[1] Barr, M., Relational algebras, in MacLane, S. (ed.), “Reports of the Midwest Category Seminar IV”, Lecture Notes in Math. 137, Springer-Verlag Berlin, Heidelberg, 1970, 39-55.
[2] Beck, J., Distributive laws, in Eckmann, B. (ed.), “Seminar on Triples and Categorical Homology Theory”, Lecture Notes in Math. 80, Springer-Verlag Berlin, Heidelberg, 1969, 119-140.
[3] Belohlávek, R., “Fuzzy Relational Systems: Foundations and Principles”, Springer, 2002.
[4] Colebunders, E. and Van Opdenbosch, K., Kleisli monoids describing approach spaces, Appl. Categ. Structures, 24(5) (2016), 521-544.
[5] Davey, B.A. and Priestley, H.A., “Introduction to Lattices and Order”, Cambridge University Press, 2002.
[6] Day, A., Filter monads, continuous lattices and closure systems, Canad. J. Math., 27(1) (1975), 50-59.
[7] Eklund, P. and Gähler, W., Fuzzy filter functions and convergence, in Rodabaugh, S.E., Klement E.P. and Höhle, U. (eds.), “Applications of Category Theory to Fuzzy Subsets”, Theory Decis. Libr. B, Kluwer Academic Publishers, Dordrecht, 1992, 109- 136.
[8] Gähler, W., Herrlich, H., and Preuss, G. (eds.), “Recent Developments of General Topology and Its Applications: International Conference in Memory of Felix Hausdorff”, Akademie Verlag, 1992.
[9] Hofmann, D., Seal, G.J., and Tholen, W. (eds.), “Monoidal Topology: A Categorical Approach to Order, Metric, and Topology”, Cambridge University Press, 2014.
[10] Höhle, U., Characterization of L-topologies by L-valued neighborhoods, in Höhle, U. and Rodabaugh, S.E. (eds.), “Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory”, The Handbooks of Fuzzy Sets Series 3, Springer Science+Business Media, New York, 1999, 389-432.
[11] Höhle, U., “Many Valued Topology and Its Applications”, Springer, 2001.
[12] Höhle, U. and Šostak, A.P., Axiomatic foundations of fixed-basis fuzzy topology, in Höhle, U. and Rodabaugh, S.E. (eds.), “Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory”, The Handbooks of Fuzzy Sets Series 3, Springer Science+ Business Media, New York, 1999, 123-272.
[13] Klement, E.P., Mesiar, R., and Pap, E., “Triangular Norms”, Kluwer Academic Publishers, 2000.
[14] Lai, H. and Zhang, D., Fuzzy preorder and fuzzy topology, Fuzzy Sets and System, 157(14) (2006), 1865-1885.
[15] Lai, H. and Zhang, D., Fuzzy topological spaces with conical neighborhood systems, Fuzzy Sets and System, 330 (2018), 87-104.
[16] Lai, H. and Zhang, D., Completely distributive enriched categories are not always continuous, Theory Appl. Categ., 35(3) (2020), 64-88.
[17] Lai, H., Zhang, D., and Zhang, G., A comparative study of ideals in fuzzy orders, Fuzzy Sets and Systems, 382 (2020), 1-28.
[18] Lai, H., Zhang, D., and Zhang, G., The saturated prefilter monad, Topology Appl., 301 (2021), 107525.
[19] Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(3) (1976), 621-633.
[20] Lowen, R., Convergence in fuzzy topological spaces, Gen. Topol. Appl., 10(2) (1979), 147-160.
[21] Lowen, R., Fuzzy neighborhood spaces, Fuzzy Sets and Systems, 7(2) (1982), 165-189.
[22] Lowen, R., Van Olmen, C., and Vroegrijk, T., Functional ideals and topological theories, Houston J. Math., 34 (2008), 1065-1089.
[23] Manes E., A triple theoretic construction of compact algebras, in Eckmann, B. (ed.), “Seminar on Triples and Categorical Homology Theory”, Lecture Notes in Math. 80, Springer-Verlag Berlin, Heidelberg, 1969, 91-118.
[24] Morsi, N.N., Fuzzy T-locality spaces, Fuzzy Sets and Systems, 69(2) (1995), 193-219.
[25] Morsi, N.N., On two types of stable subconstructs of FTS, Fuzzy Sets and Systems, 76(2) (1995), 191-203.
[26] Seal, G.J., Canonical and op-canonical lax algebras, Theory Appl. Categ., 14 (2005), 221-243.
[27] Stubbe, I., Categorical structures enriched in a quantaloid: Categories, distributors and functors Theory Appl. Categ., 14 (2005), 1-45.
[28] Wagner, K.R., Liminf convergence in Ω-categories, Theoret. Comput. Sci., 184(1) (1997), 61-104.
[29] Wyler, O., Algebraic theories of continuous lattices, in Banaschewski, B. and Hoffmann, R.-E. (eds.), “Continuous Lattices”, Lecture Notes in Math. 871, Springer- Verlag Berlin, Heidelberg, 1981, 390-413.
[30] Yao, W. and Yue, Y., Algebraic representation of frame-valued continuous lattices via the open filter monad, Fuzzy Sets and Systems, 420 (2021), 143-156.
[31] Yue, Y. and Fang, J., The ⊤-filter monad and its applications, Fuzzy Sets and Systems, 382 (2020), 79-97.
[32] Zadeh, L.A., Similarity relations and fuzzy orderings, Inf. Sci., 3(2) (1971), 177-200.