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On (semi)topology L-algebras

Mona Aaly Kologani

Abstract. Here, we define (semi)topological L-algebras and some related
results are approved. Then we deduce conditions that mention an L-algebra
to be a semi-topological or a topological L-algebra and we check some at-
tributes of them. Chiefly, we display in an L-algebra L, if (L,↠, τ) is a
semi-topological L-algebra and {1} is an open set or L is bounded and sat-
isfies the double negation property, then (L, τ) is a topological L-algebra.
Finally, we construct a discrete topology on a quotient L-algebra, under suit-
able conditions. Also, different kinds of topology such as T0 and Hausdorff
are investigated.

1 Introduction

Algebra and topology, two basic areas of mathematics, play complementary
roles. Topology studies continuity and convergence and provides a general
framework for studying the concept of limit. Algebra studies a variety of
operations and provides a basis for algorithms and calculations. In appli-
cations, in higher-level areas of mathematics, such as functional analysis,
dynamical systems, representation theory, and others, topology and algebra
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naturally come into contact with each other. Many of the most important
objects of mathematics exhibit a combination of algebraic and topological
structures. Spaces of topological functions and generally linear topologi-
cal spaces, topological groups and topological fields, transformation groups,
topological networks are objects of this kind. Often an algebraic structure
and a topology come together naturally. This is when both are determined
by the nature of the elements of the considered set. The rules that describe
the relationship between topology and algebraic operations are almost al-
ways clear, and it is natural that the operations should be continuous, joint
continuous, joint, or separate. In the 20th century, many topologists and
algebraists have contributed to topological algebra.

L-algebras, which are related to algebraic logic and quantum structures,
were introduced by Rump [17]. Many examples shown that L-algebras are
very useful. Yang and Rump [19], characterized pseudo-MV-algebras and
Bosbach’s non-commutative bricks as L-algebras. Wu and Yang [24] proved
that orthomodular lattices form a special class of L-algebras in different
ways. It was shown that every lattice-ordered effect algebra has an underly-
ing L-algebra structure in Wu et al. [23]. Also, other mathematicians studied
the relationship between basic algebras and L-algebras. They proved that a
basic algebra which satisfies (ξ⊞ω′)⊞ (σ⊞ω′)′ = (ξ⊞σ′)⊞ (ω⊞σ′)′, can be
converted into an L-algebra. Conversely, if an L-algebra with 0 and some
conditions such that it is an involutive bounded lattice can be organized
into a basic algebra, it must be a lattice-ordered effect algebra.

In the following, the notion of (semi)topological L-algebras is defined
and some related results are achieved. Then conditions that imply an L-
algebra to be a semi-topological or a topological L-algebra are investigated
and some attitudes of them are checked. Also, it is proved that if (L,↠, τ)
is a semi-topological L-algebra and {1} is an open set or L is bounded and
satisfies the double negation property, then (L, τ) is a topological L-algebra.
At last, a discrete topology on quotient L-algebra, under suitable conditions
is constructed.

2 Preliminaries

This section lists the known default contents that will be used later.
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Definition 2.1. [17] An algebraic structure (L;↠, 1) of type (2, 0) is called
an L-algebra if for any ω, σ, ξ ∈ L it satisfies in the next conditions:
(L1) ω ↠ ω = ω ↠ 1 = 1 and 1↠ ω = ω,
(L2) (ω ↠ σ)↠ (ω ↠ ξ) = (σ ↠ ω)↠ (σ ↠ ξ),
(L3) if ω ↠ σ = σ ↠ ω = 1, then ω = σ.

Note. We have to notice that a logical unit is always unique and it is
the element of an L-algebra L.

If the operation ↠ is considered as a logical concept, there is a partial
order in L given by

ω ⩽ σ iff ω ↠ σ = 1. (2.1)

You can see the proof in [17].

Proposition 2.2. [19] Let L be an L-algebra. Then ω ⩽ σ implies ξ ↠
ω ⩽ ξ ↠ σ, for any ω, σ, ξ ∈ L.

Proposition 2.3. [19] For an L-algebra L, the following are equivalent:
(i) ω ⩽ σ ↠ ω,
(ii) if ω ⩽ σ, then σ ↠ ξ ⩽ ω ↠ ξ,
(iii) ((ω ↠ σ) ↠ ξ) ↠ ξ ⩽ ((ω ↠ σ) ↠ ξ) ↠ ((σ ↠ ω) ↠ ξ), for any
ω, σ, ξ ∈ L.

Definition 2.4. [17] (i) An L-algebra (L,↠, 1) which satisfies in the fol-
lowing condition

ω ↠ (σ ↠ ω) = 1, (K)

for any ω, σ ∈ L is called a KL-algebra.
(ii) A CKL-algebra is an L-algebra which satisfies in the following condition

ω ↠ (σ ↠ ξ) = σ ↠ (ω ↠ ξ), (C)

for any ω, σ, ξ ∈ L.

Note. Clearly, every CKL-algebra is a KL-algebra, since for any ω, σ ∈
L, we have

ω ↠ (σ ↠ ω) = σ ↠ (ω ↠ ω) = σ ↠ 1 = 1.
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Proposition 2.5. [17] Assume (L,↠, 1) is a CKL-algebra. Then for any
ω, σ, ξ ∈ L, we have:
(i) if ω ⩽ σ, then ξ ↠ ω ⩽ ξ ↠ σ,
(ii) ω ↠ (σ ↠ ω) = 1, i.e., ω ⩽ σ ↠ ω,
(iii) ω ⩽ (ω ↠ σ)↠ σ,
(iv) ω ⩽ σ ↠ ξ iff σ ⩽ ω ↠ ξ,
(v) if ω ⩽ σ, then σ ↠ ξ ⩽ ω ↠ ξ,
(vi) ((ω ↠ σ)↠ ξ)↠ ξ ⩽ ((ω ↠ σ)↠ ξ)↠ ((σ ↠ ω)↠ ξ),
(vii) ξ ↠ σ ⩽ (σ ↠ ω)↠ (ξ ↠ ω).

Definition 2.6. [17] A non-empty subset I of an L-algebra (L,↠, 1) is
called an ideal of L if it satisfies the following conditions for all ω, σ ∈ I,
(I1) 1 ∈ I,
(I2) if ω ∈ I and ω ↠ σ ∈ I, then σ ∈ I,
(I3) if ω ∈ I, then (ω ↠ σ)↠ σ ∈ I,
(I4) if ω ∈ I, then σ ↠ ω ∈ I and σ ↠ (ω ↠ σ) ∈ I.

An ideal I of L is called a proper ideal if I ̸= L. The set of all ideals of
L is denoted by I(L).

Let L ̸= ∅ and {⋇i}i∈I be a family of operations of type 2 on L and τ
be a topology on L. Then:
(i) (L, {⋇}i∈I , τ) is a right (left) topological algebra if for any i ∈ I, (L,⋇i, τ)
is a right (left) topological algebra,
(ii) (L, {⋇i}i∈I , τ) is a (semi)topological algebra if for all i ∈ I, (L,⋇i, τ) is
a (semi)topological algebra (see [14, 15]).

Note: In the continuation of this article, L is an L-algebra and τ is a
topology on L.

3 (Semi)topological L-algebra

In this section, we introduce the concepts of (semi)topological L-algebra
and investigate some related results.

Notation: If (L,↠, τ) is a (semi)topological algebra, then (L,↠, τ)
is called a (semi)topological L-algebra. In addition, we say (L, τ) is a
(semi)topological L-algebra if (L,↠, τ) is a (semi)topological L-algebra.
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Let U,V ⊆ L. Then we consider U↠ V and U×V as follows:

U↠ V = {ω ↠ σ | ω ∈ U and σ ∈ V} , U×V = {(ω, σ) | ω ∈ U and σ ∈ V}.

Example 3.1. (i) Obviously, every L-algebra with the discrete topology is
a topological L-algebra.
(ii) Let (L = {η, ϵ, ρ, 1},⩽) be a poset, where η ⩽ ϵ ⩽ ρ ⩽ 1. Define the
operation ↠ on L as follows:

↠ η ϵ ρ 1

η 1 1 1 1
ϵ η 1 1 1
ρ η ϵ 1 1
1 η ϵ ρ 1

Then (L,↠, 1) is an L-algebra and (L,↠, τ), where τ = {∅, {η}, {ϵ, ρ, 1},L}
is a topological L-algebra.

Note. Clearly, each topological L-algebra is a semi-topological L-algebra.
Next example shows that every semi-topological L-algebra is not a topolog-
ical L-algebra.

Example 3.2. Consider (L = {η, ϵ, ρ, 1},⩽) be a poset, where η ⩽ ϵ ⩽ ρ ⩽
1. Define the operation ↠ on L as follows:

↠ η ϵ ρ 1

η 1 1 1 1
ϵ ϵ 1 1 1
ρ η ϵ 1 1
1 η ϵ ρ 1

Then (L,↠, 1) is an L-algebra and (L,↠, τ), where τ = {∅, {ρ, 1}, {ϵ, ρ, 1},L}
is a right semi-topological L-algebra but it is not a topological L-algebra,
since η ↠ η = 1 ∈ {ρ, 1} and L↠ L = L ⊈ {ρ, 1}.
Example 3.3. Set L = [0, 1]. Define

ω ↠ σ =

{
1 ω ⩽ σ
σ ω ≻ σ

Then (L,↠, 1) is an L-algebra and τ is a topology on L with the base
B = {[η, ϵ] ∩ L | η, ϵ ∈ R}. Then (L, τ) is a topological L-algebra.
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Proof. We prove (L,↠, τ) is a topological L-algebra. Assume ω ↠ σ ∈ U ∈
τ , where ω, σ ∈ L. If ω ⩽ σ, then 1 = ω ↠ σ ∈ U. So, ω ∈ [0, σ] ⊆ τ and
σ ∈ [σ, 1] ∈ τ and clearly, [0, σ]↠ [σ, 1] ⊆ U. If ω > σ, then ω ↠ σ = σ ∈ U.
Thus ω ∈ [σ, ω] ∈ τ , and σ ∈ [0, σ] ∩ U ∈ τ , and so [σ, ω] ↠ ([0, σ] ∩ U) =
[0, σ]∩U ⊆ U. Hence, (L,↠, τ) is a topological L-algebra. Therefore, (L, τ)
is a topological L-algebra.

Lemma 3.4. If I ∈ I(L), then for any ω, σ, ξ ∈ L, ω ↠ σ ∈ I and
σ ↠ ξ ∈ I imply ω ↠ ξ ∈ I.

Proof. Since I ∈ I(L) and σ ↠ ξ ∈ I, by (I4), (σ ↠ ω)↠ (σ ↠ ξ) ∈ I. By
(L2), we have (ω ↠ σ)↠ (ω ↠ ξ) ∈ I. By (I2) we get ω ↠ ξ ∈ I.

For an arbitrary element η ∈ L and ∅ ≠ V ⊆ L, define the subset

V(η) = {ω ∈ L | ω ↠ η, η ↠ ω ∈ V}.
Theorem 3.5. There is a nontrivial topology τ on L such that (L, τ) is a
topological L-algebra.

Proof. Assume

τ = {U ⊆ L | for each η ∈ U, ∃ I ∈ I(L) s.t. I(η) ⊆ U}.
Assume {Ui | i ∈ ∆} is a family of members of τ . For any ω ∈ ⋃i∈∆Ui,
there exists j ∈ ∆ such that ω ∈ Uj , and so there is I ∈ I(L), where
I(ω) ⊆ Uj ⊆

⋃
i∈∆Ui. Hence,

⋃
i∈∆Ui ∈ τ . In addition, for any ω ∈ ⋂i∈∆Ui

and any i ∈ ∆, ω ∈ Ui. Then Ii ∈ I(L) exists such that ω ∈ Ii(ω) ⊆ Ui.
Set I =

⋂
i∈∆Ii. Clearly,

⋂
i∈∆Ii ∈ I(L). Then ω ∈ I(ω) ⊆ ⋂i∈∆Ii(ω) ⊆⋂

i∈∆Ui. Hence,
⋂
i∈∆Ui ∈ τ . Thus, τ is a topology on L. Now, we prove

that the operation ↠ is continuous. For this, assume I ∈ I(L), ω ∈ L and
σ ∈ I(ω). Hence, ω ↠ σ ∈ I and σ ↠ ω ∈ I. If there exists ξ ∈ I(σ), then
ξ ↠ σ, σ ↠ ξ ∈ I, and by Lemma 3.7, ξ ↠ ω ∈ I and ω ↠ ξ ∈ I. Hence,
ξ ∈ I(ω), and so I(σ) ⊆ I(ω), thus I(ω) ∈ τ . Therefore, τ is a nontrivial
topology. Suppose I ∈ I(L) and ω, σ ∈ L. Since ω ∈ I(ω) and σ ∈ I(σ),
and I(ω ↠ σ) = I(ω)↠ I(σ), clearly, ↠ is continuous.

Proposition 3.6. Suppose τ is as in Theorem 3.5 and X ⊆ L. Then:
(i) for each I ∈ I(L), I(X) is an open and closed subset of L. In addition,
each ideal is an open and closed set,
(ii) X =

⋂{I(X) | I ∈ I(L)}.
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Proof. (i) Assume I ∈ I(L), and σ ∈ I(X) =
⋃
ω∈XI(ω). Then, I(σ) ∩

I(X) ̸= ∅. Hence, there is ω ∈ X, such that I(σ) = I(ω) and so σ ∈ I(ω) ⊆
I(X). Therefore, I(X) is closed. But I(X) is open because it is a union of
open sets.
(ii) Suppose X ⊆ L and ω ∈ X. Since for all I ∈ I(L), ω ↠ ω = 1 ∈ I,
we have ω ∈ I(ω), and so ω ∈ ⋂{I(X) | I ∈ I(L)}. Conversely, consider
ω ∈ ⋂{I(X) | I ∈ I(L)}. Then, for all I ∈ I(L), ω ∈ I(X). Since I(X) =⋃
η∈XI(η), there exists ϵ ∈ X such that ω ∈ I(ϵ). Moreover, since ω ↠ ϵ ∈ I

and ϵ ↠ ω ∈ I, we get I(ϵ) = I(ω). Thus, ϵ ∈ I(ϵ) ∩ X, since I(ϵ) = I(ω),
we have ϵ ∈ I(ω) ∩ X. So, ω ∈ X. Therefore, X̄ =

⋂{I(X) | I ∈ I(L)}.

Lemma 3.7. Let L be a CKL-algebra. Then for any ω, σ, λ, ζ ∈ L, we have
(i) ((ω ↠ σ)↠ σ)↠ σ = ω ↠ σ,
(ii) (λ↠ σ)↠ (ω ↠ σ) ⩽ (λ↠ ζ)↠ [(ζ ↠ σ)↠ (ω ↠ σ)].

Proof. (i) Suppose ω, σ ∈ L, then by Proposition 2.5(iii), we have ω ↠ σ ≤
((ω ↠ σ) ↠ σ) ↠ σ. Also, by Proposition 2.5(iii), ω ⩽ (ω ↠ σ) ↠ σ
and by Proposition 2.5(v), we have ((ω ↠ σ) ↠ σ) ↠ σ ⩽ ω ↠ σ. Hence,
((ω ↠ σ)↠ σ)↠ σ = ω ↠ σ.
(ii) Assume ω, σ, λ, ζ ∈ L. Then

[(λ↠ σ)↠ (ω ↠ σ)]↠ [(λ↠ ζ)↠ [(ζ ↠ σ)↠ (ω ↠ σ)]]

= (λ↠ ζ)↠ [((λ↠ σ)↠ (ω ↠ σ))↠ ((ζ ↠ σ)↠ (ω ↠ σ))] by (C)

= (λ↠ ζ)↠ [(ζ ↠ σ)↠ (((λ↠ σ)↠ (ω ↠ σ))↠ (ω ↠ σ))] by (C)

= (λ↠ ζ)↠ [(ζ ↠ σ)↠ ((ω ↠ ((λ↠ σ)↠ σ))↠ (ω ↠ σ))] by (C)

= (λ↠ ζ)↠ [(ζ ↠ σ)↠ ((((λ↠ σ)↠ σ)↠ ω)↠ (((λ↠ σ)↠ σ)↠ σ))]

by (L2)

= (λ↠ ζ)↠ [(ζ ↠ σ)↠ ((((λ↠ σ)↠ σ)↠ ω)↠ (λ↠ σ))] by (i)

= (ζ ↠ σ)↠ [(((λ↠ σ)↠ σ)↠ ω)↠ ((λ↠ ζ)↠ (λ↠ σ))] by (C)

= (ζ ↠ σ)↠ [(((λ↠ σ)↠ σ)↠ ω)↠ ((ζ ↠ λ)↠ (ζ ↠ σ))] by (L2)

= (((λ↠ σ)↠ σ)↠ ω)↠ [(ζ ↠ λ)↠ ((ζ ↠ σ)↠ (ζ ↠ σ))] by (C)

= (((λ↠ σ)↠ σ)↠ ω)↠ [(ζ ↠ λ)↠ 1] by (L1)

= 1. by (L1)

Therefore, (λ↠ σ)↠ (ω ↠ σ) ⩽ (λ↠ ζ)↠ [(ζ ↠ σ)↠ (ω ↠ σ)].
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In the following example, we show that the condition (C) in Lemma 3.7
is necessary.

Example 3.8. Let (L = {η, ϵ, ρ, 1},⩽) be a poset, where η, ϵ, ρ ⩽ 1. Define
the operation ↠ on L as follows:

↠ η ϵ ρ 1

η 1 ϵ ϵ 1
ϵ ρ 1 ρ 1
ρ ρ ρ 1 1
1 η ϵ ρ 1

Then (L,↠, 1) is an L-algebra which is not a CKL-algebra, since

η ↠ (ϵ↠ ρ) = η ↠ ρ = ϵ ̸= 1 = ϵ↠ ϵ = ϵ↠ (η ↠ ρ).

Moreover, we can see that Proposition 3.7(i) does not hold, because

((η ↠ ρ↠ ρ)↠ ρ = (ϵ↠ ρ)↠ ρ = ρ↠ ρ = 1 ̸= ϵ = η ↠ ρ,

and so Proposition 3.7(ii) does not hold, too.

Theorem 3.9. Suppose Γ is a family of nonempty subsets of L, where L is
a CKL-algebra and Γ is closed under intersection. Let for every ω, σ ∈ L
and V ∈ Γ, where
(i) ω ∈ V and ω ⩽ σ imply σ ∈ V,
(ii) if ω ∈ V, then U ∈ Γ exists such that U(ω) ⊆ V,
(iii) W ∈ Γ exists where W(ω) ⊆ V, for any ω ∈ W or equivalently,
W(W) ⊆ V.
Then there is a nontrivial topology τ on L such that (L, τ) is a topological
L-algebra.

Proof. Clearly, I(L) ⊆ Γ. Let

τ = {N ⊆ L | ∀η ∈ N, ∃ V ∈ Γ s.t. V(η) ⊆ N}.

Assume {Ni | i ∈ I} ⊆ τ . Then, for every η ∈ ⋃i∈INi, there exist i ∈ I and
V ∈ Γ such that V(η) ⊆ Ni ⊆

⋃
i∈INi. Hence, τ is closed under union. For

any η ∈ ⋂i∈INi and any i ∈ I, there exists Vi ∈ Γ such that Vi(η) ⊆ Ni.
Put V =

⋂
i∈IVi, then V(η) ⊆ ⋂i∈IVi(η) ⊆ ⋂i∈INi, and so τ is closed
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under intersection. Hence, τ is a topology on L. Now, we prove that for
each V ∈ Γ and η ∈ L, V(η) is an open set. Consider η ∈ L, V ∈ Γ and
ω ∈ V(η). Then, ω ↠ η, η ↠ ω ∈ V. By (ii), there exist U1 and U2 ∈ Γ
such that U1(η ↠ ω) ⊆ V and U2(ω ↠ η) ⊆ V. Put W = U1 ∩ U2 ∈ Γ. If
σ ∈W(ω), then ω ↠ σ and σ ↠ ω ∈W. By Proposition 2.5(vii),

ω ↠ σ ⩽ (σ ↠ η)↠ (ω ↠ η), and σ ↠ ω ⩽ (ω ↠ η)↠ (σ ↠ η).

By (i), (σ ↠ η)↠ (ω ↠ η) ∈W, and (ω ↠ η)↠ (σ ↠ η) ∈W. Thus,

σ ↠ η ∈W(ω ↠ η) ⊆ (U1 ∩ U2)(ω ↠ η) ⊆ U2(ω ↠ η) ⊆ V.

Similarly, η ↠ σ ∈ V. Then σ ∈ V(η), and so W(ω) ⊆ V(η). Hence, V(η)
is an open set and τ is a nontrivial topology. Clearly, the set B = {V(η) |
V ∈ Γ, η ∈ L} is a base for τ . Now, we prove that the operation ↠ is
continuous. For this, assume ω ↠ σ ∈ V(ω ↠ σ). By (iii), there is W ∈ Γ
such that W(W) ⊆ V. Let λ ∈W(ω) and ζ ∈W(σ). Then λ↠ ω, ω ↠ λ,
ζ ↠ σ and σ ↠ ζ ∈ W. Thus, by Lemma 3.7 and Proposition 2.5(vii), we
have,

(ζ ↠ σ)↠ ((λ↠ ζ)↠ (ω ↠ σ)) ≥ (λ↠ σ)↠ (ω ↠ σ) ≥ ω ↠ λ.

Since W ∈ Γ and ω ↠ λ ∈ W, by (i), (ζ ↠ σ) ↠ ((λ ↠ ζ) ↠ (ω ↠ σ)) ∈
W. Also, by Proposition 2.5(ii),

ζ ↠ σ ⩽ ((λ↠ ζ)↠ (ω ↠ σ))↠ (ζ ↠ σ).

Again, since W ∈ Γ and ζ ↠ σ ∈W, by (i),

((λ↠ ζ)↠ (ω ↠ σ))↠ (ζ ↠ σ) ∈W.

Thus, (λ ↠ ζ) ↠ (ω ↠ σ) ∈ W(ζ ↠ σ) ⊆ W(W) ⊆ V. This implies
(λ ↠ ζ) ↠ (ω ↠ σ) ∈ V. Similarly, (ω ↠ σ) ↠ (λ ↠ ζ) ∈ V. Hence,
λ↠ ζ ∈ V(ω ↠ σ). Therefore, W(ω)↠W(σ) ⊆ V(ω ↠ σ), which implies
that the operation ↠ is continuous.

Theorem 3.10. Consider τ is a topology on L and f : L3 → L2 is defined
by f(η, ϵ, ρ) = (η ↠ ϵ, ϵ ↠ ρ), for all η, ϵ, ρ ∈ L. If {1} is an open set and
f is continuous, then (L, τ) is a topological L-algebra.
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Proof. Let η ∈ L and fη(ϵ) = f(η, ϵ, η) = (η ↠ ϵ, ϵ ↠ η). Since f is
continuous, fη is continuous. Now, since {1} is open, {1} × {1} is open in
L2. In addition,

f−1
η (1, 1) = {ϵ ∈ L | fη(ϵ) = (1, 1)} = {ϵ ∈ L | (η ↠ ϵ, ϵ↠ η) = (1, 1)}

= {ϵ ∈ L | η ↠ ϵ = 1, ϵ↠ η = 1} = {ϵ ∈ L | ϵ = η}
= {η}.

Hence, {η} is an open set and τ is a discrete topology. Therefore, (L, τ) is
a topological L-algebra.

Theorem 3.11. Consider (L,↠, τ) is a semi-topological L-algebra. If {1}
is an open set, then (L, τ) is a topological L-algebra.

Proof. Suppose {1} is an open set and ω ∈ L. Since (L, τ) is a semi-
topological L-algebra and ω ↠ ω = 1 ∈ {1}, there is an open sets U such
that ω ∈ U, ω ↠ U = 1 and U↠ ω = {1}, which implies U = {ω}. Because,
for any σ ∈ U, ω ↠ σ = 1 and σ ↠ ω = 1, since L is an L-algebra,
ω = σ. Hence, τ is a discrete topology on L, and so (L, τ) is a topological
L-algebra.

Lemma 3.12. Every ideal of L is upset.

Proof. Assume I ∈ I(L), ω ∈ I and σ ∈ L such that ω ⩽ σ. By (I1),
ω ↠ σ = 1 ∈ I. Since ω ∈ I, by (I2) we get σ ∈ I. Hence, I is upset.

Proposition 3.13. Assume (L,↠, τ) is a topological L-algebra and I ∈
I(L). Then:
(i) if 1 is an interior point of I, then I is an open set,
(ii) if I is an open set, then I is closed,
(iii) if L is connected, then L has no open proper ideal.

Proof. Consider (L,↠, τ) is a topological L-algebra and I ∈ I(L).
(i) Suppose ω ∈ I. Since 1 is an interior point of I, there exists U ∈ τ such
that ω ↠ ω = 1 ∈ U ⊆ I. Since the operation ↠ is continuous, there exists
V ∈ τ such that ω ∈ V and V ↠ V ⊆ I. Now, for all σ ∈ V, we have
ω ↠ σ ∈ V ↠ V ⊆ I, and so ω ↠ σ ∈ I. Since I ∈ I(L) and ω ∈ I, by
Lemma 3.12, σ ∈ I. Thus, σ ∈ V ⊆ I, which implies that I is an open set.
(ii) Let I be an open set. We prove that I is closed. For this, we show Ic
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is an open set. Consider ω ∈ Ic. Then ω /∈ I. Since ω ↠ ω = 1 ∈ I ∈ τ
and the operation ↠ is continuous, there exists U ∈ τ such that ω ∈ U and
U ↠ U ⊆ I. Now, we prove U ⊆ Ic. For this, assume U ∩ I ̸= ∅. Then
there is σ ∈ U ∩ I such that σ ↠ U ⊆ I. So, for all ξ ∈ U, σ ↠ ξ ∈ I.
Since I ∈ I(L), by (I2), ξ ∈ I, and so U ⊆ I. Thus, ω ∈ I, which is a
contradiction. Then U∩I = ∅. Hence, ω ∈ U ⊆ Ic shows that Ic is an open
set, and so I is closed.
(iii) Suppose I is an open ideal of L. Then by (ii), I is closed. Since L is
connected, we have L = I.

A topological space L is called totally disconnected, if every connected
subset X ⊆ L is either empty or a singleton. A subset X of L is called a
component subspace, if it is the maximal connected subspace (see [14, 15]).

Proposition 3.14. Consider (L,↠, τ) is a semi-topological L-algebra. Then
L is totally disconnected iff every its connected subset containing 1 consists
just 1.

Proof. Suppose L is totally disconnected and X ⊆ L is a connected of 1. So,
X = {1}. Conversely, assume P is a connected subset of L and ω ∈ P. Then
1 ∈ (P ↠ ω) ∩ (ω ↠ P). Since (L,↠, τ) is a semi-topological L-algebra
and P is connected, obviously, ω ↠ P and P ↠ ω are connected. By
assumption, P ↠ ω = {1} and ω ↠ P = {1} and so P = {ω}. Therefore,
L is totally disconnected.

For an L-algebra, a binary relation ∼ is a congruence relation on L if it
is an equivalence relation such that for any ω, σ, ξ ∈ L,

ω ∼ σ ⇔ (ξ ↠ ω) ∼ (ξ ↠ σ) and (ω ↠ ξ) ∼ (σ ↠ ξ).

Theorem 3.15. [17] Let (L,↠, 1) be an L-algebra. Then each I ∈ I(L)
of L defines a congruence relation on L, for any ω, σ ∈ L, where

ω ∼ σ ⇔ ω ↠ σ, σ ↠ ω ∈ I.

Conversely, every congruence relation ∼ defines an ideal I = {ω ∈ L |
ω ∼ 1}.
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Since ∼ is a congruence relation on L, assume L/I = {[ω] | ω ∈ L},
where [ω] = {σ ∈ L | ω ∼ σ}. Then the binary relation ⩽ on L/I defined
by:

[ω] ⩽ [σ] iff ω ↠ σ ∈ I,

is a partial order on L/I. Thus (L/I,↠, [1]) is an L-algebra, where for any
ω, σ ∈ L, [1] = I and [ω]↠ [σ] = [ω ↠ σ].

Suppose L is an L-algebra and I ∈ I(L). Clearly, L/I is a quotient
L-algebra and πI : L → L/I is a canonical epimorphism. Consider τ is a
topology on L and U is a subset of L/I. Then we say U is an open subset
of L/I iff π−1

I (U) is an open subset of L. Now, if we consider τ̄ = {U ⊆
L/I | π−1

I (U) ∈ τ}, then obviously, τ̄ is a topology on L/I. This topology
on L/I is called the quotient topology induced by πI. Obviously, it is the
largest topology on L/I making πI continuous.

Theorem 3.16. Let L be an L-algebra and I ∈ I(L). If (L, τ) is a
(semi)topological L-algebra and πI is an open map, then (L/I, τ̄) is a
(semi)topological L-algebra.

Proof. Assume (L, τ) is a topological L-algebra, and [ω] ↠ [σ] ∈ V ∈ τ̄ ,
for [ω], [σ] ∈ L/I. Then [ω ↠ σ] ∈ V. Since πI is continuous, ω ↠ σ ∈
π−1
I (V) ∈ τ . Since (L, τ) is a topological L-algebra, there exist U,W ∈ τ

such that ω ∈ U, σ ∈ W and ω ↠ σ ∈ U ↠ W ⊆ π−1
I (V). Since πI is

an open map, πI(U) and πI(W) are in τ̄ , [ω] ∈ πI(U), [σ] ∈ πI(W) and
[ω]↠ [σ] ∈ πI(U)↠ πI(W) ⊆ V. Therefore, (L/I, τ̄) is a (semi)topological
L-algebra.

Proposition 3.17. Suppose (L, τ) is a topological L-algebra and I ∈ I(L).
Then:

(i)
L

I
has a discrete topology iff I is open,

(ii) if (L, τ) is a compact topological L-algebra, then L/I is a discrete finite
topological L-algebra iff I is open.

Proof. (i) Since L/I has a discrete topology, every single set such as {[ω]}
is open, for any ω ∈ L. Since 1 ∈ L, {[1]} is open. Since {[1]} = I, I is
open.

Conversely, if I is an open set, then {[1]} is an open set, too. Since L/I
is an L-algebra, by Theorem 3.6, L/I has a discrete topology.
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(ii) Suppose L is compact. Since π is a continuous epimorphism, π(L) = L/I
is compact. Consider I is open. Then by (i), L/I has a discrete topology
and so every singleton subset is open. In addition, since L/I is compact, L/I
is equal to union of finite open subsets. Thus L/I is finite. The converse,
by (i) is clear.

Definition 3.18. [14, 15] Assume (X, τ) is a topological space and ω ∈ X.
A local basis at ω is a set N of open neighborhoods of ω such that for all
U ∈ τ if ω ∈ U, then there exists V ∈ N such that ω ∈ V ⊆ U.

Lemma 3.19. Consider I ∈ I(L). If τ is a topology on L and τ̄ is the
quotient topology on L/I, then for each ω ∈ L, π−1

I (πI(ω)) = ω. In addition,
if V ∈ τ̄ , then there exists U ∈ τ such that πI(U) = V.

Theorem 3.20. Suppose (L, τ) is a semi-topological L-algebra and I ∈
I(L). Then

B = {π(U↠ ω) | U ∈ τ, 1 ∈ U, ω ∈ L},
is a local base of the space L/I at the point [ω] ∈ L/I, and the map π : L→
L/I is open.

Proof. Assume U ∈ τ . Since 1 ∈ U, clearly ω ∈ U↠ ω, for all ω ∈ L. Thus,
[ω] ∈ π(U ↠ ω). Now, let [ω] ∈ L/I. Then there exists W ∈ τ̄ such that
[ω] ∈W. Since W is open and π is continuous, we have ω ∈ π−1(W) = N.
On the other hand, by (L1), ω = 1↠ ω ∈ N. Since ↠ is continuous, there
exists U ∈ τ such that 1 ∈ U and ω ∈ U ↠ ω ⊆ N. Thus, [ω] ∈ π(U ↠
ω) ⊆ π(N) = π(π−1(W)) = W, and so π−1(π(U ↠ ω)) ⊆ N. By Lemma
3.19, π−1(π(U ↠ ω)) = (U ↠ ω) ⊆ N. Thus, π(U ↠ ω) ⊆ W. Hence,
B is a local basis. By definition of quotient topology, and Lemma 3.19,
π(U ↠ ω) = [(U ↠ ω)] =

⋃
σ∈U↠ω[σ]. Since

⋃
σ∈U↠ω[σ] is open in L and π

is continuous, we get π(U↠ ω) is open in τ . Therefore, π is open.

Theorem 3.21. Assume L is an L-algebra and I is a family of ideals which
is closed under intersections. Then there exists a topology τ on L such that
(L, τ) is a topological L-algebra.

Proof. Define

τ = {U ⊆ L | ∀ ω ∈ U, ∃I ∈ I(L) such that [ω] ⊆ U}.
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For any ω ∈ L and I ∈ I, clearly, [ω] ∈ τ , because if σ ∈ [ω], then from
σ ∈ [σ] we get that [σ] = [ω]. Obviously, τ is a topology on L. We prove
that the operation ↠ is continuous. For this, suppose ω ↠ σ ∈ U ∈ τ .
Then for some I ∈ I, [ω ↠ σ] ⊆ U, and so [ω] ↠ [σ] ⊆ U. Since [ω]
and [σ] are two open neighborhoods of ω and σ, respectively, such that
[ω] ↠ [σ] ⊆ [ω ↠ σ] ⊆ U, we get ↠ is continuous. Therefore, (L, τ) is a
topological L-algebra.

Theorem 3.22. Consider (L,↠, τ) is a topological L-algebra such that, for
any ∅ ̸= U ∈ τ , 1 ∈ U and η /∈ L. Suppose Lη = L ∪ {η}. Then there exists
a topology τη on Lη such that (Lη, τη) is a topological L-algebra.

Proof. Define the operation ⇝ on Lη as follows:

ω ⇝ σ =





ω ↠ σ if ω, σ ∈ L
η if ω ∈ L, σ = η
1 if ω = η, σ ∈ Lη

At first, we prove that (Lη,⇝, 1) is an L-algebra. For this, let ω, σ, ξ ∈ Lη.
We have the following cases:
(L1):
Case 1. If ω ∈ L, then ω ⇝ ω = ω ⇝ 1 = 1, and 1⇝ ω = ω.
Case 2. If ω = η, then for any σ ∈ Lη, η ⇝ σ = 1 and so if σ = η or σ = 1,
then η ⇝ η = η ⇝ 1 = 1. Now, if ω = 1 and σ = η, then 1⇝ η = η. Hence,
(L1) holds.
(L2): Let ω, σ, ξ ∈ Lη. We have the following cases:
Case 1. If ω, σ, ξ ∈ L, then since (L,↠, 1) is an L-algebra, clearly (L2)
holds.
Case 2. If ω = η and σ, ξ ∈ L, then

1 = 1⇝ 1 = (η ⇝ σ)⇝ (η ⇝ ξ) = (σ ⇝ η)⇝ (σ ⇝ ξ) = η ⇝ (σ ⇝ ξ) = 1.

Case 3. If σ = η and ω, ξ ∈ L, then similar to Case 2, (L2) holds.
Case 4. If ξ = η and ω, σ ∈ L, then

η = (ω ⇝ σ)⇝ η = (ω ⇝ σ)⇝ (ω ⇝ η)

= (σ ⇝ ω)⇝ (σ ⇝ η) = (σ ⇝ ω)⇝ η = η.



On (semi)topology L-algebras 95

Case 5. If ω = σ = η and ξ ∈ L, then

1 = η ⇝ ξ = 1⇝ (η ⇝ ξ) = (η ⇝ η)⇝ (η ⇝ ξ) = (η ⇝ η)⇝ (η ⇝ ξ) = 1.

Case 6. If ω = ξ = η and σ ∈ L, then

1 = (η ⇝ σ)⇝ (η ⇝ η) = (σ ⇝ η)⇝ (σ ⇝ η) = 1.

Case 7. If σ = ξ = η and ω ∈ L, then

1 = η ⇝ (ω ⇝ ξ) = (ω ⇝ η)⇝ (ω ⇝ ξ) = (η ⇝ ω)⇝ (η ⇝ ξ) = 1.

Case 8. If ω = σ = ξ = η, then clearly (L2) holds.
Hence, in all above cases, (L2) holds.
(L3): If ω ⇝ σ = σ ⇝ ω = 1, for ω, σ ∈ Lη, then we have the following
cases:
Case 1. If ω, σ ∈ L, then since (L,↠, 1) is an L-algebra, clearly (L3) holds.
Case 2. Since ω ⇝ σ = 1, we get ω = η and σ ∈ Lη. Also, from σ ⇝ ω = 1,
we get σ = η and ω ∈ Lη. Hence, ω = σ = η, and so (L3) holds.
Therefore, (Lη,⇝, 1) is an L-algebra.

In addition, it is clear that,

τη = {U ∪ {η} | U ∈ τ} ∪ {∅},

is a topology on Lη. Now, we show (Lη, τη) is a topological L-algebra. For
this, we prove↠ is continuous. Let ω ⇝ σ ∈ U∪{η}. In the following cases,
we find two sets V,W ∈ τη such that ω ∈ V, σ ∈W and V⇝W ⊆ U∪{η}.
Case 1. If ω, σ ∈ L, then ω ⇝ σ = ω ↠ σ ∈ U. Since ↠ is continuous,
there exist V,W ∈ τ such that ω ∈ V, σ ∈ W and ω ↠ σ ∈ V ↠ W ⊆ U.
If ξ1 ∈ V ∪ {η} and ξ2 ∈ W ∪ {η}, since, for any U ∈ τ , 1 ∈ U, then
ξ1 ⇝ ξ2 ∈ {ξ1 ↠ ξ2, η, 1} ⊆ U∪ {η}. Hence, V∪ {η}⇝W∪ {η} ⊆ U∪ {η}.
Case 2. If ω = η and σ ∈ L, then ω = η ∈ {η} ∈ τη, σ ∈ Lη ∈ τη and
{η}⇝ Lη = {1} ⊆ U ∪ {η}.
Case 3. If ω ∈ L and σ = η, then ω ∈ Lη ∈ τη, σ = η ∈ {η} ∈ τη and
ω ↠ σ ∈ Lη ↠ {η} ⊆ {η, 1} ⊆ U ∪ {η}.
Case 4. If ω = σ = η, then ω = σ = η ∈ {η} ∈ τη and {η}⇝ {η} = {1} ∈
U ∪ {η}. Therefore, (Lη, τη) is a topological L-algebra.

Theorem 3.23. For any n > 2 there exists a topological L-algebra of order
n.
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Proof. Suppose L is an L-algebra of order n > 1. Clearly, τ = {L, ∅} is a
topology on L, and so (L, τ) is a topological L-algebra. Now, suppose ω /∈ L.
Define Lω = L∪ {ω}. Then by Theorem 3.22, there exists the operation ↠
and topology τω on Lω such that (Lω, τω) is a topological L-algebra. Since
τω = {∅, {ω},Lω}, obviously, τω is a non-trivial topology on Lω.

Theorem 3.24. For any countable set L such that 1 ∈ L, there exists a
topological L-algebra on L.

Proof. Consider L = {ω0 = 1, ω1, ω2, · · · } as a countable subset and define
the operation ↠ on L as follows:

ωi ↠ ωj =

{
1 if i ≥ j
ωj if i < j

and ωi ⩽ ωj iff ωi ↠ ωj = 1.

Similar to the proof of Theorem 3.22, we can see that (L,↠, 1) is an L-
algebra. The set In = {1, ω1, · · · , ωn} ∈ I(L), for any n ≥ 1. Let B = {In |
n ≥ 1}. By Theorem 3.21, there is a non-trivial topology τ on L such that
(L, τ) is a topological L-algebra.

Theorem 3.25. Let (L, τ) be a topological L-algebra and α be a cardinal
number. If | L |≤ α, then there exists a topological L-algebra (B,U) such
that | B |≥ α, 1 ∈ U ∈ U and L is a sub-algebra of B.
Proof. Suppose

Γ = {(H, 99K, 1,U) | (H, 99K, 1,U) is a topological L-algebra, L ⊆ H, and 99K|L=→}.

The following relation is a partial order on Γ:

(H, 99K, 1,U) ⩽ (K,↬, 1,V)⇔ H ⊆ K,↬|H=99K, U ⊆ V.

Assume
∑

= {(Hi, 99Ki, 1,Ui) | i ∈ I} is a chain in Γ. Put H =
⋃
i∈IHi

and U =
⋃
i∈IUi. If ω, σ ∈ H, since

∑
is a chain, then for some i ∈ I,

ω, σ ∈ Hi. Define ω 99K σ = ω 99Ki σ. We prove 99K is an operation on
H. Suppose ω, σ ∈ Hi ∪ Hj . Since

∑
is a chain, Hi ⊆ Hj or Hj ⊆ Hi.

Without the lost of generality, assume that Hi ⊆ Hj . Then 99Kj |Hi=99Ki.
So, ω 99K σ = ω 99Ki σ. Thus, 99K is an operation on H. Now, it is easy to
see that (H, 99K, 1) is an L-algebra, where 99K|L=↠.
On the other hand, since

∑
is a chain, U is a topology on H. We show
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(H, 99K, 1,U) is a topological L-algebra. Assume ω 99K σ ∈ U ∈ U . Then
there exists an i ∈ I such that ω 99K σ = ω 99Ki σ ∈ U ∈ Ui. Since 99Ki
is continuous in (Hi,Ui), there are V,W ∈ Ui such that ω ∈ V, σ ∈ W
and V 99Ki W ⊆ U. This proves that the operation 99K is continuous in
(H,U). Thus, (H, 99K, 1,U) is an upper bound for

∑
. By Zorn’s Lemma,

Γ has a maximal element. Suppose (B,⇝, 1,U) is a maximal element of
Γ. We prove that | B |≥ α. If | B |< α, then for some non-empty set P,
| B ∪ P |= α. Take η ∈ P − B and put H = B ∪ {η}. Then by Theorem
3.22, H with the following operations is an L-algebra:

ω ↷ σ =





ω ⇝ σ if ω ∈ B, σ ∈ B
η if ω ∈ B, σ = η
1 if ω = η, σ ∈ H

The set D = U ∪ {{a}} is a sub-base for a topology V on H. Similar to the
proof of Theorem 3.22, (H,V) is a topological L-algebra. But (H,↷, 1,V)
is a member of Γ that (B,⇝, 1,U) < (H,↷, 1,V), which is a contradiction.
Therefore, | B |≥ α and L is a sub-algebra of B.

Theorem 3.26. If α is an infinite cardinal number, then there is a topo-
logical L-algebra of order α.

Proof. Suppose X is a set of cardinality α and 1 ∈ X. Consider L = {ω0 =
1, ω1, ω2, · · · } as a countable subset of X such that 0 /∈ L. Similar to Theo-
rem 3.24, define the operation ↠ and ⩽ on L as follows,

ωi ↠ ωj =

{
1 if i ≥ j
ωj if i < j

and ωi ⩽ ωj iff ωi → ωj = 1.

Similar to the proof of Theorem 3.22, we can see that (L,↠, 1) is an L-
algebra. Then the set In = {1, ω1, · · · , ωn} ∈ I(L), for any n ≥ 1. Assume
B = {In | n ≥ 1}. By Theorem 3.21, there is a non-trivial topology τ on L
such that (L, τ) is a topological L-algebra. Now, define the binary operation
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⇝ on X as follows,

ω ⇝ σ =





ω ↠ σ if ω ∈ L, σ ∈ L
σ if ω ∈ L, σ /∈ L
1 if ω /∈ L, σ ∈ L
1 if ω, σ /∈ L, ω = σ
1 if ω, σ /∈ L ∪ {1}, ω ̸= σ
1 if ω = 0, σ /∈ L ∪ {0}
0 if ω /∈ L ∪ {0}, σ = 0

Then similar to the proof of Theorem 3.22, we can see that (X,⇝, 0, 1) is
a bounded L-algebra of order α and the set C = τ ∪ {{ω} | ω /∈ L} is a
sub-base for a topology U on X. Since {1} /∈ U , U is a non-trivial topology
on X. In the following cases we will show that (X,⇝,U) is a topological
L-algebra. For this, consider ω ⇝ σ ∈ U. In the following cases, we find
two sets V,W ∈ U such that ω ∈ V, σ ∈W and V⇝W ⊆ U.
Case 1. If ω, σ ∈ L, then ω ⇝ σ = ω ↠ σ ∈ U ∈ τ . Since ↠ is
continuous in (L, τ), there are V,W ∈ τ containing ω, σ, respectively, such
that V ↠ W ⊆ U. Hence, V ⇝ W ⊆ U, which implies ⇝ is continuous in
(X,U).
Case 2. If ω ∈ L and σ /∈ L, then ω ⇝ σ = {σ} ⊆ U. Thus, L and {σ}
are two elements of U such that ω ∈ L, σ ∈ {σ} and ω ⇝ σ = {σ}, and so
L⇝ {σ} = {σ} ⊆ U.
Case 3. If ω /∈ L and σ ∈ L, then ω ⇝ σ = {1} ⊆ U. Now, {ω} and L,
both, belong to U and ω ∈ {ω}, σ ∈ L and {ω}⇝ L = {1} ⊆ U.
Case 4. If ω, σ /∈ L and ω = σ, then ω ⇝ σ = {1} ⊆ U. Then {ω} is an
open set in U which contains ω and {ω}⇝ {ω} = {1} ⊆ U.
Case 5. If ω, σ /∈ L ∪ {0} and ω ̸= σ, then ω ⇝ σ = {1} ⊆ U. Then
{ω} and {σ} are two open sets in U which contains ω, σ, respectively, and
{ω}⇝ {σ} = {1} ⊆ U.
Case 6. If ω = 0 and σ /∈ L ∪ {0}, then ω ⇝ σ = {1} ⊆ U. Then
{0} and {σ} are two open sets in U which contains ω, σ, respectively, and
{ω}⇝ {σ} = {1} ⊆ U.
Case 7. If ω /∈ L ∪ {0} and σ = 0, then ω ⇝ σ = {0} ⊆ U. Then
{ω} and {0} are two open sets in U which contains ω, σ, respectively, and
{ω}⇝ {σ} = {0} ⊆ U.
These cases prove (X,⇝,U) is a topological L-algebra. Therefore, there is
a topological L-algebra of order α.



On (semi)topology L-algebras 99

Theorem 3.27. Assume (L, τ) is a topological L-algebra and U is an open
neighborhood of 1. If for any ω ∈ L, U ↠ ω is an open neighborhood of ω,
then (L, τ) is a T0-space.

Proof. Consider ω, σ ∈ L and ω ̸= σ. Then U ↠ ω ∈ τ and U ↠ σ ∈ τ . If
ω ∈ U ↠ σ and σ ∈ U ↠ ω. Since 1 ∈ U, we have ω ∈ 1 ↠ σ ⊆ U ↠ σ,
and so ω ∈ {σ}. Similarity, σ ∈ {ω}, and so ω = σ in both cases, which is
a contradiction. Therefore, (L, τ) is a T0-space.

Theorem 3.28. Let (L,↠, τ) be a topological L-algebra. Then (L,↠, τ) is
a T0-space iff for any 1 ̸= ω ∈ L, there exists U ∈ τ such that ω ∈ U and
1 /∈ U.

Proof. Consider ω, σ ∈ L and ω ̸= σ. Then ω ↠ σ ̸= 1 or σ ↠ ω ̸= 1.
Without the lost of generality, suppose ω ↠ σ ̸= 1. Then there exists U ∈ τ
such that ω ↠ σ ∈ U and 1 /∈ U. By assumption, since ↠ is continuous,
there are V,W ∈ τ such that ω ∈ V, σ ∈ W and V ↠ W ⊆ U. If ω ∈ W,
then 1 = ω ↠ ω ∈ V ↠ W ⊆ U, which is a contradiction. So, ω /∈ W.
Hence, (L,↠, τ) is a T0-space. The proof of converse is clear.

Corollary 3.29. If α is an infinite cardinal number, then there is a T0

topological L-algebra of order α, which it’s topology is non-trivial.

Proof. Assume (L,↠, τ) and (X,⇝,U) are two topological L-algebras in
Theorem 3.26. Clearly, U is non-trivial. Let ω ∈ X − {1}. If ω ∈ L, then
for some n ≥ 1, ω /∈ In. Hence, ω ∈ [ω]In ∈ U and 1 /∈ [ω]In . If ω /∈ L,
then ω ∈ {ω} ∈ U and 1 /∈ {ω}. Now, by Theorem 3.28, (X,⇝,U) is a T0

topological L-algebra of order α.

Theorem 3.30. Let (L,↠, τ) be a topological L-algebra. Then (L, τ) is a
T1-space iff it is a T0-space.

Proof. Consider (L, τ) is a T0-space and ω ̸= σ. Then ω ↠ σ ̸= 1 or
σ ↠ ω ̸= 1. Without the lost of generality, suppose ω ↠ σ ̸= 1. Then
there exists U ∈ τ such that ω ↠ σ ∈ U and 1 /∈ U or ω ↠ σ /∈ U and
1 ∈ U. First assume ω ↠ σ ∈ U and 1 /∈ U. Since ↠ is continuous, there
are V,W ∈ τ such that ω ∈ V, σ ∈ W and V ↠ W ⊆ U. If ω ∈ W, then
1 = ω ↠ ω ∈ V ↠ W ⊆ U, which is a contradiction. Similarly, σ /∈ V.
Now, if 1 ∈ U and ω ↠ σ /∈ U, then since 1 = ω ↠ ω = σ ↠ σ ∈ U,



100 M. Aaly Kologani

there are N,M ∈ τ such that ω ∈ N and σ ∈ M such that N ↠ N ⊆ U
and M ↠ M ⊆ U. If σ ∈ N, then ω ↠ σ ∈ N ↠ N ⊆ U, which is a
contradiction. Similarly, ω /∈M. Therefore, (L, τ) is a T1-space. The proof
of converse is clear.

Corollary 3.31. If α is an infinite cardinal number, then there is a T1

topological L-algebra of order α which it’s topology is non-trivial.

Proof. By Corollary 3.29 and Theorem 3.30, the proof is clear.

Theorem 3.32. Suppose (L,↠, τ) is a topological L-algebra. Then the
following statements are equivalent:
(i) (L,↠, τ) is Hausdorff.
(ii) {1} is closed.
(iii) for any 1 ̸= ω ∈ L, there exist two open sets U and V of 1 and ω,
respectively, such that U ∩V = ∅.
(iv) (L,↠, τ) is a T1-space.

Proof. (i⇒ ii) Since L is Hausdorff, obviously, {1} is closed.
(ii ⇒ iii) Let {1} be closed and ω ̸= 1. Then 1 ↠ ω = ω ∈ L − {1} ∈ τ .
Since ↠ is continuous, there exist two open neighborhoods U and V of 1
and ω, respectively, such that U ↠ V ⊆ L − {1}. If ξ ∈ U ∩ V, then
1 = ξ ↠ ξ ∈ U ↠ V ⊆ L − {1}, which is a contradiction. Therefore,
U ∩V = ∅.
(iii ⇒ iv) Assume ω, σ ∈ L and ω ̸= σ. Then ω ↠ σ ̸= 1 or σ ↠ ω ̸= 1.
Without the lost of generality, suppose ω ↠ σ ̸= 1. By (iii), there exist
two disjoint open sets U and V which contain ω ↠ σ and 1, respectively.
Since ↠ is continuous, there are N,M ∈ τ such that ω ∈ N, σ ∈ M and
N ↠ M ⊆ U. If ω ∈ M, then 1 = ω ↠ ω ∈ N ↠ M ⊆ U, which is a
contradiction. So, ω /∈M. Similarly, σ /∈ N. Hence, (L,↠, τ) is a T1-space.
(iv ⇒ i) Consider ω, σ ∈ L and ω ̸= σ. Then ω ↠ σ ̸= 1 or σ ↠ ω ̸= 1.
Without the lost of generality, suppose ω ↠ σ ̸= 1. Since τ is a T1-space,
there exist two open neighborhoods U and V of ω ↠ σ and 1, respectively,
such that 1 /∈ U and ω ↠ σ /∈ V. Since ↠ is continuous, there exist
N,M ∈ τ such that ω ∈ N, σ ∈ M and N ↠ M ⊆ U. If ξ ∈ N ∩M, then
1 = ξ ↠ ξ ∈ U, which is a contradiction, and so N ∩M = ∅. By the similar
way, other case is clear. Therefore, (L,↠, τ) is Hausdorff.
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Corollary 3.33. If α is an infinite cardinal number, then there is a Haus-
dorff topological L-algebra of order α, which it’s topology is non-trivial.

Proof. By Corollary 3.31 and Theorem 4.2, the proof is clear.

Suppose L is an L-algebra and I is a proper ideal of L. Define
∑

=
{U ∈ I(L) | ∃ I ∈ I(L) such that I ⊆ U} and f :

∑
↪→ I(L/I) is a map

such that f(U) = Ū, for all U ∈∑. Clearly, f is a one to one corresponding
among

∑
and I(L/I).

Proposition 3.34. Consider (L,↠, τ) is a topological L-algebra, I ∈ I(L)
and τ̄ is a quotient topology on L/I. If πI : L ↪→ L/I is an open map, then
(i) I is open iff (L/I, τ̄) is discrete.
(ii) I is closed iff (L/I,↠, τ̄) is Hausdorff.

Proof. (i) Suppose I is open. Since πI : L ↪→ L/I is an open map, the set
πI(I) = [1] belongs to τ̄ . Since (L/I,↠, τ̄) is a topological L-algebra, by
Theorem 3.20, (L/I, τ̄) is discrete. Conversely, suppose (L/I, τ̄) is discrete.
Then [1] is an open set. Since πI : L ↪→ L/I is continuous, I = πI

−1([1]) ∈ τ .
(ii) (⇒) By assumption, I is closed, then Ic is open. Thus, for any ω, σ ∈ L,
if ω ↠ σ ∈ Ic, then there are two open neighborhoods U and V of ω
and σ, respectively, such that U ↠ V ⊆ Ic, because ↠ is continuous.
Also, since π is open, so π(U) and π(V) are two open neighborhoods of [ω]
and [σ], respectively, such that π(U) ↠ π(V) ⊆ π(U ↠ V) ⊆ π(Ic). If
[ξ] ∈ π(U) ∩ π(V), then [1] = [ξ] ↠ [ξ] ∈ π(U) ↠ π(V) ⊆ π(Ic), which is a
contradiction. Therefore, (L/I,↠, τ̄) is Hausdorff.
(⇐) Since L/I is Hausdorff, the set {[1]} is closed in L/I, and so I =
π−1([1]) is closed in L.

4 Conclusions and future works

In this article, the concept of (semi)topological L-algebras is introduces and
some related results are approved. Then the conditions that imply an L-
algebra be a semitopological or a topological L-algebra is investigated and
some properties of them are studied. Specially, it is shown that if (L,↠, τ)
is a semitopological L-algebra and {1} is an open set or L is bounded and
satisfies the double negation property, then (L, τ) is a topological L-algebra.
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Finally, a discrete topology on quotient L-algebra, under suitable conditions,
is constructed.
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