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The Search for Universally Cancellable Exponents of Posets

Jonathan David Farley

Abstract. Let A, B, C, and D be posets. Assume C and D are finite with
a greatest element. Also assume that AC ∼= BD.

Then there exist posets E, X, Y , and Z such that A ∼= EX , B ∼= EY ,
C ∼= Y × Z, and D ∼= X × Z. If C ∼= D, then A ∼= B.

This generalizes a theorem of Jónsson and McKenzie, who proved it
when A and B were meet-semilattices.

1 Background

Bergman, McKenzie, and Nagy [1], building on the work of Jónsson, found
the first known class of universally cancellable exponents—non-empty chains—
meaning that ifA andB are posets and C a non-empty chain, thenAC ∼= BC

implies A ∼= B. Here, EX (E,X posets) is the set of order-preserving maps
from X to E, partially ordered pointwise: If f, g ∈ EX , then f ≤ g means
f(x) ≤ g(x) for all x ∈ X. See Figures 1 and 2 [7, page 54].
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∼=

Figure 1.1. EX where E is the 4-element crown and X the 2-element chain

Figure 1.2. PP where P is the 4-element crown

Professor Garrett Birkhoff conjectured—and McKenzie proved—that
if A, B, and C are non-empty finite posets, then AC ∼= BC implies A ∼=
B, but this is not a universal cancellation result [2, p. 300], [13], [14].
Besides non-empty chains, no other universally cancellable exponent has
been found—until now.

Every finite poset with a least or greatest element is universally can-
cellable as an exponent (Theorem 5 of Section 5, below).

Not every poset is universally cancellable: 2ℵ0 ∼= (2ℵ0)ℵ0 (since EX×Q ∼=
(EX)Q [4, Exercise 1.26]), but 2 ≇ 2ℵ0 .

What is amusing is that our proof (inspired by Krebs and van der
Zypen [11]) is more or less the same as Jónsson and McKenzie’s proof of
the following result: If A and B are ∧-semilattices and C a finite poset with
a greatest element, then AC ∼= BC implies A ∼= B (part of [10, Theorem
5.4]). They used an idea of Duffus, Jónsson, and Rival [8, Theorem (ii)],
and an idea of Dilworth and Freese, to take repeatedly the poset of filters of
a ∧-semilattice and then use a limiting construction [5, page 264]. What we
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mean above by “same” is that the same idea works to prove our universal
cancellation result, although we use ideas about algebraic posets of Erné [9].

2 Definition, notation, and terminology

Notation and definitions can be found in [4]. We denote the covering relation
in a poset by “⋖.”

Let A, B, P and Q be posets; P ∂ is the dual of P ; PQ was defined in
Section 1; for p ∈ P , ⟨p⟩ is the constant map, q 7→ p (for all q ∈ Q).

Given f ∈ BA, define a map fQ from AQ to BQ as follows: for g ∈ AQ,
fQ(g) = f ◦ g.

If Q ⊆ P , ↓Q is {p ∈ P | p ≤ q for some q ∈ Q}. Also, Q ⊆ P is a
down-set if ↓Q = Q. Dually, we define ↑Q;

⋂
{↑q | q ∈ Q} is denoted Qu.

A subset D ⊆ P is directed if D ̸= ∅ and for all d, d′ ∈ D, there exists
d′′ ∈ D such that d, d′ ≤ d′′. An ideal is a directed down-set. The poset of
ideals of P ordered by inclusion is denoted P σ.

If a directed subset D has a supremum
∨
D, we sometimes denote

it
⊔
D; the point is that the symbol

⊔
in front of D indicates that D is

directed. A function f : P → Q is Scott-continuous if whenever a directed
subset D ⊆ P has a supremum, so does f [D] and f(

⊔
D) =

∨
f [D].

An element k ∈ P is compact if, whenever D ⊆ P is directed with
supremum

⊔
D, k ≤

⊔
D implies k ≤ d for some d ∈ D. The poset of

compact elements of P is denoted κ(P ).

A poset is algebraic if every directed subset has a supremum and every
element is the supremum of a directed subset of compact elements. An
archetypal example is P σ. In this example, κ(P σ) = {↓p | p ∈ P} ∼= P and
the supremum of a directed subset of ideals of P is its union. Indeed, this
is up to isomorphism the only example of an algebraic poset [9, Proposition
3 and Corollary 2].

Let Poset be the category of posets together with order-preserving
maps. Let (Ci)i∈N0 be a family of posets, where N0 is the set of non-negative



4 J.D. Farley

integers, and let

(fij : Cj → Ci)i,j∈N0
j≤i

be a family of order-preserving maps with the following properties:

(1) fii = idCi for all i ∈ N0;

(2) fij ◦ fjk = fik for all i, j, k ∈ N0 such that k ≤ j ≤ i.

Then

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
is a filtered system in Poset.

Let SQ be

SQ =
(
(CQ

i )i∈N0 , (f
Q
ij : CQ

j → CQ
i )i,j∈N0

j≤i

)
.

Assume C is a poset and (fi : Ci → C)i∈N0 is a family of order-
preserving maps such that, for i, j ∈ N0, j ≤ i implies fi ◦ fij = fj . Then(

C, (fi : Ci → C)i∈N0

)
is compatible with S. It is a filtered limit of S if we assume further that,
whenever

(
C ′, (f ′i : Ci → C ′)i∈N0

)
is compatible with S, there is a unique

order-preserving map f : C → C ′ such that f ◦ fi = f ′i for all i ∈ N0. As
usual, the object C in a filtered limit is unique up to order-isomorphism. A
reference for directed sets and limits is [18].

The following notation comes from [10, Section 3]. Let A,B,C,D be
posets such that C,D ̸= ∅. Let ϕ : AC ∼= BD.

∆(ϕ) = {f ∈ AC | ϕ(f) is a constant map}

R(ϕ) = {x ∈ A | ⟨x⟩ ∈ ∆(ϕ)}

A relation ≤ϕ is defined on R(ϕ) as follows: x ≤ϕ y if and only if

(1) x, y ∈ R(ϕ);
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(2) x ≤ y in A;

(3) if f ∈ AC and f [C] ⊆ {x, y}, then f ∈ ∆(ϕ)

Define a map ϕ̊ from R(ϕ) to R(ϕ−1) as follows: for x ∈ R(ϕ), ϕ̊(x)
is the element y such that ϕ(⟨x⟩) = ⟨y⟩.

By “(ϕ, 1),” we mean: ≤ϕ is a partial ordering on R(ϕ).

By “(ϕ, 2),” we mean: ϕ̊ is a relation-preserving bijection from(
R(ϕ),≤ϕ

)
to (

R(ϕ−1),≤ϕ−1

)
and its inverse is relation-preserving.

By “(ϕ, 3),” we mean that ∆(ϕ) is the set of all relation-preserving
maps from (C,≤) to

(
R(ϕ),≤ϕ

)
.

By “(ϕ, 4),” we mean that ≤ϕ= {(x, y) ∈ R(ϕ)×R(ϕ) | x ≤ y}.

If α : A ∼= A′ and β : B ∼= B′ (A′, B′ posets), then

ϕ′(f ′) = β ◦ ϕ(α−1 ◦ f ′)

gives a map ϕ′ : A′C → B′D. For i ∈ {1, 2, 3, 4}, (ϕ, i) implies (ϕ′, i).

Below are results from [10] that we use. (Jónsson and McKenzie
proved more than what we list.)

Theorem 2.1. (From [10, Theorem 3.2].) If C = D and (ϕ, 1), (ϕ, 2),
(ϕ, 3), and (ϕ−1, 3), then A ∼= B.

Theorem 2.2. (From [10, Theorem 3.3].) If (ϕ, 1), (ϕ, 2), (ϕ, 3), (ϕ−1, 3),
and (ϕ, 4), then there exists a poset E such that A ∼= ED and B ∼= EC .

Lemma 2.3. (From [10, Lemma 4.1].) If D has a top or bottom element,
then (ϕ, 1).

We do not need to know what Jónsson and McKenzie mean by “Prop-
erty (a)” [10, Definition 4.2]; we only need the following:
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Lemma 2.4. (From [10, Corollary 4.3].) If C has a top element, then AC

has Property (a).

Lemma 2.5. (From [10, Lemma 4.5].) If AC and BD have Property (a),
then (ϕ, 2).

Jónsson and McKenzie call a poset atomic if, whenever p < q in P ,
there exists r ∈ P such that p⋖ r ≤ q [10, page 92]. We call a poset dually
atomic if its dual is atomic. A poset P is directly irreducible if |P | ̸= 1 and
whenever P ∼= E ×X we have |E| = 1 or |X| = 1.

Lemma 2.6. (From [10, Lemma 4.10].) If A and B are atomic posets and
C and D are finite directly irreducible posets with a greatest element, then
(ϕ, 3).

Lemma 2.7. (From [10, Lemma 4.8].) If A is an atomic poset, if C and
D have a top element and are directly irreducible, if BD has Property (a),
and if C ≇ D, then (ϕ, 4).

Lemma 2.8. (From [10, Lemma 5.3].) Let A′ and B′ be posets. Assume
A ⊆ A′ and B ⊆ B′. Assume ϕ : AC ∼= BD and ψ : A′C ∼= B′D. Assume
ϕ ⊆ ψ.

Then for i ∈ {1, 2, 3, 4}, (ψ, i) implies (ϕ, i).

3 Powers of algebraic posets and algebraic powers of posets

The main result of this section is that (PQ)σ ∼= (P σ)Q when P and Q are
posets and Q is finite (Corollary 3). Duffus, Jónsson, and Rival had proven
a special case of this theorem for P a lattice (so an “ideal” is the usual
lattice ideal) [8, Theorem (ii)], with Jónsson and McKenzie noting that (a
dual version of) this result held for semilattices [10, page 103].

We start with a familiar result (see [9, page 74], [19, Theorem 2.8],
and [4, Exercise 9.6]):

Lemma 3.1. Let A be an algebraic poset. Let Q be a poset such that every
directed subset has a supremum. Let f ∈ Qκ(A).

Then there exists a unique Scott-continuous map F : A→ Q such that
F ↾κ(A)= f . It is order-preserving.
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Proof. Let a ∈ A. Let D ⊆ κ(A) be any directed subset such that
⊔
D = a.

Note that since f is order-preserving, f [D] is directed, so
⊔
f [D] exists

by assumption. Define F (a) to be
⊔
f [D]. (We are forced to make this

definition, proving uniqueness.) We show that F is well-defined: IfD1, D2 ⊆
κ(A) are directed and

⊔
D1 =

⊔
D2, then ↓D1 = ↓D2. Thus for any

d1 ∈ D1, there exists d2 ∈ D2 such that d1 ≤ d2, so f(d1) ≤ f(d2) and
hence f(d1) ≤

⊔
f [D2]. Therefore

⊔
f [D1] ≤

⊔
f [D2] and by symmetry⊔

f [D1] =
⊔
f [D2].

Clearly F (k) = f(k) for k ∈ κ(A): let D = {k}. Note that F is
order-preserving.

We show that F is Scott-continuous. Assume C ⊆ A is directed. Then
F [C] is directed, so

⊔
F [C] exists.

For all c ∈ C, let Dc ⊆ κ(A) be a directed subset such that
⊔
Dc = c.

Claim. The set D :=
⋃

c∈C Dc is directed.

Proof of claim. Let c, c′ ∈ C and let d ∈ Dc and let d′ ∈ Dc′ . Then
there exists c′′ ∈ C such that c, c′ ≤ c′′. Since d ≤

⊔
Dc′′ , there exists

e ∈ Dc′′ such that d ≤ e. Similarly, there exists e′ ∈ Dc′′ such that d′ ≤ e′.

Let e′′ ∈ Dc′′ be such that e, e′ ≤ e′′. Then d, d′ ≤ e′′ ∈ D.

Hence
⊔
D =

∨
c∈C(

⊔
Dc) =

∨
C, so F (

∨
C) =

⊔
f [D] =

∨
c∈C(

∨
f [Dc]) =∨

c∈C F (c).

Thus F is Scott-continuous.

Proposition 3.2. Let A and A′ be algebraic posets. Let ϕ : κ(A) → κ(A′)
be an order-isomorphism. Then there exists a unique Scott-continuous map
Φ : A → A′ such that, for all k ∈ κ(A), Φ(k) = ϕ(k). The map Φ is an
order-isomorphism.

Proof. Let Φ be the map of Lemma 3.1. Let Φ′ : A′ → A be the map of
Lemma 3.1 given by ϕ−1. Then, for all k ∈ κ(A), (Φ′ ◦ Φ)(k) = k, so, by
Lemma 3.1, Φ′ ◦ Φ = idA. By symmetry, Φ ◦ Φ′ = idA′ .

Corollary 3.3. Let P and Q be posets; assume Q is finite. For f ∈ PQ

define a map fσ : Q→ P σ as follows: for all q ∈ Q, fσ(q) = ↓f(q).
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Then there is a unique order-isomorphism from (PQ)σ to (P σ)Q send-
ing ↓f to fσ for all f ∈ PQ. In particular, (P σ)Q is an algebraic poset and
PQ is order-isomorphic to κ[(P σ)Q].

Proof. First, we show that directed subsets have suprema in (P σ)Q. Let
D ⊆ (P σ)Q be directed. For all q ∈ Q, let Dq = {d(q) | d ∈ D}; it is a
directed subset of P σ. Thus

⊔
Dq exists in P σ; we define e(q) to be

⊔
Dq.

The map e ∈ (P σ)Q and e ∈ Du. If f ∈ Du, then e ≤ f . Hence e =
⊔
D.

Claim 1. Let f ∈ PQ. Then fσ ∈ κ[(P σ)Q].

Proof of claim. Let D ⊆ (P σ)Q be directed and assume fσ ≤
⊔
D.

Then, for all q ∈ Q, fσ(q) = ↓f(q) ⊆
⊔
Dq, so there is a dq ∈ D such that

↓f(q) ⊆ dq(q). Since Q is finite, there exists a g ∈ {dq | q ∈ Q}u ∩D. Thus
fσ ≤ g.

Let G ∈ (P σ)Q. Consider

H = {gσ | g ∈ PQ and g(q) ∈ G(q) for all q ∈ Q}.

Claim 2. The set H is directed. Indeed, for all q ∈ Q, let dq ∈
G(q). There exists g ∈ PQ such that dq ≤ g(q) for all q ∈ Q and gσ ∈ H.

Proof of claim. For r ∈ Q, we define g(r) by induction on |↓r|. If
|↓r| = 1, let g(r) be dr. Now assume that |↓r| > 1 and that g(s) has been
defined for all s < r so that g(s) ∈ G(s) and ds ≤ g(s). As G(r) ⊇ G(s) for
all s < r, we know g(s) ∈ G(r) for all s < r. Thus there exists g(r) ∈ G(r)
such that g(s) ≤ g(r) for all s < r and dr ≤ g(r). We conclude that g ∈ PQ,
and gσ ∈ H, and dq ≤ g(q) for all q ∈ Q. Also, H ̸= ∅.

Now let h, k ∈ PQ be such that hσ, kσ ∈ H. For q ∈ Q, pick dq ∈
G(q) ∩ {h(q), k(q)}u. By the previous paragraph, there exists g ∈ PQ such
that gσ ∈ H and dq ≤ g(q) for all q ∈ Q, so hσ, kσ ≤ gσ.

Clearly
⊔
H ≤ G, but, in fact, for all q ∈ Q

(
⊔

H)(q) =
∨

g∈PQ

gσ∈H

↓g(q) =
⋃

g∈PQ

gσ∈H

↓g(q).

By Claim 2, for all q ∈ Q, G(q) ⊆ (
⊔
H)(q), and thus G ≤

⊔
H. Hence⊔

H = G.
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This proves that (P σ)Q is an algebraic poset and that κ[(P σ)Q] =
{gσ | g ∈ PQ}.

One does not simply dispense with the condition Q is finite, as the
next two examples show.

Example 3.4. Let P = N0 = Q with the natural order. Then there is no
order-isomorphism from (PQ)σ to (P σ)Q sending, for each f ∈ PQ, ↓f to
fσ.

Consider idN0 ∈ PQ. Then (idN0)
σ should be compact.

For all n ∈ N0, let gn : Q → P be the map gn(m) = min{m,n}
(m ∈ N0); then gn ∈ PQ and gσ0 ≤ gσ1 ≤ gσ2 ≤ · · · .

Claim. We have that
⊔

n∈N0
gσn = (idN0)

σ.

Proof of claim. Let m,n ∈ N0. If m ≤ n, then gσn(m) = ↓m =
(idN0)

σ(m). If n < m, then gσn(m) = ↓n ⊆ ↓m = (idN0)
σ(m).

Let h ∈ (P σ)Q be such that h ∈ {gσn | n ∈ N0}u in (P σ)Q. Then for
all n ∈ N0, g

σ
n(n) = ↓n ⊆ h(n), so (idN0)

σ(n) ⊆ h(n).

But if (idN0)
σ were compact, it would equal gσn for some n ∈ N0.

Example 3.5. Let D be a directed set and Q a poset such that DQ is
not directed. (See [12], an example of someone with the username Emil
Jeřábek.) Then (Dσ)Q ≇ (DQ)σ.

Indeed, (Dσ)Q has a top element.

Claim. The poset (DQ)σ does not have a top element.

Proof of claim. Let f, g ∈ DQ be such that {f, g}u = ∅ in DQ. Then
↓f, ↓g ∈ (DQ)σ. Assume for a contradiction that (DQ)σ has a top element
K. Then ↓f, ↓g ⊆ K. Hence f, g ∈ K. Therefore there is k ∈ K such that
f, g ≤ k, a contradiction.

4 Filtered limits of powers of posets of ideals

In order to get our universal cancellation result, we are going to use a result
of Jónsson and McKenzie for atomic posets. We get dually atomic posets
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by taking a poset P , successively forming posets of ideals P σ, P σσ, P σσσ,
. . . , and taking a limit. If we start with a power poset PQ, we would like
the limit of PQ, (P σ)Q, (P σσ)Q, (P σσσ)Q, . . . to be the limit of PQ, (PQ)σ,
(PQ)σσ, (PQ)σσσ, . . . .

It is possible that a theorem from category theory (e.g., in a place
like [3, Section 2.13] or [15]) implies our results, but the author would ask any
reader who knows of such a theorem to confirm that verifying the theorem
applies would take considerably less work than the proof we present below.

We give a concrete construction of a filtered limit and then show that
any filtered limit would have the same properties.

Proposition 4.1. Let

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
be a filtered system in Poset. Define a relation ≤ on

⋃
i∈N0

(Ci × {i}) as
follows: Let i, j ∈ N0. Let ci ∈ Ci, cj ∈ Cj. We say (ci, i) ≤ (cj , j) if there
exists h ∈ N0 such that i, j ≤ h and fhi(ci) ≤ fhj(cj) in Ch.

Then ≤ is a preorder. Denote the equivalence class of (ci, i) by [(ci, i)]
and let C be the quotient poset.

Let h, i ∈ N0 be such that i ≤ h. Let ci ∈ Ci. Then [(ci, i)] =
[(fhi(ci), h)].

For all i ∈ N0, define fi : Ci → C by ci 7→ [(ci, i)] (ci ∈ Ci); then fi is
order-preserving.

Finally, (
C, (fi : Ci → C)i∈N0

)
is a filtered limit of S.

Proof. Let i ∈ N0, ci ∈ Ci. Then i ≤ i and fii(ci) = ci, so (ci, i) ≤ (ci, i).
Now let j, k ∈ N0, cj ∈ Cj , ck ∈ Ck. Assume (ci, i) ≤ (cj , j) and (cj , j) ≤
(ck, k). Then there exist h′, h′′ ∈ N0 such that i, j ≤ h′ and j, k ≤ h′′

and fh′i(ci) ≤ fh′j(cj) and fh′′j(cj) ≤ fh′′k(ck). Let h ∈ N0 be such that
h′, h′′ ≤ h. Then fhi(ci) = fhh′

(
fh′i(ci)

)
≤ fhh′

(
fh′j(cj)

)
= fhj(cj) =

fhh′′
(
fh′′j(cj)

)
≤ fhh′′

(
fh′′k(ck)

)
= fhk(ck) so (ci, i) ≤ (ck, k).
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Thus ≤ is a preorder.

Let h, i ∈ N0 be such that i ≤ h. Let ci ∈ Ci. Then fhi(ci) =
fhh

(
fhi(ci)

)
, so [(ci, i)] = [

(
fhi(ci), h

)
]. Thus fi(ci) = fh

(
fhi(ci)

)
.

Now let i ∈ N0 and let ci, c
′
i ∈ Ci be such that ci ≤ c′i. Then (ci, i) ≤

(c′i, i) since fii(ci) = ci ≤ c′i = fii(c
′
i), so fi(ci) = [(ci, i)] ≤ [(c′i, i)] = fi(c

′
i)

in C. Thus fi is order-preserving. We conclude that(
C, (fi : Ci → C)i∈N0

)
is compatible with S.

Let (
C ′, (f ′i : Ci → C ′)i∈N0

)
be compatible with S. Define f : C → C ′ as follows: Given i ∈ N0,
ci ∈ Ci, let f

(
[(ci, i)]

)
= f ′i(ci). We are forced into this definition if we want

f ◦ fi = f ′i .

We show f is well-defined. If i, j ∈ N0, ci ∈ Ci, cj ∈ Cj , and
[(ci, i)] = [cj , j)], then there exist h′, h′′ ∈ N0 such that i, j ≤ h′, h′′ and
fh′i(ci) ≤ fh′j(cj) and fh′′j(cj) ≤ fh′′i(ci). Let h ∈ N0 be such that
h′, h′′ ≤ h. Then fhi(ci) = fhh′

(
fh′i(ci)

)
≤ fhh′

(
fh′j(cj)

)
= fhj(cj) and

fhj(cj) = fhh′′
(
fh′′j(cj)

)
≤ fhh′′

(
fh′′i(ci)

)
= fhi(ci) so fhi(ci) = fhj(cj).

Now f ′j(cj) = (f ′h ◦ fhj)(cj) = (f ′h ◦ fhi)(ci) = f ′i(ci). Hence f is
well-defined.

Now suppose i, j ∈ N0, ci ∈ Ci, cj ∈ Cj and [(ci, i)] ≤ [(cj , j)]. Then
there exists h ∈ N0 such that i, j ≤ h and fhi(ci) ≤ fhj(cj). As [(ci, i)] =

[
(
fhi(ci), h

)
] and [(cj , j)] = [

(
fhj(cj), h

)
], f

(
[(ci, i)]

)
= f

(
[
(
fhi(ci), h

)
]

)
=

f ′h
(
fhi(ci)

)
≤ f ′h

(
fhj(cj)

)
= f

(
[
(
fhj(cj), h

)
]

)
= f

(
[(cj , j)]

)
, so f is order-

preserving.

Proposition 4.2. Let (
C, (fi : Ci → C)i∈N0

)
be the filtered limit of the filtered system

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
.
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Then for all c ∈ C, there exist i ∈ N0 and ci ∈ Ci such that fi(ci) = c.

For c, d ∈ C, c ≤ d is equivalent to each of the following:

(1) if i, j ∈ N0, ci ∈ Ci, cj ∈ Cj, and fi(ci) = c and fj(cj) = d, then there
exists h ∈ N0 such that i, j ≤ h and fhi(ci) ≤ fhj(cj);

(2) there exist h, i, j ∈ N0, ci ∈ Ci, cj ∈ Cj such that i, j ≤ h, fi(ci) = c,
fj(cj) = d, and fhi(ci) ≤ fhj(cj).

For (1) or (2), any h′ ∈ N0 such that h ≤ h′ also works.

Proof. Let (
C ′, (f ′i : Ci → C ′)i∈N0

)
be the filtered limit for S constructed in Proposition 1. There exists an
order-isomorphism f : C → C ′ such that f ◦ fi = f ′i and fi = f−1 ◦ f ′i for
all i ∈ N0.

Since f−1 is onto, for every c ∈ C , there exists c′ ∈ C ′ such that
f−1(c′) = c, but there exist i ∈ N0, ci ∈ Ci such that c′ = [(ci, i)] = f ′i(ci)
so c = f−1

(
f ′i(ci)

)
= fi(ci).

Now let c, d ∈ C. Let c′ = f(c), d′ = f(d). Then c ≤ d if and
only if c′ ≤ d′. If c′ ≤ d′, then there exist h, i, j ∈ N0 such that i, j ≤ h,
ci ∈ Ci, cj ∈ Cj , f

′
i(ci) = c′, f ′j(cj) = d′ and fhi(ci) ≤ fhj(cj). Hence

fi(ci) = (f−1 ◦ f ′i)(ci) = f−1(c′) = c, fj(cj) = (f−1 ◦ f ′j)(cj) = f−1(d′) = d.
We get (2).

Now assume (2) holds and assume ĩ, j̃ ∈ N0, c̃ĩ ∈ Cĩ, c̃j̃ ∈ Cj̃ , and
fĩ(c̃ĩ) = c and fj̃(c̃j̃) = d. Then f ′

ĩ
(c̃ĩ) = c′ and f ′

j̃
(c̃j̃) = d′. That is,

[(ci, i)] = [(c̃ĩ, ĩ)] and [(cj , j)] = [(c̃j̃ , j̃)]. Hence, as [(ci, i)] ≤ [(cj , j)] by (2),
(1) follows.

Now assume (1). Since there exist i and j and ci ∈ Ci, cj ∈ Cj such
that fi(ci) = c and fj(cj) = d, the h exists, and c = fi(ci) = fh

(
fhi(ci)

)
≤

fh
(
fhj(cj)

)
= fj(cj) = d.

Let the situation be as in (1) or (2). Let h′ ∈ N0 be such that h′ ≥ h.
Then h′ ≥ i, j and fh′i(ci) = fh′h

(
fhi(ci)

)
≤ fh′h

(
fhj(cj)

)
= fh′j(cj).
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Lemma 4.3. Let

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
be a filtered system in Poset with filtered limit(

C, (fi : Ci → C)i∈N0

)
.

Let (
C ′, (f ′i : Ci → C ′)i∈N0

)
be compatible with S. Let f : C → C ′ be an order-isomorphism such that
f ◦ fi = f ′i for all i ∈ N0. Then(

C ′, (f ′i : Ci → C ′)i∈N0

)
is a filtered limit of S.

Proof. Let (
C ′′, (f ′′i : Ci → C ′′)i∈N0

)
be compatible with S. Then there exists a unique order-preserving map
g : C → C ′′ such that g ◦ fi = f ′′i for all i ∈ N0. Then g ◦ f−1 : C ′ → C ′′ is
an order-preserving map such that, for all i ∈ N0, (g◦f−1)◦f ′i = g◦fi = f ′′i .
If h : C ′ → C ′′ is an order-preserving map such that h◦f ′i = f ′′i for all i ∈ N0,
then h ◦ f ◦ fi = f ′′i for all i ∈ N0, so h ◦ f = g and thus h = g ◦ f−1.

Lemma 4.4. Let (
C, (fi : Ci → C)i∈N0

)
be a filtered limit of the filtered system

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
.

(1) If fi+1,i is an order-embedding for all i ∈ N0, then fi is an order-
embedding for all i ∈ N0.

(2) Let (
C ′, (f ′i : Ci → C ′)i∈N0

)
be compatible with S. Let f : C → C ′ be the order-preserving map
such that f ◦ fi = f ′i for all i ∈ N0. If f ′i is an order-embedding for all
i ∈ N0, then f is an order-embedding.
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Remark: For something related, see [6].

Proof. (1) For i, j ∈ N0 such that j ≤ i, then fij = fi,i−1◦fi−1,i−2◦· · ·◦fj+1,j ,
so fij is an order-embedding. Let i ∈ N0, ci, c

′
i ∈ Ci be such that fi(ci) ≤

fi(c
′
i). By Proposition 4.2(1), there exists h ∈ N0 such that i ≤ h and

fhi(ci) ≤ fhi(c
′
i), so ci ≤ c′i. Thus fi is an order-embedding.

(2) Let i, j ∈ N0, ci ∈ Ci, cj ∈ Cj be such that f
(
fi(ci)

)
≤ f

(
fj(cj)

)
.

Let h ∈ N0 be such that i, j ≤ h. Then fi(ci) = fh
(
fhi(ci)

)
and fj(cj) =

fh
(
fhj(cj)

)
. Thus

f

(
fh
(
fhi(ci)

))
≤ f

(
fh
(
fhj(cj)

))
so f ′h

(
fhi(ci)

)
≤ f ′h

(
fhj(cj)

)
and fhi(ci) ≤ fhj(cj). Therefore fi(ci) =

fh
(
fhi(ci)

)
≤ fh

(
fhj(cj)

)
= fj(cj).

Hence f is an order-embedding.

Lemma 4.5. Let Ci be a poset for all i ∈ N0. Let fi+1,i : Ci → Ci+1 be an
order-preserving map for all i ∈ N0. For all i, j ∈ N0 such that j < i, define
fij : Cj → Ci as fi,i−1 ◦ fi−1,i−2 ◦ · · · ◦ fj+2,j+1 ◦ fj+1,j and let fjj : Cj → Cj

be idCj .

Then
S =

(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
.

is a filtered system in Poset.

Let C be a poset. Let fi : Ci → C be an order-preserving map for all
i ∈ N0. Then (

C, (fi : Ci → C)i∈N0

)
is compatible with S if and only if fi+1 ◦ fi+1,i = fi for all i ∈ N0.

Lemma 4.6. Let A, B, and Q be posets. Then

(1) fQ ∈ (BQ)(A
Q) for all f ∈ BA;

(2) for all f1, f2 ∈ BA, f1 ≤ f2 implies fQ1 ≤ fQ2 ;

(3) if f ∈ BA is an order-embedding, so is fQ.
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Proof. (1) Let g1, g2 ∈ AQ be such that g1 ≤ g2. Let q ∈ Q. Then(
fQ(g1)

)
(q) = f

(
g1(q)

)
≤ f

(
g2(q)

)
=

(
fQ(g2)

)
(q), so fQ(g1) ≤ fQ(g2).

(2) Let g ∈ AQ, q ∈ Q. Then [(fQ1 )(g)](q) = (f1 ◦ g)(q) = f1
(
g(q)

)
≤

f2
(
g(q)

)
= (f2 ◦ g)(q) = [(fQ2 )(g)](q).

Thus fQ1 (g) ≤ fQ2 (g) and hence fQ1 ≤ fQ2 .

(3) Let g1, g2 ∈ AQ be such that fQ(g1) ≤ fQ(g2). Thus for all q ∈ Q,
[fQ(g1)](q) ≤ [fQ(g2)](q) or f

(
g1(q)

)
= (f ◦ g1)(q) ≤ (f ◦ g2)(q) = f

(
g2(q)

)
,

so g1(q) ≤ g2(q).

Hence g1 ≤ g2.

Proposition 4.7. Let

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
.

be a filtered system in Poset with filtered limit(
C, (fi : Ci → C)i∈N0

)
Let Q be a finite poset. Then SQ is a filtered system with filtered limit(

CQ, (fQi : CQ
i → CQ)i∈N0

)
.

Proof. Let i, j, k ∈ N0 be such that k ≤ j ≤ i. Then for all g ∈ CQ
k

(fQij ◦ fQjk)(g) = fij ◦ fjk ◦ g = fik ◦ g = (fQik)(g),

so fQij ◦ fQjk = fQik .

For all g ∈ CQ
i , fQii (g) = fii ◦ g = idCi ◦ g = g, so fQii = id

CQ
i
.

Hence SQ is a filtered system. Observe that(
CQ, (fQi : CQ

i → CQ)i∈N0

)
is compatible with SQ: for i, j ∈ N0 such that j ≤ i and g ∈ CQ

j ,

(fQi ◦ fQij )(g) = fi ◦ fij ◦ g = fj ◦ g = fQj (g) so fQi ◦ fQij = fQj .
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Let
(
D, (gi : C

Q
i → D)i∈N0

)
be a filtered limit of SQ.

Claim 1. For all i, j ∈ N0, γi ∈ CQ
i , γj ∈ CQ

j , gi(γi) ≤ gj(γj)
if and only if there exists h ∈ N0 such that i, j ≤ h and, for all q ∈ Q,
fhi

(
γi(q)

)
≤ fhj

(
γj(q)

)
.

Proof of claim. (⇒) By Proposition 4.2(1), there exists h ∈ N0 such
that i, j ≤ h and fQhi(γi) ≤ fQhj(γj)—that is, fhi ◦ γi ≤ fhj ◦ γj . So for all

q ∈ Q, fhi
(
γi(q)

)
≤ fhj

(
γj(q)

)
.

(⇐) We have fhi ◦ γi ≤ fhj ◦ γj so fQhi(γi) ≤ fQhj(γj). By Proposition
4.2(2), gi(γi) ≤ gj(γj).

Define a map Ψ : D → CQ as follows: for all i ∈ N0, γi ∈ CQ
i , and

q ∈ Q,

[Ψ
(
gi(γi)

)
](q) = fi

(
γi(q)

)
.

Claim 2. The map Ψ is well-defined and order-preserving.

Proof of claim. Let i, j ∈ N0, γi ∈ CQ
i , γj ∈ CQ

j be such that gi(γi) ≤
gj(γj). By Claim 1 and Proposition 4.2(1), for all q ∈ Q, fi

(
γi(q)

)
≤

fj
(
γj(q)

)
.

Claim 3. The map Ψ is an order-embedding.

Proof of claim. Let i, j ∈ N0, γi ∈ CQ
i , γj ∈ CQ

j be such that

Ψ
(
gi(γi)

)
≤ Ψ

(
gj(γj)

)
. Hence, for all q ∈ Q, fi

(
γi(q)

)
≤ fj

(
γj(q)

)
.

Thus, by Proposition 4.2(1), there exists hq ∈ N0 such that i, j ≤ hq and
fhqi

(
γi(q)

)
≤ fhqj

(
γj(q)

)
. Let h ∈ N0 be such that hq ≤ h for all q ∈ Q

and i, j ≤ h. (Here we use the finiteness of Q.) Then by Proposition 4.2,
fhi

(
γi(q)

)
≤ fhj

(
γj(q)

)
for all q ∈ Q. By Claim 1, gi(γi) ≤ gj(γj).

Claim 4. The map Ψ is onto.

Proof of claim. Start with an element of CQ. For each q ∈ Q, let iq ∈
N0, ciq ∈ Ciq be such that whenever q, r ∈ Q and q ≤ r, we have fiq(ciq) ≤
fir(cir). Thus, whenever q, r ∈ Q and q ≤ r, there exists (by Proposition
4.2(1)) hq,r ∈ N0 such that iq, ir ≤ hq,r and fhq,riq(ciq) ≤ fhq,rir(cir). Pick
h ∈ N0 such that hq,r ≤ h for all q, r ∈ Q with q ≤ r. (Here we use
the finiteness of Q.) By Proposition 4.2, for all q, r ∈ Q such that q ≤ r,
fhiq(ciq) ≤ fhir(cir).
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Define δ : Q → Ch as follows: for all q ∈ Q, δ(q) = fhiq(ciq). Then δ
is order-preserving.

We will show that, for all q ∈ Q,

[Ψ
(
gh(δ)

)
](q) = fiq(ciq).

The left-hand side is fh
(
δ(q)

)
= fh

(
fhiq(ciq)

)
= fiq(ciq).

Let i ∈ N0, γi ∈ CQ
i . Then, for all q ∈ Q,(
Ψ
(
gi(γi)

))
(q) = fi

(
γi(q)

)
= (fi ◦ γi)(q)

= [fQi (γi)](q),

so Ψ
(
gi(γi)

)
= fQi (γi).

By Lemma 4.3, (
CQ, (fQi : CQ

i → CQ)i∈N0

)
is a filtered limit of SQ.

Proposition 4.8. Let

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
and

S ′ =
(
(C ′

i)i∈N0 , (f
′
ij : C

′
j → C ′

i)i,j∈N0
j≤i

)
be filtered systems in Poset with filtered limits(

C, (fi : Ci → C)i∈N0

)
and (

C ′, (f ′i : C
′
i → C ′)i∈N0

)
,

respectively.

For all i ∈ N0, let ϕi : Ci → C ′
i be an order-isomorphism. Assume

that, for all i ∈ N0, f
′
i+1,i ◦ ϕi = ϕi+1 ◦ fi+1,i.

Then there is a unique order-isomorphism f : C → C ′ such that, for
all i ∈ N0, f ◦ fi = f ′i ◦ ϕi.
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Proof. We first show that(
C ′, (f ′i ◦ ϕi : Ci → C ′)i∈N0

)
,

is compatible with S, using Lemma 5: for i ∈ N0, f
′
i+1 ◦ ϕi+1 ◦ fi+1,i =

f ′i+1 ◦ f ′i+1,i ◦ ϕi = f ′i ◦ ϕi.

Thus there exists a unique order-preserving map f : C → C ′ such
that, for all i ∈ N0, f ◦ fi = f ′i ◦ ϕi.

Now, for all i ∈ N0, ϕ
−1
i+1 ◦ f ′i+1,i = fi+1,i ◦ ϕ−1

i , so by symmetry there
is a unique order-preserving map f ′ : C ′ → C such that, for all i ∈ N0,
f ′ ◦ f ′i = fi ◦ ϕ−1

i ; hence f ′ ◦ f ′i ◦ ϕi = fi or f
′ ◦ f ◦ fi = fi. Of course, idC

is such that idC ◦ fi = fi for all i ∈ N0, so by uniqueness idC = f ′ ◦ f . By
symmetry idC′ = f ◦ f ′.

Corollary 4.9. Let P and Q be posets, Q finite. For i ∈ N0, let Ci = P σ...σ

and let Di = (PQ)σ...σ (i copies of “σ”). For i ∈ N0, let fi+1,i : Ci → Ci+1 be
the order-embedding x 7→ ↓x; let gi+1,i : Di → Di+1 be the order-embedding
y 7→ ↓y.

Then for all i ∈ N0, there exists an order-isomorphism ϕi : C
Q
i → Di

such that, for all i ∈ N0,

gi+1,i ◦ ϕi = ϕi+1 ◦ fQi+1,i.

Proof. Let ϕ0 = idPQ . Now assume ϕi : C
Q
i → Di is defined. By Proposition

3.2, there exists an order-isomorphism Φi : (C
Q
i )σ → Dσ

i such that, for all

f ∈ CQ
i , Φi(↓f) =↓ [ϕi(f)]. By Corollary 3.3, there is an order-isomorphism

Hi : (C
σ
i )

Q → (CQ
i )σ such that, for all f ∈ CQ

i , Hi(f
σ) = ↓f .

Let ϕi+1 = Φi ◦Hi : C
Q
i+1 → Di+1. It is an order-isomorphism.

Let f ∈ CQ
i . Note that, for all q ∈ Q,

[fQi+1,i(f)](q) = (fi+1,i ◦ f)(q) =↓ [f(q)]

so fQi+1,i(f) = fσ.
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Thus

ϕi+1

(
fQi+1,i(f)

)
= Φi

(
Hi

(
fQi+1,i(f)

))
= Φi

(
Hi(f

σ)
)

= Φi(↓f)
=↓ ϕi(f).

Also, gi+1,i

(
ϕi(f)

)
=↓ [ϕi(f)]. Hence gi+1,i ◦ ϕi = ϕi+1 ◦ fQi+1,i.

Corollary 4.10. Let all be as in Corollary 4.9. Let

S =
(
(Ci)i∈N0 , (fij : Cj → Ci)i,j∈N0

j≤i

)
and

T =
(
(Di)i∈N0 , (gij : Dj → Di)i,j∈N0

j≤i

)
be filtered systems built as per Lemma 4.5. Let(

C, (fi : Ci → C)i∈N0

)
,

(
CQ, (fQi : CQ

i → CQ)i∈N0

)
, and

(
D, (gi : Di → D)i∈N0

)
be the filtered limits of S, SQ, and T , respectively (using Propositions 4.1
and 4.7).

Then there exists a unique order-isomorphism f : CQ → D such that,
for all i ∈ N0, f ◦ fQi = gi ◦ ϕi.

Moreover, C is dually atomic.

Proof. We get f from Proposition 4.8.

We borrow from [5, page 264].

Claim 1. Let A be a poset. Let a, b ∈ A be such that a < b. Then
there exists I ∈ Aσ such that ↓a ⊆ I ⋖ ↓b in Aσ.
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Proof of claim. Let E be the poset {J ∈ Aσ | ↓a ⊆ J ⫋ ↓b} ordered
by set-inclusion. Then ↓a ∈ E .

Now let C be a non-empty chain in E . We see that
⋃
C ∈ E .

By Zorn’s Lemma, E has a maximal member.

Claim 2. If a⋖ b in a poset A, then ↓a⋖ ↓b in Aσ.

Proof of claim. Assume for a contradiction that there exists C ∈ Aσ

such that ↓a ⫋ C ⫋ ↓b. Then a ∈ C and there exists c ∈ C such that c ≰ a.
Hence there exists d ∈ C such that a, c ≤ d. Therefore a < d.

As d ≤ b, we conclude d = b. Thus b ∈ C, so ↓b ⊆ C ⫋ ↓b, a
contradiction.

Let i, j ∈ N0, ci ∈ Ci, cj ∈ Cj be such that fi(ci) < fj(cj). Then by
Proposition 4.2, there exists h ∈ N0 such that i, j ≤ h and fhi(ci) ≤ fhj(cj).
If fhi(ci) = fhj(cj), then fi(ci) = fh

(
fhi(ci)

)
= fh

(
fhj(cj)

)
= fj(cj), a

contradiction. Thus fhi(ci) < fhj(cj).

Now, there exists ch+1 ∈ Ch+1 such that fh+1,h

(
fhi(ci)

)
≤ ch+1 ⋖

fh+1,h

(
fhj(cj)

)
—that is, fh+1,i(ci) ≤ ch+1 ⋖ fh+1,j(cj).

Hence fi(ci) = fh+1

(
fh+1,i(ci)

)
≤ fh+1(ch+1) < fh+1

(
fh+1,j(cj)

)
=

fj(cj), using Lemma 4.4(1).

Assume for a contradiction that, for some k ∈ N0 and ck ∈ Ck,
fh+1(ch+1) < fk(ck) < fj(cj). Let ℓ ∈ N0 be such that h + 1, k ≤ ℓ
and fℓ,h+1(ch+1) ≤ fℓ,k(ck) and let m ∈ N0 be such that j, k ≤ m and
fm,k(ck) ≤ fm,j(cj). Pick n ∈ N0 such that ℓ,m ≤ n; by Proposition 4.2,
we have

fn,h+1(ch+1) ≤ fn,k(ck) ≤ fn,j(cj) = fn,h+1

(
fh+1,j(cj)

)
.

By Claim 2, fn,h+1(ch+1)⋖ fn,h+1

(
fh+1,j(cj)

)
, so

fnk(ck) ∈ {fn,h+1(ch+1), fnj(cj)}

and thus

fk(ck) = fn
(
fnk(ck)

)
∈ {fn

(
fn,h+1(ch+1)

)
, fn

(
fnj(cj)

)
}

= {fh+1(ch+1), fj(cj)},
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a contradiction.

Therefore fi(ci) ≤ fh+1(ch+1)⋖ fj(cj).

Lemma 4.11. Let P, P ′, Q,Q′ be posets such that Q and Q′ are finite. Let
S be as in Corollary 10 and similarly define S ′. Let Ψ0 : PQ → P ′Q′

be an
order-isomorphism.

Then for all i ∈ N0, there exists an order-isomorphism Ψn : CQ
i →

C ′Q′

i , so that, for all i ∈ N0,

f ′
Q′

i+1,i ◦Ψi = Ψi+1 ◦ fQi+1,i.

Proof. Define T as in Corollary 4.10, and similarly define T ′. By Corol-
lary 4.9, fQi+1,i[C

Q
i ] = κ[CQ

i+1] and, by Lemma 4.6(3), fQi+1,i is an order-

embedding. Also, CQ
i+1 is an algebraic poset (Corollary 3.3). By Proposi-

tion 3.2, there exists an order-isomorphism Ψi+1 : CQ
i+1 → C ′Q′

i+1 such that

Ψi+1 ◦ fQi+1,i = f ′Q
′

i+1,i ◦Ψi.

Proposition 4.12. Let all be as in Lemma 4.11. Then for all i ∈ N0, f
Q
i

and f ′Q
′

i are order-embeddings.

Further, there exists a unique order-isomorphism Ψ : CQ → C ′Q′
such

that, for all i ∈ N0, Ψ ◦ fQi = f ′i
Q′

◦Ψi.

Proof. Use Proposition 4.8, Lemma 4.4(1), and Lemma 4.6(3).

5 Dually atomic posets and the refinement of powers and
cancellation of exponents

In this section, we prove that finite posets C with a top element can be
cancelled as exponents—AC ∼= BC implies A ∼= B, even if A and B are
infinite.

Jónsson and McKenzie’s results are phrased in terms of atomic posets,
whereas we were working earlier with dually atomic posets, so we show we
can dualize the results of Jónsson and McKenzie.
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Lemma 5.1. Let A,B,C,D be posets such that C,D ̸= ∅. Let ϕ : AC ∼=
BD. Let ϕ∂ : (A∂)(C

∂) → (B∂)(D
∂) be given by ϕ∂(f) = ϕ(f) for all f ∈

(A∂)(C
∂) (so ϕ∂ : (A∂)(C

∂) ∼= (B∂)(D
∂)).

Then (ϕ, i) implies (ϕ∂ , i) for i ∈ {1, 2, 3, 4}.

Proof. Clearly ∆(ϕ∂) = ∆(ϕ). Also R(ϕ∂) = {x ∈ A | ⟨x⟩ ∈ ∆(ϕ∂)} =
R(ϕ).

Let x, y ∈ A∂ . Then

x ≤ϕ∂ y

if and only if

x, y ∈ R(ϕ∂), x ≤ y in A∂ , and for all f ∈ (A∂)(C
∂) with f [C] ⊆ {x, y},

we have f ∈ ∆(ϕ∂)

if and only if

x, y ∈ R(ϕ), x ≥ y in A, and for all f ∈ AC with f [C] ⊆ {x, y}, we
have f ∈ ∆(ϕ)

if and only if

x ≥ϕ y.

The map ϕ̊∂ from R(ϕ∂) to R(ϕ∂
−1

) is such that, for x ∈ R(ϕ∂), ϕ̊∂(x)

is the element y such that ϕ∂(⟨x⟩) = ⟨y⟩, so ϕ̊∂ is ϕ̊.

If (ϕ, 1), then (ϕ∂ , 1).

If (ϕ, 2), then (ϕ∂ , 2). (The set R(ϕ∂
−1

) is R(ϕ−1∂).)

Assume (ϕ, 3). Then

∆(ϕ∂) = ∆(ϕ)

= {f : C → R(ϕ) | for all c, c′ ∈ C, c ≤ c′ in C implies f(c) ≤ϕ f(c
′)}

= {f : C → R(ϕ∂) | for all c, c′ ∈ C, c ≥ c′ in C∂ implies f(c) ≥ϕ∂ f(c′)}

Thus (ϕ∂ , 3) holds.



Cancel Culture 23

Assume (ϕ, 4) holds. Then

≥ϕ∂ =≤ϕ

=≤A ∩
(
R(ϕ)×R(ϕ)

)
=≥A∂ ∩

(
R(ϕ∂)×R(ϕ∂)

)
,

so (ϕ∂ , 4) holds.

Lemma 5.2. Let A,B,C,D be posets. Assume A and B are dually atomic.
Assume C and D are finite, directly irreducible posets with a bottom element.
Assume ϕ : AC ∼= BD.

Then (ϕ, 1), (ϕ, 2), (ϕ, 3), and (ϕ−1, 3). If C ≇ D, then (ϕ, 4).

Proof. By Lemma 2.3, (ϕ, 1) holds. By Lemma 2.4, (A∂)(C
∂) and (B∂)(D

∂)

have Property (a), so by Lemma 2.5, (ϕ∂ , 2) holds, so by Lemma 5.1, (ϕ, 2)
holds.

By Lemma 2.6, (ϕ∂ , 3) holds, so by Lemma 5.1, (ϕ, 3) holds. By
symmetry, (ϕ−1, 3) holds.

Now assume C ≇ D. Then (ϕ∂ , 4) by Lemma 2.4 and Lemma 2.7. By
Lemma 5.1, (ϕ, 4) holds.

Now we eliminate the hypothesis of being dually atomic.

Lemma 5.3. Let A,B,C,D be posets such that C and D are finite, directly
irreducible posets with a bottom element. Assume ϕ : AC → BD is an
order-isomorphism. Then (ϕ, 1), (ϕ, 2), (ϕ, 3), and (ϕ−1, 3). If C ≇ D,
then (ϕ, 4).

Proof. By Lemma 4.4(1), Proposition 4.12 and Corollary 4.10, there exist
dually atomic posets A1 and B1 and order-embeddings f : A → A1 and
g : B → B1 and (by Lemma 4.6(3)) fC : AC → A1

C and gD : BD → B1
D

and an order-isomorphism Ψ : A1
C ∼= B1

D such that Ψ ◦ fC = gD ◦ ϕ.

Claim. If “Im” denotes the image of a map, Im(fC) = (Im f)C

and Im(gD) = (Im g)D.
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Proof of claim. If α ∈ (Im f)C , then for all c ∈ C, let α(c) = f(ac).
Define α : C → A by c 7→ ac for all c ∈ C. This is order-preserving: if c ≤ c′

in C, then α(c) ≤ α(c′) so ac ≤ ac′ , since f is an order-embedding. That is,
α ∈ AC . For all c ∈ C, [fC(α)](c) = (f ◦ α)(c) = f

(
α(c)

)
= f(ac) = α(c),

so fC(α) = α.

Conversely, if α ∈ AC , then for all c ∈ C, [fC(α)](c) = (f ◦ α)(c) =
f
(
α(c)

)
∈ Im f .

By Lemma 5.2, (Ψ, 1), (Ψ, 2), (Ψ, 3), and (Ψ−1, 3), and, if C ≇ D,
(Ψ, 4).

By Proposition 4.12, the restriction of Ψ to Im(fC) is essentially the
same as ϕ; by the comment in Section 2 and Lemma 2.8, (ϕ, 1), (ϕ, 2), (ϕ, 3),
(ϕ−1, 3), and, if C ≇ D, (ϕ, 4).

Lemma 5.4. Let all be as in Lemma 5.3. If C ∼= D, then A ∼= B. If
C ≇ D, then there is a poset E such that A ∼= ED and B ∼= EC .

Proof. This follows from Theorem 2.1 and Theorem 2.2.

Theorem 5.5. Let A, B, C, and D be posets such that C and D are
finite and both have a least element (both have a greatest element). Assume
ϕ : AC ∼= BD.

Then there are posets E, X, Y , and Z such that A ∼= EX , B ∼= EY ,
C ∼= Y × Z, and D ∼= X × Z.

If C ∼= D, then A ∼= B.

Proof. The proof is identical to that of [10, Theorem 5.2]. We will not even
change the notation.

Let C ∼= C1×C2×· · ·×Cm andD ∼= C1×D2×· · ·×Dn wherem,n ∈ N0,
Ci is directly irreducible (i = 1, . . . ,m), and Dj is directly irreducible (j =
1, . . . , n). Note that each Ci has a bottom element (i = 1, . . . ,m), as does
each Dj (j = 1, . . . , n). By Hashimoto’s Refinement Theorem [16, Theorem
10.4.4], m and n are uniquely determined.

We proceed by induction on m+ n.

If m = 0, let E = B, X = D, Y = 1, and Z = 1.
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If m = 1 = n, use Lemma 4. (If C ∼= D, let E = A, X = Y = 1, and
Z = C.)

If m + n ≥ 3, without loss of generality m ≥ 2. Let C ′ = C1 × · · · ×
Cm−1, so (ACm)C

′ ∼= BD and hence there exist posets E1, X1, Y1, and Z1

such that

ACm ∼= EX1
1 , B ∼= EY1

1 , C ′ ∼= Y1 × Z1, D ∼= X1 × Z1.

By Hashimoto’s Refinement Theorem, X1 has at most n directly irreducible
factors and C ′ has m− 1, so by induction there are posets E2, X2, Y2, and
Z2 such that

A ∼= EX2
2 , E1

∼= EY2
2 , Cm

∼= Y2 × Z2, X1
∼= X2 × Z2.

so let E = E2, X = X2, Y = Y1 × Y2, and Z = Z1 × Z2.

If C ∼= D, we have (AC′
)Cm ∼= (BC′

)Cm , so AC′ ∼= BC′
and by induc-

tion A ∼= B.

If C and D have a greatest element, we have

(A∂)(C
∂) ∼= (AC)∂ ∼= (BD)∂ ∼= (B∂)(D

∂),

where C∂ and D∂ have least elements. Thus there exist posets E, X, Y , and
Z such that A∂ ∼= (E∂)X

∂
, B∂ ∼= (E∂)Y

∂
, C∂ ∼= Y ∂ × Z∂ , D∂ ∼= X∂ × Z∂ ,

so A ∼= EX , B ∼= EY , C ∼= Y × Z, and D ∼= X × Z.

Also, if C ∼= D, then C∂ ∼= D∂ , so A∂ ∼= B∂ , and A ∼= B.
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