Determinant and rank functions in semisimple pivotal Ab-categories

Document Type : Research Paper


Mathematical Sciences and Applications Laboratory, Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796, University Sidi Mohamed Ben Abdellah Fez, Morocco.


We investigate and generalize quantum determinants to semisimple spherical and pivotal categories. It is well known that traces are preserved by strong tensor functors; we show on one hand that in fact, weaker conditions on a functor are sufficient to continue preserving traces. On the other hand, we prove that these determinants are well-behaved under strong tensor functors. Further, we introduce a notion of domination rank for objects of a semisimple pivotal category and prove similar properties of the ordinary case. Furthermore, we expand the determinantal and McCoy ranks to introduce a morphism quantum rank function on a semisimple pivotal category.


Main Subjects

[1] Brown, W.C., “Matrices Over Commutative Rings”, Marcel Dekker, New York, NY, USA, 1993.
[2] Choulli, H., Draoui, K., and Mouanis, H., Quantum determinants in ribbon category, Categ. Gen. Algebr. Struct. Appl. 17(1) (2022), 203-232.
[3] Chuang, J. and Lazarev, A., Rank functions on triangulated categories, J. Reine Angew. Math. 781 (2021), 127-164.
[4] Day, B. and Pastro, C., Note on Frobenius monoidal functors, New York J. Maths. 14 (2008), 733-742.
[5] Geer, N., Kujawa, J., and Patureau-Mirand, B., Generalized trace and modified dimension functions on ribbon categories, Sel. Math. New Ser. 17 (2010), 453-504.
[6] Geer, N., Kujawa, J., and Patureau-Mirand, B., M-traces in (non unimodular) pivotal categories, Algebr. Represent. Theor. 25 (2021), 759–776.
[7] Geer, N., Patureau-Mirand, B., and Virelizer, A., Traces on ideals in pivotal categories, Quantum Topol. 4(1) (2013), 91-124.
[8] Karantha, M.P., Nandini, N., and Shenoy, D.P., Rank and dimension functions, Electron. J. Linear Algebra, 29 (2015), 144-155.
[9] Kassel, C., “Quantum Groups”, Gradute Texts in Mathematics, 155, Springerverlag, 1995.
[10] Mac-Lane, S., “Categories for the Working Mathematician”, Graduate Texts in Mathematics, 5, Springer-verlag, 2013.
[11] Ngoc Phu, H. and Huyen Trang, N., Generalization of traces in pivotal categories, J. Sci Technol. 17(4) (2019), 20-29.
[12] Turaev, V.G., “Quantum Invariants of Knots and 3-manifolds”, Berlin, Boston: De Gruyter, 2016.
[13] Turae, V.G. and Wenzl, H., Semisimple and modular categories from link invariants, Math. Ann. 309 (1997), 411-461.
[14] Turaev, V.G. and Virelizier, A., “Monoidal Categories and Topological Field Theory”, Progress in Mathematics, 322, Birkhuser/Springer, 2017.