y ) → g∗(X)⊗g∗(Y ).
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Example 2.3. [8, Section 3.1] Let C be a faithful G-graded tensor category
and D = C1. There is an action of G over ZD(C):

Consider the faithful G-grading on ZD(C) =
⊕

g∈G ZD(Cg) (follows
from [13, Theorem 5.13, Proposition 5.15 and Theorem 5.19]). Since Z(D) ≃
FunD⊠Drev(D,D) [2, Prop 7.13.8], we obtain equivalences of Z(D)-bimodule
categories [8, Proposition 3.1], where D′ = D⊠Drev

Lg,h : ZD(Ch) → FunD′(Cg, Chg), Rg,h : ZD(Ch) → FunD′(Cg, Cgh)
W 7→W⊗− W 7→ −⊗W.

We need ∗ : G → Aut⊗(ZD(C)) a monoidal functor. Since the center
is graded, consider the following equivalence

ZD(Ch)
Rg,h−−−→FunD⊠Drev(Cg, Cgh)

L−1

g,ghg−1−−−−−→ ZD(Cghg−1)

Y 7→ − ⊗Y ≃ g∗(Y )⊗− 7→ g∗(Y ),

in other words, for each Y ∈ ZD(Ch), in FunD⊠Drev(Cg, Cgh) the functor−⊗Y
as to be natural equivalent to some functor Y ′⊗− for Y ′ ∈ ZD(Cghg−1), then
Y ′ = g∗(Y ). Define

g∗ =
⊕

h∈G
L−1
g,ghg−1Rg,h : ZD(C) → ZD(C).

In particular, there exists a natural family of isomorphisms in C

cgX,Y : X⊗Y → g∗(Y )⊗X, X ∈ Cg, Y ∈ ZD(C), g ∈ G. (2.2)

Consider the following natural isomorphism

g∗(X⊗Y )⊗Z
(cgZ,X⊗Y )−1

−−−−−−−→ Z⊗(X⊗Y )
α−1
Z,X,Y−−−−→ (Z⊗X)⊗Y

cgZ,X⊗ id
−−−−−→

(g∗(X)⊗Z)⊗Y αg∗(X),Z,Y−−−−−−−→ g∗(X)⊗(Z⊗Y )
id⊗cgZ,Y−−−−−→ g∗(X)⊗(g∗(Y )⊗Z)

α−1
g∗(X),g∗(Y ),Z−−−−−−−−−→ (g∗(X)⊗g∗(Y ))⊗Z,
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for Z ∈ Cg, X,Y ∈ ZD(C), g ∈ G; so it induces µX,Y
g : g∗(X⊗Y ) →

g∗(X)⊗g∗(Y ) a natural isomorphism. Finally, if g, h ∈ G and (X,Y ) ∈
Cg × Ch, then for all Z ∈ ZD(C) the following natural isomorphism

(gh)∗(Z)⊗(X⊗Y )
(cghX⊗Y,Z)−1

−−−−−−−→ (X⊗Y )⊗Z αX,Y,Z−−−−→ X⊗(Y⊗Z)
id⊗chY,Z−−−−−→

X⊗(h∗(Z)⊗Y )
α−1
X,h∗(Z),Y−−−−−−−→ (X⊗h∗(Z))⊗Y

cg
X,h∗(Z)

⊗ id
−−−−−−−−→ (g∗h∗(Z)⊗X)⊗Y

αg∗h∗(Z),X,Y−−−−−−−−→ g∗h∗(Z)⊗(X⊗Y ),

induces ξg,h : (gh)∗ → g∗h∗ a natural isomorphism. Then we obtain an
G-action over ZD(C).

This action allows us to define new structures of tensor categories, has
the equivariantization and crossed products.

Definition 2.4. Given an action of G over C, the G-equivariantization of
C, denoted by CG, is a tensor category where

• objects: are the pairs (X,ug)g∈G where X ∈ C and ug : g∗(X) → X
are isomorphism such that

ug ◦ g∗(uh) = ughξg,h, for all g, h ∈ g.

• arrows from (X,ug) → (Y, vg): are morphisms f : X → Y in C such
that fug = vgg∗(f);

• tensor product: is (X,ug)⊗(Y, vg) = (X⊗Y, (ug⊗vg)µX,Y
g ), for all g ∈

G.

The next notion was introduced by Kirillov Jr. and Muger [11], [14].

Definition 2.5. A braided G-crossed tensor category C is a G-graded tensor
category C equipped with the following structures for all X ∈ Cg, g, h ∈
G, Y, Z ∈ C:

• an action (∗, ξ) of G over C such that g∗(Ch) ⊆ Cghg−1 ,

• a natural collection of isomorphisms, called the G-braiding,

cgX,Y : X⊗Y → g∗(Y )⊗X
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such that, if Y ∈ Ch,
(ξ

−1

hgh−1,h
(Y )⊗ idh∗(X))c

hgh−1

h∗(X),h∗(Y )
µ
X,Y
h

= (ξ
−1
h,g(Y )⊗ idh∗(X))µ

g∗(Y ),X
h

h∗(c
g
X,Y

); (2.3)

(idg∗(Y ) ⊗c
g
X,Z

)αg∗(Y ),X,Z(c
g
X,Y

⊗ idZ) = αg∗(Y ),g∗(Z),X (µ
Y,Z
g idX )c

g
X,Y ⊗Z

αX,Y,Z ; (2.4)

(c
g
x,h∗(Z)

⊗ idY )α
−1
X,h∗(Z),Y

(idX ⊗c
h
Y,Z)αX,Y,Z = α

−1
g∗h∗(Z),X,Y

(ξg,h(Z)⊗ id
XỸ

)c
gh
X⊗Y,Z

. (2.5)

Example 2.6. [8, Theorem 3.3] Let C be a faithfull G-graded tensor cate-
gory. The relative center ZD(C) as a canonical braided G-crossed category
structure:

We can assume that C is strict. Consider the action given in Example
2.3, then by the definition for all g, h ∈ G,

g∗(ZD(Ch)) = L−1
g,ghg−1Rg,hZD(Ch) ⊂ ZD(Cghg−1),

and the G-braiding given in Equation (2.2). We prove Equation (2.3):

Let Z ∈ Ch, X ∈ Ch−1gh, Y ∈ ZD(C). Then using the definition of ξ
and µ we obtain

((ξhgh−1,h(Y )⊗ idh∗(X))(ch∗(X),h∗(Y ))(µ
X,Y
h )⊗ idZ

= [chgh∗(X)⊗Z,Y (idh∗(X)⊗(chZ,Y )
−1)(chgh

−1

h∗(X),h∗(Y )⊗ idZ)
−1]

(chgh
−1

h∗(X),h∗(Y )⊗ idZ)(µ
X,Y
h ⊗ idZ)

= chgh∗(X)⊗Z,Y (idh∗(X)⊗(chZ,Y )
−1)(µX,Y

h ⊗ idZ)

= chgh∗(X)⊗Z,Y (idh∗(X)⊗(chZ,Y )
−1)[(idh∗(X)⊗chZ,Y )

(chZ,X⊗ idY )(c
h
XY,Z)

−1]

= chgh∗(X)⊗Z,Y (c
h
Z,X⊗ idY )(c

h
XY,Z)

−1,

and

((ξh,g(Y )⊗ idh∗(X))µ
g∗(Y ),X
h h∗(c

g
X,Y ))⊗ idZ

= chgh∗(X)⊗Z,Y (idh∗(X)⊗cgZ,Y )−1(chh∗(X),g∗(Y )⊗ idZ)
−1

◦ (idh∗g∗(Y )⊗chZ,X)(chZ,g∗(Y )⊗ idX)(chg∗(Y )X,Z)
−1(h∗(c

g
X,Y )⊗ idZ).

Since ch and ch⊗ Id are natural then

(chg∗(Y )X,Z)
−1(h∗(c

g
X,Y )⊗ idZ) = (idZ ⊗cgx,Y )(chXY,Z)

−1,
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(chh∗(X),g∗(Y )⊗ idZ)
−1(idh∗g∗(Y )⊗chZ,X)

(chZ,g∗(Y )⊗ idX) = (idh∗(X)⊗τY )chX,Zg∗(Y ) =

(idh∗(X)⊗cgZ,Y )(chZ,X⊗ idY )(idZ ⊗cgX,Y )
−1,

then we obtain Equation (2.3). In the same way, we prove Equation (2.4)
and (2.5).

This structure allows us to give a braided structure to an equivari-
antization. In particular, (ZD(C))G is a braided tensor category.

Proposition 2.7. [8, Theorem 2.12] If C is a braided G-crossed tensor
product, then CG is a braided tensor category.

Proof. For (X,ug)g∈G, (Y, vg)g∈G ∈ CG define

ĉX,Y = (
⊕

g∈G
vg⊗ idXg)(

⊕

g∈G
cgXg ,Y

)

where
ĉX,Y : (X⊗Y, (ug⊗vg)µX,Y

g ) → (Y⊗X, (vg⊗ug)µY,Xg ), (2.6)

explicitly

X⊗Y =
⊕

g∈G
Xg⊗Y

⊕
g∈G cgXg,Y−−−−−−−−→

⊕

g∈G
g∗(Y )⊗Xg

⊕
g∈G vg⊗ idXg−−−−−−−−−−→

⊕

g∈G
Y⊗Xg = Y⊗X.

This morphism is in CG:

ĉX,Y (ug⊗vg)µX,Y
g = (

⊕

h∈G
vh⊗ idXh

)(
⊕

h∈G
chXh,Y

)(ug⊗vg)µX,Y
g

=
⊕

h∈G
[(vh⊗ idXh

)(v−1
h vghξghg−1,g⊗ug)cghg

−1

g∗(Xh),g∗(Y )µ
X,Y
g ]

=
⊕

h∈G
[(vh⊗ idXh

)(v−1
h vghξ

−1
g,h⊗ug)µ

g
h∗(Y ),Xg∗(c

h
Xh,Y

)]

=
⊕

h∈G
[(vgg∗(vh)⊗ug)µgh∗(Y ),Xg∗(c

h
Xh,Y

)]
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=
⊕

h∈G
[(vg⊗ug)µgY,Xg∗(vh⊗ idXh

)g∗(chXh,Y
)]

= (vg⊗ug)µgY,Xg∗(ĉX,Y ),

in the first equality we use the definition of ĉ, in the second that c is natural,
in the third Equation (2.3), in the forth that (Y, vg) is an equivariant object,
in the fifth that µg is natural, in the sixth the definition of ĉ. Moreover, ĉ
is natural since c and vg are natural transformations. Conditions over ĉ be
a braiding are equivalents to Equations (2.4) and (2.5).

These constructions allow us to give another description of the Drin-
feld’s center of the category C.
Theorem 2.8. [8, Theorem 3.5] If C is a G-graded tensor category, ZD(C)G ≃
Z(C) as braided tensor categories, where D = C1.

Proof. We can assume that C is strict. Consider the following braided
functor F : ZD(C)G → Z(C) given by F ((X, γ), u) = (X, τ) where τY =
(ug⊗ IdY )c

g
Y,X if Y ∈ Cg.

We first check that F is well defined: Consider B ∈ Cg, A ∈ Ch, X ∈
ZD(C), then

(τA⊗ idB)(idA⊗τB)
= (uh⊗ idAB)(c

h
A,Y ⊗ idB)(idA⊗ug⊗ idB)(idA⊗cgB,X)

= (uh⊗ idAB)(h∗(ug)⊗ idAB)(c
h
A,g∗(X)⊗ idB)(idA⊗cgB,X)

= (uhh∗(ug)⊗ idAB)(ξh,g⊗ idAB)c
hg
AB,X

= (uhg⊗ idAB)c
hg
AB,X = τAB,

here we use in the first equality the definition of τ , in the second that
chA,−⊗ idB is natural, in the third the definition of ξh,g, in the fourth that
X is equivariant. Then F ((X, γ), u) ∈ Z(C). Consider f a morphism in
ZD(C)G and define Ff = f , then f is a morphism in Z(C), since cgY,− is
natural and f is equivariant morphism.

The tensor structure of F is given by the identity idX⊗Y , since

F (((X, γ), ug)⊗((Y, τ), vg)) =(X⊗Y, ((ug⊗vg)µX,Y
g ⊗ id)cg−,X⊗Y )



Morita equivalence of certain crossed products 111

F ((X, γ), ug)⊗F ((Y, τ), vg) =(X⊗Y, (idX ⊗(vg⊗ id)cg−,Y )

((ug⊗ id)cg−,X)⊗ idY )

and for Z ∈ Cg

((ug⊗vg)µX,Y
g ⊗ idZ)c

g
Z,X⊗Y = (ug⊗vg)(idg∗(X)⊗cgZ,Y )(c

g
Z,X⊗ idY )

=(idX ⊗vg⊗ idZ)(ug⊗ idg∗(Y )⊗Z)(idg∗(X)⊗cgZ,Y )(c
g
Z,X⊗ idY )

=(idX ⊗(vg⊗ id)cg−,Y )((ug⊗ id)cg−,X)⊗ idY ,

here we use in the first equality the definition of µg, in the second and third
that (f⊗f ′) = (id⊗f)(f ′⊗ id), for any morphisms f, f ′.

Let U : Z(C) → ZD(C) be the forgetful functor where U(Y, c−,Y ) =
(Y, c−,Y |D), and consider the functor

G : Z(C) → ZD(C)G

G(Y, c−,Y ) = (U(Y, c−,Y ), ug)

where ug is induced by the following natural isomorphism

cX,Y (c
g
X,Y )

−1 : g∗(Y )⊗X → Y⊗X, for X ∈ Cg

and cg is defined in Equation (2.2). We check that G is well defined: we
have to prove that ughξ

−1
g,h = ugg∗(uh) for all g, h ∈ G, this is equivalent,

using the definition of ug and ξ, to prove that for X ∈ Ch, Y ∈ Cg and
(Z, c−,Z) ∈ Z(C),

[cY X,Z(c
gh
Y X,Z

)
−1

][(c
gh
Y X,Z

)(idY ⊗(c
h
X,Z)

−1
)((c

g
Y,h∗(Z)

)
−1⊗ idX )][(id⊗c

g
Y,X

)
−1

µ
g
h∗(Z),X

] = (2.7)

[(cY,Z⊗ idX )((c
g
Y,Z

)
−1⊗ idX )][(id⊗(c

g
Y,X

)
−1

)(µ
g
Z,X

idY )][(g∗(cX,Z)⊗ idY )(g∗(c
h
X,Z)

−1⊗ idY )], (2.8)

then

(2.7) = cY X,Z(idY ⊗(chX,Z)
−1)(cgY,h∗(Z)X)−1

= cY X,Z(c
g
Y,XZ)

−1(g∗(chX,Z)⊗ idY )

= (cY,Z⊗ idX)(idY ⊗cX,Z)(c
g
Y,XZ)

−1(g∗(chX,Z)
−1⊗ idY )

= (cY,Z⊗ idX)(cgY,ZX)−1(g∗(cX,Z)⊗ idY )(g∗(chX,Z)
−1⊗ idY ) = (2.8),
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in the first equality we use the definition of µg, in the second that cg is
natural, in the third that c is braided, in the forth that cg is natural, in the
fifth the definition of µg.

Finally, F and G are quasi-inverse of each other:

F (G(Y, c−,Y )) = F ((Y, c−,Y |D)ug) = (Y, (ug⊗ id)cg−,X) = (Y, c−,Y ).

This implies that F is an equivalence of braided tensor categories.

3 Equivalences between equivariantizations

In this section, we generalized some results of Galindo and Plavnik [9] about
how to classify tensor equivalences between equivariantizations, when the
tensor category is not a fusion category. The main change when we work
over tensor categories not longer semisimple, is that the involved functors
have to be exacts.

The first step is to prove an equivalence between two categories [9,
Theorem 1.1]. Let C,D be finite tensor categories, M be a C-module cat-
egory and N be a D-module category. Consider the pairs (S, τ) with S
a (C,D)-bimodule category and τ : S⊠DN → M an equivalence of C-
module categories, the structure of C-module category of S⊠DN is given
in [10, Proposition 3.13]. Over these pairs defined the following relation:
(S, τ) ∼ (S ′, τ ′) if there exist ϕ : S → S ′ a (C,D)-bimodule equivalence and
a : τ → τ ′(ϕ⊠D IdN ) a natural isomorphism of left C-module functors.

Lemma 3.1. [9, Lemma 4.1] The relation ∼ is an equivalence relation.

Proof. Reflexive: (S, τ) ∼ (S, τ) since ϕ = Id is a (C,D)-bimodule equiva-
lence and a = id a natural isomorphism of left C-module functors.

Symmetric: if (S, τ) ∼ (S ′, τ ′) we have ϕ : S → S ′ is a (C,D)-bimodule
equivalence and a : τ → τ ′(ϕ⊠D IdN ) is a natural isomorphism, then there
exist ϕ̂ : S ′ → S a (C,D)-bimodule equivalence and â : τ ′(ϕ⊠D IdN ) → τ
a natural isomorphism. In particular there exists ζ : IdS ≃ ϕ̂ ◦ ϕ a natural
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isomorphism. Define a = â ◦ τ ′(ζ⊠D idN ) : τ ′ → (ϕ̂⊠D idN ) a natural
isomorphism of left C-module functors. Then (S ′, τ ′) ∼ (S, τ), using ϕ̂ and
a.

Transitive: suppose that (S, τ) ∼ (S ′, τ ′) via ϕ, a and (S ′, τ ′) ∼
(S ′′, τ ′′) via ϕ′, a′, then (S, τ) ∼ (S ′′, τ ′′) via ϕ′ ◦ ϕ, a′ ◦ a where

τ
a−→ τ ′(ϕ⊠D idN )

a′−→ τ ′′(ϕ′⊠D idN )(ϕ⊠D idN ) = τ ′′(ϕϕ′⊠D idN ).

Definition 3.2. Let FUNCT be the category with

• Objects: are the pairs (C,M) with C is a finite tensor category and
M is an exact indecomposable left C-module category,

• Arrows from (C,M) → (D,N ): are equivalence classes of tensor func-
tors from C∗

M to D∗
N , (notice that C∗

M := FunC(M,M) is a finite ten-
sor category if M is an indecomposable module category [5, Lemma
3.24]).

• Composition: is the equivalence class of usual composition of tensor
functors.

Let COR be the category with

• Objects: are the pairs (C,M) with C is a finite tensor category and
M is an exact indecomposable left C-module category,

• Arrows from (C,M) → (D,N ): are equivalence classes of pairs (S, τ)
via the relation ∼ previously defined, denoted each equivalence class
by (S, τ),

• Composition: (P, β)◦(S, τ) := (S⊠DP, τ(idS ⊠Dβ)αS,P,N ) : (C,M) →
(D,N ) → (E ,O), where α is the associativity constrain:

αS,P,N : (S⊠DP)⊠EO → S⊠D(P⊠EO).

Theorem 3.3. [9, Theorem 1.1] The category FUNCT is equivalent to the
category COR.



114 A. Mejia Castaño

We will construct a well defined full faithful and essentially surjective
functor between both categories, in order to prove the equivalency.

Proof. Consider the following functor

K : FUNCT → COR

(C,M) 7→ (C,M)

(F : D∗
N → C∗

M) 7→ (FunD∗
N (N ,MF ), ϵ),

where ϵ is the evaluation functor. N is a left D∗
N -module category, by

definition, with the action induced from T ×N 7→ T (N) for all T ∈ D∗
N and

N ∈ N . MF denoted the left N -module category where as abelian category
is M and the action is induced from T ×M 7→ (F (T ))(M) for M ∈ M.
This implies that the Abelian category

SF := FunD∗
N (N ,MF ) (3.1)

is well defined, where F is a representative of the class F .

Claim: SF is a left C-module category.

Consider the functor ⊗ : C × SF → SF where (X⊗γ)(N) = X⊗γ(N)
for X ∈ C, γ ∈ SF , N ∈ N . It is well defined: Consider ϕ ∈ D∗

N , γ ∈
SF , N ∈ N and X ∈ C then

ϕ⊗((X⊗γ)(N)) = F (ϕ)⊗(X⊗γ(N))

= F (ϕ)(X⊗γ(N))

= X⊗F (ϕ)(γ(N))

= X⊗(ϕ⊗γ(N))

= X⊗γ(ϕ⊗N)

= (X⊗γ)(ϕ⊗N)

= (X⊗γ)(ϕ(N))

where in the first equality we used the definition of the actions over MF

and ⊗, in the second the definition of the action of C over M, in the third
that F (ϕ) is a C-morphism, in the fourth the action over MF , in the fifth
that γ ∈ SF , in the sixth the definition of ⊗, in the last the action of D∗

N
over N . So, X⊗γ is a morphism of D∗

N -module categories.
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Moreover ⊗ is an exact functor, since the action ⊗ of C over M and
the following functor are exact: for each A ∈ N ,

ϵA : SF → M
γ 7→ γ(A).

Define forX,Y ∈ C, γ ∈ SF , N ∈ N the natural isomorphisms αX,Y,γ(N) :=
αX,Y,γ(N) and lγ(N) := lγ(N), where α, l are the associativity and unity

constrains of M as a C-module. Then (SF ,⊗, α, l) is a left C-module cate-
gory.

Claim: SF is a right D-module category.

Consider the functor ⊗ : SF ×D → SF where (γ⊗D)(N) = γ(D⊗N)
for D ∈ D, γ ∈ SF , N ∈ N . It is well defined: Consider ϕ ∈ D∗

N , γ ∈
SF , N ∈ N and D ∈ D then

ϕ⊗(γ⊗D)(N)) = ϕ⊗(γ(D⊗N))

= γ(ϕ⊗(D⊗N))

= γ(ϕ(D⊗N))

= γ(D⊗ϕ(N))

= γ(D⊗(ϕ⊗N))

= (γ⊗D)(ϕ⊗N)

= (γ⊗D)(ϕ(N))

where in the first equality we used the definition of the action over MF ,
in the second that γ ∈ SF , in the third the action of D∗

N over N , in the
fourth that ϕ is a D-morphism, in the fifth the action of D∗

N over N , in the
sixth the definition of ⊗, in the last the action of D∗

N over N . So, X⊗γ is
a morphism of D∗

N -module categories.

Moreover ⊗ is an exact functor since it is the composition of exact
functors. Define for X,Y ∈ D, γ ∈ SF , N ∈ N the natural isomorphisms
αX,Y,γ(N) := γ(αX,Y,N ) and rγ(N) := γ(rN ), where α, r are the associativ-
ity and unity constrains of N as a D-module. Then (SF ,⊗, α, r) is a right
D-module category.

If we define for X ∈ C, Y ∈ D, γ ∈ SF , N ∈ N , βX,γ,Y (N) =
idX⊗γ(Y⊗N) : ((X⊗γ)⊗Y )(N) → (X⊗(γ⊗Y ))(N), then SF is a (C,D)-
bimodule category.
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By [5, Theorem 3.31], there exists an equivalence of 2-categories be-
tween the 2-category of left D∗

N -module categories and the 2-category of
right D-module categories, since N is an exact D-module category; this
implies [9, Theorem 3.1] that the counit ϵ of this adjunction is a natural
2-transformation which is an equivalence of module categories, explicitly

ϵS : FunD∗
N (N ,S)⊠DN → S

γ⊠N 7→ γ(N),

for all S a D∗
N -module category. In particular, ϵ := ϵMF : SF⊠DN → MF

is an equivalence of D∗
N -module categories. Moreover, it is clear that ϵ is

also a morphism of C-module categories. Then (SF , ϵ) is an object of COR.

Claim: The pair (SF , ϵ) does not depend on the equivalence class of
F .

Let F,G : D∗
N → M be the tensor functors such that θ : F → G is

a tensor natural isomorphism. Then θ̂ := (IdM, θ⊗ id) : MF → MG is an
equivalence of D∗

N -module categories. Since if ϕ ∈ D∗
N , then for all M ∈ M

IdM(ϕ⊗FM) = F (ϕ)⊗M θϕ⊗ id−−−−→ G(ϕ)⊗M = ϕ⊗G Id(M).

θ̂ induced by θ : FunD∗
N (N ,MF ) → FunD∗

N (N ,MG) is a (C,D)-bimodule

equivalence; then SF ≃ SG as (C,D)-bimodule categories, explicitly, θ(γ) =
γ for γ ∈ SF . Then if a := id : ϵF → ϵG(θ⊠D id), we obtain (SF , ϵF ) ∼
(SG, ϵG).

By [9, Lemma 4.2], the functorK is contravariant. A continuation, we
proved that K is a full functor, in other words, for any pairs (C,M), (D,N ),
the map

HomFUNCT ((D,N ), (C,M)) → HomCOR(F (D,N ), F (C,M))

F 7→ (SF , ϵ)

is surjective. Consider the next map for each (S, τ) an arrow in COR

L : D∗
N → M
F 7→ τ(IdS ⊠DF )τ

∗,
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where τ∗ : M → S⊠DN is the quasi-inverse of τ . By [9, Lemma 4.3], L
does not depend on the election of the representing (S, τ). L is well defined
since τ is an equivalence of C-module categories and the left action of C over
S⊠DN is over the first component.

Claim: L is an arrow in FUNCT.

Consider F,G ∈ D∗
N and remember that the tensor product in D∗

N is
the composition. Using τ∗ is the quasi-inverse of τ , we obtain

L(F ) ◦ L(G) = τ(IdS ⊠DF )τ
∗τ(IdS ⊠DG)τ

∗

≃ τ(IdS ⊠DFG)τ
∗

= L(F ◦G).

Since L is the composition of functors, L is a tensor functor.

Claim: The assignment (S, τ) 7→ L 7→ (SL, ϵ) is an identity.

Define ϕ : S → SL, ϕ(s)(N) = τ(s⊠DN) for s ∈ S,N ∈ N . ϕ is well
defined since for γ ∈ D∗

N

γ⊗ϕ(s)(N) = L(γ)(ϕ(s)(N))

= τ(id⊠γ)τ∗(τ(s⊠N))

≃ τ(s⊠γ(N))

= ϕ(s)(γ⊗N).

It is clear that ϕ is an equivalence of left C-module categories. If Y ∈ D

ϕ(s⊗Y )(N) = τ((s⊗Y )⊠DN)

= τ(s⊠D(Y⊗N))

= ϕ(s)(Y⊗N)

= (ϕ(s)⊗Y )(N),

then ϕ is an equivalence of (C,D)-bimodules. Since ϵ(ϕ⊠D id) = τ , take
a = id. This implies that (S, τ) ∼ (SL, ϵ).

Then, the map F 7→ SF , ϵ is surjective and K is a full functor. A
continuation we proved that K is faithful.

Claim: The assignment F 7→ (SF , ϵ) 7→ L is an identity.
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By definition, for all a ∈ D∗
N , we have L(a) = ϵ(id⊠a)ϵ∗. For γ ∈ SF ,

N ∈ N we have

ϵ(id⊠a)(γ⊠N) = γ(a(N))

= a⊠Fγ(N)

= F (a)(γ(N))

= F (a)ϵ(γ⊠N),

this implies that L(a) = F (a)ϵϵ∗ ≃ F (a), then F ≃ L as tensor functors.

K is essentially surjective since K(C,M) = (C,M), then K is an
equivalence of categories.

As a corollary, we can describe tensor functors between equivarianti-
zations [9, Corollary 5.9]. Let (∗, µ) : G→ Aut⊗(C) be a monoidal functor.
Denoted by ψ : g∗(X ⊗ Y ) ≃ g∗(X)⊗ g∗(Y ) the associated natural isomor-
phisms.

Consider in FUNCT the following objects (D ⋊H,D) and (C ⋊G, C)
for C,D finite tensor categories and G,H finite groups acting over C and D,
respectively:

⊗ : (D ⋊H)×D → D, ⊗ : (C ⋊G)× C → C
[A, h]×B 7→ A⊗h∗(B) [C, g]×D 7→ C⊗g∗(D),

where we are doing an abuse of notation calling ()∗ two different actions
over C and D.

Given an arrow F : (C ⋊ G, C) → (D ⋊ H,D), there exists F : (C ⋊
G)∗C → (D ⋊ H)∗D a tensor functor; and K(F ) is an arrow in COR which
has associated the following data:

• SF = Fun(C⋊G)∗C
(C,DF ) (from Equation (3.1)) a (D ⋊ H, C ⋊ G)-

bimodule category, which is invertible by [9, Proposition 5.1]. Denoted
by S := (SF )

op as left C⋊G-module category where the action is given
by a⊗s = s⊗a∗ for a ∈ C ⋊G, s ∈ S.

• ϵ : SF⊠C⋊GC → D an equivalence of D ⋊H-module categories.
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Then, as left D ⋊H-module categories we have

D ≃ SF⊠C⋊GC
≃ FuneC⋊G(S, C)
≃ FuneC⋊G(C, S)op,

when second equivalence is due to [10, Theorem 3.20] and FuneC⋊G(S, C) are
the exact functors.

We want to describe strict C ⋊G-module categories in terms of strict
C-module categories plus some additional invariant G structure.

Definition 3.4. A G-equivariant C-module category is a C-module category
M equipped with a G-graded monoidal functor (∗, µ) : G → AutGC (M),
in other words, for each g ∈ G, there exists an C-module automorphism
M ≃ Mg∗ . A G-equivariant C-module functor between two G-equivariant
module categories M and N is a C-module functor (F, α) : M → N and
(F, τ) is G-linear with natural isomorphisms τg,M : F (g ∗M) → g ∗ F (M)
such that

(idg αX,M )τg,XMF (ψX,M ) = ψX,F (M)(idg∗X ⊗τg,M )αg∗X,g∗M . (3.2)

Here we make an abuse of notation using ∗ also for the action of G
over C. The next lemma, was firstly introduced in [17, Section 2].

Lemma 3.5. There is a 2-equivalence between the 2-category of C ⋊ G-
module categories and the 2-category of G-equivariant C-module categories.

Proof. Over 0-cells, following [6, Proposition 5.12], there is a bijective cor-
respondence between C ⋊G-module categories and G-equivariant C-module
categories, where

• given (M,⊗) a structure of C ⋊G-module category, we defined

⊗ : C ×M → M ∗ : G×M → M
X ⊗M = [X, 1]⊗M g ∗M = [1, g]⊗M,
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• given (M,⊗, ∗) a structure of G-equivariant C-module category, we
defined

⊗ : C ×M → M
[X, g]⊗M = X ⊗ (g ∗M).

Over 1-cells, consider (F, c) : M → N a C ⋊ G-module functor and
define the following natural isomorphisms αX,M := c[X,1],M : F (X ⊗M) →
X ⊗ F (M) and τg,M := c[1,g],M : F (g ∗M) → g ∗ F (M). Then c can be
decompose as

c[X,g],M = (id[X,1]⊗τg,M )αX,[1,g]⊗M . (3.3)

Consider the following diagram, where
A = F ([X, g][Y, h]M), B = [X, g][Y, h]F (M), C = F ([1, h]M)

[X(g ∗ Y ), 1]F ([1, gh]M)

[X, 1]F ([1, g][Y, h]M) A B [X, g][Y, 1]C

[X, g]F ([Y, h]M)

id⊗τg,h∗M
τ2

idX⊗αg∗Y,(gh)∗M

id⊗τg,[Y,h]M

α1 c[X,g][Y,h],M

α2 c[X,g],[Y,h]M
τ1

id⊗αY,h∗M

c1

(3.4)

where

• the middle bottom triangle is equivalent to (F, c) is a C ⋊G-linear,

• left and right bottom, and middle up triangles are equivalent to Equa-
tion (3.3), with α1 = αX(g∗Y ),(gh)∗M , α2 = αX,[g∗Y,gh]M , τ1 = id ⊗
τh,M , τ2 = id⊗ τgh,M , c1 = id⊗ c[Y,h],M ,

• the left up triangle is equivalent to (F, α) is C-linear,
• the right up triangle is equivalent to (F, τ) is G-linear,

• external diamond is Equation (3.2).

Therefore, (F, c) is a C ⋊ G-module functor is equivalent to (F, α, τ)
is a G-equivariant C-module functor.
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Then it is possible to consider the category of equivariant objects in
S, denoted by SG.

Denoted also by µg,h : (gh)∗ → g∗h∗ the tensor structure of ∗ in-
duced by the associativity constrain of the C ⋊G-action over S; and cgX,s :
g∗(X⊗s) → g∗(X)⊗g∗(s) for X ∈ C, s ∈ S is induced by

[1, g]⊗X = [g∗(X), g] = g∗(X)⊗[1, g], for all g ∈ G,X ∈ C.

Lemma 3.6. [9, Remark 5.8.3] FuneC⋊G(C, S) ≃ SG as categories.

Proof. Defined

φ : FuneC⋊G(C, S) → SG

φ(F, ζ) = (F (1), ζ−1
[1,g],1)

φ(η) = η1,

where (F, ζ) is a functor of C ⋊ G-modules with ζ[X,g],Y : F ([X, g]⊗Y ) ≃
[X, g]⊗F (Y ) is the structure of C ⋊G-module over F , for X,Y ∈ C, g ∈ G;
and η : (F, ζ) → (F ′, ζ ′) is a natural transformation. If for g, h ∈ G

ζ−1
[1,g],1(id[1,g]⊗ζ

−1
[1,h]1) = ζ−1

[1,gh],1(m⊗ idF (1))α
−1
[1,g],[1,h],F (1),

then φ(F, ζ) is an equivariant object. We will denote [1, g] = g in C ⋊
G. Since η is a natural transformation, ζ ′g,1η1 = (idg ⊗η1)ζg,1 which is

equivalent to η1 is a morphism in SG. Then φ is well defined.

For (s, ug) ∈ SG, consider the functor of C⋊G-modules (−⊗s, ζ) with

ζ[Y,g],Z = (idY ⊗(cgZ,s)
−1)(idY⊗g∗Z ⊗u−1

g ), for Y,Z ∈ C.

(F, ζ) is an exact functor since the action of C over S is an exact functor.
Then φ is essentially surjective.

Consider f ∈ HomSG(φ(F, ζ), φ(F ′, ζ ′)) and defined

ηX = id[X,1]⊗f : [X, 1]⊗F (1) = F (X) → F ′(X) = [X, 1]⊗F ′(1).



122 A. Mejia Castaño

Consider β : X → Y in C, it induces β : [X, 1] → [Y, 1] in C ⋊ G and we
obtain

(β⊗ idF ′(1))(id[X,1]⊗f) = (id[Y,1]⊗f)(β⊗ idF (1)),

this implies that η is a natural transformation. It is clear that the assign-
ments f 7→ η = id⊗f 7→ φ(η) and η 7→ φ(η) 7→ id⊗η1 are identities. This
implies that φ is full and faithfull functor. Then φ is an equivalence of
categories.

Then, we induced over SG a structure of right D⋊H-module category,
and we obtain

D ≃ (SG)op

as left D ⋊ H-module category. Moreover SG results a (CG,EndeC⋊G(S))-
bimodule category [9, Remark 5.8(3)]. Since S is an invertible (C⋊G,D⋊H)-
bimodule category we obtain

EndeC⋊G(S) ≃ Sop⊠C⋊GS ≃ D ⋊H,

then SG is a (CG,D ⋊H)-bimodule category. Moreover SG is invertible as
(CG,D ⋊H)-bimodule category:

(SG)op⊠CGSG ≃ EndeCG(S
G) ≃ EndeC⋊G(S) ≃ D ⋊H,

since the module categories over C⋊G and CG are in bijective correspondence
[15, Proposition 3.2]. By [3, Proposition 4.2], the functor

R : (D ⋊H)op → EndeCG(S
G) ≃ EndeC⋊G(S)

X 7→ −⊗X

is an equivalence of tensor categories. Now, since D ⋊H is an H-grading,
then EndeC⋊G(S) as an Hop-grading, so as left D ⋊ H-module categories
(SG)op ≃ D ≃ (D ⋊ H)1 and as right D ⋊ H-module categories SG ≃
(D ⋊H)op1 ≃ (EndeC⋊G(S))1, then as left (EndeC⋊G(S))1-module categories

SG ≃ (EndeC⋊G(S))1.

This proves the following Theorem.
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Theorem 3.7. [9, Theorem 5.11] DH is tensor equivalent to CG if, and
only if, there exist a G-equivariant C-module category S and a faithfull Hop-
grading in EndeC⋊G(S) such that (EndeC⋊G(S))1 ≃ D and DH ≃ (EndeC⋊G(S))

H
1 .

Remark 3.8. S has a structure of invertible (C ⋊ G,D ⋊ H)-bimodule
category, then it is a simple [2, Exercise 4.3.11](and exact indecomposable)
bimodule category. Regarding the left structure, S is also an exact left
C⋊G-module category: consider P ∈ C a projective object andM ∈ S then
P ⊗M ≃ (P ⊗ 1)⊗M is projective.

Corollary 3.9. ZD1(D)H ≃ ZC1(C)G as tensor categories if, and only if,
there exist

• S a G-equivariant ZC1(C)-module category,

• a faithfull Hop-grading in EndeZC1 (C)⋊G(S) such that

(EndeZC1 (C)⋊G(S))1 ≃ D.

Remark 3.10. Since S is also an exact ZC1(C)⋊G-module category, by [2,
Cor 7.10.5], there exists an algebra B ∈ ZC1(C)⋊G such that S is equivalent
to the B-modules in ZC1(C)⋊G. Then, by [2, Prop 7.11.1], we obtain

D ≃ EndeZC1 (C)⋊G(S))1 ≃ (B(ZC1(C)⋊G)B)1

X 7→ − ⊗X 7→ B ⊗X.

Example 3.11. Consider C a G-graded finite tensor category and let A be
an algebra in C such that AC, the category of left A-modules in C, is an exact
indecomposable C-module category. Then the category of A-bimodules in
C, ACA, is also G-graded and [2, Cor 7.16.2 and Rmk 7.12.5]

ZC1(C)G ≃ Z(C) ≃ Z(ACA) ≃ Z
A(C1)A(ACA)G,

then Corollary 3.9 implies that there exist

• S a G-equivariant ZC1(C)-module (equivalently, (ZC1(C)⋊G)-module
category (Lemma 3.5)),
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• a graduation where (EndeZC1 (C)⋊G(S))1 ≃ ACA.

Then

ACA ≃ (EndeZC1 (C)⋊G(S))1 ≃ (B(ZC1(C)⋊G)B)1

and the category of A-bimodules in C is a tensor subcategory of the category
of B-bimodules in ZC1(C)⋊G.

By [7] two graded tensor categories are Morita equivalent if, and only
if, their centers are braided crossed tensor equivalent; therefore Theorem 2.8
and Corollary 3.9 give us an extra condition to determined Morita equiva-
lence:

Corollary 3.12. There is a Morita equivalence between C and D if, and
only if, there exist

• S a G-equivariant ZC1(C)-module category,

• a faithfull Hop-grading in EndeZC1 (C)⋊G(S) such that

(EndeZC1 (C)⋊G(S))1 ≃ D.
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