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Formal balls of Q-categories

Xianbo Yang and Dexue Zhang∗

Communicated by Professor Naser Hosseini

Abstract. The construction of the formal ball model for metric spaces due
to Edalat and Heckmann was generalized to Q-categories by Kostanek and
Waszkiewicz, where Q is a commutative and unital quantale. This paper
concerns the influence of the structure of the quantale Q on the connection
between Yoneda completeness of Q-categories and directed completeness of
their sets of formal balls. In the case that Q is the unit interval [0, 1] equipped
with a continuous t-norm &, it is shown that in order that Yoneda complete-
ness of each Q-category be equivalent to directed completeness of its set of
formal balls, a necessary and sufficient condition is that the t-norm & is
Archimedean.

1 Introduction

The formal ball construction is a basic tool for quasi-metric spaces, as
demonstrated in [5–7]. In [7] Goubault-Larrecq and Ng argued that “for-
mal balls are the essence of quasi-metric space”. Formal balls were first
introduced in [23] for metric spaces, later extended to quasi-metric spaces
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in [18, 20], then to the general setting of Q-categories in [10], where Q is a
commutative and unital quantale.

Metric properties of a quasi-metric space X are closely related with the
order structure of its set BX of formal balls. A typical example says, a quasi-
metric space X is continuous and Yoneda complete in the sense of [10, 22]
if and only if BX is a continuous dcpo (directed complete partially ordered
set) [5, 7]. Another example in this vein, which motivates this paper, asserts
that a quasi-metric space X is Yoneda complete if and only if BX is a dcpo.
This result was first proved in [2] for metric spaces, then in [1, 10] for quasi-
metric spaces. In fact, Kostanek and Waszkiewicz [10] proved the conclusion
for Q-categories with Q being a special kind of value quantale, not only for
quasi-metric spaces. But, the requirements imposed on the quantale in [10]
are so strong that if Q is the interval [0, 1] together with a continuous t-
norm, up to isomorphism there is only one t-norm, namely the product
t-norm, that satisfies the requirements.

Thus, for a general quantale Q, even for the quantale obtained by en-
dowing the interval [0, 1] with a continuous t-norm, the question remains
open whether we have an equivalence between Yoneda completeness of Q-
categories and directed completeness of their sets of formal balls.

In this paper we show that the answer is negative. Actually, the answer
depends on the structure of the quantale Q, as we shall see. Corollary
4.9 shows that, in the case that Q is the unit interval [0, 1] equipped with
a continuous t-norm, the equivalence holds if and only if the t-norm is
Archimedean.

2 Preliminaries

A commutative and unital quantale (a quantale for short) [17]

Q = (Q,&, k)

is a commutative monoid with k being the unit, such that the underlying
set Q is a complete lattice (with a top element 1 and a bottom element 0),
and that the multiplication & distributes over arbitrary joins in the sense
that

p&
(∨

i∈I
qi

)
=
∨

i∈I
p& qi
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for all p, qi ∈ Q (i ∈ I). If the unit k is the top element, then we say that
Q is integral. For all elements p, q of an integral quantale, it is clear that
p& q ≤ p ∧ q.

Given a quantale Q = (Q,&, k), the multiplication & determines a binary
operator →, called the implication operator of &, via the adjoint property:

p& q ≤ r ⇐⇒ q ≤ p→ r.

Typical examples of quantales include (i) (H,∧, 1), where H is a com-
plete Heyting algebra; (ii) Lawvere’s quantale ([0,∞]op,+, 0); and
(iii) ([0, 1],&, 1), where & is a left continuous t-norm. Actually, a left contin-
uous t-norm on [0, 1] [9] is just a binary operation &: [0, 1]× [0, 1] −→ [0, 1]
such that ([0, 1],&, 1) is a quantale.

A continuous t-norm on [0, 1] is a left continuous t-norm that is contin-
uous with respect to the usual topology. We refer to the monograph [9] for
continuous t-norms. Three basic continuous t-norms and their implication
operators are listed below:

(i) The Gödel t-norm:

x&G y = min{x, y}; x→ y =

{
1 x ≤ y,
y x > y.

(ii) The product t-norm:

x&P y = xy; x→ y =

{
1 x ≤ y,
y/x x > y.

(iii) The  Lukasiewicz t-norm:

x& L y = max{0, x+ y − 1}; x→ y = min{1− x+ y, 1}.

A continuous t-norm on [0, 1] is Archimedean, if for all x, y ∈ (0, 1) there
is some integer n such that xn < y, where

xn = x&x& · · ·&x︸ ︷︷ ︸
n times

.
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It is not hard to see that a continuous t-norm is Archimedean if and only
if it has no idempotent element other than 0 and 1. It is well-known (see
e.g. [9]) that if & is a continuous Archimedean t-norm, then the quantale
([0, 1],&, 1) is either isomorphic to ([0, 1],& L, 1) or to ([0, 1],&P , 1). In other
words, up to isomorphism there are precisely two Archimedean continuous
t-norms on [0, 1]: the product t-norm and the  Lukasiewicz t-norm.

Definition 2.1. [8, 14, 21] Let Q be a quantale. A Q-category consists of
a set X and a map o : X ×X −→ Q such that

k ≤ o(x, x), o(y, z) & o(x, y) ≤ o(x, z)

for all x, y, z ∈ X. As usual, we write X for the pair (X, o) and write X(x, y)
for o(x, y) if no confusion would arise.

If Q is the Boolean algebra {0, 1}, a Q-category is exactly a preordered
set; that is, a set together with a reflexive and transitive relation. If Q
is Lawvere’s quantale ([0,∞]op,+, 0), a Q-category is exactly a generalized
metric space in the sense of Lawvere [14]; such a Q-category is also known
as a pseudo-quasi-metric space (with distance allowed to be infinite).

Let X be a Q-category. A formal ball of X is a pair (x, r) with x ∈ X
and r ∈ Q, x is called the center and r the radius. For formal balls (x, r)
and (y, s), define

(x, r) ≤BX (y, s) if r ≤ s&X(x, y).

Then ≤BX is a reflexive and transitive relation, hence a preorder. We write
BX for the set of formal balls of X endowed with the preorder ≤BX . We
often omit the subscript if it causes no confusion. In this paper the radius
r of a formal ball (x, r) is allowed to be the bottom element of Q.

A net (xλ)λ∈D in a Q-category X is forward Cauchy [3, 21] if

∨

λ

∧

λ≤γ≤µ
X(xγ , xµ) ≥ k.

An element a of X is a Yoneda limit [3, 21] of (xλ)λ∈D if for all y ∈ X,

X(a, y) =
∨

λ

∧

µ≥λ
X(xµ, y).
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Yoneda limits of forward Cauchy nets can be characterized as colimits of
forward Cauchy weights. A weight of a Q-category X is a map ϕ : X −→ Q
such that

ϕ(y) &X(x, y) ≤ ϕ(x)

for all x, y ∈ X. For each forward Cauchy net (xλ)λ∈D of X, the map

ϕ :=
∨

λ

∧

µ≥λ
X(−, xµ)

is a weight of X; such a weight is said to be forward Cauchy [13]. Forward
Cauchy weights of a Q-category X are also known as ideals in the literature,
see e.g. [3]. An element a of X is a colimit of a weight ϕ [3, 8] if for all
y ∈ X,

X(a, y) =
∧

x∈X
(ϕ(x)→ X(x, y)).

Proposition 2.2. ( [3, Lemma 46]) Let (xλ)λ∈D be a forward Cauchy net
of a Q-category X. Then, an element a of X is a Yoneda limit of (xλ)λ∈D
if and only if a is a colimit of the forward Cauchy weight

ϕ =
∨

λ

∧

µ≥λ
X(−, xµ).

Therefore, a Q-category X is Yoneda complete if and only if every forward
Cauchy weight of X has a colimit.

Given a Q-category X, Yoneda completeness of X is closely related
with directed completeness of its set BX of formal balls. As mentioned
before, when Q is Lawvere’s quantale ([0,∞]op,+, 0), a Q-category (i.e., a
generalized metric space) is Yoneda complete if and only if its set of formal
balls is directed complete [1, 2, 10].

In the case that Q is a continuous and integral quantale, Proposition 2.2
and Lemma 2.3 below explain to some extent why Yoneda completeness of
a Q-category and directed completeness of its set of formal balls are closely
related.

Before proceeding on, we recall the notion of continuous lattices first.
Let a, b be elements of a partially ordered set P . We say that a is way below
b, in symbols a≪ b, if for each directed set D of P with a join,

b ≤ ∨D =⇒ ∃ d ∈ D, a ≤ d.
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A continuous lattice [4] is a complete lattice L for which every element is the
join of elements way below it; that is, a =

∨{x ∈ L | x≪ a}. The interval
[0, 1] is clearly a continuous lattice. A continuous quantale is a quantale for
which the underlying lattice is continuous.

Lemma 2.3. Let Q be a continuous and integral quantale. Then, for each
weight ϕ of a Q-category X the following are equivalent:

(1) ϕ is forward Cauchy.

(2) ϕ satisfies the following conditions:

(i)
∨
x∈X ϕ(x) = 1;

(ii) If r ≪ 1 and si ≪ ϕ(xi) (i = 1, 2), then there exists x ∈ X such
that r ≪ ϕ(x) and that si ≪ X(xi, x) (i = 1, 2).

(3) There is a directed subset (xλ, rλ)λ∈D of BX such that
∨
λ∈D rλ = 1

and that ϕ =
∨
λ∈D

∧
µ≥λX(−, xµ).

Proof. That (3) implies (1) follows immediately from Lemma 2.4 below.
The equivalence (1)⇔ (2) is contained in [12, Lemma 6.3]; the implication
(2) ⇒ (3) is also proved there implicitly. So, here we only write down the
construction of the directed subset. Suppose that ϕ satisfies the conditions
(i) and (ii). Let

Bϕ = {(x, r) ∈ BX | r ≪ ϕ(x)}.

Then Bϕ is a directed subset of BX that satisfies the requirement.

Lemma 2.4. Let Q be an integral quantale; let X be a Q-category and
(xλ, rλ)λ∈D be a directed subset of BX. If

∨
λ∈D rλ = 1, then (xλ)λ∈D is a

forward Cauchy net in X.

Proof. Since rλ ≤ rµ &X(xλ, xµ) whenever λ ≤ µ, it follows that

1 =
∨

λ∈D
rλ ≤

∨

λ∈D

∧

λ≤µ
rµ ≤

∨

λ∈D

∧

λ≤µ≤γ
X(xµ, xγ),

hence (xλ)λ∈D is forward Cauchy.
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3 Counterexamples

In this section we give two examples to show that for a general quantale Q,
Yoneda completeness of a Q-category may fail to be equivalent to directed
completeness of its set of formal balls.

Example 3.1. This example presents a Q-category that is Yoneda com-
plete, but its set of formal balls is not directed complete.

Let & be a continuous non-Archimedean t-norm and let Q be the quan-
tale ([0, 1],&, 1). Since & is continuous and non-Archimedean, there is some
b ∈ (0, 1) such that b& b = b. Let X = (0, b) and define a Q-category struc-
ture on X by

X(x, y) =

{
1 x = y,

min{x→ y, y → x} x ̸= y.

Since X(x, y) ≤ b whenever x ̸= y, every forward Cauchy net of X is
eventually constant, so X is Yoneda complete. It remains to show that BX
is not directed complete. To this end, pick a strictly increasing sequence
(xn)n≥1 in (0, b) that converges to b. For each n let rn = xn. We claim that
the subset (xn, rn)n≥1 of BX is directed and has no join.

Since & is a continuous t-norm, for all x, y ∈ [0, 1] we have

x&(x→ y) = min{x, y}.

For all n ≤ m, since

rn = xn = xm &(xm → xn) = rm &X(xn, xm),

then (xn, rn) ≤ (xm, rm), hence (xn, rn)n≥1 is directed.
Next we show that (xn, rn)n≥1 does not have a join. Suppose on the

contrary that (x, r) is a join of (xn, rn)n≥1. Since x < b, there is some
n0 such that x < xm for all m ≥ n0. Since (x, r) is an upper bound of
(xn, rn)n≥1, for each m ≥ n0, we have

rm ≤ r&X(xm, x) ≤ xm → x,

this is impossible since the left side tends to b, while the right side tends to
x.
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Example 3.2. This example presents a Q-category that is not Yoneda
complete, but its set of formal balls is directed complete.

Let Q be the quantale ([0, 1],&, 1), where & is the Gödel t-norm min.
Let

X = {1} ∪ {1− 1/n | n ≥ 2}.
Define a Q-category structure on X by

X(x, y) =





1 x = y,

1/3 x = 1, y ̸= 1,

min{x, y} otherwise.

We claim that X is not Yoneda complete, but BX is directed complete.
For each n ≥ 2, let xn = 1− 1/n. It is readily verified that the sequence

(xn)n≥2 is forward Cauchy and has no Yoneda limit, so X is not Yoneda
complete. It remains to check that BX is directed complete. Given a
directed subset D of BX, we write D as a net (xλ, rλ)λ∈D indexed by itself.
Since rλ ≤ rµ &X(xλ, xµ) whenever λ ≤ µ, the net (rλ)λ∈D is monotone.
Let r =

∨
λ∈D rλ. We proceed with two cases.

Case 1. The net (xλ)λ∈D is eventually constant; that means, there is
some a ∈ X and some λ ∈ D such that xµ = a whenever µ ≥ λ. In this
case (a, r) is clearly a join of D.

Case 2. The net (xλ)λ∈D is not eventually constant. Then for each λ
there is some µ ≥ λ such that xλ ̸= xµ, hence

rλ ≤ rµ &X(xλ, xµ) ≤ min{rµ, xλ, xµ} ≤ xλ.

With help of this fact, one readily verifies that (a, r) is a join of D, where
a = min{x ∈ X | r ≤ x}.

A Q-category X is Smyth complete if it is Cauchy complete (see e.g.
[8, 14]) and all forward Cauchy weights of X are Cauchy. The notion of
Smyth completeness originated in [19]. For Smyth completeness of quasi-
metric spaces we refer to [5, 11, 16]. The postulation of Smyth complete
Q-categories given here is based on the characterization of Smyth complete
quasi-metric spaces in [15, Section 6].

Consider the Q-category X in Example 3.1. Since every forward Cauchy
net of X is eventually constant, X is Yoneda complete and Smyth complete,
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hence continuous in the sense of [10, 22]. So, in contrast to the situation
for quasi-metric spaces [16, Theorem 3.2], for a general quantale Q, the
set of formal balls of a Smyth complete Q-category may fail to be directed
complete.

Example 3.1 also shows that for a directed subset (xλ, rλ)λ∈D of BX,
the net (xλ)λ∈D of X need not be forward Cauchy.

Proposition 3.3. Let & be a continuous t-norm on [0, 1] and let Q =
([0, 1],&, 1). The following are equivalent:

(1) & is Archimedean.

(2) For each Q-category X and each directed subset (xλ, rλ)λ∈D of BX
with some rλ > 0, (xλ)λ∈D is a forward Cauchy net.

Proof. (1) ⇒ (2) We’ll make use of the following fact about continuous
Archimedean t-norms:

0 < r ≤ s& t =⇒ t ≥ s→ r.

Assume that (xλ, rλ)λ∈D is a directed subset of BX and, without loss
of generality, assume that rλ > 0 for all λ ∈ D. Since rλ ≤ rµ &X(xλ, xµ)
whenever λ ≤ µ, then X(xλ, xµ) ≥ rµ → rλ whenever λ ≤ µ. Since (rλ)λ∈D
converges to its join and the implication operator of an Archimedean contin-
uous t-norm is continuous except possibly at (0, 0), it follows that X(xλ, xµ)
tends to 1, so (xλ)λ∈D is forward Cauchy.

(2)⇒ (1) Suppose on the contrary that & is non-Archimedean. Consider
the Q-category X in Example 3.1. Then the subset (xn, rn)n≥1 of BX given
there is directed, but (xn)n≥2 is not forward Cauchy, a contradiction.

4 The main result

In order to state the main result, we still need two notions.
Let Q = (Q,&, k) be a quantale. We say that & distributes over non-

empty meets if

p&
(∧

i∈I
qi

)
=
∧

i∈I
p& qi

for any p ∈ Q and any non-empty subset (qi)i∈I of Q. It is clear that any
continuous t-norm on [0, 1] distributes over non-empty meets.
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Definition 4.1. Let Q be a continuous and integral quantale. We say that
a Q-category X has property (R), if for each pair (s, t) of elements of Q with
0 < s ≤ t, there is some r ≪ 1 such that for all x, y ∈ X and all r′ ≥ r, we
always have

(x, t& r′) ≤ (y, s) ⇐⇒ (x, r′) ≤ (y, t→ s).

Corollary 4.7 below provides a characterization of Q-categories with
property (R) in the case that the quantale Q is the unit interval [0, 1] to-
gether with a continuous t-norm. By this characterization it is easy to find
Q-categories with or without property (R). Now we present the main result
of this paper.

Theorem 4.2. Let Q be a continuous and integral quantale such that &
distributes over non-empty meets; let X be a Q-category.

(i) If X is Yoneda complete, then each directed subset (xλ, rλ)λ∈D of BX
with

∨
λ∈D rλ = 1 has a join.

(ii) If X has property (R) and BX is directed complete, then X is Yoneda
complete.

Before proving Theorem 4.2, we make some preparations.

Lemma 4.3. Let Q be a continuous and integral quantale such that & dis-
tributes over non-empty meets; let X be a Q-category and let (xλ, rλ)λ∈D be
a directed subset of BX. If (xλ)λ∈D is a forward Cauchy net with x being
a Yoneda limit, then (x, r) is a join of the directed set (xλ, rλ)λ∈D, where
r =

∨
λ∈D rλ.

Proof. The proof is a slight improvement of that for Lemma 7.7 in [10].
First, we show that (x, r) is an upper bound of (xλ, rλ)λ∈D; that is,

rλ ≤ r&X(xλ, x) for all λ ∈ D.
For each λ ∈ D and each ϵ ≪ rλ, since & distributes over non-empty

meets and
1 = X(x, x) =

∨

δ

∧

µ≥δ
X(xµ, x),

there is some δ ∈ D such that ϵ ≤ rλ &X(xµ, x) whenever µ ≥ δ. Thus, for
all µ ≥ λ, δ, we have

ϵ ≤ rλ &X(xµ, x) ≤ rµ &X(xλ, xµ) &X(xµ, x) ≤ r&X(xλ, x).
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By arbitrariness of ϵ we obtain that rλ ≤ r&X(xλ, x).
Next we show that (x, r) ≤ (y, s) for any upper bound (y, s) of (xλ, rλ)λ∈D.

Since (y, s) is an upper bound of (xλ, rλ)λ∈D, then

rλ ≤ rµ ≤ s&X(xµ, y)

whenever λ ≤ µ, hence

r =
∨

λ∈D
rλ ≤

∨

λ∈D

∧

µ≥λ
s&X(xµ, y) = s&X(x, y),

which shows that (x, r) ≤ (y, s), as desired.

Proposition 4.4. Let Q be a continuous and integral quantale such that &
distributes over non-empty meets. If X is a Yoneda complete Q-category,
then every directed subset (xλ, rλ)λ∈D of BX with

∨
λ∈D rλ = 1 has a join.

Proof. This follows directly from Lemma 2.4 and Lemma 4.3.

Lemma 4.5. Let Q be a continuous and integral quantale. Then for all
x and y of a Q-category X with property (R), the following conditions are
equivalent:

(1) (x, 1) ≤ (y, 1).

(2) (x, s) ≤ (y, s) for all s ̸= 0.

(3) (x, s) ≤ (y, s) for some s ̸= 0.

Proof. It suffices to check (3) ⇒ (1). Since 0 < s ≤ s, there is some r ≪ 1
such that

(x, s& r′) ≤ (y, s) ⇐⇒ (x, r′) ≤ (y, s→ s)

for all r′ ≥ r. Putting r′ = 1 gives that (x, 1) ≤ (y, 1).

Proposition 4.6. Let & be a continuous t-norm on [0, 1] and let Q =
([0, 1],&, 1). Then, & is Archimedean if and only if every Q-category has
property (R).

Proof. For sufficiency we need to show that & has no nontrivial idempotent
element. For this it suffices to show that for all s ̸= 0 and q ∈ [0, 1],

s ≤ s& q =⇒ q = 1.
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Consider the Q-category X = {x, y} with X(x, x) = X(y, y) = 1 and
X(x, y) = q = X(y, x). Since (x, s) ≤ (y, s) and X has property (R),
then (x, 1) ≤ (y, 1), hence 1 ≤ 1 &X(x, y) = q.

As for necessity, assume that & is a continuous Archimedean t-norm.
Then & is either isomorphic to the  Lukasiewicz t-norm or to the product
t-norm. In the following we check the conclusion for the case that & is
isomorphic to the  Lukasiewicz t-norm, leaving the other case to the reader.
Without loss of generality, we assume that & is, not only isomorphic to, the
 Lukasiewicz t-norm; that is,

x& y = max{0, x+ y − 1}.

Suppose that X is a Q-category and 0 < s ≤ t. Pick r ∈ (1 − t, 1). Then
r ≪ 1 and for all r′ ≥ r,

(x, t& r′) ≤ (y, s) ⇐⇒ r′ + t− 1 ≤ s+X(x, y)− 1

⇐⇒ r′ ≤ s− t+X(x, y)

⇐⇒ (x, r′) ≤ (y, t→ s).

This completes the proof.

By the ordinal sum decomposition theorem of continuous t-norms [9] and
the argument of Proposition 4.6, one readily verifies the following conclusion.

Corollary 4.7. Let Q = ([0, 1],&, 1), where & is a continuous t-norm on
[0, 1]. Then, a Q-category X has property (R) if and only if it satisfies the
following condition: for all x, y ∈ X, if X(x, y) ≥ p for some idempotent
element p > 0, then X(x, y) = 1.

Lemma 4.8. Suppose that Q = (Q,&, k) is a continuous and integral quan-
tale such that & distributes over non-empty meets. Let X be a Q-category;
let a be an element of X and let (xλ, rλ)λ∈D be a directed subset of BX for
which

∨
λ∈D rλ = 1. Consider the statements:

(1) a is a Yoneda limit of (xλ)λ∈D.

(2) (a, 1) is a join of (xλ, rλ)λ∈D.

Then, (1) implies (2). Further, if X has property (R) and BX is directed
complete, (2) also implies (1).
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Proof. That (1) implies (2) follows from Lemma 2.4 and Lemma 4.3. Now,
assume that X has property (R), BX is directed complete, and that (a, 1)
is a join of (xλ, rλ)λ∈D. We show that a is a Yoneda limit of (xλ)λ∈D; that
means, for all y ∈ X,

X(a, y) =
∨

λ∈D

∧

µ≥λ
X(xµ, y).

Fix λ ∈ D. Since for all µ ≥ λ,

rλ &X(a, y) ≤ rµ &X(a, y) ≤ X(xµ, a) &X(a, y) ≤ X(xµ, y),

it follows that
rλ &X(a, y) ≤

∧

µ≥λ
X(xµ, y),

hence

X(a, y) =
∨

λ∈D
rλ &X(a, y) ≤

∨

λ∈D

∧

µ≥λ
X(xµ, y).

For the converse inequality, let

t =
∨

λ∈D

∧

µ≥λ
X(xµ, y).

We wish to show that t ≤ X(a, y). We may assume that t > 0.
It is clear that (xλ, t& rλ)λ∈D is a directed subset of BX, hence has

a join, say (z, s). We claim that (z, s) ∼= (a, t); that is, (z, s) ≤ (a, t)
and (a, t) ≤ (z, s). Since (a, t) is an upper bound of the directed set
(xλ, t& rλ)λ∈D, it follows that (z, s) ≤ (a, t); in particular 0 < s ≤ t.
Since

∨
λ∈D rλ = 1, we may assume that all rλ are large enough. Since

(z, s) is a join of (xλ, t& rλ)λ∈D, then (xλ, t& rλ) ≤ (z, s) for all λ ∈ D,
then (xλ, rλ) ≤ (z, t → s) for all λ ∈ D because X has property (R), and
then (a, 1) ≤ (z, t → s) because (a, 1) is a join of (xλ, rλ)λ∈D. Therefore,
t = s and (a, 1) ≤ (z, 1), hence (a, t) ≤ (z, t) = (z, s). This proves that
(z, s) ∼= (a, t).

For each λ ∈ D, since

rλ & t = rλ &
∨

γ∈D

∧

µ≥γ
X(xµ, y)
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= rλ &
∨

γ≥λ

∧

µ≥γ
X(xµ, y) (D is directed)

≤
∨

γ≥λ

∧

µ≥γ
rλ &X(xµ, y)

≤
∨

γ≥λ

∧

µ≥γ
rµ &X(xλ, xµ) &X(xµ, y)

≤ X(xλ, y),

it follows that (xλ, t& rλ) ≤ (y, 1). Thus, (y, 1) is an upper bound of the
set (xλ, t& rλ)λ∈D, hence (a, t) ≤ (y, 1), and then t ≤ X(a, y).

Proof of Theorem 4.2. (i) This is (1)⇒ (2) in Lemma 4.8.
(ii) We show that every forward Cauchy weight ϕ of X has a colimit.

By Lemma 2.3, there is a directed subset (xλ, rλ)λ∈D of BX such that∨
λ∈D rλ = 1 and that

ϕ =
∨

λ∈D

∧

µ≥λ
X(−, xµ).

By assumption, (xλ, rλ)λ∈D has a join, say (a, 1). By Lemma 4.8, a is a
Yoneda limit of the forward Cauchy net (xλ)λ∈D, hence a colimit of ϕ by
Proposition 2.2.

Corollary 4.9. Let & be a continuous t-norm on [0, 1] and Q = ([0, 1],&, 1).
Then the following are equivalent:

(1) & is Archimedean.

(2) For each Q-category X, X is Yoneda complete if and only if BX is
directed complete.

Proof. (1) ⇒ (2) If X is Yoneda complete, then BX is directed complete
by Proposition 3.3 and Lemma 4.3. Conversely, if BX is directed complete,
then X is Yoneda complete by Proposition 4.6 and Theorem 4.2.

(2)⇒ (1) Example 3.1.

The following example shows that in Theorem 4.2 (ii), the requirement
that BX is directed complete cannot be weakened to that every directed
subset (xλ, rλ)λ∈D of BX with

∨
λ∈D rλ = 1 has a join.
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Example 4.10. Let Q be the quantale Q = ([0, 1],&P , 1), where &P is the
product t-norm. By Proposition 4.6 every Q-category has property (R).
We claim that there is a Q-category X such that every directed subset
(xλ, rλ)λ∈D of BX with

∨
λ∈D rλ = 1 has a join, but X is not Yoneda com-

plete. Since ([0, 1],&P , 1) is isomorphic to Lawvere’s quantale ([0,∞]op,+, 0),
it suffices to construct a quasi-metric space (X, d) such that (X, d) is not
Yoneda complete, but every directed subset (xλ, rλ)λ∈D of BX with
infλ∈D rλ = 0 has a join.

Let X = {0} ∪ {1/n | n ≥ 2}. Define a quasi-metric d on X by

d(x, y) =

{
1/2 x = 0, y ̸= 0,

max{0, y − x} otherwise.

In the following we show that (X, d) satisfies the requirements.

(i) (X, d) is not Yoneda complete, since the sequence (1/n)n≥2 is forward
Cauchy but has no Yoneda limit.

(ii) We show that every directed subset (xλ, rλ)λ∈D of BX with
infλ∈D rλ = 0 has a join. Since infλ∈D rλ = 0, it follows from Lemma
2.4 that (xλ)λ∈D is a forward Cauchy net of (X, d), hence either (xλ)λ∈D is
eventually constant or (xλ)λ∈D converges to 0 (in the usual sense).

Case 1. (xλ)λ∈D converges to 0. In this case we show that (0, 0) is a join
of (xλ, rλ)λ∈D. First, since d(z, 0) = 0 for all z ∈ X, then rλ ≥ 0 + d(xλ, 0)
for all λ ∈ D, hence (0, 0) is an upper bound of (xλ, rλ)λ∈D. Next, assume
that (y, s) is an upper bound of (xλ, rλ)λ∈D. It is clear that s = 0, so
rλ ≥ d(xλ, y) for all λ ∈ D. Since rλ converges to 0 and (xλ)λ∈D converges
to 0, it follows that y = 0. This shows that (0, 0) is the only upper bound,
hence a join, of (xλ, rλ)λ∈D.

Case 2. (xλ)λ∈D is eventually constant. By assumption there is some
a ∈ X and some λ ∈ D such that xµ = a whenever µ ≥ λ. It is trivial that
(a, 0) is a join of (xλ, rλ)λ∈D.

However, for standard quasi-metric spaces (see [7, Definition 2.1]), we
have the following conclusion.

Corollary 4.11. Let X be a standard quasi-metric spaces. Then, X is
Yoneda complete if and only if every directed subset (xλ, rλ)λ∈D of BX with
infλ∈D rλ = 0 has a join.
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Proof. Proposition 2.4 in [7] shows that if X is a standard quasi-metric
space and every directed subset (xλ, rλ)λ∈D of BX with infλ∈D rλ = 0 has
a join, then BX is directed complete. Thus, the conclusion follows from
Theorem 4.2 (ii) immediately.

5 Conclusion

Following Lawvere [14], the study of Q-categories is part of a generalized
pure logic with Q as the set of truth-values. The connection between cate-
gorical properties of a Q-category and order-theoretic properties of its set of
formal balls has received much attention both in mathematics and theoretic
computer science. Corollary 4.9 in this paper shows that the structure of
the truth-values, i.e., the structure of the quantale Q, also interacts with
this connection. This kind of interaction deserves further investigation.
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