Categories and
General Algebraic Structures +
wih Applications

™ Volume 17, Number 1, July 2022, 203-232. WIWW-CEASAIr
e https://doi.org/10.52547/cgasa.17.1.203

Quantum determinants in ribbon category

H. Choulli*, K. Draoui, and H. Mouanis

Abstract. The aim of this paper is to introduce an abstract notion of determinant
which we call quantum determinant, verifying the properties of the classical one. We
introduce R—basis and R—solution on rigid objects of a monoidal Ab—category, for a
compatibility relation R, such that we require the notion of duality introduced by Joyal
and Street, the notion given by Yetter and Freyd and the classical one, then we show that
R—solutions over a semisimple ribbon Ab—category form as well a semisimple ribbon
Ab—category. This allows us to define a concept of so-called quantum determinant
in ribbon category. Moreover, we establish relations between these and the classical
determinants. Some properties of the quantum determinants are exhibited.

1 Introduction

The theory of monoidal categories was studied and developed by many authors
[1,7], see also [8,9]. In particular duality in such categories introduced by Joyal and
Street [8], (see also [2, 11]) as well as the concept of braiding -as a weaker version
of commutativity- which came along firstly with Joyal and Street [8]. The notion
of determinant dates a long time as an essential tool in linear algebra. Since then,
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many versions and analogs were introduced and developed in the setting of square
matrices of commutative entries as well as for non commutative entries (among
widely used ones: q—determinants, Dieudonné determinant, quasideterminants...).
It is well known that the notion of trace has been generalized to the context of
categories (with tensor product and duality) [3-6, 13]. In particular, every ribbon
category [10] or called tortile tensor category (in [15]), admits a canonical notion of
(quantum) trace (well behaved: cyclicity and multiplicativity) and dimension [10],
in the way that it generalizes the classical one of vector spaces in linear algebra.
These traces are used to construct quantum invariants of links and 3—manifolds.
Motivated by that, this paper introduces an abstract notion of determinant which
we call “quantum determinant”, verifying the properties of the classical one. The
name quantum here is justified by the fact that this element uses the quantum trace;
in fact it is nothing but the quantum trace of the endomorphism f" A’} (Proposition
5.1).

We begin with the introduction of a concept of R—basis on an object V of a
monoidal Ab—category C, for a (compatible) congruence relation R, as a family
of morphisms

di,: V'@V —1I, bl,:1—VeV and ni,:V—V;Viel

for a finite index set J, such as they verify some axioms. We prove that it co-
incides with the usual basis when we consider the category of finite dimensional
vector spaces over a certain field. The existence of such R—basis in the context of
semisimple ribbon Ab—categories, is ensured. In fact, we show that semisimplicity
gives rise to an R—basis on every object of the category. Moreover, we define
a notion of R—solution on an object V as a quadruple (V;dy; by;my) obeing to
some axioms.

Finally, we introduce the notion of quantum determinant in a semisimple rib-
bon Ab-category and show that its formula is independent of the choice of the
R—solution on the object. We prove that in fact, the quantum determinant of an
endomorphism f € Endc;g(V) coincides with the classical determinant of an
associated square matrix My over the ground commutative ring Endc (/) of C,
denoted by K¢ and that under some conditions, there is a bijective correspondence
between the Ko —algebras Endc (V) and M,, (K¢ ) of square matrices over K¢. In this
case, f € Endcjg(V) is an automorphism, if and only if, its quantum determinant
is invertible in K¢.
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2 Preliminaries

Throughout this paper, K states for a base field with unit and C for a strict monoidal
category (C; ®; I) with unit object 1.

We recall some notions from the theory of monoidal categories. For more details,
we refer to [12] and [17].

A monoidal category C = (C;®;1;a;l;r) consists of a category C, a bifunctor
® : C x C —> C, a unit object / and natural isomorphisms @ : (A® B) ® C —
A®(B®C),l:I®A — Aandr: AQ®I — A called associativity constraint,
left and right unitality constraints respectively such that the pentagon and triangle
axioms hold.

C is called strict if all components «, [ and r are identities.

A result due to Mac-Lane’s (see [12]) coherence Theorem, asserts that any monoidal
category is necessarily equivalent to a strict one.

C is called an Ab—category provided that the hom sets Hom¢ (U, V) are addi-
tive abelian groups and the composition map Homc(U,V) x Homc(V,W) —
Homc (U, W), (f,g) — g o f is bilinear.

A braiding (firstly introduced in [8]) for a monoidal category C consists of a family
of natural isomorphisms

cyw: VW —>WeV
for all V and W in C, such that for any three objects U, V and W we have

cu:vew = (idy ® cy.w)(cu.v ® idw)

cuev.w = (cuw ® idy) (idy ® cv.w).

For a monoidal category C with a braiding c; a twist (see [7]) consists of a family
of isomorphisms
Oy :V—V, VeOb(C)

such that 6; = id; and for any two objects V and W of C we have
Oxey = cy;x(fy ® Ox)cxyy

The naturality of the twist # means that for any morphism f : U — V of C, we
have 6y f = fOy.
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Let (C; ®;I) be a strict monoidal category with tensor product ® and unit /. Itis a
monoidal category with left duality if for each object V of C there exists an object
V* and morphisms by : I — V@ V*and dy : V*® V — [ in C such that

(idy ® dy)(by ®idy) =idy and (dy ® idy+)(idy- ® by) = idy-.
For any morphism f : U — V, we define its dual morphism f* : V* — U* by
f7=(dy ®idy-)(idy- ® f ® idy+)(idy+ ® by)

and the morphism Ag.y : V¥ @ U — (U ® V)* (see [10, page 344], for more
details) defined by

Ayyy = (dy ® idyev)+) (idy: ® dy ® idygwev):)(idv-eu: ® bugy)  (2.1)

is an isomorphism for any two objects U and V of C.
We say that duality is compatible with the braiding ¢ and the twist 6 if for any
object V of C we have

Oy« = (Ov)".

In this case, the double dual V** := (V*)* of an object V is canonically isomorphic
toV.

A ribbon category is a monoidal category C equipped with a twist 6, a braiding ¢
and a compatible duality (x; b; d).

Let C be a ribbon category with unit /. For any endomorphism f of an object V of
C, we define the quantum trace Try(f) of f as the element

Trq(f) =dvey,y-(Oy f ®idy:)by € Kc

When C is the category vectg of finite dimensional vector spaces over a field K,
this concept of quantum trace coincides with the usual one.
We collect in following Theorem the principal properties of the quantum trace.

Theorem 2.1. ([10]) For any morphisms f and g in a ribbon category, we have

@) Trq(fg) =Trq(gf):

(b) Trq(f ®8) =Trq(f)Trq(8);
(©) Try(f*) =Try(f) and

(d) Try(k) = k for any k € Kc.
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Proof. See [10] for proof, where string diagrams are used to simplify the proof and
make the passages more obvious. O

For any object V of C, the quantum dimension dim,(V) of V is the element
defined by dim, (V) = Try(idy) and we have

dimg(V® W) =dimg(V)dimg(W) and dimg(V*) = dimg(V).

Let C be a ribbon category and V an object of C (for the following setup, we
mainly follow the terminology adopted in [17]).
V is called simple provided that the map

K :Kc — Endc(V); k+— k®idy

is a bijection and dim,, (V) is invertible in Kc.

An object V of aribbon Ab—category C is said to be dominated by n simple objects
{Vi}i of C, if there exists a finite family of morphisms {&{, : V.— V; ; puj, :
Vi — V}1<i<n such that the endomorphism

Z ui,ei, —idy
i

of V, is negligible as defined below.
The set of negligible morphisms between two objects U and V is denoted
Negl(U;V) and itis defined as

Negl(U;V) :={f € Homc(U,V) | Vg € Homc(V,U), Try(fg) = 0}.

Obviously Negl(I; 1) = {0}.

We call a ribbon Ab—category semisimple provided that every object is dominated
by a finite set of simple ones.

Recall from [12, page 52], that a relation R, is a congruence on a category C
if for any objects X and Y of C, Rxy is an equivalence relation on the hom
set Homc(X,Y) and for all f,g : X — Y such that f Rxy g, we have
(vfu)Ra.g(vgu), for any morphismsu : A - Xandv:Y — Bof C.

3 Notion of R—basis

Definition 3.1. We call compatibility relation on a monoidal category C, any
congruence relation R on C verifying the following
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(1) For any morphisms f and g between dualizable objects U and V of C, such
that f Ry v g, we have f* Ry« y- g*.

(i) For any objects U, V, A and B of C and any morphisms f,g : U — V
and f’,g" : A — B such that f Ry.v g and f’ Rap g’, then (f ®
) Rusa.ves (§®8).

Lemma 3.2. Let C be a ribbon Ab—category. The relation R defined on hom sets
by

YU,V € Ob(C), Vf,g:U—>V;, fRuvg © f—g €Negl(U,V) 3.1
is a compatibility relation on C.

Proof. Ry.v is clearly an equivalence relation on each hom set

Homc (U,V). The axioms of Definition 3.1 hold by the fact that the dual of a
negligible morphism is negligible and the tensor product of negligible morphisms
is again negligible [17]. O

Remark 3.3. (a) Let C be a ribbon Ab—category and U and V two objects of
C. Then, Negl(U;V) is an ideal in C and the class modulo Ry y of the
zero arrow is the ideal Negl(U;V). Recall [16] that a set Rx of arrows to
an object X of C, is called a right X—ideal if for all f,g : B — X in Ry,
forallv: A — B, A,B € Ob(C),one has (f +g)visin Rx. Left X—ideal
is defined similarly. A set of arrows from an object X to an object ¥ of C is
called an ideal if it is both a right X—ideal and a left Y —ideal.

(b) Let C be a ribbon Ab—category and f € Hom¢(X,Y). Consider the sets

Rx :={g:A— X, fg € Negl(A;Y)}acon(c):

Ry :={g:Y — B, gf € Negl(X; B)}pcon(c)-
Then, Ry is a right X—ideal and Ry is a left Y —ideal.

(c) Let C be a ribbon Ab—category. A set of arrows R is an ideal in C, if and
only if, the set
R*:={f", f€R}
is an ideal in the category C defined by
Ob(C) :={X",X € Ob(C)} and Mor(C) :={f*, f € Mor(C)}.
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From now on, R will denote always the above compatibility relation (3.1),
whenever C is considered as a ribbon Ab—category.

Definition 3.4. Let C be a monoidal Ab—category, equipped with a compatibility
relation R and V a dualizable object of C with duality structures (V*; dy; by). An
n — R—basis (V; d! ;bi,; ﬂi,)lgl-gn on V, is a family of morphisms

d(,:V*®V—>I, bi,:l—>V®V*andn(,:V—>V
such that for all 1 < i, j < n, the following hold

(idy ® di,) (b, ® idy) = ], 7l

i=n

and anv = 1ly mod(Ry.v).

i=1

Remark 3.5. Let V be a dualizable object of C with dual V* and consider an
n — R—basis (V; d: ;bi,; ﬂil)]sign onV.

(a) We know that the dual object in a monoidal category is unique up to a unique
isomorphism [18, page 23]. Let V" be another dual of V and f : V¥ — VV
be the unique isomorphism between the duals. Then, it is not difficult to
verify that

(Vidy (f ®idy); (f ' ®@idy)by; i) 1<i<n
is another n — R—basis on V.

(b) Every sub family of an n — R—basis is again an m — R—basis with m < n.

Note that this notion generalizes the standard notion of basis for vector spaces
over a field K.

Example 3.6. Every object V of the category (vecty, ®, K) of finite dimensional
vector spaces over a field K, admits an n — R—basis where n is its dimension and R
is any compatibility relation.
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Proof. Consider the family:

VE@V — K bl kK — VeV . v — v
A , Vv ; and 7V
el ®ei +— 61561 1 — ¢ Qe ej > dje

L.
dl, :

for all 1 <[ < n, where {¢;}1<i<n and {e’}1<;<, are respectively a basis and its
dual basis of V and its dual V*. Then, the family (d! ;blv;ﬂ'lv)lslgn defines an
n — R—basison V. O

Example 3.7. Let C be a monoidal Ab—category equipped with a compatibility re-
lation R and V a dualizable object of C with duality structures denoted (V*; dy; by).
Then, (V;dy;by;1ly)isal —R—basison V.

Proposition 3.8. Any semisimple ribbon Ab—category C admits an R—basis on
each of its objects.

Proof. An object V of a semisimple ribbon Ab—category is dominated by a finite
family (V;)1<i<n of simple objects of C, i.e, there exists a family of morphisms
{e, -V — Vi 5 ub, Vi — V=T such that ;;ﬂvs‘v —idy is a negligible
endomorphism of V. Then

(Vidv, ()" @ &) (uy ® (£1))bv;; pyey)

is an n — R—basis on V. In fact, the following hold

(v ® dy, ((1})* ® €l)) (i, ® (£1) )by, ® 1v) = plel i el ;
(dv, ()" @ 8}) ® 1y ) (Iy- 8 (i), @ (&) )by,) = (w)epuiyel,)’

and Z,ui,si, =idy mod(Ry ).
i
O

Definition 3.9. Let C be a monoidal Ab—category, equipped with a compatibility
relation R and let V be a dualizable object of C. Denote by ry, the minimum
cardinal, as explained below, of R—bases (V; di,; b§/§ﬂ§/)lsi5n onV,n € N; for
which, 7r’V # 1y, foralli,1 <i <n.

ry = n is a minimum cardinal in the sense that:
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(i) There exists an R—basis (V; d{,; bi,; ﬂ%,)] <i<n On V such that there exist no
morhisms d@“, b"’,“ and ﬂ@“ suth that

(Vidy: by ) i<icn U (Vidy s b3 ot
isan (n+ 1) — R-basison V.
(ii) There is no m — R—basis on V veritying (i) such that m < n.

Note that the condition on 71'1{/ is just to avoid the trivial case when C is rigid, where,
for any object V of C, ry = 1 by Example 3.7.

The following lemmata will be useful in claiming forthcoming results on the
integer ry introduced in the very definition.

Lemma 3.10. Let C be a semisimple ribbon Ab—category and A and B be iso-
morphic objects in C. Then

(a) A is dominated by n simple objects, if and only if B is;
(b) (A;d; bi\; ﬂi‘)l‘:’]" is an R—basis on A, if and only if
(Bidyy(f ® 8): (f ® 8")b)y: fry8)i Ty
is an R—basis on B.

Proof. (a)Let f € Hom¢ (A, B) be an isomorphism with inverse g.
Assume that A is dominated by (V_ih‘f;;llg ;Z’ Let 82 = si\g and ,u% = fui\.
Then, B is dominated by (V;; gy 1y l’j‘ S

Inversely, if B i's domi'na.ted by (Vi; el uy)iZ}, one easily checks that A is
dominated by (Vi_; sjg_f; g_,u‘B it

(b) Let (A; d,;b'y; ﬂ%);i? be an R—basis on A. Then

(B dy (f ®8): (f ®87)blys frs8)ict
is an R—basis on B. In fact, we have to prove the following three identities:

(idg ® d,(f* ® 2))((f ® g")b'y ®idp) = (fr)e)(fr'y),

(d(f* ®g) ®idp)(idp ® (f ® g)b')) = (frlye)* (friye)”
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and Zfﬂ;g =1p mod(Rp.B).

i=1
We have
(1p ® &, (f*®8))((f ® g")b', ® 1)
=(13@d}) (130 [ ®g)(f g ®15)(b)y ® 15)
= (150 d})(f®1s ®g)(b', ® 1p)
= f(la®d)) (b ®14)g
= (F7)8) (f7s8)
and
(&) (f* ®¢) ®idp:)(idp ® (f ® g*)b'y)
= (&} ®idp)(f" ® g ®idp)(idp ® [ © ¢")(idp- ® b'y)
= g"(d, ® ida-) (ida- ® ') f*
= (frlg) (frlg)".
The third identity is obvious.

Inversely, if B admits an R—basis on it, then by the same previous procedure
interchanging the roles of f and g, we get an R—basis on A. O

Lemma 3.11. Let C be a semisimple ribbon Ab—category and A an object of C.
Then

(a) A is dominated by n simple objects, if and only if A* is;
(b) (A; di: bi\; nfL\ ;Z’ is an R—basis on A, if and only if
(A% (d))e: (D)= (T)-)ic)
is an R—basis on A*.
Proof. (a) Assume that A is dominated by (V;; &'y; 4'y)i={'. Then A* is dominated
by (V5 ()" (&5) "))

Inversely, this holds due to the fact that A** ~ A is verified in light of the compatible
duality of C.
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(b) Let (A; d',; b'y; )’ =" be an R—basis on A. Then
(A% (d‘ ) (b‘ ) (7rA) ) 1s an R—basis on A*, where

(dA)* = dl(b )AAA 5 (b ) —/lAlA*(d )'b; and (JTA) (ﬂ'lA)*

forall 1 <i <n.

Along with the proof and the rest of the paper, by 1 we mean A4.4- and by 1~ we

mean A Al 4+ to reduce notations (where A is defined as in (2.1)).
In fact, we prove the three identities:

(ida- ® dy (D' ) (A7 (d) by ® id ) = ()" (n))",

(di (b)) A®idpy)(id( sy ® 171 (d))by) = ((2)")* ((x))*

i=n
and Z(ﬂi‘)* = 14 mod(Ra a+).
i=1

The first equality is justified by the following commutative diagram:

b ®id s (d ) ®(ida)” A ' ®idys
A =TeA" 2 g (A ®A) @AY — X A* @ A* @ A*
» ld,@LdA =1 l/l idpas®1
tdar (ida®d’)*
(A® )*—)(A@A*@A)—)A*@(A@A )*
O l(bi\@d,‘)* id. ®(bi,)*
(nAnA) /l":idA*®b1
(I®A) ———— A* Q"
id ida+®dy
Lap*
A*=A"Q®I

The two middle squares are commutative by the naturality
A (where, Aar = (di ® ida)(idp ® da ® ida-)(ida» ® ba)

of

(d; ® ida-)(da ® ida-)(ida- ® ba) = dj ® ida- and the same thing for

;1;1)'
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With similar arguments one can prove the second identity which is justified by the
following commutative diagram:

J
®by 1®(dA

10b ) o]
A =A"QI A QI* A Q@ (A*Q® A)* LA**@A*@A**

\ ll@d,—/l la A1
(@ en)* e

(I®A) —2 5 (A" ®A®A*) —— (A® A*)* @ A™

_ l(l@b;)* (b)) el
N
(wa7a) brel

(A*®[)*—)[*®A**

drel
1

1 ® A* = A*

The third is obvious.
Inversely, an R—basis on A* gives similarly an R—basis on A**(~ A). O

Proposition 3.12. Let C be a semisimple ribbon Ab—category and A and B be
isomorphic objects in C. Assume that A (or B) is dominated by a finite set of
simple objects. Then A, A*, B and B* admit R—bases on them and we have

(@) rp=ra;
(b) FAx =TA.

Proof. A (resp. B) being dominated by simple objects ensures by using Lemma
3.10, the existence of R—bases on A, A*, B and B*.
(a) Using Lemma 3.10, (if), we obtain an r 4 — R—basis on B which is minimal
(among the cardinals of the other R—bases on B) and vice versa. Hence, rg = ry4.
(b) Identically to the above, using this time Lemma 3.11, (ii).
O

Definition 3.13. Let C be a semisimple ribbon Ab—category and V an object of C.
We call quantum rank of V denoted by ran,(V), the nonnegative integer defined
as

rang(V) = min(n)

where n runs over all finite cardinals of dominating families (V;; si,; ,ui, fj of
simple objects of V.

Proposition 3.14. Let C be a semisimple ribbon Ab—category and A and B be
isomorphic objects in C. Then
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(@) rang(V) =1 for every simple object V of C;
(b) rany(B) =rany(A);
(c) rang(A*) = rang(A).
Proof. Straightforward from Lemma 3.10 (i) and Lemma 3.11 (i). ]

4 Categorification of bilinear forms

Definition 4.1. Let C be a monoidal Ab—category equipped with a compatibility
relation R and V a dualizable object of C. An R—solution on V, is a quadruple
(V;dy; by; my), such that:
(ly ® dv)(by ® 1y) = ny;
(dy ® ly-)(ly- ® by) = (13)";
dy(ly: @ my) = dy(my, ® ly);
(ry ® ly-)by = (1y ® my,)by;
Ty = lV mod(Rv,V).

Example 4.2. Let V be an object of the category (vectg, ®k, K) of finite dimensional

vector spaces over a field K and R any compatibility relation. Then, V admits an
R—solution on it.

Proof. (V;dy;by;1ly) is an R—solution on V, where:

dy: V'V — K by: K — Vev:
i and .
e/'®e; > 0 1 — ,ei®e€

such that {e;}; and {e’}; are respectively a basis and its dual basis of V and its dual
V. O
Example 4.3. The 1 — R—basis in Example 3.7 of the previous section 3, is an

R—solution on V.

Proposition 4.4. Let C be a monoidal Ab—category, R a compatibility relation on
C and V a dualizable object of C. Then, for every morphism ry : V. — V, such
that ﬂ%, =ny and y = ly mod(Ry v), the quadruple

(Vidy(my, @ my); (ry ® )by y)
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is an R—solution on 'V, where dy and by are duality structures on V.

Proof. Straightforward. 0

Example 4.5. Let C be a semisimple ribbon Ab—category and V an object of C
dominated by (Vi;si;ui)fj‘. Assume that g;u; = 6; ;, forall i, j; 1 <i,j < n.
Then

(Vidy(Ty, @ Tv); (Tv @ Ty,) by; Ty)

is an R—solution on V, where Ty = 3 y;&; and dy and by are duality structures

13
on V.

Proof. Infact, giu; = 6,5, 1 <Vi,j <n=T: =YY pigipuje; = Ty. Hence,
iJ

applying Proposition 4.4, the result holds. O

Proposition 4.6. Let C be a monoidal Ab—category equipped with a compatibility

relation R and f : A — B be an isomorphism between dualizable objects in C.
Then, the following are equivalent

(@) (A;da;ba;ma) is an R—solution on A;

() (B;da(f*® f):(f @ (fF))ba; fraf) is an R—solution on B.

Proof. (a)=(b): Let (A;da; ba;ma) be an R—solution on A. We have to prove

(Ig@da(f @ fF N (f))ba®ls) = fryf";
(da(f @ fHelp)lp e (fe(f))ba)=(fraf )" ;
dp(f*@naf™") =dp((fra) ® f7);

(raf ™' ® fbp = (f7' @ (fra)")bs

and np=1p mod(Rp,B).
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The proof of the first and second identities is similar to the one of Lemma 3.10
(i1).
For the third one, we have
dp(f* @naf™") = dp(la @ ma)(f* ® f7')
=dp(ry @ 1A)(f*® f7)
=dp((fra)’ ®f7)

and similarely for the fourth one.
For the fifth, we have:

TA= lA mod(RA,A) > R = fﬂAf_l = lB mod(ﬂB,B).

(b)y=(a): Letdy : A"®A — I,by : 1 — A®A"andmy : A — A be
morphisms such that

Bsda(f*® f:(f o (fT))bas fraf™)

is an R—solution on B. Then

(Asda(F @ fF O @U@ NVoas £ fraf ™' f)

is an R—solution on A (by the first sense), i.e: (A;da;ba;m4) is an R—solution
on A. ]

Proposition 4.7. Let C be a ribbon Ab—category equipped with a compatibility
relation R and A € Ob(C) endowed with an R—solution (A;da;ba;ma) on it.
Define the morphisms

(da)s = dibydpns  (ba)e = A3l diby and (mp). =7}
Then, (A*; (da)«; (ba)s; (ma)s) is an R—solution on A*.
Proof. We have to prove the five identities
(14 @ dib D) (A7 by ® 140) = (72)"
(dibA® 1y)(1(ary ® A~ dby) = (73)"
d[bZ/l(l(A*)* ® (ma)s) = d]b:;/l(ﬂ'z* ® 1a+)
(mae ® Liay)A ' diby = (14 @ 5) A~ by
7y = 1a mod(Ra- a).
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The proof of the first and second is exactly similar to the proof given in Lemma
3.12 (ii).
For the third one, we have

dibA((ma)* ® 1a:) = dipi A1 (14 ® 1) A
=di[(1a®7,)bal*A
=di[(ma ® 1a)bal"A
= dih A (ma ® 144)°2
= dib’A(1 sy ® TT%).

The fourth: similar to the third.
The fifth identity is straightforward. O

In order to study the properties of R—solutions, we introduce the tensor product
of bilinear forms in C.

Proposition 4.8. Let C be a monoidal Ab—category equipped with a compatibil-
ity relation R and let (A;da;ba; ) and (B;dp; bp; B) be R—solutions on two
dualizable objects A and B of C. Then,

(A®B;da®_dp;ba®, bp;a ®p)

is an R—solution on A @ B; where the tensor products @_ of da, dp and ®, of
ba, bp; are defined as

da®_dp:=dp(lp ®da® 15)(A,'5® 14 ® 1p);

ba®,bp:=(14®1p®@AaB) (140 b ® 14:)ba.
Proof. The domains and codomains of the defined tensor products are as follows:
da®_dp: (A®B)*® A®B—>B" A" A®B —>B*"®B — [
and
ba®,bg: ] —m ARRA" —- AQB®B " ® A" — A®B® (A®B)".

Let’s prove the first identity:
[1aes®dp(1p- ®da®1p)(A7' @14 ®1)][(14® 130 (14 @bp®14)ba®
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lags] = (@ ® B)*.

We have:
[1401p®dp(1p:®da®1p) (17 1@14®15)][(14a®15)(1a®bp®14)ba®
1a®13p]

=[14®158dp(lp ®da®15)][14a® 1@ (17! @14®1)][(14a® 1501 ®
1Aa®15][(1Aa®bp®14:)ba®14® 15]
=[1a®1p®dp(lp-®da®1p)][(1a®bp®1a)ba® 14 ® 15]
=[la®1p®@dp|[1a®bp®1p][1a®da® 15][ba® 14 ® 1p]
=[14®B*][1a®da® 15][ba® 14 ® 5]

=a’ @ p?

= (e ®p)*.

The proof of the other identities is done similarly. O
Corollary 4.9. Let C be a monoidal Ab—category equipped with a compatibility
relation R and let (V;; dy; b 7r‘V) be 1 — R—bases on dualizable objects V; of C,

foranyi,1 <i <n,nz?2. Then

(V1®...®Vysdy @ (dy ®_ (... ®_ dib)...); b, @4 (b, @4 (1. @, bY).)imh, ® ... @ 7h)
isal—-R-basisonVi®...QV,.

Proof. By induction on n, using Proposition 4.8 and remarking that in fact, an
R—solution on an object is in particular a 1 — R—basis on it. O

The following definition serves to establish a forthcoming result.

Definition 4.10. Let C be a monoidal Ab—category; V an object of C and
(V;dy; by; 1y) a particular solution of the triangular system

(ly®dy)(by ®1y) =1y ;

(dv @ 1y+)(1y= ® by) = ly-.

Let (V;Dy;By;ly) be another solution of the same system. Then, for any
automorphism f : V — V. Define the morphisms

=Dy aly)(ly-® f@1y)(ly- @ by);

7 =(dyely)(ly:-® f® 1y:)(1y- ® By);
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and
flby = (fo(f ) by I — VeV,

dy.f=dy(f* @ fH): VeV —I.

Proposition 4.11. Let (V;dvy; by; 1y) be a particular solution of the triangular
system

(ly®dy)(by® 1y) =1y ;

(dv ® ly+)(1y+ ® by) = ly=.

Then, all solutions are given by
(Vidy.f; f~ byily), f € Autc(V),

Proof. Let (V;dy;by; 1y) be a particular solution and f € Autc (V). Then we
get (V;dy.f; f~L.by; 1y) is a solution of the above system for any other solution
(V; Dy; By; 1y) (including the fixed particular one). In fact, we have
(y@dv(f* ® (e (f))byely)
=(ly®dy)(1®Dy@1y-@1y)(ly @ 1ly» ® f @ 1y~ ®f_1)(1v ®@1ly-®by ®
1) (ly@dy®1y:@1y) (fRly: @ f '@y ®1y)(ly®ly:- @By ®1y) (by®1y)
=(ly®@Dy)(ly@1y: @ f)(ly@1ly: @ ly @ dy)(ly ® ly= @ by ® 1y)(1y ®
@ fFH(fely@ly)(ly®@dy @ 1y- @ 1y)(by @ ly @ 1y ® 1y) (! ®
ly-® 1y)(By ® 1y)

=(ly®@Dy)(ly® 1ly-® (f '@ 1y- ® 1y)(By ® 1y)

=ly.

And

dy(f* @ e ly)(ly- & (f& (F))by)
=(dy®1ly)(Dy®@1ly-®1ly @1y )(ly: @ fR®1y: @ f @1y ) (ly: @by @ 1y ®
1V*)(1V*®1V®dV®1V*)(lV*®f®1V*®f_l®1V*)(1V*®1V®1V*®BV)(1V*®bV)
=Dy @1y )(ly= @ fR1y:)(ly«@ 1y @dy ® ly+)(ly= @by @ 1y ® 1y+) (1y- ®
F'ely)(lv-@ f@ly)(ly-® ly @dy ® Ly+)(ly- @ by ® 1y ® Ly+)(ly+ ®
f'ely)(ly: ® By)

=Dy 1ly)(ly-® fely)(ly: ® f~' @ 1y+)(1y+ ® By)

= 1y~
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Now let (V; Dy; By; ly) be a solution of the triangular system and let

f=0yvedy)(By®ly) (resp. f=(ly ® Dy)(by ® 1y)).

Then, f is invertible and its inverse is

f'=veDy)(byely) (resp. f7' =(ly®dy)(By ® lv))

and we have

dyv.f=dy(f* ® ")
=dy((Dy ® ly:)(1y-® f® Ly-)(1y= ® by) ® f7')
=Dy(ly:® f)(1y= @ ly @ dy)(ly> @ by @ 1y)(1y- ® f71)
=Dy

and

by =(fe () )by
=(f®(dy ®ly)(ly-® f' @ 1y+)(ly- ® By))by

=(fely)(ly®dy ® ly:)(by ® 1y ® 1y:)(f ' ® 1y)By
= By.

In general, we have the following.

Proposition 4.12. Let (V;dvy; by; ly) be a particular solution of the triangular
system

(ly®dy)(by ® 1y) = ly;

(dv @ 1y+)(1y= ® by) = ly-.

Denote by Solc (V) the set of all solutions of the above system on 'V and consider
the map ¢ : Autc(V) — Solc(V), f — (Vidy.f; f~'.by;1y). Then, ¢ is
surjective but not injective.

Proof. Immediate from Proposition 4.11. 0
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Definition 4.13. Let C be a semisimple ribbon Ab—category.
R—solutions over objects of C form a category which is denoted by Fin(C); the
unit object is given by I = (I;dy; by; 11), where dj and b; are duality structures on
1.
A morphism

f i (Asdasbasma) — (B;dp;bp;np)

of Fin(C), where A and B are two objects of C; consists of amorphism f : A — B
in C, such that

fuda=dg.f and f.ba=bg.f

where, f.da := da(f* ® 14),dp.f :=dg(1g-® f), f.ba := (f ® 1a4«)ba and
bp.f := (1 ® f*)bp (notations here are independent from those of Definition
4.10).

Lemma 4.14. Let C be a semisimple ribbon Ab—category and
i (Asdasbasma) — (B;dp;bp;np)
a morphism in Fin(C). Then, the dual morphism f* of f defined a morphism

71 (A% (da)s (ba)ss (ma)s) — (B (dB)s; (bp)s (mB))
in Fin(C).

Proof. We have to prove the following

(dp)«(f7 ® 1) = (da)(1a~ ® f7);

(1as ® f*)(ba)s = (f* ® 1p=)(bB)-.

For the first identity, we have

(dp)(f*" ®1p) =dibpAd (15 ® f*)"2
=di[(1p® f*)bg]*A
=di[(f ®1a)bal”
=dib(f ® 14:)*A
=dip A (f @ 1a)*2
= (da)«(1a~® f7).
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The third passage is due to the axioms of f being a morphism in Fin(C).
Similarly for the second identity using the other axioms of f as a morphism in
Fin(C). O

Proposition 4.15. Let C be a semisimple ribbon Ab—category. Then, Fin(C) is
also a semisimple ribbon Ab—category.

Proof. The category Fin(C) may be provided with canonical tensor product, du-
ality and braiding (inherited from those of C), which makes it a braided monoidal
category with duality.

The tensor product of a couple of R—solutions (A; da; ba;m4) and (B;dp; bp;g)
is given by

(A;dasbasma) ® (B;dp;bp;np) = (A® B;da®_dp;ba ®, bp;ms @ 1p).

The category Fin(C) is provided with canonical duality as follows: to each object
(A;da;ba;ma), there are associated an object

(Asdasbasma)” = (A% (da)s; (ba)ss (ma)s)
and morphisms
b= b(Adnsbains) - I — (A;da;ba;a) ® (A% (da)s; (ba)s; (Ta)s)
and
da = d(adniama) (A5 (da)s (ba)s (1a)e) ® (Asdasbasma) — 1
given by b4 and d 4 respectively, such that the identities hold

(1®da)(ba®1) =1

(da®1)(1®ba) =1

The dual f* of an arbitrary morphism
(A XasYas @) — (B Zg; T3 B)
is well defined by Lemma 4.14, and it is given by the formula

ff=Zpo1a)1p @ f@14)(1p ®Y4).
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It is easy to deduce that for any objects (A; Xa;Ya; @) and (B;Zpg;Tg;B) of
Fin(C), there is a natural family of isomorphisms between

(B;Zp;TB;B)" @ (A; Xa3 YA )"

and
((A; Xas;Ya ) ® (B Zp: Tp; B)"

defined as
(@ ®PB)" (Zp ® 1(aop) ) (13- ® Xa® 13 ® 1(asp)) (15 ® 14+ ® Y4 @, Tp) (8" ® ).

We provide Fin(C) with the braiding induced from C.

Fin(C) is twisted as follows: the twist 6(4;q,:»,;x,) ON an object

(A;da;ba;ma), consists of the twist 4. In fact, 05.dg = da.04 and 04.b4 =
b 4.0 4 by the naturality of 6.

Consequently, (*;b4;d4) is a compatible duality in Fin(C). Hence, the later is a
ribbon category.

For semisimplicity, it is easy to verify that every object (A;da;ba;ma) of
Fin(C) is dominated by {(V;;dv,; bv,; 1v,); €5 pi ;Z‘, where A is dominated by

(Vis &5 i) !2) m

5 The concept of a determinant

In all the sequel, we write Tr(f) instead of Tr,(f) to reduce indices as well as
for dimension and we identify V”* with V&" and f®" with f", for all V € Ob(C);
fe Endc(V).

Let C be a semisimple ribbon Ab—category and A an object of C of rank
n dominated by simple objects (V;)i<i<, With domination morphisms denoted
{e; . V—0V;; u; : Vi — V}i Let [I;n] NN =1 UL U...U I, be a partition
of [1;n] NN into isomorphic classes. Denote card(l;) = nj forall 1 < j < m;
W; arepresentative of the isomorphic objects indixed by indices in /; and C*/ the
identity endomorphism of W'

We define the endomorphism A’} of A" as:

AN = Z e(@)Tr(C")"'Dy ®...® Z &(o)Tr(C*mm)~' DY

0'66,,,1 oeC,,,
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where D{,. is the endomorphism of A"/ defined by
Dl = Hj€o(y) @ ... ®ﬂjnj80'(jnj) (5.1

with I; = [j1, jn;] NN and o a permutation of S,;.
If n = 1, we consider AL =Tr(idy) Vida.

Proposition 5.1. Let (A;Xa;Ya;14) be a particular solution on A and f €
Endc(A). Then, the quantum determinant, detS (f), of f defined by

detS (f) = Xy (f" ® NyOan)cam any Yy
is independent of the choice of the solution on A.

Proof. (A; Xa;Ya;14)is aparicular solution of the triangular system as in Proposi-
tion 4.11. If (A; X ;Y a; 1 4) is another particular solution, then (A"; Xj‘ ; Yf* ;1)

and (A" Yf’ ;7;8;*; 1) are solutions on A" by Proposition 4.8. Using now Propo-
sition 4.11, we obtain

Xq =X h=x" ' en); Ty =v¥ = (he (h) )y

where £ is the automorphism (1 ® Xj’f)(fi* ® 1) of A™. Hence, we have

Yif (f" ® /\X@A")CAn,(An)*Yif
= X5 (h* @ h™)(f" ® NiBan)can,(any-(h® (h~')")Y*
=X5 (len(lelen(leY® a)(1eh )18 f"A%0m)
canam (R 10X e (Y& g le)(h! & )Ty
=X5 (1eh (181 ® f"A8a)can any(h® 1)(h~ ® TS
= X557 @ Nifan)can (amy Yor .
O

Theorem 5.2. Let C be a semisimple ribbon Ab—category, A an object of C of
rank n dominated by a family (V;; €;; i) 1<i<n 0f simple objects and f € Endc(A).
Then, the quantum determinant det€ (f) of f, verifies the following

(a) detS (f) €Kc;
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(b) detlc(lv) = 1; where V is a simple object;

(c) Assume that gijjj = 6;.; for all 1 <i;j < n. Then, det(1,) = 1p;
) derS (g @ f) = g"deiS (f) for all g € UKe);

(e) detS(f*) = deiC(f).

Proof. (a) By definition.
(b) Straightforward.

(c) det§ (14)
= Xff’ (Iany- ® AZHA")CAn,(An)*(Yf*)
=Tr(AY)
=Tr( Y e(@)Tr(Cy") "D ®..® 3 &(o)Tr(C¥m)"'D™)
a-eG,,l O'EGnm

= g(lgnl)Tr(CWnl)-lTr(D}%) ...s(lgnm)Tr(CW"m)‘lTr(D’l’;n )

m

+ Y e()Tr(C*)7'Tr(D)) ... ¥  &(o)Tr(C¥m) 'Tr(D™)

oeC, 0€Cy,
(where 1in the second term of the summand, at least one of o € &,,, is non identity
for some 1 <i <m)
= 1[ +0
=1y.

(d)
C ®" n* n b2l
detn (q®f) :XA ((q®f) ®AA6A”)CA”,(A”)*(YA )
= Xj)_ (1(A")* ® q”f"A'A@An)CA",(A”)*(YE“f)
= ¢"Xy (Lany ® [ AG0an)can, any (V")
= q"dety; (f).

(e) V* is dominated by (V;)1<i<n With i; = £} and &; = ;. Then:
A = Z e()Tr(C*)"'D}, @ ...® Z &(o)Tr(C")~'DYy
o-e@nl oeC,,,
where .
Do =1jEo(jp) ® o ®Hj, Eor(ju)

asin (5.1) and we have
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dety; (f*)

=Tr((f*)"N}.)

= TI"( Z 8(0')TV(CW:'1 )*l(f*)nlDlo_ ®..® Z S(O')TI’(CWZM)71
TEGy, TeGy,

(f*)"D%)

=Tr( % e(a)Tr((C¥m)*)~L(fm Uy, 801 ® ... ® /_llnlgcf(lnl)))

W Tr( % e@)Tr((C ) ) T )™ (g E o (my) © -+ @ Fim,y, Eor ()

T€Cy,

Z 8(0‘)Tr(Cwn1 )—1Tr(f*ﬁl150_(11))...Tr(f*ﬁ1n1Ea(lnl))

TEGy,

D S(O')Tr(cwnm )—lTr(f*ﬁmlgo_(ml))...Tr(f*ﬁmnmgo—(mnm))

T€Cy,

Y e(@Tr( ) Tr((Heapen ) Tr (o1, ) &1, F)F)

0'6(5,16
S &(@)Tr(Cm) T (o (my) €my 1)) Tr (B (mp,, ) Emy )

TEG,

Y &) Tr(C") ' Tr(ey, froa,)-Tr(en, flo,))

(TEGnﬁ

)y S(O')TF(CW"V")_ITI’(SmIf,uo—(ml))...Tr(Smnmfﬂ(,_(mnm))

oeCy,

= det$ (f). O

Theorem 5.3. Let C be a semisimple ribbon Ab—category, A an object of C of rank
n dominated by a family (V;; &;; pui)1<i<n of simple objects and f € Endc,g(A).
To f, we associate the matrix Mj? = (alf’j)lgi,jgn) where
f_{wwﬁmwmmw*ifw=Vc

al =
J 0 else.
Then

(1) deti (f) = det(MY);
(2) Themap Endc g(A) — K, f > detS (f) ismuliplicative, i.e det$ (fg) =
det$ (f)detS (g); Vg € Endcr(A);

(3) The map ¥ : Endcir(A) — M,(Kc), [+ MJ? is a monomorphism of
Kc—algebras;

(4) Assume thatV; =V, forall1 <i < n, thenTr(f) = dim(V)Tr(Mf).

Proof. (1) MJ? is a block diagonal matrix: M]? =diag(M,, ..., M,,) where M; =
(Tr(glf,uk)dim(Vl)‘l)j]Sl,ksjnj V 1 < j < m. Then, we have
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det(M]?) =det(M,) ... det(M,,)
= X (@) dim(Vi) )" Tr(en, frio,)-Tr(E1, flo,)-

o-e(Snl

2 3(0—)(dim(vm)_l)anr(€m1fNO'(ml))---Tr(Smnm f/J(T(mnm))

TeGy,,

= 3 e(@)Tr(C)7'Tr(fmDL)... ¥ &(o)Tr(C¥m)!

O'EGnl oeC,,,
Tr(f"D'g})
= Tr(f™( Z(‘% 3(0‘)Tr(CW”1)_1D},.) v Tr(fm( % e(o)

Tr(C*=)~'D}))
=Tr(f"( Y &(@)Tr(C*) DL ®..® Y &(o)Tr(C¥wm)~1Dm))

0'66,11 Ueenm
= det (/).
(2) We have
@®)i; = (Tr(e; flag up)dim(V)™); ;

= (Tr(s f Zﬂzslgﬂj)dim(v)_l)i,j (Negl(1,1) = {0})
- (Z Tr(eifw e1gu;)dim(V)™"); ;
- (Z Tr( (kig ® ly) 1gu;)dim(V)™),
- (Z‘: Tr(ki; ® eigu;)dim(V)™h); ;
= (ZTr(ki,,)Tr(elguj)dim(V)‘l)i,j
= (5 et @ 1)dim(V) Tr(erguy)dim(v) ),
=1

I=n
= (Z “z{zaij)i’f'
=1



Quantum determinants in ribbon category 229

where k; ; is unique in K¢ because ¢g; fy; is an endomorphism of a simple object
V. Then

detS (f)det€ (g) = det(MJg)det(Mg) = det(M](chg) = det(MJ?g) =detS(fg).

3)

(i) ¢ is amorphism of Kc—algebras. In fact, linearity is obtained by the fact that
for any objects V and W of C, the group Hom¢ (V; W) acquires the structure
of a Kc—module with bilinear composition of morphisms. Furthermore, we

have ¥ (fg) = v (f)¥(g) by Theorem 5.3 (2).

(ii) Let f € Endcjgr(A) such that (f) = 0. Then, Tr(g;fu;) = 0 for all
1 <1i,j < n; but g fu; is a morphism of a simple object, then, &; fu; =
ki ; ® 1y for some unique k; ; € Kc. Hence, forall 1 <i,j < n we have
ki ; =0, because V is simple. Thus y;&; fuje; =0, and so 3 u;e; fu;e; =

i

0 (composition with y; in left and &; in right, then enter{ng summand).
Therefore, f =0 mod(Ra, 4). Thus, ¢ is injective.
4

af . = Tr(eifu)dim(V)™'; 1<Vi<n

S Tr(MJ?) = Zn:Tr(s,-fui)dim(V)_l
i=1

& dim(V)Tr(MS) = " Tr(uieif)

i=1
& dim(V)Tr(M§) =Tr(() mied) f)
i=1
o dim(V)Tr(MfC) =Tr(f).
O

Remark 5.4. From the above Theorem 5.3 (2) and under the same hypotheses;
naturality of the quantum determinant is then trivial, i.e:

Vf € Endcig(A), detS(g7'fg) = detS (f), Vg € Autcir(A).
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Remark 5.5. We can construct in some cases dominating families of simple objects
verifying g;uj = 6;.;, forall i, j, 1 < i, j < n. Infact, let C be a semisimple ribbon
Ab—category enriched over finite dimensional vector spaces over a field K (i.e, for
any objects V and W of C, Hom¢(V, W) is a finite dimensional K—vector space)
and let A be an object of C and V a simple one. The K—vector space Homc(V; A)
is dualizable and its dual is Hom¢ (A; V); consider a basis (u; l‘:f of Homc(V; A)
(where n is its dimension over K) and its dual basis (&;);Z} of Homc(A; V). Then,
Ais dominated by (V; &;; t4;)1<i<n, ran(A) = n and moreover, we have g;u; = 6.,
foralli,j,1<i,j<n.

Corollary 5.6. Under the same hypotheses of Theorem 5.3. Assume moreover that
gipj =0;, foralli,j, 1 <i,j <n. Then

(@) The map  : Endc/gr(A) — M,(Kc); f +— MJ? is an isomorphism of
Kc—algebras.
(b) f is invertible in C /R, if and only if det€ (f) is invertible in Kc.
Proof. (a) By Theorem 5.3 (3); we are just still have to show that i is surjective.
Let M = (ai,j)1§i7j-gn and f = Z‘ai,j,uiej. Then Tr(8i0fﬂj'0)dim(V)_l = Qjy, jos
i,

for all iy, jo, 1 < ip, jo < n, and 50 w(f)=M.
(b) Assume that f is invertible in C/R. Then:

1; = det,(lj(lA)
=detS (ff7")
= det§ (f)dets (")
= detf (f™")detS (f).
Hence, (det$ (f))~' = detS (f71).

Inversely, if det$(f) is invertible, then Mj(; is invertible, so there exists N €

M, (Kc) such that MJ?N = NM]? = 1,, but N = y(g) for some unique g €
Endc/r(A). Hence

U(la) = I, = MEN =y (f)y(g) = ¢ (f2)

and similarly ¥ (14) =¥ (gf), then fg =gf =14 mod(Ra.a). O
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Example 5.7. Let C = (Proj(R); ®g; R) be the category of finitely genarated and
projective modules over a commutative ring R. This is a modular category with
simple objects isomorphic to R. Let V be a free finitely generated and projective
R-module with basis (x; fj? By Corollary 5.6, rany,(V) = n and det€ (f),
f € Endc(V), coincides with its classical determinant, i.e of a representative
matrix of f.

Example 5.8. This is due to Reshetikhin and Turaev [14]. It deals with the
semisimple ribbon Ab—category (in fact modular [14]) associated to the Hopf
algebra ﬁq, i.e, the finite dimensional quotient of the Hopf algebra U, (S1>(C))
for g a root of unity. Moreover, a general principe is given in [14] to construct
modular categories upon categories of modules over quantum groups at roots of
unity. The objects of C are finite dimensional ﬁq—modules and the simple objects
are highest weight modules {V,}, (see [10, 14], for more details). Hence, the
quantum determinant of an endomorphism f of an Uq —module is computed via
the associated square matrix of f, by Theorem 5.3 (1).
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