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Quantum determinants in ribbon category
H. Choulli∗, K. Draoui, and H. Mouanis

Abstract. The aim of this paper is to introduce an abstract notion of determinant
which we call quantum determinant, verifying the properties of the classical one. We
introduce R−basis and R−solution on rigid objects of a monoidal 𝐴𝑏−category, for a
compatibility relation R, such that we require the notion of duality introduced by Joyal
and Street, the notion given by Yetter and Freyd and the classical one, then we show that
R−solutions over a semisimple ribbon 𝐴𝑏−category form as well a semisimple ribbon
𝐴𝑏−category. This allows us to define a concept of so-called quantum determinant
in ribbon category. Moreover, we establish relations between these and the classical
determinants. Some properties of the quantum determinants are exhibited.

1 Introduction

The theory of monoidal categories was studied and developed by many authors
[1, 7], see also [8, 9]. In particular duality in such categories introduced by Joyal and
Street [8], (see also [2, 11]) as well as the concept of braiding -as a weaker version
of commutativity- which came along firstly with Joyal and Street [8]. The notion
of determinant dates a long time as an essential tool in linear algebra. Since then,
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many versions and analogs were introduced and developed in the setting of square
matrices of commutative entries as well as for non commutative entries (among
widely used ones: q−determinants, Dieudonné determinant, quasideterminants...).
It is well known that the notion of trace has been generalized to the context of
categories (with tensor product and duality) [3–6, 13]. In particular, every ribbon
category [10] or called tortile tensor category (in [15]), admits a canonical notion of
(quantum) trace (well behaved: cyclicity and multiplicativity) and dimension [10],
in the way that it generalizes the classical one of vector spaces in linear algebra.
These traces are used to construct quantum invariants of links and 3−manifolds.
Motivated by that, this paper introduces an abstract notion of determinant which
we call “quantum determinant”, verifying the properties of the classical one. The
name quantum here is justified by the fact that this element uses the quantum trace;
in fact it is nothing but the quantum trace of the endomorphism 𝑓 𝑛Λ𝑛𝐴 (Proposition
5.1).
We begin with the introduction of a concept of R−basis on an object 𝑉 of a
monoidal 𝐴𝑏−category 𝐶, for a (compatible) congruence relation R, as a family
of morphisms

𝑑𝑖𝑉 : 𝑉∗ ⊗ 𝑉 −→ 𝐼 , 𝑏𝑖𝑉 : 𝐼 −→ 𝑉 ⊗ 𝑉∗ 𝑎𝑛𝑑 𝜋𝑖𝑉 : 𝑉 −→ 𝑉 ; ∀𝑖 ∈ 𝐽

for a finite index set 𝐽, such as they verify some axioms. We prove that it co-
incides with the usual basis when we consider the category of finite dimensional
vector spaces over a certain field. The existence of such R−basis in the context of
semisimple ribbon 𝐴𝑏−categories, is ensured. In fact, we show that semisimplicity
gives rise to an R−basis on every object of the category. Moreover, we define
a notion of R−solution on an object 𝑉 as a quadruple (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 𝜋𝑉 ) obeing to
some axioms.
Finally, we introduce the notion of quantum determinant in a semisimple rib-
bon 𝐴𝑏−category and show that its formula is independent of the choice of the
R−solution on the object. We prove that in fact, the quantum determinant of an
endomorphism 𝑓 ∈ 𝐸𝑛𝑑𝐶/R (𝑉) coincides with the classical determinant of an
associated square matrix 𝑀 𝑓 over the ground commutative ring 𝐸𝑛𝑑𝐶 (𝐼) of 𝐶,
denoted by K𝐶 and that under some conditions, there is a bijective correspondence
between the K𝐶−algebras 𝐸𝑛𝑑𝐶 (𝑉) and𝑀𝑛 (K𝐶) of square matrices over K𝐶 . In this
case, 𝑓 ∈ 𝐸𝑛𝑑𝐶/R (𝑉) is an automorphism, if and only if, its quantum determinant
is invertible in K𝐶 .
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2 Preliminaries

Throughout this paper, K states for a base field with unit and𝐶 for a strict monoidal
category (𝐶; ⊗; 𝐼) with unit object 𝐼.
We recall some notions from the theory of monoidal categories. For more details,
we refer to [12] and [17].
A monoidal category 𝐶 = (𝐶; ⊗; 𝐼;𝛼; 𝑙; 𝑟) consists of a category 𝐶, a bifunctor
⊗ : 𝐶 × 𝐶 −→ 𝐶, a unit object 𝐼 and natural isomorphisms 𝛼 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 −→
𝐴 ⊗ (𝐵 ⊗ 𝐶), 𝑙 : 𝐼 ⊗ 𝐴 −→ 𝐴 and 𝑟 : 𝐴 ⊗ 𝐼 −→ 𝐴 called associativity constraint,
left and right unitality constraints respectively such that the pentagon and triangle
axioms hold.
𝐶 is called strict if all components 𝛼, 𝑙 and 𝑟 are identities.
A result due to Mac-Lane’s (see [12]) coherence Theorem, asserts that any monoidal
category is necessarily equivalent to a strict one.
𝐶 is called an 𝐴𝑏−category provided that the hom sets 𝐻𝑜𝑚𝐶 (𝑈,𝑉) are addi-
tive abelian groups and the composition map 𝐻𝑜𝑚𝐶 (𝑈,𝑉) × 𝐻𝑜𝑚𝐶 (𝑉,𝑊) −→
𝐻𝑜𝑚𝐶 (𝑈,𝑊), ( 𝑓 , 𝑔) ↦→ 𝑔 ◦ 𝑓 is bilinear.
A braiding (firstly introduced in [8]) for a monoidal category𝐶 consists of a family
of natural isomorphisms

𝑐𝑉 ;𝑊 : 𝑉 ⊗𝑊 −→ 𝑊 ⊗ 𝑉

for all 𝑉 and𝑊 in 𝐶, such that for any three objects𝑈, 𝑉 and𝑊 we have

𝑐𝑈;𝑉⊗𝑊 = (𝑖𝑑𝑉 ⊗ 𝑐𝑈;𝑊 ) (𝑐𝑈;𝑉 ⊗ 𝑖𝑑𝑊 )

𝑐𝑈⊗𝑉 ;𝑊 = (𝑐𝑈;𝑊 ⊗ 𝑖𝑑𝑉 ) (𝑖𝑑𝑈 ⊗ 𝑐𝑉 ;𝑊 ).
For a monoidal category 𝐶 with a braiding 𝑐; a twist (see [7]) consists of a family
of isomorphisms

𝜃𝑉 : 𝑉 −→ 𝑉, 𝑉 ∈ 𝑂𝑏(𝐶)
such that 𝜃𝐼 = 𝑖𝑑𝐼 and for any two objects 𝑉 and𝑊 of 𝐶 we have

𝜃𝑋⊗𝑌 = 𝑐𝑌 ;𝑋 (𝜃𝑌 ⊗ 𝜃𝑋)𝑐𝑋;𝑌

The naturality of the twist 𝜃 means that for any morphism 𝑓 : 𝑈 −→ 𝑉 of 𝐶, we
have 𝜃𝑉 𝑓 = 𝑓 𝜃𝑈 .
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Let (𝐶; ⊗; 𝐼) be a strict monoidal category with tensor product ⊗ and unit 𝐼. It is a
monoidal category with left duality if for each object 𝑉 of 𝐶 there exists an object
𝑉∗ and morphisms 𝑏𝑉 : 𝐼 −→ 𝑉 ⊗ 𝑉∗ and 𝑑𝑉 : 𝑉∗ ⊗ 𝑉 −→ 𝐼 in 𝐶 such that

(𝑖𝑑𝑉 ⊗ 𝑑𝑉 ) (𝑏𝑉 ⊗ 𝑖𝑑𝑉 ) = 𝑖𝑑𝑉 𝑎𝑛𝑑 (𝑑𝑉 ⊗ 𝑖𝑑𝑉∗) (𝑖𝑑𝑉∗ ⊗ 𝑏𝑉 ) = 𝑖𝑑𝑉∗ .

For any morphism 𝑓 : 𝑈 −→ 𝑉 , we define its dual morphism 𝑓 ∗ : 𝑉∗ −→ 𝑈∗ by

𝑓 ∗ = (𝑑𝑉 ⊗ 𝑖𝑑𝑈∗) (𝑖𝑑𝑉∗ ⊗ 𝑓 ⊗ 𝑖𝑑𝑈∗) (𝑖𝑑𝑉∗ ⊗ 𝑏𝑈)

and the morphism 𝜆𝑈;𝑉 : 𝑉∗ ⊗ 𝑈∗ −→ (𝑈 ⊗ 𝑉)∗ (see [10, page 344], for more
details) defined by

𝜆𝑈;𝑉 = (𝑑𝑉 ⊗ 𝑖𝑑 (𝑈⊗𝑉 )∗) (𝑖𝑑𝑉∗ ⊗ 𝑑𝑈 ⊗ 𝑖𝑑𝑉⊗(𝑈⊗𝑉 )∗) (𝑖𝑑𝑉∗⊗𝑈∗ ⊗ 𝑏𝑈⊗𝑉 ) (2.1)

is an isomorphism for any two objects𝑈 and 𝑉 of 𝐶.
We say that duality is compatible with the braiding 𝑐 and the twist 𝜃 if for any
object 𝑉 of 𝐶 we have

𝜃𝑉∗ = (𝜃𝑉 )∗.
In this case, the double dual𝑉∗∗ := (𝑉∗)∗ of an object𝑉 is canonically isomorphic
to 𝑉 .
A ribbon category is a monoidal category 𝐶 equipped with a twist 𝜃, a braiding 𝑐
and a compatible duality (∗; 𝑏; 𝑑).
Let 𝐶 be a ribbon category with unit 𝐼. For any endomorphism 𝑓 of an object 𝑉 of
𝐶, we define the quantum trace 𝑇𝑟𝑞 ( 𝑓 ) of 𝑓 as the element

𝑇𝑟𝑞 ( 𝑓 ) = 𝑑𝑉𝑐𝑉 ;𝑉∗ (𝜃𝑉 𝑓 ⊗ 𝑖𝑑𝑉∗)𝑏𝑉 ∈ K𝐶
When 𝐶 is the category 𝑣𝑒𝑐𝑡K of finite dimensional vector spaces over a field K,

this concept of quantum trace coincides with the usual one.
We collect in following Theorem the principal properties of the quantum trace.

Theorem 2.1. ([10]) For any morphisms 𝑓 and 𝑔 in a ribbon category, we have

(a) 𝑇𝑟𝑞 ( 𝑓 𝑔) = 𝑇𝑟𝑞 (𝑔 𝑓 );
(b) 𝑇𝑟𝑞 ( 𝑓 ⊗ 𝑔) = 𝑇𝑟𝑞 ( 𝑓 )𝑇𝑟𝑞 (𝑔);
(c) 𝑇𝑟𝑞 ( 𝑓 ∗) = 𝑇𝑟𝑞 ( 𝑓 ) and
(d) 𝑇𝑟𝑞 (𝑘) = 𝑘 for any 𝑘 ∈ K𝐶 .
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Proof. See [10] for proof, where string diagrams are used to simplify the proof and
make the passages more obvious.

For any object 𝑉 of 𝐶, the quantum dimension 𝑑𝑖𝑚𝑞 (𝑉) of 𝑉 is the element
defined by 𝑑𝑖𝑚𝑞 (𝑉) = 𝑇𝑟𝑞 (𝑖𝑑𝑉 ) and we have

𝑑𝑖𝑚𝑞 (𝑉 ⊗𝑊) = 𝑑𝑖𝑚𝑞 (𝑉)𝑑𝑖𝑚𝑞 (𝑊) 𝑎𝑛𝑑 𝑑𝑖𝑚𝑞 (𝑉∗) = 𝑑𝑖𝑚𝑞 (𝑉).

Let 𝐶 be a ribbon category and 𝑉 an object of 𝐶 (for the following setup, we
mainly follow the terminology adopted in [17]).
𝑉 is called simple provided that the map

K : K𝐶 −→ 𝐸𝑛𝑑𝐶 (𝑉); 𝑘 ↦−→ 𝑘 ⊗ 𝑖𝑑𝑉
is a bijection and 𝑑𝑖𝑚𝑞 (𝑉) is invertible in K𝐶 .
An object𝑉 of a ribbon 𝐴𝑏−category𝐶 is said to be dominated by 𝑛 simple objects
{𝑉𝑖}𝑖 of 𝐶, if there exists a finite family of morphisms {𝜀𝑖𝑉 : 𝑉 −→ 𝑉𝑖 ; 𝜇𝑖𝑉 :
𝑉𝑖 −→ 𝑉}1≤𝑖≤𝑛 such that the endomorphism∑︁

𝑖

𝜇𝑖𝑉𝜀
𝑖
𝑉 − 𝑖𝑑𝑉

of 𝑉 , is negligible as defined below.
The set of negligible morphisms between two objects 𝑈 and 𝑉 is denoted
𝑁𝑒𝑔𝑙 (𝑈;𝑉) and it is defined as

𝑁𝑒𝑔𝑙 (𝑈;𝑉) := { 𝑓 ∈ 𝐻𝑜𝑚𝐶 (𝑈,𝑉) | ∀𝑔 ∈ 𝐻𝑜𝑚𝐶 (𝑉,𝑈), 𝑇𝑟𝑞 ( 𝑓 𝑔) = 0}.

Obviously 𝑁𝑒𝑔𝑙 (𝐼; 𝐼) = {0}.
We call a ribbon 𝐴𝑏−category semisimple provided that every object is dominated
by a finite set of simple ones.
Recall from [12, page 52], that a relation R, is a congruence on a category 𝐶
if for any objects 𝑋 and 𝑌 of 𝐶, R𝑋,𝑌 is an equivalence relation on the hom
set 𝐻𝑜𝑚𝐶 (𝑋,𝑌 ) and for all 𝑓 , 𝑔 : 𝑋 −→ 𝑌 such that 𝑓 R𝑋,𝑌 𝑔, we have
(𝑣 𝑓 𝑢)R𝐴,𝐵 (𝑣𝑔𝑢), for any morphisms 𝑢 : 𝐴→ 𝑋 and 𝑣 : 𝑌 → 𝐵 of 𝐶.

3 Notion of R−basis

Definition 3.1. We call compatibility relation on a monoidal category 𝐶, any
congruence relation R on 𝐶 verifying the following
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(i) For any morphisms 𝑓 and 𝑔 between dualizable objects 𝑈 and 𝑉 of 𝐶, such
that 𝑓 R𝑈,𝑉 𝑔, we have 𝑓 ∗ R𝑉∗,𝑈∗ 𝑔∗.

(ii) For any objects 𝑈, 𝑉 , 𝐴 and 𝐵 of 𝐶 and any morphisms 𝑓 , 𝑔 : 𝑈 −→ 𝑉
and 𝑓 ′, 𝑔′ : 𝐴 −→ 𝐵 such that 𝑓 R𝑈,𝑉 𝑔 and 𝑓 ′ R𝐴,𝐵 𝑔′, then ( 𝑓 ⊗
𝑓 ′) R𝑈⊗𝐴,𝑉⊗𝐵 (𝑔 ⊗ 𝑔′).

Lemma 3.2. Let C be a ribbon 𝐴𝑏−category. The relation R defined on hom sets
by

∀𝑈,𝑉 ∈ 𝑂𝑏(𝐶), ∀ 𝑓 , 𝑔 : 𝑈 −→ 𝑉 ; 𝑓 R𝑈,𝑉 𝑔 ⇔ 𝑓 − 𝑔 ∈ 𝑁𝑒𝑔𝑙 (𝑈,𝑉) (3.1)

is a compatibility relation on C.

Proof. R𝑈,𝑉 is clearly an equivalence relation on each hom set
𝐻𝑜𝑚𝐶 (𝑈,𝑉). The axioms of Definition 3.1 hold by the fact that the dual of a
negligible morphism is negligible and the tensor product of negligible morphisms
is again negligible [17].

Remark 3.3. (a) Let C be a ribbon 𝐴𝑏−category and 𝑈 and 𝑉 two objects of
𝐶. Then, 𝑁𝑒𝑔𝑙 (𝑈;𝑉) is an ideal in C and the class modulo R𝑈,𝑉 of the
zero arrow is the ideal 𝑁𝑒𝑔𝑙 (𝑈;𝑉). Recall [16] that a set 𝑅𝑋 of arrows to
an object 𝑋 of 𝐶, is called a right 𝑋−ideal if for all 𝑓 , 𝑔 : 𝐵 −→ 𝑋 in 𝑅𝑋,
for all 𝑣 : 𝐴 −→ 𝐵, 𝐴, 𝐵 ∈ 𝑂𝑏(𝐶), one has ( 𝑓 + 𝑔)𝑣 is in 𝑅𝑋. Left 𝑋−ideal
is defined similarly. A set of arrows from an object 𝑋 to an object 𝑌 of 𝐶 is
called an ideal if it is both a right 𝑋−ideal and a left 𝑌−ideal.

(b) Let C be a ribbon 𝐴𝑏−category and 𝑓 ∈ 𝐻𝑜𝑚𝐶 (𝑋,𝑌 ). Consider the sets

𝑅𝑋 := {𝑔 : 𝐴 −→ 𝑋, 𝑓 𝑔 ∈ 𝑁𝑒𝑔𝑙 (𝐴;𝑌 )}𝐴∈𝑂𝑏 (𝐶 ) ;

𝑅𝑌 := {𝑔 : 𝑌 −→ 𝐵, 𝑔 𝑓 ∈ 𝑁𝑒𝑔𝑙 (𝑋; 𝐵)}𝐵∈𝑂𝑏 (𝐶 ) .

Then, 𝑅𝑋 is a right 𝑋−ideal and 𝑅𝑌 is a left 𝑌−ideal.
(c) Let 𝐶 be a ribbon 𝐴𝑏−category. A set of arrows 𝑅 is an ideal in 𝐶, if and

only if, the set
𝑅∗ := { 𝑓 ∗, 𝑓 ∈ 𝑅}

is an ideal in the category 𝐶 defined by
𝑂𝑏(𝐶) := {𝑋∗, 𝑋 ∈ 𝑂𝑏(𝐶)} and 𝑀𝑜𝑟 (𝐶) := { 𝑓 ∗, 𝑓 ∈ 𝑀𝑜𝑟 (𝐶)}.
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From now on, R will denote always the above compatibility relation (3.1),
whenever 𝐶 is considered as a ribbon 𝐴𝑏−category.

Definition 3.4. Let 𝐶 be a monoidal 𝐴𝑏−category, equipped with a compatibility
relation R and 𝑉 a dualizable object of 𝐶 with duality structures (𝑉∗; 𝑑𝑉 ; 𝑏𝑉 ). An
𝑛 − R−basis (𝑉 ; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛 on 𝑉 , is a family of morphisms

𝑑𝑖𝑉 : 𝑉∗ ⊗ 𝑉 −→ 𝐼, 𝑏𝑖𝑉 : 𝐼 −→ 𝑉 ⊗ 𝑉∗ 𝑎𝑛𝑑 𝜋𝑖𝑉 : 𝑉 −→ 𝑉

such that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the following hold

(𝑖𝑑𝑉 ⊗ 𝑑𝑖𝑉 ) (𝑏 𝑗𝑉 ⊗ 𝑖𝑑𝑉 ) = 𝜋 𝑗𝑉𝜋𝑖𝑉 ;

(𝑑𝑖𝑉 ⊗ 𝑖𝑑𝑉∗) (𝑖𝑑𝑉∗ ⊗ 𝑏 𝑗𝑉 ) = (𝜋 𝑗𝑉𝜋𝑖𝑉 )∗

𝑎𝑛𝑑
𝑖=𝑛∑︁
𝑖=1

𝜋𝑖𝑉 = 1𝑉 𝑚𝑜𝑑 (R𝑉,𝑉 ).

Remark 3.5. Let 𝑉 be a dualizable object of 𝐶 with dual 𝑉∗ and consider an
𝑛 − R−basis (𝑉 ; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛 on 𝑉 .

(a) We know that the dual object in a monoidal category is unique up to a unique
isomorphism [18, page 23]. Let 𝑉∨ be another dual of 𝑉 and 𝑓 : 𝑉∗ −→ 𝑉∨

be the unique isomorphism between the duals. Then, it is not difficult to
verify that

(𝑉 ; 𝑑𝑖𝑉 ( 𝑓 ⊗ 𝑖𝑑𝑉 ); ( 𝑓 −1 ⊗ 𝑖𝑑𝑉 )𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛
is another 𝑛 − R−basis on 𝑉 .

(b) Every sub family of an 𝑛 − R−basis is again an 𝑚 − R−basis with 𝑚 ≤ 𝑛.

Note that this notion generalizes the standard notion of basis for vector spaces
over a field K.

Example 3.6. Every object 𝑉 of the category (𝑣𝑒𝑐𝑡K, ⊗K, K) of finite dimensional
vector spaces over a field K, admits an 𝑛 − R−basis where n is its dimension and R
is any compatibility relation.
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Proof. Consider the family:

𝑑𝑙𝑉 : 𝑉∗ ⊗ 𝑉 −→ K

𝑒 𝑗 ⊗ 𝑒𝑖 ↦−→ 𝛿𝑙 𝑗𝛿𝑙𝑖
,
𝑏𝑙𝑉 : K −→ 𝑉 ⊗ 𝑉∗

1 ↦−→ 𝑒𝑙 ⊗ 𝑒𝑙 𝑎𝑛𝑑
𝜋𝑙𝑉 : 𝑉 −→ 𝑉

𝑒𝑖 ↦−→ 𝛿𝑙𝑖𝑒𝑖

for all 1 ≤ 𝑙 ≤ 𝑛, where {𝑒𝑖}1≤𝑖≤𝑛 and {𝑒𝑖}1≤𝑖≤𝑛 are respectively a basis and its
dual basis of 𝑉 and its dual 𝑉∗. Then, the family (𝑑𝑙𝑉 ; 𝑏𝑙𝑉 ; 𝜋𝑙𝑉 )1≤𝑙≤𝑛 defines an
𝑛 − R−basis on 𝑉 .

Example 3.7. Let𝐶 be a monoidal 𝐴𝑏−category equipped with a compatibility re-
lationR and𝑉 a dualizable object of𝐶 with duality structures denoted (𝑉∗; 𝑑𝑉 ; 𝑏𝑉 ).
Then, (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) is a 1 − R−basis on 𝑉 .

Proposition 3.8. Any semisimple ribbon 𝐴𝑏−category 𝐶 admits an R−basis on
each of its objects.

Proof. An object 𝑉 of a semisimple ribbon 𝐴𝑏−category is dominated by a finite
family (𝑉𝑖)1≤𝑖≤𝑛 of simple objects of 𝐶, i.e, there exists a family of morphisms
{𝜀𝑖𝑉 : 𝑉 −→ 𝑉𝑖 ; 𝜇𝑖𝑉 : 𝑉𝑖 −→ 𝑉}𝑖=𝑛𝑖=1 such that

∑
𝑖
𝜇𝑖𝑉𝜀

𝑖
𝑉 − 𝑖𝑑𝑉 is a negligible

endomorphism of 𝑉 . Then

(𝑉 ; 𝑑𝑉𝑖 ((𝜇𝑖𝑉 )∗ ⊗ 𝜀𝑖𝑉 ); (𝜇𝑖𝑉 ⊗ (𝜀𝑖𝑉 )∗)𝑏𝑉𝑖 ; 𝜇𝑖𝑉𝜀𝑖𝑉 )

is an 𝑛 − R−basis on 𝑉 . In fact, the following hold

(1𝑉 ⊗ 𝑑𝑉𝑖 ((𝜇𝑖𝑉 )∗ ⊗ 𝜀𝑖𝑉 )) ((𝜇 𝑗𝑉 ⊗ (𝜀 𝑗𝑉 )∗)𝑏𝑉𝑗 ⊗ 1𝑉 ) = 𝜇 𝑗𝑉𝜀
𝑗
𝑉𝜇

𝑖
𝑉𝜀

𝑖
𝑉 ;

(𝑑𝑉𝑖 ((𝜇𝑖𝑉 )∗ ⊗ 𝜀𝑖𝑉 ) ⊗ 1𝑉∗) (1𝑉∗ ⊗ (𝜇 𝑗𝑉 ⊗ (𝜀 𝑗𝑉 )∗)𝑏𝑉𝑗 ) = (𝜇 𝑗𝑉𝜀
𝑗
𝑉𝜇

𝑖
𝑉𝜀

𝑖
𝑉 )∗

𝑎𝑛𝑑
∑︁
𝑖

𝜇𝑖𝑉𝜀
𝑖
𝑉 = 𝑖𝑑𝑉 𝑚𝑜𝑑 (R𝑉,𝑉 ).

Definition 3.9. Let 𝐶 be a monoidal 𝐴𝑏−category, equipped with a compatibility
relation R and let 𝑉 be a dualizable object of 𝐶. Denote by 𝑟𝑉 , the minimum
cardinal, as explained below, of R−bases (𝑉 ; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛 on 𝑉 , 𝑛 ∈ N; for
which, 𝜋𝑖𝑉 ≠ 1𝑉 , for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛.
𝑟𝑉 = 𝑛 is a minimum cardinal in the sense that:
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(i) There exists an R−basis (𝑉 ; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛 on 𝑉 such that there exist no
morhisms 𝑑𝑛+1

𝑉 , 𝑏𝑛+1
𝑉 and 𝜋𝑛+1

𝑉 suth that

(𝑉 ; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 )1≤𝑖≤𝑛 ∪ (𝑉 ; 𝑑𝑛+1
𝑉 ; 𝑏𝑛+1

𝑉 ; 𝜋𝑛+1
𝑉 )

is an (𝑛 + 1) − R−basis on 𝑉 .

(ii) There is no 𝑚 − R−basis on 𝑉 verifying (𝑖) such that 𝑚 < 𝑛.

Note that the condition on 𝜋𝑖𝑉 is just to avoid the trivial case when𝐶 is rigid, where,
for any object 𝑉 of 𝐶, 𝑟𝑉 = 1 by Example 3.7.

The following lemmata will be useful in claiming forthcoming results on the
integer 𝑟𝑉 introduced in the very definition.

Lemma 3.10. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and 𝐴 and 𝐵 be iso-
morphic objects in 𝐶. Then

(a) 𝐴 is dominated by n simple objects, if and only if 𝐵 is;
(b) (𝐴; 𝑑𝑖𝐴; 𝑏𝑖𝐴; 𝜋𝑖𝐴)𝑖=𝑛𝑖=1 is an R−basis on A, if and only if

(𝐵; 𝑑𝑖𝐴( 𝑓 ∗ ⊗ 𝑔); ( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴; 𝑓 𝜋𝑖𝐴𝑔)𝑖=𝑛𝑖=1

is an R−basis on 𝐵.

Proof. (a) Let 𝑓 ∈ 𝐻𝑜𝑚𝐶 (𝐴; 𝐵) be an isomorphism with inverse 𝑔.
Assume that 𝐴 is dominated by (𝑉𝑖; 𝜀𝑖𝐴; 𝜇𝑖𝐴)𝑖=𝑛𝑖=1 . Let 𝜀𝑖𝐵 = 𝜀𝑖𝐴𝑔 and 𝜇𝑖𝐵 = 𝑓 𝜇𝑖𝐴.
Then, 𝐵 is dominated by (𝑉𝑖; 𝜀𝑖𝐵; 𝜇𝑖𝐵)𝑖=𝑛𝑖=1 .

Inversely, if 𝐵 is dominated by (𝑉𝑖; 𝜀𝑖𝐵; 𝜇𝑖𝐵)𝑖=𝑛𝑖=1 , one easily checks that 𝐴 is
dominated by (𝑉𝑖; 𝜀𝑖𝐵 𝑓 ; 𝑔𝜇𝑖𝐵)𝑖=𝑛𝑖=1 .

(b) Let (𝐴; 𝑑𝑖𝐴; 𝑏𝑖𝐴; 𝜋𝑖𝐴)𝑖=𝑛𝑖=1 be an R−basis on 𝐴. Then

(𝐵; 𝑑𝑖𝐴( 𝑓 ∗ ⊗ 𝑔); ( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴; 𝑓 𝜋𝑖𝐴𝑔)𝑖=𝑛𝑖=1

is an R−basis on 𝐵. In fact, we have to prove the following three identities:

(𝑖𝑑𝐵 ⊗ 𝑑 𝑗𝐴( 𝑓 ∗ ⊗ 𝑔)) (( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴 ⊗ 𝑖𝑑𝐵) = ( 𝑓 𝜋 𝑗𝐴𝑔) ( 𝑓 𝜋𝑖𝐴𝑔),

(𝑑 𝑗𝐴( 𝑓 ∗ ⊗ 𝑔) ⊗ 𝑖𝑑𝐵∗) (𝑖𝑑𝐵∗ ⊗ ( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴) = ( 𝑓 𝜋 𝑗𝐴𝑔)∗( 𝑓 𝜋𝑖𝐴𝑔)∗
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𝑎𝑛𝑑
𝑖=𝑛∑︁
𝑖=1

𝑓 𝜋𝑖𝐴𝑔 = 1𝐵 𝑚𝑜𝑑 (R𝐵,𝐵).

We have

(1𝐵 ⊗ 𝑑 𝑗𝐴( 𝑓 ∗⊗𝑔)) (( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴 ⊗ 1𝐵)
= (1𝐵 ⊗ 𝑑 𝑗𝐴) (1𝐵 ⊗ 𝑓 ∗ ⊗ 𝑔) ( 𝑓 ⊗ 𝑔∗ ⊗ 1𝐵) (𝑏𝑖𝐴 ⊗ 1𝐵)
= (1𝐵 ⊗ 𝑑 𝑗𝐴) ( 𝑓 ⊗ 1𝐴∗ ⊗ 𝑔) (𝑏𝑖𝐴 ⊗ 1𝐵)
= 𝑓 (1𝐴 ⊗ 𝑑 𝑗𝐴) (𝑏𝑖𝐴 ⊗ 1𝐴)𝑔
= ( 𝑓 𝜋 𝑗𝐴𝑔) ( 𝑓 𝜋𝑖𝐴𝑔)

and

(𝑑 𝑗𝐴( 𝑓 ∗ ⊗ 𝑔) ⊗ 𝑖𝑑𝐵∗) (𝑖𝑑𝐵∗ ⊗ ( 𝑓 ⊗ 𝑔∗)𝑏𝑖𝐴)
= (𝑑 𝑗𝐴 ⊗ 𝑖𝑑𝐵∗) ( 𝑓 ∗ ⊗ 𝑔 ⊗ 𝑖𝑑𝐵∗) (𝑖𝑑𝐵∗ ⊗ 𝑓 ⊗ 𝑔∗) (𝑖𝑑𝐵∗ ⊗ 𝑏𝑖𝐴)
= 𝑔∗(𝑑 𝑗𝐴 ⊗ 𝑖𝑑𝐴∗) (𝑖𝑑𝐴∗ ⊗ 𝑏𝑖𝐴) 𝑓 ∗

= ( 𝑓 𝜋 𝑗𝐴𝑔)∗( 𝑓 𝜋𝑖𝐴𝑔)∗.

The third identity is obvious.
Inversely, if 𝐵 admits an R−basis on it, then by the same previous procedure
interchanging the roles of 𝑓 and 𝑔, we get an R−basis on 𝐴.

Lemma 3.11. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and 𝐴 an object of 𝐶.
Then

(a) 𝐴 is dominated by n simple objects, if and only if 𝐴∗ is;
(b) (𝐴; 𝑑𝑖𝐴; 𝑏𝑖𝐴; 𝜋𝑖𝐴)𝑖=𝑛𝑖=1 is an R−basis on 𝐴, if and only if

(𝐴∗; (𝑑𝑖𝐴)∗; (𝑏𝑖𝐴)∗; (𝜋𝑖𝐴)∗)𝑖=𝑛𝑖=1

is an R−basis on 𝐴∗.

Proof. (a) Assume that 𝐴 is dominated by (𝑉𝑖; 𝜀𝑖𝐴; 𝜇𝑖𝐴)𝑖=𝑛𝑖=1 . Then 𝐴∗ is dominated
by (𝑉∗

𝑖 ; (𝜇𝑖𝐴)∗; (𝜀𝑖𝐴)∗)𝑖=𝑛𝑖=1 .
Inversely, this holds due to the fact that 𝐴∗∗ ≃ 𝐴 is verified in light of the compatible
duality of 𝐶.
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(b) Let (𝐴; 𝑑𝑖𝐴; 𝑏𝑖𝐴; 𝜋𝑖𝐴)𝑖=𝑛𝑖=1 be an R−basis on 𝐴. Then
(𝐴∗; (𝑑𝑖𝐴)∗; (𝑏𝑖𝐴)∗; (𝜋𝑖𝐴)∗)𝑖=𝑛𝑖=1 is an R−basis on 𝐴∗, where

(𝑑𝑖𝐴)∗ := 𝑑𝐼 (𝑏𝑖𝐴)∗𝜆𝐴;𝐴∗ ; (𝑏𝑖𝐴)∗ := 𝜆−1
𝐴;𝐴∗ (𝑑𝑖𝐴)∗𝑏𝐼 𝑎𝑛𝑑 (𝜋𝑖𝐴)∗ := (𝜋𝑖𝐴)∗

for all 1 ≤ 𝑖 ≤ 𝑛.
Along with the proof and the rest of the paper, by 𝜆 we mean 𝜆𝐴;𝐴∗ and by 𝜆−1 we
mean 𝜆−1

𝐴;𝐴∗ to reduce notations (where 𝜆 is defined as in (2.1)).
In fact, we prove the three identities:

(𝑖𝑑𝐴∗ ⊗ 𝑑𝐼 (𝑏𝑖𝐴)∗𝜆) (𝜆−1(𝑑 𝑗𝐴)∗𝑏𝐼 ⊗ 𝑖𝑑𝐴∗) = (𝜋 𝑗𝐴)∗(𝜋𝑖𝐴)∗,

(𝑑𝐼 (𝑏𝑖𝐴)∗𝜆 ⊗ 𝑖𝑑 (𝐴∗ )∗) (𝑖𝑑 (𝐴∗ )∗ ⊗ 𝜆−1(𝑑 𝑗𝐴)∗𝑏𝐼 ) = ((𝜋 𝑗𝐴)∗)∗((𝜋𝑖𝐴)∗)∗

𝑎𝑛𝑑
𝑖=𝑛∑︁
𝑖=1

(𝜋𝑖𝐴)∗ = 1𝐴∗ 𝑚𝑜𝑑 (R𝐴∗,𝐴∗).

The first equality is justified by the following commutative diagram:

𝐴∗ = 𝐼 ⊗ 𝐴∗

𝑖𝑑𝐴∗ &&

𝑏𝐼⊗𝑖𝑑𝐴∗ // 𝐼∗ ⊗ 𝐴∗
(𝑑 𝑗

𝐴
)∗⊗(𝑖𝑑𝐴)∗
//

𝑑𝐼⊗𝑖𝑑𝐴∗=𝜆
��

(𝐴∗ ⊗ 𝐴)∗ ⊗ 𝐴∗
𝜆−1⊗𝑖𝑑𝐴∗//

𝜆

��

𝐴∗ ⊗ 𝐴∗∗ ⊗ 𝐴∗

𝑖𝑑𝐴∗⊗𝜆
��

(𝐴 ⊗ 𝐼)∗
(𝑖𝑑𝐴⊗𝑑 𝑗

𝐴
)∗
//

(𝜋 𝑗
𝐴
𝜋𝑖𝐴)∗ ''

(𝐴 ⊗ 𝐴∗ ⊗ 𝐴) 𝜆−1
//

(𝑏𝑖𝐴⊗𝑖𝑑𝐴)∗
��

𝐴∗ ⊗ (𝐴 ⊗ 𝐴∗)∗

𝑖𝑑∗
𝐴∗⊗(𝑏𝑖𝐴)∗

��

(𝐼 ⊗ 𝐴)∗ 𝜆−1=𝑖𝑑𝐴∗⊗𝑏𝐼 //

𝑖𝑑𝐴∗ ((

𝐴∗ ⊗ 𝐼∗

𝑖𝑑𝐴∗⊗𝑑𝐼
��

𝐴∗ = 𝐴∗ ⊗ 𝐼

The two middle squares are commutative by the naturality of
𝜆 (where, 𝜆𝐴;𝐼 = (𝑑𝐼 ⊗ 𝑖𝑑𝐴∗) (𝑖𝑑𝐼∗ ⊗ 𝑑𝐴 ⊗ 𝑖𝑑𝐴∗) (𝑖𝑑𝐴∗ ⊗ 𝑏𝐴) =
(𝑑𝐼 ⊗ 𝑖𝑑𝐴∗) (𝑑𝐴 ⊗ 𝑖𝑑𝐴∗) (𝑖𝑑𝐴∗ ⊗ 𝑏𝐴) = 𝑑𝐼 ⊗ 𝑖𝑑𝐴∗ and the same thing for
𝜆−1
𝐴;𝐼 ).
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With similar arguments one can prove the second identity which is justified by the
following commutative diagram:

𝐴∗∗ = 𝐴∗∗ ⊗ 𝐼 1⊗𝑏𝐼 //

1
&&

𝐴∗∗ ⊗ 𝐼∗
1⊗(𝑑 𝑗

𝐴
)∗
//

1⊗𝑑𝐼=𝜆

��

𝐴∗∗ ⊗ (𝐴∗ ⊗ 𝐴)∗ 1⊗𝜆−1
//

𝜆

��

𝐴∗∗ ⊗ 𝐴∗ ⊗ 𝐴∗∗

𝜆⊗1
��

(𝐼 ⊗ 𝐴∗ )∗
(𝑑 𝑗

𝐴
⊗1)∗
//

(𝜋 𝑗
𝐴
𝜋𝑖
𝐴
)∗∗ ''

(𝐴∗ ⊗ 𝐴 ⊗ 𝐴∗ )∗ 𝜆−1
//

(1⊗𝑏𝑖
𝐴
)∗

��

(𝐴 ⊗ 𝐴∗ )∗ ⊗ 𝐴∗∗

(𝑏𝑖
𝐴
)∗⊗1

��

(𝐴∗ ⊗ 𝐼 )∗ 𝑏𝐼⊗1
//

1
((

𝐼∗ ⊗ 𝐴∗∗

𝑑𝐼⊗1
��

𝐼 ⊗ 𝐴∗∗ = 𝐴∗∗
The third is obvious.

Inversely, an R−basis on 𝐴∗ gives similarly an R−basis on 𝐴∗∗(≃ 𝐴).
Proposition 3.12. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and 𝐴 and 𝐵 be
isomorphic objects in 𝐶. Assume that 𝐴 (or 𝐵) is dominated by a finite set of
simple objects. Then 𝐴, 𝐴∗, 𝐵 and 𝐵∗ admit R−bases on them and we have

(a) 𝑟𝐵 = 𝑟𝐴;
(b) 𝑟𝐴∗ = 𝑟𝐴.

Proof. 𝐴 (resp. 𝐵) being dominated by simple objects ensures by using Lemma
3.10, the existence of R−bases on 𝐴, 𝐴∗, 𝐵 and 𝐵∗.

(a) Using Lemma 3.10, (𝑖𝑖), we obtain an 𝑟𝐴−R−basis on 𝐵 which is minimal
(among the cardinals of the other R−bases on 𝐵) and vice versa. Hence, 𝑟𝐵 = 𝑟𝐴.

(b) Identically to the above, using this time Lemma 3.11, (ii).

Definition 3.13. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and𝑉 an object of 𝐶.
We call quantum rank of 𝑉 denoted by 𝑟𝑎𝑛𝑞 (𝑉), the nonnegative integer defined
as

𝑟𝑎𝑛𝑞 (𝑉) = 𝑚𝑖𝑛(𝑛)
where 𝑛 runs over all finite cardinals of dominating families (𝑉𝑖; 𝜀𝑖𝑉 ; 𝜇𝑖𝑉 )𝑖=𝑛𝑖=1 of

simple objects of 𝑉 .

Proposition 3.14. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and 𝐴 and 𝐵 be
isomorphic objects in 𝐶. Then
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(a) 𝑟𝑎𝑛𝑞 (𝑉) = 1 for every simple object 𝑉 of 𝐶;
(b) 𝑟𝑎𝑛𝑞 (𝐵) = 𝑟𝑎𝑛𝑞 (𝐴);
(c) 𝑟𝑎𝑛𝑞 (𝐴∗) = 𝑟𝑎𝑛𝑞 (𝐴).

Proof. Straightforward from Lemma 3.10 (i) and Lemma 3.11 (i).

4 Categorification of bilinear forms

Definition 4.1. Let 𝐶 be a monoidal 𝐴𝑏−category equipped with a compatibility
relation R and 𝑉 a dualizable object of 𝐶. An R−solution on 𝑉 , is a quadruple
(𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 𝜋𝑉 ), such that:

(1𝑉 ⊗ 𝑑𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ) = 𝜋2
𝑉 ;

(𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ) = (𝜋2
𝑉 )∗;

𝑑𝑉 (1𝑉∗ ⊗ 𝜋𝑉 ) = 𝑑𝑉 (𝜋∗𝑉 ⊗ 1𝑉 );
(𝜋𝑉 ⊗ 1𝑉∗)𝑏𝑉 = (1𝑉 ⊗ 𝜋∗𝑉 )𝑏𝑉 ;

𝜋𝑉 = 1𝑉 𝑚𝑜𝑑 (R𝑉,𝑉 ).
Example 4.2. Let𝑉 be an object of the category (𝑣𝑒𝑐𝑡K, ⊗K, K) of finite dimensional
vector spaces over a field K and R any compatibility relation. Then, 𝑉 admits an
R−solution on it.

Proof. (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) is an R−solution on 𝑉 , where:

𝑑𝑉 : 𝑉∗ ⊗ 𝑉 −→ K

𝑒 𝑗 ⊗ 𝑒𝑖 ↦−→ 𝛿𝑖 𝑗
𝑎𝑛𝑑

𝑏𝑉 : K −→ 𝑉 ⊗ 𝑉∗

1 ↦−→ ∑
𝑖 𝑒𝑖 ⊗ 𝑒𝑖

such that {𝑒𝑖}𝑖 and {𝑒𝑖}𝑖 are respectively a basis and its dual basis of𝑉 and its dual
𝑉∗.

Example 4.3. The 1 − R−basis in Example 3.7 of the previous section 3, is an
R−solution on 𝑉 .

Proposition 4.4. Let 𝐶 be a monoidal 𝐴𝑏−category, R a compatibility relation on
C and V a dualizable object of C. Then, for every morphism 𝜋𝑉 : 𝑉 −→ 𝑉 , such
that 𝜋2

𝑉 = 𝜋𝑉 and 𝜋𝑉 = 1𝑉 𝑚𝑜𝑑 (R𝑉,𝑉 ), the quadruple

(𝑉 ; 𝑑𝑉 (𝜋∗𝑉 ⊗ 𝜋𝑉 ); (𝜋𝑉 ⊗ 𝜋∗𝑉 )𝑏𝑉 ; 𝜋𝑉 )
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is an R−solution on 𝑉 , where 𝑑𝑉 and 𝑏𝑉 are duality structures on V.

Proof. Straightforward.

Example 4.5. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and V an object of C
dominated by (𝑉𝑖; 𝜀𝑖; 𝜇𝑖)𝑖=𝑛𝑖=1 . Assume that 𝜀𝑖𝜇 𝑗 = 𝛿𝑖, 𝑗 , for all 𝑖, 𝑗 ; 1 ≤ 𝑖, 𝑗 ≤ 𝑛.
Then

(𝑉 ; 𝑑𝑉 (𝑇∗
𝑉 ⊗ 𝑇𝑉 ); (𝑇𝑉 ⊗ 𝑇∗

𝑉 )𝑏𝑉 ;𝑇𝑉 )
is an R−solution on 𝑉 , where 𝑇𝑉 =

∑
𝑖
𝜇𝑖𝜀𝑖 and 𝑑𝑉 and 𝑏𝑉 are duality structures

on V.

Proof. In fact, 𝜀𝑖𝜇 𝑗 = 𝛿𝑖, 𝑗 , 1 ≤ ∀𝑖, 𝑗 ≤ 𝑛 ⇒ 𝑇2
𝑉 =

∑
𝑖

∑
𝑗
𝜇𝑖𝜀𝑖𝜇 𝑗𝜀 𝑗 = 𝑇𝑉 . Hence,

applying Proposition 4.4, the result holds.

Proposition 4.6. Let𝐶 be a monoidal 𝐴𝑏−category equipped with a compatibility
relation R and 𝑓 : 𝐴 −→ 𝐵 be an isomorphism between dualizable objects in 𝐶.
Then, the following are equivalent

(a) (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) is an R−solution on 𝐴;

(b) (𝐵; 𝑑𝐴( 𝑓 ∗ ⊗ 𝑓 −1); ( 𝑓 ⊗ ( 𝑓 −1)∗)𝑏𝐴; 𝑓 𝜋𝐴 𝑓 −1) is an R−solution on 𝐵.

Proof. (a)⇒(b): Let (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) be an R−solution on 𝐴. We have to prove

(1𝐵 ⊗ 𝑑𝐴( 𝑓 ∗ ⊗ 𝑓 −1)) (( 𝑓 ⊗ ( 𝑓 −1)∗)𝑏𝐴 ⊗ 1𝐵) = 𝑓 𝜋2
𝐴 𝑓

−1 ;

(𝑑𝐴( 𝑓 ∗ ⊗ 𝑓 −1) ⊗ 1𝐵∗) (1𝐵∗ ⊗ ( 𝑓 ⊗ ( 𝑓 −1)∗)𝑏𝐴) = ( 𝑓 𝜋2
𝐴 𝑓

−1)∗ ;

𝑑𝐵 ( 𝑓 ∗ ⊗ 𝜋𝐴 𝑓 −1) = 𝑑𝐵 (( 𝑓 𝜋𝐴)∗ ⊗ 𝑓 −1) ;

(𝜋𝐴 𝑓 −1 ⊗ 𝑓 ∗)𝑏𝐵 = ( 𝑓 −1 ⊗ ( 𝑓 𝜋𝐴)∗)𝑏𝐵

𝑎𝑛𝑑 𝜋𝐵 = 1𝐵 𝑚𝑜𝑑 (R𝐵,𝐵).
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The proof of the first and second identities is similar to the one of Lemma 3.10
(ii).
For the third one, we have

𝑑𝐵 ( 𝑓 ∗ ⊗ 𝜋𝐴 𝑓 −1) = 𝑑𝐵 (1𝐴∗ ⊗ 𝜋𝐴) ( 𝑓 ∗ ⊗ 𝑓 −1)
= 𝑑𝐵 (𝜋∗𝐴 ⊗ 1𝐴) ( 𝑓 ∗ ⊗ 𝑓 −1)
= 𝑑𝐵 (( 𝑓 𝜋𝐴)∗ ⊗ 𝑓 −1)

and similarely for the fourth one.
For the fifth, we have:

𝜋𝐴 = 1𝐴 𝑚𝑜𝑑 (R𝐴,𝐴) ⇒ 𝜋𝐵 := 𝑓 𝜋𝐴 𝑓
−1 = 1𝐵 𝑚𝑜𝑑 (R𝐵,𝐵).

(b)⇒(a): Let 𝑑𝐴 : 𝐴∗ ⊗ 𝐴 −→ 𝐼, 𝑏𝐴 : 𝐼 −→ 𝐴 ⊗ 𝐴∗ and 𝜋𝐴 : 𝐴 −→ 𝐴 be
morphisms such that

(𝐵; 𝑑𝐴( 𝑓 ∗ ⊗ 𝑓 −1); ( 𝑓 ⊗ ( 𝑓 −1)∗)𝑏𝐴; 𝑓 𝜋𝐴 𝑓 −1)
is an R−solution on 𝐵. Then

(𝐴; 𝑑𝐴( 𝑓 ∗ ⊗ 𝑓 −1) (( 𝑓 −1)∗ ⊗ 𝑓 ); ( 𝑓 −1 ⊗ 𝑓 ∗) ( 𝑓 ⊗ ( 𝑓 −1)∗)𝑏𝐴; 𝑓 −1 𝑓 𝜋𝐴 𝑓
−1 𝑓 )

is an R−solution on 𝐴 (by the first sense), i.e: (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) is an R−solution
on 𝐴.

Proposition 4.7. Let 𝐶 be a ribbon 𝐴𝑏−category equipped with a compatibility
relation R and 𝐴 ∈ 𝑂𝑏(𝐶) endowed with an R−solution (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) on it.
Define the morphisms

(𝑑𝐴)∗ := 𝑑𝐼𝑏∗𝐴𝜆𝐴;𝐴∗ ; (𝑏𝐴)∗ := 𝜆−1
𝐴;𝐴∗𝑑

∗
𝐴𝑏𝐼 𝑎𝑛𝑑 (𝜋𝐴)∗ := 𝜋∗𝐴.

Then, (𝐴∗; (𝑑𝐴)∗; (𝑏𝐴)∗; (𝜋𝐴)∗) is an R−solution on 𝐴∗.

Proof. We have to prove the five identities

(1𝐴∗ ⊗ 𝑑𝐼𝑏∗𝐴𝜆) (𝜆−1𝑑∗𝐴𝑏𝐼 ⊗ 1𝐴∗) = (𝜋2
𝐴)∗

(𝑑𝐼𝑏∗𝐴𝜆 ⊗ 1𝑉∗) (1(𝐴∗ )∗ ⊗ 𝜆−1𝑑∗𝐴𝑏𝐼 ) = (𝜋2
𝐴)∗

𝑑𝐼𝑏
∗
𝐴𝜆(1(𝐴∗ )∗ ⊗ (𝜋𝐴)∗) = 𝑑𝐼𝑏∗𝐴𝜆(𝜋∗∗𝐴 ⊗ 1𝐴∗)

(𝜋𝐴∗ ⊗ 1(𝐴∗ )∗)𝜆−1𝑑∗𝐴𝑏𝐼 = (1𝐴∗ ⊗ 𝜋∗∗𝐴 )𝜆−1𝑑∗𝐴𝑏𝐼
𝜋∗𝐴 = 1𝐴∗ 𝑚𝑜𝑑 (R𝐴∗,𝐴∗).
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The proof of the first and second is exactly similar to the proof given in Lemma
3.12 (ii).
For the third one, we have

𝑑𝐼𝑏
∗
𝐴𝜆((𝜋𝐴∗)∗ ⊗ 1𝐴∗) = 𝑑𝐼𝑏∗𝐴𝜆𝜆−1(1𝐴 ⊗ 𝜋∗𝐴)∗𝜆

= 𝑑𝐼 [(1𝐴 ⊗ 𝜋∗𝐴)𝑏𝐴]∗𝜆
= 𝑑𝐼 [(𝜋𝐴 ⊗ 1𝐴∗)𝑏𝐴]∗𝜆
= 𝑑𝐼𝑏

∗
𝐴𝜆𝜆

−1(𝜋𝐴 ⊗ 1𝐴∗)∗𝜆
= 𝑑𝐼𝑏

∗
𝐴𝜆(1(𝐴∗ )∗ ⊗ 𝜋∗𝐴).

The fourth: similar to the third.
The fifth identity is straightforward.

In order to study the properties of R−solutions, we introduce the tensor product
of bilinear forms in 𝐶.

Proposition 4.8. Let 𝐶 be a monoidal 𝐴𝑏−category equipped with a compatibil-
ity relation R and let (𝐴; 𝑑𝐴; 𝑏𝐴;𝛼) and (𝐵; 𝑑𝐵; 𝑏𝐵; 𝛽) be R−solutions on two
dualizable objects 𝐴 and 𝐵 of C. Then,

(𝐴 ⊗ 𝐵; 𝑑𝐴 ⊗− 𝑑𝐵; 𝑏𝐴 ⊗+ 𝑏𝐵;𝛼 ⊗ 𝛽)

is an R−solution on 𝐴 ⊗ 𝐵; where the tensor products ⊗− of 𝑑𝐴, 𝑑𝐵 and ⊗+ of
𝑏𝐴, 𝑏𝐵; are defined as

𝑑𝐴 ⊗− 𝑑𝐵 := 𝑑𝐵 (1𝐵∗ ⊗ 𝑑𝐴 ⊗ 1𝐵) (𝜆−1
𝐴;𝐵 ⊗ 1𝐴 ⊗ 1𝐵);

𝑏𝐴 ⊗+ 𝑏𝐵 := (1𝐴 ⊗ 1𝐵 ⊗ 𝜆𝐴;𝐵) (1𝐴 ⊗ 𝑏𝐵 ⊗ 1𝐴∗)𝑏𝐴.
Proof. The domains and codomains of the defined tensor products are as follows:

𝑑𝐴 ⊗− 𝑑𝐵 : (𝐴 ⊗ 𝐵)∗ ⊗ 𝐴 ⊗ 𝐵 −→ 𝐵∗ ⊗ 𝐴∗ ⊗ 𝐴 ⊗ 𝐵 → 𝐵∗ ⊗ 𝐵 → 𝐼

and

𝑏𝐴 ⊗+ 𝑏𝐵 : 𝐼 −→ 𝐴 ⊗ 𝐴∗ −→ 𝐴 ⊗ 𝐵 ⊗ 𝐵∗ ⊗ 𝐴∗ −→ 𝐴 ⊗ 𝐵 ⊗ (𝐴 ⊗ 𝐵)∗.

Let’s prove the first identity:
[1𝐴⊗𝐵 ⊗ 𝑑𝐵 (1𝐵∗ ⊗ 𝑑𝐴 ⊗ 1𝐵) (𝜆−1 ⊗ 1𝐴 ⊗ 1𝐵)] [(1𝐴 ⊗ 1𝐵 ⊗ 𝜆) (1𝐴 ⊗ 𝑏𝐵 ⊗ 1𝐴∗)𝑏𝐴 ⊗
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1𝐴⊗𝐵] = (𝛼 ⊗ 𝛽)2.
We have:
[1𝐴⊗1𝐵 ⊗ 𝑑𝐵 (1𝐵∗ ⊗ 𝑑𝐴⊗1𝐵) (𝜆−1 ⊗1𝐴⊗1𝐵)] [(1𝐴⊗1𝐵 ⊗𝜆) (1𝐴⊗ 𝑏𝐵 ⊗1𝐴∗)𝑏𝐴⊗
1𝐴 ⊗ 1𝐵]
= [1𝐴 ⊗ 1𝐵 ⊗ 𝑑𝐵 (1𝐵∗ ⊗ 𝑑𝐴 ⊗ 1𝐵)] [1𝐴 ⊗ 1𝐵 ⊗ (𝜆−1 ⊗ 1𝐴 ⊗ 1𝐵)] [(1𝐴 ⊗ 1𝐵 ⊗ 𝜆) ⊗
1𝐴 ⊗ 1𝐵] [(1𝐴 ⊗ 𝑏𝐵 ⊗ 1𝐴∗)𝑏𝐴 ⊗ 1𝐴 ⊗ 1𝐵]
= [1𝐴 ⊗ 1𝐵 ⊗ 𝑑𝐵 (1𝐵∗ ⊗ 𝑑𝐴 ⊗ 1𝐵)] [(1𝐴 ⊗ 𝑏𝐵 ⊗ 1𝐴∗)𝑏𝐴 ⊗ 1𝐴 ⊗ 1𝐵]
= [1𝐴 ⊗ 1𝐵 ⊗ 𝑑𝐵] [1𝐴 ⊗ 𝑏𝐵 ⊗ 1𝐵] [1𝐴 ⊗ 𝑑𝐴 ⊗ 1𝐵] [𝑏𝐴 ⊗ 1𝐴 ⊗ 1𝐵]
= [1𝐴 ⊗ 𝛽2] [1𝐴 ⊗ 𝑑𝐴 ⊗ 1𝐵] [𝑏𝐴 ⊗ 1𝐴 ⊗ 1𝐵]
= 𝛼2 ⊗ 𝛽2

= (𝛼 ⊗ 𝛽)2.
The proof of the other identities is done similarly.

Corollary 4.9. Let 𝐶 be a monoidal 𝐴𝑏−category equipped with a compatibility
relation R and let (𝑉𝑖; 𝑑𝑖𝑉 ; 𝑏𝑖𝑉 ; 𝜋𝑖𝑉 ) be 1 − R−bases on dualizable objects 𝑉𝑖 of 𝐶,
for any 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 2. Then

(𝑉1 ⊗ ... ⊗ 𝑉𝑛; 𝑑1
𝑉 ⊗− (𝑑1

𝑉 ⊗− (... ⊗− 𝑑𝑛𝑉 )...); 𝑏1
𝑉 ⊗+ (𝑏1

𝑉 ⊗+ (... ⊗+ 𝑏𝑛𝑉 )...); 𝜋1
𝑉 ⊗ ... ⊗ 𝜋𝑛𝑉 )

is a 1 − R−basis on 𝑉1 ⊗ ... ⊗ 𝑉𝑛.

Proof. By induction on 𝑛, using Proposition 4.8 and remarking that in fact, an
R−solution on an object is in particular a 1 − R−basis on it.

The following definition serves to establish a forthcoming result.

Definition 4.10. Let C be a monoidal 𝐴𝑏−category; V an object of C and
(𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) a particular solution of the triangular system

(1𝑉 ⊗ 𝑑𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ) = 1𝑉 ;

(𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ) = 1𝑉∗ .

Let (𝑉 ;𝐷𝑉 ; 𝐵𝑉 ; 1𝑉 ) be another solution of the same system. Then, for any
automorphism 𝑓 : 𝑉 −→ 𝑉 . Define the morphisms

𝑓 ∗
1
= (𝐷𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 );

𝑓 ∗
2
= (𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝐵𝑉 );
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and
𝑓 −1.𝑏𝑉 := ( 𝑓 ⊗ ( 𝑓 −1)∗2)𝑏𝑉 : 𝐼 −→ 𝑉 ⊗ 𝑉∗;

𝑑𝑉 . 𝑓 := 𝑑𝑉 ( 𝑓 ∗1 ⊗ 𝑓 −1) : 𝑉∗ ⊗ 𝑉 −→ 𝐼 .

Proposition 4.11. Let (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) be a particular solution of the triangular
system

(1𝑉 ⊗ 𝑑𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ) = 1𝑉 ;

(𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ) = 1𝑉∗ .

Then, all solutions are given by

(𝑉 ; 𝑑𝑉 . 𝑓 ; 𝑓 −1.𝑏𝑉 ; 1𝑉 ), 𝑓 ∈ 𝐴𝑢𝑡𝐶 (𝑉).

Proof. Let (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) be a particular solution and 𝑓 ∈ 𝐴𝑢𝑡𝐶 (𝑉). Then we
get (𝑉 ; 𝑑𝑉 . 𝑓 ; 𝑓 −1.𝑏𝑉 ; 1𝑉 ) is a solution of the above system for any other solution
(𝑉 ;𝐷𝑉 ; 𝐵𝑉 ; 1𝑉 ) (including the fixed particular one). In fact, we have
(1𝑉 ⊗ 𝑑𝑉 ( 𝑓 ∗1 ⊗ 𝑓 −1)) (( 𝑓 ⊗ ( 𝑓 −1)∗2)𝑏𝑉 ⊗ 1𝑉 )
= (1𝑉 ⊗ 𝑑𝑉 ) (1 ⊗ 𝐷𝑉 ⊗ 1𝑉∗ ⊗ 1𝑉 ) (1𝑉 ⊗ 1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗ ⊗ 𝑓 −1) (1𝑉 ⊗ 1𝑉∗ ⊗ 𝑏𝑉 ⊗
1𝑉 ) (1𝑉 ⊗𝑑𝑉 ⊗1𝑉∗ ⊗1𝑉 ) ( 𝑓 ⊗1𝑉∗ ⊗ 𝑓 −1⊗1𝑉∗ ⊗1𝑉 ) (1𝑉 ⊗1𝑉∗ ⊗𝐵𝑉 ⊗1𝑉 ) (𝑏𝑉 ⊗1𝑉 )
= (1𝑉 ⊗ 𝐷𝑉 ) (1𝑉 ⊗ 1𝑉∗ ⊗ 𝑓 ) (1𝑉 ⊗ 1𝑉∗ ⊗ 1𝑉 ⊗ 𝑑𝑉 ) (1𝑉 ⊗ 1𝑉∗ ⊗ 𝑏𝑉 ⊗ 1𝑉 ) (1𝑉 ⊗
1𝑉∗ ⊗ 𝑓 −1) ( 𝑓 ⊗ 1𝑉∗ ⊗ 1𝑉 ) (1𝑉 ⊗ 𝑑𝑉 ⊗ 1𝑉∗ ⊗ 1𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ⊗ 1𝑉∗ ⊗ 1𝑉 ) ( 𝑓 −1 ⊗
1𝑉∗ ⊗ 1𝑉 ) (𝐵𝑉 ⊗ 1𝑉 )
= (1𝑉 ⊗ 𝐷𝑉 ) (1𝑉 ⊗ 1𝑉∗ ⊗ 𝑓 ) ( 𝑓 −1 ⊗ 1𝑉∗ ⊗ 1𝑉 ) (𝐵𝑉 ⊗ 1𝑉 )
= 1𝑉 .

And

(𝑑𝑉 ( 𝑓 ∗1 ⊗ 𝑓 −1) ⊗ 1𝑉∗) (1𝑉∗ ⊗ ( 𝑓 ⊗ ( 𝑓 −1)∗2)𝑏𝑉 )
= (𝑑𝑉 ⊗ 1𝑉∗) (𝐷𝑉 ⊗ 1𝑉∗ ⊗ 1𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗ ⊗ 𝑓 −1 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ⊗ 1𝑉 ⊗
1𝑉∗) (1𝑉∗⊗1𝑉⊗𝑑𝑉⊗1𝑉∗) (1𝑉∗⊗ 𝑓 ⊗1𝑉∗⊗ 𝑓 −1⊗1𝑉∗) (1𝑉∗⊗1𝑉⊗1𝑉∗⊗𝐵𝑉 ) (1𝑉∗⊗𝑏𝑉 )
= (𝐷𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 1𝑉 ⊗ 𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ⊗ 1𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗
𝑓 −1 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 1𝑉 ⊗ 𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ⊗ 1𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗
𝑓 −1 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝐵𝑉 )
= (𝐷𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 −1 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝐵𝑉 )
= 1𝑉∗ .
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Now let (𝑉 ;𝐷𝑉 ; 𝐵𝑉 ; 1𝑉 ) be a solution of the triangular system and let

𝑓 = (1𝑉 ⊗ 𝑑𝑉 ) (𝐵𝑉 ⊗ 1𝑉 ) (𝑟𝑒𝑠𝑝. 𝑓 = (1𝑉 ⊗ 𝐷𝑉 ) (𝑏𝑉 ⊗ 1𝑉 )).

Then, 𝑓 is invertible and its inverse is

𝑓 −1 = (1𝑉 ⊗ 𝐷𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ) (𝑟𝑒𝑠𝑝. 𝑓 −1 = (1𝑉 ⊗ 𝑑𝑉 ) (𝐵𝑉 ⊗ 1𝑉 ))

and we have

𝑑𝑉 . 𝑓 = 𝑑𝑉 ( 𝑓 ∗1 ⊗ 𝑓 −1)
= 𝑑𝑉 ((𝐷𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ) ⊗ 𝑓 −1)
= 𝐷𝑉 (1𝑉∗ ⊗ 𝑓 ) (1𝑉∗ ⊗ 1𝑉 ⊗ 𝑑𝑉 ) (1𝑉∗ ⊗ 𝑏𝑉 ⊗ 1𝑉 ) (1𝑉∗ ⊗ 𝑓 −1)
= 𝐷𝑉

and

𝑓 −1.𝑏𝑉 = ( 𝑓 ⊗ ( 𝑓 −1)∗2)𝑏𝑉
= ( 𝑓 ⊗ (𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑓 −1 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝐵𝑉 ))𝑏𝑉
= ( 𝑓 ⊗ 1𝑉∗) (1𝑉 ⊗ 𝑑𝑉 ⊗ 1𝑉∗) (𝑏𝑉 ⊗ 1𝑉 ⊗ 1𝑉∗) ( 𝑓 −1 ⊗ 1𝑉∗)𝐵𝑉
= 𝐵𝑉 .

In general, we have the following.

Proposition 4.12. Let (𝑉 ; 𝑑𝑉 ; 𝑏𝑉 ; 1𝑉 ) be a particular solution of the triangular
system

(1𝑉 ⊗ 𝑑𝑉 ) (𝑏𝑉 ⊗ 1𝑉 ) = 1𝑉 ;

(𝑑𝑉 ⊗ 1𝑉∗) (1𝑉∗ ⊗ 𝑏𝑉 ) = 1𝑉∗ .

Denote by 𝑆𝑜𝑙𝐶 (𝑉) the set of all solutions of the above system on 𝑉 and consider
the map 𝜑 : 𝐴𝑢𝑡𝐶 (𝑉) −→ 𝑆𝑜𝑙𝐶 (𝑉), 𝑓 ↦−→ (𝑉 ; 𝑑𝑉 . 𝑓 ; 𝑓 −1.𝑏𝑉 ; 1𝑉 ). Then, 𝜑 is
surjective but not injective.

Proof. Immediate from Proposition 4.11.
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Definition 4.13. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category.
R−solutions over objects of 𝐶 form a category which is denoted by 𝐹𝑖𝑛(𝐶); the
unit object is given by 𝐼 = (𝐼; 𝑑𝐼 ; 𝑏𝐼 ; 1𝐼 ), where 𝑑𝐼 and 𝑏𝐼 are duality structures on
𝐼.
A morphism

𝑓 : (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) −→ (𝐵; 𝑑𝐵; 𝑏𝐵; 𝜋𝐵)
of 𝐹𝑖𝑛(𝐶), where 𝐴 and 𝐵 are two objects of𝐶; consists of a morphism 𝑓 : 𝐴 −→ 𝐵
in C, such that

𝑓 .𝑑𝐴 = 𝑑𝐵. 𝑓 𝑎𝑛𝑑 𝑓 .𝑏𝐴 = 𝑏𝐵. 𝑓

where, 𝑓 .𝑑𝐴 := 𝑑𝐴( 𝑓 ∗ ⊗ 1𝐴), 𝑑𝐵. 𝑓 := 𝑑𝐵 (1𝐵∗ ⊗ 𝑓 ), 𝑓 .𝑏𝐴 := ( 𝑓 ⊗ 1𝐴∗)𝑏𝐴 and
𝑏𝐵. 𝑓 := (1𝐵 ⊗ 𝑓 ∗)𝑏𝐵 (notations here are independent from those of Definition
4.10).
Lemma 4.14. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and

𝑓 : (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) −→ (𝐵; 𝑑𝐵; 𝑏𝐵; 𝜋𝐵)

a morphism in 𝐹𝑖𝑛(𝐶). Then, the dual morphism 𝑓 ∗ of 𝑓 defined a morphism

𝑓 ∗ : (𝐴∗; (𝑑𝐴)∗; (𝑏𝐴)∗; (𝜋𝐴)∗) −→ (𝐵∗; (𝑑𝐵)∗; (𝑏𝐵)∗; (𝜋𝐵)∗)

in 𝐹𝑖𝑛(𝐶).
Proof. We have to prove the following

(𝑑𝐵)∗( 𝑓 ∗∗ ⊗ 1𝐵∗) = (𝑑𝐴)∗(1𝐴∗∗ ⊗ 𝑓 ∗);

(1𝐴∗ ⊗ 𝑓 ∗∗) (𝑏𝐴)∗ = ( 𝑓 ∗ ⊗ 1𝐵∗∗) (𝑏𝐵)∗.
For the first identity, we have

(𝑑𝐵)∗( 𝑓 ∗∗ ⊗ 1𝐵∗) = 𝑑𝐼𝑏∗𝐵𝜆𝜆−1(1𝐵 ⊗ 𝑓 ∗)∗𝜆
= 𝑑𝐼 [(1𝐵 ⊗ 𝑓 ∗)𝑏𝐵]∗𝜆
= 𝑑𝐼 [( 𝑓 ⊗ 1𝐴∗)𝑏𝐴]∗
= 𝑑𝐼𝑏

∗
𝐴( 𝑓 ⊗ 1𝐴∗)∗𝜆

= 𝑑𝐼𝑏
∗
𝐴𝜆𝜆

−1( 𝑓 ⊗ 1𝐴∗)∗𝜆
= (𝑑𝐴)∗(1𝐴∗∗ ⊗ 𝑓 ∗).
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The third passage is due to the axioms of 𝑓 being a morphism in 𝐹𝑖𝑛(𝐶).
Similarly for the second identity using the other axioms of 𝑓 as a morphism in
𝐹𝑖𝑛(𝐶).
Proposition 4.15. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category. Then, 𝐹𝑖𝑛(𝐶) is
also a semisimple ribbon 𝐴𝑏−category.

Proof. The category 𝐹𝑖𝑛(𝐶) may be provided with canonical tensor product, du-
ality and braiding (inherited from those of 𝐶), which makes it a braided monoidal
category with duality.
The tensor product of a couple of R−solutions (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) and (𝐵; 𝑑𝐵; 𝑏𝐵; 𝜋𝐵)
is given by

(𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) ⊗ (𝐵; 𝑑𝐵; 𝑏𝐵; 𝜋𝐵) = (𝐴 ⊗ 𝐵; 𝑑𝐴 ⊗− 𝑑𝐵; 𝑏𝐴 ⊗+ 𝑏𝐵; 𝜋𝐴 ⊗ 𝜋𝐵).

The category 𝐹𝑖𝑛(𝐶) is provided with canonical duality as follows: to each object
(𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴), there are associated an object

(𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴)∗ := (𝐴∗; (𝑑𝐴)∗; (𝑏𝐴)∗; (𝜋𝐴)∗)

and morphisms

𝑏𝐴 := 𝑏 (𝐴;𝑑𝐴;𝑏𝐴;𝜋𝐴) : 𝐼 −→ (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) ⊗ (𝐴∗; (𝑑𝐴)∗; (𝑏𝐴)∗; (𝜋𝐴)∗)

and

𝑑𝐴 := 𝑑 (𝐴;𝑑𝐴;𝑏𝐴;𝜋𝐴) : (𝐴∗; (𝑑𝐴)∗; (𝑏𝐴)∗; (𝜋𝐴)∗) ⊗ (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) −→ 𝐼

given by 𝑏𝐴 and 𝑑𝐴 respectively, such that the identities hold

(1 ⊗ 𝑑𝐴) (𝑏𝐴 ⊗ 1) = 1

(𝑑𝐴 ⊗ 1) (1 ⊗ 𝑏𝐴) = 1

The dual 𝑓 ∗ of an arbitrary morphism

𝑓 : (𝐴; 𝑋𝐴;𝑌𝐴;𝛼) −→ (𝐵; 𝑍𝐵;𝑇𝐵; 𝛽)

is well defined by Lemma 4.14, and it is given by the formula

𝑓 ∗ = (𝑍𝐵 ⊗ 1𝐴∗) (1𝐵∗ ⊗ 𝑓 ⊗ 1𝐴∗) (1𝐵∗ ⊗ 𝑌𝐴).
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It is easy to deduce that for any objects (𝐴; 𝑋𝐴;𝑌𝐴;𝛼) and (𝐵; 𝑍𝐵;𝑇𝐵; 𝛽) of
𝐹𝑖𝑛(𝐶), there is a natural family of isomorphisms between

(𝐵; 𝑍𝐵;𝑇𝐵; 𝛽)∗ ⊗ (𝐴; 𝑋𝐴;𝑌𝐴;𝛼)∗

and
((𝐴; 𝑋𝐴;𝑌𝐴;𝛼) ⊗ (𝐵; 𝑍𝐵;𝑇𝐵; 𝛽))∗

defined as

(𝛼 ⊗ 𝛽)∗ (𝑍𝐵 ⊗ 1(𝐴⊗𝐵)∗ ) (1𝐵∗ ⊗ 𝑋𝐴 ⊗ 1𝐵 ⊗ 1(𝐴⊗𝐵)∗ ) (1𝐵∗ ⊗ 1𝐴∗ ⊗ 𝑌𝐴 ⊗+ 𝑇𝐵) (𝛽∗ ⊗ 𝛼∗).

We provide 𝐹𝑖𝑛(𝐶) with the braiding induced from 𝐶.
𝐹𝑖𝑛(𝐶) is twisted as follows: the twist 𝜃 (𝐴;𝑑𝐴;𝑏𝐴;𝜋𝐴) on an object
(𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴), consists of the twist 𝜃𝐴. In fact, 𝜃𝐴.𝑑𝐴 = 𝑑𝐴.𝜃𝐴 and 𝜃𝐴.𝑏𝐴 =
𝑏𝐴.𝜃𝐴 by the naturality of 𝜃.
Consequently, (∗; 𝑏𝐴; 𝑑𝐴) is a compatible duality in 𝐹𝑖𝑛(𝐶). Hence, the later is a
ribbon category.
For semisimplicity, it is easy to verify that every object (𝐴; 𝑑𝐴; 𝑏𝐴; 𝜋𝐴) of
𝐹𝑖𝑛(𝐶) is dominated by {(𝑉𝑖; 𝑑𝑉𝑖 ; 𝑏𝑉𝑖 ; 1𝑉𝑖 ); 𝜀𝑖; 𝜇𝑖}𝑖=𝑛𝑖=1 , where 𝐴 is dominated by
(𝑉𝑖; 𝜀𝑖; 𝜇𝑖)𝑖=𝑛𝑖=1 .

5 The concept of a determinant

In all the sequel, we write 𝑇𝑟 ( 𝑓 ) instead of 𝑇𝑟𝑞 ( 𝑓 ) to reduce indices as well as
for dimension and we identify 𝑉𝑛 with 𝑉⊗𝑛 and 𝑓 ⊗

𝑛 with 𝑓 𝑛, for all 𝑉 ∈ 𝑂𝑏(𝐶);
𝑓 ∈ 𝐸𝑛𝑑𝐶 (𝑉).

Let 𝐶 be a semisimple ribbon 𝐴𝑏−category and 𝐴 an object of 𝐶 of rank
𝑛 dominated by simple objects (𝑉𝑖)1≤𝑖≤𝑛 with domination morphisms denoted
{𝜀𝑖 : 𝑉 −→ 𝑉𝑖 ; 𝜇𝑖 : 𝑉𝑖 −→ 𝑉}𝑖 . Let [1; 𝑛] ∩ N = 𝐼1 ∪ 𝐼2 ∪ ... ∪ 𝐼𝑚 be a partition
of [1; 𝑛] ∩ N into isomorphic classes. Denote 𝑐𝑎𝑟𝑑 (𝐼 𝑗) = 𝑛 𝑗 for all 1 ≤ 𝑗 ≤ 𝑚;
𝑊 𝑗 a representative of the isomorphic objects indixed by indices in 𝐼 𝑗 and 𝐶𝑤 𝑗 the
identity endomorphism of𝑊𝑛 𝑗

𝑗 .
We define the endomorphism Λ𝑛𝐴 of 𝐴𝑛 as:

Λ𝑛𝐴 =
∑︁
𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝐷1
𝜎 ⊗ ... ⊗

∑︁
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝐷𝑚𝜎
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where 𝐷 𝑗
𝜎 is the endomorphism of 𝐴𝑛 𝑗 defined by

𝐷
𝑗
𝜎 = 𝜇 𝑗1𝜀𝜎 ( 𝑗1 ) ⊗ .... ⊗ 𝜇 𝑗𝑛𝑗

𝜀𝜎 ( 𝑗𝑛𝑗 ) (5.1)

with 𝐼 𝑗 = [ 𝑗1, 𝑗𝑛 𝑗 ] ∩ N and 𝜎 a permutation of 𝔖𝑛 𝑗 .
If 𝑛 = 1, we consider Λ1

𝐴 = 𝑇𝑟 (𝑖𝑑𝐴)−1𝑖𝑑𝐴.

Proposition 5.1. Let (𝐴; 𝑋𝐴;𝑌𝐴; 1𝐴) be a particular solution on 𝐴 and 𝑓 ∈
𝐸𝑛𝑑𝐶 (𝐴). Then, the quantum determinant, 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ), of 𝑓 defined by

𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) = 𝑋⊗𝑛−
𝐴 ( 𝑓 𝑛∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗𝑌

⊗𝑛+
𝐴

is independent of the choice of the solution on 𝐴.

Proof. (𝐴; 𝑋𝐴;𝑌𝐴; 1𝐴) is a paricular solution of the triangular system as in Proposi-
tion 4.11. If (𝐴; 𝑋𝐴;𝑌 𝐴; 1𝐴) is another particular solution, then (𝐴𝑛; 𝑋⊗𝑛−

𝐴 ;𝑌⊗𝑛+
𝐴 ; 1)

and (𝐴𝑛; 𝑋⊗𝑛−
𝐴 ;𝑌⊗𝑛+

𝐴 ; 1) are solutions on 𝐴𝑛 by Proposition 4.8. Using now Propo-
sition 4.11, we obtain

𝑋
⊗𝑛−
𝐴 = 𝑋⊗𝑛−

𝐴 .ℎ := 𝑋⊗𝑛−
𝐴 (ℎ∗1 ⊗ ℎ−1) ; 𝑌

⊗𝑛+
𝐴 = 𝑌⊗𝑛+

𝐴 .ℎ−1 := (ℎ ⊗ (ℎ−1)∗2)𝑌⊗𝑛+
𝐴

where ℎ is the automorphism (1 ⊗ 𝑋⊗𝑛−
𝐴 ) (𝑌⊗𝑛+

𝐴 ⊗ 1) of 𝐴𝑛. Hence, we have

𝑋
⊗𝑛−
𝐴 ( 𝑓 𝑛∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗𝑌

⊗𝑛+
𝐴

= 𝑋⊗𝑛−
𝐴 (ℎ∗ ⊗ ℎ−1) ( 𝑓 𝑛∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (ℎ ⊗ (ℎ−1)∗)𝑌⊗𝑛+

𝐴

= 𝑋
⊗𝑛−
𝐴 (1 ⊗ ℎ) (1 ⊗ 1 ⊗ ℎ) (1 ⊗ 𝑌⊗𝑛+

𝐴 ⊗ 1) (1 ⊗ ℎ−1) (1 ⊗ 𝑓 𝑛Λ𝑛𝐴𝜃𝐴𝑛)
𝑐𝐴𝑛 , (𝐴𝑛 )∗ (ℎ ⊗ 1) (1 ⊗ 𝑋⊗𝑛−

𝐴 ⊗ 1) (𝑌⊗𝑛+
𝐴 ⊗ 1 ⊗ 1) (ℎ−1 ⊗ 1)𝑌⊗𝑛+

𝐴

= 𝑋
⊗𝑛−
𝐴 (1 ⊗ ℎ) (1 ⊗ ℎ−1) (1 ⊗ 𝑓 𝑛Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (ℎ ⊗ 1) (ℎ−1 ⊗ 1)𝑌⊗𝑛+

𝐴

= 𝑋⊗𝑛−
𝐴 ( 𝑓 𝑛∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗𝑌

⊗𝑛+
𝐴 .

Theorem 5.2. Let 𝐶 be a semisimple ribbon 𝐴𝑏−category, 𝐴 an object of 𝐶 of
rank 𝑛 dominated by a family (𝑉𝑖; 𝜀𝑖; 𝜇𝑖)1≤𝑖≤𝑛 of simple objects and 𝑓 ∈ 𝐸𝑛𝑑𝐶 (𝐴).
Then, the quantum determinant 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) of 𝑓 , verifies the following

(a) 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) ∈ K𝐶 ;
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(b) 𝑑𝑒𝑡𝐶1 (1𝑉 ) = 1𝐼 where 𝑉 is a simple object;
(c) Assume that 𝜀𝑖𝜇 𝑗 = 𝛿𝑖; 𝑗 for all 1 ≤ 𝑖; 𝑗 ≤ 𝑛. Then, 𝑑𝑒𝑡𝐶𝑛 (1𝐴) = 1𝐼 ;

(d) 𝑑𝑒𝑡𝐶𝑛 (𝑞 ⊗ 𝑓 ) = 𝑞𝑛𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) for all 𝑞 ∈ 𝑈 (K𝐶);
(𝑒) 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ∗) = 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ).

Proof. (a) By definition.
(b) Straightforward.
(c) 𝑑𝑒𝑡𝐶𝑛 (1𝐴)

= 𝑋⊗𝑛−
𝐴 (1(𝐴𝑛 )∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (𝑌

⊗𝑛+
𝐴 )

= 𝑇𝑟 (Λ𝑛𝐴)
= 𝑇𝑟 ( ∑

𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1
𝜎 )−1𝐷1

𝜎 ⊗ ... ⊗ ∑
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝐷𝑚𝜎)

= 𝜀(1𝔖𝑛1
)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 (𝐷1

1𝔖𝑛1
) ...𝜀(1𝔖𝑛𝑚

)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝑇𝑟 (𝐷𝑚1𝔖𝑛𝑚
)

+ ∑
𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 (𝐷1
𝜎) ...

∑
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝑇𝑟 (𝐷𝑚𝜎)
(where in the second term of the summand, at least one of 𝜎 ∈ 𝔖𝑛𝑖 is non identity
for some 1 ≤ 𝑖 ≤ 𝑚)
= 1𝐼 + 0
= 1𝐼 .

(d)

𝑑𝑒𝑡𝐶𝑛 (𝑞 ⊗ 𝑓 ) = 𝑋⊗𝑛−
𝐴 ((𝑞 ⊗ 𝑓 )𝑛∗ ⊗ Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (𝑌

⊗𝑛+
𝐴 )

= 𝑋⊗𝑛−
𝐴 (1(𝐴𝑛 )∗ ⊗ 𝑞𝑛 𝑓 𝑛Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (𝑌

⊗𝑛+
𝐴 )

= 𝑞𝑛𝑋⊗𝑛−
𝐴 (1(𝐴𝑛 )∗ ⊗ 𝑓 𝑛Λ𝑛𝐴𝜃𝐴𝑛)𝑐𝐴𝑛 , (𝐴𝑛 )∗ (𝑌

⊗𝑛+
𝐴 )

= 𝑞𝑛𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ).

(e) 𝑉∗ is dominated by (𝑉∗
𝑖 )1≤𝑖≤𝑛 with 𝜇𝑖 = 𝜀∗𝑖 and 𝜀𝑖 = 𝜇∗𝑖 . Then:

Λ𝑛𝐴∗ =
∑︁
𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝐷1
𝜎 ⊗ ... ⊗

∑︁
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝐷𝑚𝜎

where
𝐷
𝑗
𝜎 = 𝜇 𝑗1𝜀𝜎 ( 𝑗1 ) ⊗ .... ⊗ 𝜇 𝑗𝑛𝑗

𝜀𝜎 ( 𝑗𝑛𝑗 )

as in (5.1) and we have
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𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ∗)
= 𝑇𝑟 (( 𝑓 ∗)𝑛Λ𝑛𝐴∗)
= 𝑇𝑟 ( ∑

𝜎∈𝔖𝔫𝟞

𝜀(𝜎)𝑇𝑟 (𝐶𝑤∗
𝑛1 )−1( 𝑓 ∗)𝑛1𝐷1

𝜎 ⊗ ... ⊗ ∑
𝜎∈𝔖𝔫𝔪

𝜀(𝜎)𝑇𝑟 (𝐶𝑤∗
𝑛𝑚 )−1

( 𝑓 ∗)𝑛𝑚𝐷𝑚𝜎)
= 𝑇𝑟 ( ∑

𝜎∈𝔖𝔫𝟞

𝜀(𝜎)𝑇𝑟 ((𝐶𝑤𝑛1 )∗)−1( 𝑓 ∗)𝑛1 (𝜇11𝜀𝜎 (11 ) ⊗ ... ⊗ 𝜇1𝑛1
𝜀𝜎 (1𝑛1 ) ))

... 𝑇𝑟 ( ∑
𝜎∈𝔖𝔫𝔪

𝜀(𝜎)𝑇𝑟 ((𝐶𝑤𝑛𝑚 )∗)−1 ( 𝑓 ∗)𝑛𝑚 (𝜇𝑚1𝜀𝜎 (𝑚1 ) ⊗ ... ⊗ 𝜇𝑚𝑛𝑚
𝜀𝜎 (𝑚𝑛𝑚 ) ))

=
∑

𝜎∈𝔖𝔫𝟞

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 ( 𝑓 ∗𝜇11𝜀𝜎 (11 ) )...𝑇𝑟 ( 𝑓 ∗𝜇1𝑛1
𝜀𝜎 (1𝑛1 ) )

...
∑

𝜎∈𝔖𝔫𝔪

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝑇𝑟 ( 𝑓 ∗𝜇𝑚1𝜀𝜎 (𝑚1 ) )...𝑇𝑟 ( 𝑓 ∗𝜇𝑚𝑛𝑚
𝜀𝜎 (𝑚𝑛𝑚 ) )

=
∑

𝜎∈𝔖𝔫𝟞

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 ((𝜇𝜎 (11 )𝜀11 𝑓 )∗)...𝑇𝑟 ((𝜇𝜎 (1𝑛1 )𝜀1𝑛1
𝑓 )∗)

...
∑

𝜎∈𝔖𝔫𝔪

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝑇𝑟 ((𝜇𝜎 (𝑚1 )𝜀𝑚1 𝑓 )∗)...𝑇𝑟 ((𝜇𝜎 (𝑚𝑛𝑚 )𝜀𝑚𝑛𝑚
𝑓 )∗)

=
∑

𝜎∈𝔖𝔫𝟞

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 (𝜀11 𝑓 𝜇𝜎 (11 ) )...𝑇𝑟 (𝜀1𝑛1
𝑓 𝜇𝜎 (1𝑛1 ) )

...
∑

𝜎∈𝔖𝔫𝔪

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝑇𝑟 (𝜀𝑚1 𝑓 𝜇𝜎 (𝑚1 ) )...𝑇𝑟 (𝜀𝑚𝑛𝑚
𝑓 𝜇𝜎 (𝑚𝑛𝑚 ) )

= 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ).
Theorem 5.3. Let𝐶 be a semisimple ribbon 𝐴𝑏−category, 𝐴 an object of𝐶 of rank
n dominated by a family (𝑉𝑖; 𝜀𝑖; 𝜇𝑖)1≤𝑖≤𝑛 of simple objects and 𝑓 ∈ 𝐸𝑛𝑑𝐶/R (𝐴).
To 𝑓 , we associate the matrix 𝑀𝐶

𝑓 = (𝑎 𝑓𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛, where

𝑎
𝑓
𝑖, 𝑗 =

{
𝑇𝑟 (𝜀𝑖 𝑓 𝜇 𝑗)𝑑𝑖𝑚(𝑉𝑖)−1 𝑖 𝑓 𝑉𝑖 ≃ 𝑉 𝑗 ;
0 𝑒𝑙𝑠𝑒.

Then

(1) 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) = 𝑑𝑒𝑡 (𝑀𝐶
𝑓 );

(2) The map𝐸𝑛𝑑𝐶/R (𝐴) −→ K𝐶 , 𝑓 ↦→ 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) is muliplicative, i.e 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 𝑔) =
𝑑𝑒𝑡𝐶𝑛 ( 𝑓 )𝑑𝑒𝑡𝐶𝑛 (𝑔); ∀𝑔 ∈ 𝐸𝑛𝑑𝐶/R (𝐴);

(3) The map 𝜓 : 𝐸𝑛𝑑𝐶/R (𝐴) −→ 𝑀𝑛 (K𝐶), 𝑓 ↦−→ 𝑀𝐶
𝑓 is a monomorphism of

K𝐶−algebras;
(4) Assume that 𝑉𝑖 ≃ 𝑉 , for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑇𝑟 ( 𝑓 ) = 𝑑𝑖𝑚(𝑉)𝑇𝑟 (𝑀𝐶

𝑓 ).
Proof. (1) 𝑀𝐶

𝑓 is a block diagonal matrix: 𝑀𝐶
𝑓 = 𝑑𝑖𝑎𝑔(𝑀1, ..., 𝑀𝑚) where 𝑀 𝑗 =

(𝑇𝑟 (𝜀𝑙 𝑓 𝜇𝑘)𝑑𝑖𝑚(𝑉𝑙)−1) 𝑗1≤𝑙,𝑘≤ 𝑗𝑛𝑗
∀ 1 ≤ 𝑗 ≤ 𝑚. Then, we have
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𝑑𝑒𝑡 (𝑀𝐶
𝑓 ) = 𝑑𝑒𝑡 (𝑀1) ... 𝑑𝑒𝑡 (𝑀𝑚)

=
∑

𝜎∈𝔖𝑛1

𝜀(𝜎) (𝑑𝑖𝑚(𝑉1)−1)𝑛1𝑇𝑟 (𝜀11 𝑓 𝜇𝜎 (11 ) )...𝑇𝑟 (𝜀1𝑛1
𝑓 𝜇𝜎 (1𝑛1 ) )...∑

𝜎∈𝔖𝑛𝑚

𝜀(𝜎) (𝑑𝑖𝑚(𝑉𝑚)−1)𝑛𝑚𝑇𝑟 (𝜀𝑚1 𝑓 𝜇𝜎 (𝑚1 ) )...𝑇𝑟 (𝜀𝑚𝑛𝑚
𝑓 𝜇𝜎 (𝑚𝑛𝑚 ) )

=
∑

𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝑇𝑟 ( 𝑓 𝑛1𝐷1
𝜎)...

∑
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1

𝑇𝑟 ( 𝑓 𝑛𝑚𝐷𝑚𝜎)
= 𝑇𝑟 ( 𝑓 𝑛1 ( ∑

𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝐷1
𝜎) ... 𝑇𝑟 ( 𝑓 𝑛𝑚 (

∑
𝜎∈𝔖𝑛𝑚

𝜀(𝜎)

𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝐷𝑚𝜎))
= 𝑇𝑟 ( 𝑓 𝑛 ( ∑

𝜎∈𝔖𝑛1

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛1 )−1𝐷1
𝜎 ⊗ ... ⊗ ∑

𝜎∈𝔖𝑛𝑚

𝜀(𝜎)𝑇𝑟 (𝐶𝑤𝑛𝑚 )−1𝐷𝑚𝜎))

= 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ).
(2) We have

(𝑎 𝑓 𝑔𝑖, 𝑗 )𝑖, 𝑗 = (𝑇𝑟 (𝜀𝑖 𝑓 1𝐴𝑔 𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (𝑇𝑟 (𝜀𝑖 𝑓
𝑙=𝑛∑︁
𝑙=1

𝜇𝑙𝜀𝑙 𝑔 𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗 (𝑁𝑒𝑔𝑙 (𝐼, 𝐼) = {0})

= (
𝑙=𝑛∑︁
𝑙=1
𝑇𝑟 (𝜀𝑖 𝑓 𝜇𝑙 𝜀𝑙𝑔𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (
𝑙=𝑛∑︁
𝑙=1
𝑇𝑟 ( (𝑘𝑖,𝑙 ⊗ 1𝑉 ) 𝜀𝑙𝑔𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (
𝑙=𝑛∑︁
𝑙=1
𝑇𝑟 (𝑘𝑖,𝑙 ⊗ 𝜀𝑙𝑔𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (
𝑙=𝑛∑︁
𝑙=1
𝑇𝑟 (𝑘𝑖,𝑙)𝑇𝑟 (𝜀𝑙𝑔𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (
𝑙=𝑛∑︁
𝑙=1
𝑇𝑟 (𝑘𝑖,𝑙 ⊗ 1𝑉 )𝑑𝑖𝑚(𝑉)−1𝑇𝑟 (𝜀𝑙𝑔𝜇 𝑗)𝑑𝑖𝑚(𝑉)−1)𝑖, 𝑗

= (
𝑙=𝑛∑︁
𝑙=1

𝑎
𝑓
𝑖,𝑙𝑎

𝑔
𝑙, 𝑗)𝑖, 𝑗 .
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where 𝑘𝑖,𝑙 is unique in K𝐶 because 𝜀𝑖 𝑓 𝜇𝑙 is an endomorphism of a simple object
𝑉 . Then

𝑑𝑒𝑡𝐶𝑛 ( 𝑓 )𝑑𝑒𝑡𝐶𝑛 (𝑔) = 𝑑𝑒𝑡 (𝑀𝐶
𝑓 )𝑑𝑒𝑡 (𝑀𝐶

𝑔 ) = 𝑑𝑒𝑡 (𝑀𝐶
𝑓 𝑀

𝐶
𝑔 ) = 𝑑𝑒𝑡 (𝑀𝐶

𝑓 𝑔) = 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 𝑔).

(3)

(i) 𝜓 is a morphism of K𝐶−algebras. In fact, linearity is obtained by the fact that
for any objects𝑉 and𝑊 of 𝐶, the group 𝐻𝑜𝑚𝐶 (𝑉 ;𝑊) acquires the structure
of a K𝐶−module with bilinear composition of morphisms. Furthermore, we
have 𝜓( 𝑓 𝑔) = 𝜓( 𝑓 )𝜓(𝑔) by Theorem 5.3 (2).

(ii) Let 𝑓 ∈ 𝐸𝑛𝑑𝐶/R (𝐴) such that 𝜓( 𝑓 ) = 0. Then, 𝑇𝑟 (𝜀𝑖 𝑓 𝜇 𝑗) = 0 for all
1 ≤ 𝑖, 𝑗 ≤ 𝑛; but 𝜀𝑖 𝑓 𝜇 𝑗 is a morphism of a simple object, then, 𝜀𝑖 𝑓 𝜇 𝑗 =
𝑘𝑖, 𝑗 ⊗ 1𝑉 for some unique 𝑘𝑖, 𝑗 ∈ K𝐶 . Hence, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 we have
𝑘𝑖, 𝑗 = 0, because 𝑉 is simple. Thus 𝜇𝑖𝜀𝑖 𝑓 𝜇 𝑗𝜀 𝑗 = 0, and so

∑
𝑖, 𝑗
𝜇𝑖𝜀𝑖 𝑓 𝜇 𝑗𝜀 𝑗 =

0 (composition with 𝜇𝑖 in left and 𝜀 𝑗 in right, then entering summand).
Therefore, 𝑓 = 0 𝑚𝑜𝑑 (R𝐴,𝐴). Thus, 𝜓 is injective.

(4)

𝑎
𝑓
𝑖,𝑖 = 𝑇𝑟 (𝜀𝑖 𝑓 𝜇𝑖)𝑑𝑖𝑚(𝑉)−1 ; 1 ≤ ∀𝑖 ≤ 𝑛

⇔ 𝑇𝑟 (𝑀𝐶
𝑓 ) =

𝑛∑︁
𝑖=1
𝑇𝑟 (𝜀𝑖 𝑓 𝜇𝑖)𝑑𝑖𝑚(𝑉)−1

⇔ 𝑑𝑖𝑚(𝑉)𝑇𝑟 (𝑀𝐶
𝑓 ) =

𝑛∑︁
𝑖=1
𝑇𝑟 (𝜇𝑖𝜀𝑖 𝑓 )

⇔ 𝑑𝑖𝑚(𝑉)𝑇𝑟 (𝑀𝐶
𝑓 ) = 𝑇𝑟 ((

𝑛∑︁
𝑖=1

𝜇𝑖𝜀𝑖) 𝑓 )

⇔ 𝑑𝑖𝑚(𝑉)𝑇𝑟 (𝑀𝐶
𝑓 ) = 𝑇𝑟 ( 𝑓 ).

Remark 5.4. From the above Theorem 5.3 (2) and under the same hypotheses;
naturality of the quantum determinant is then trivial, i.e:

∀ 𝑓 ∈ 𝐸𝑛𝑑𝐶/R (𝐴), 𝑑𝑒𝑡𝐶𝑛 (𝑔−1 𝑓 𝑔) = 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ), ∀𝑔 ∈ 𝐴𝑢𝑡𝐶/R (𝐴).
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Remark 5.5. We can construct in some cases dominating families of simple objects
verifying 𝜀𝑖𝜇 𝑗 = 𝛿𝑖; 𝑗 , for all 𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. In fact, let 𝐶 be a semisimple ribbon
𝐴𝑏−category enriched over finite dimensional vector spaces over a field K (i.e, for
any objects 𝑉 and 𝑊 of 𝐶, 𝐻𝑜𝑚𝐶 (𝑉,𝑊) is a finite dimensional K−vector space)
and let 𝐴 be an object of 𝐶 and 𝑉 a simple one. The K−vector space 𝐻𝑜𝑚𝐶 (𝑉 ; 𝐴)
is dualizable and its dual is 𝐻𝑜𝑚𝐶 (𝐴;𝑉); consider a basis (𝜇𝑖)𝑖=𝑛𝑖=1 of 𝐻𝑜𝑚𝐶 (𝑉 ; 𝐴)
(where 𝑛 is its dimension over K) and its dual basis (𝜀𝑖)𝑖=𝑛𝑖=1 of 𝐻𝑜𝑚𝐶 (𝐴;𝑉). Then,
𝐴 is dominated by (𝑉 ; 𝜀𝑖; 𝜇𝑖)1≤𝑖≤𝑛, 𝑟𝑎𝑛(𝐴) = 𝑛 and moreover, we have 𝜀𝑖𝜇 𝑗 = 𝛿𝑖; 𝑗 ,
for all 𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Corollary 5.6. Under the same hypotheses of Theorem 5.3. Assume moreover that
𝜀𝑖𝜇 𝑗 = 𝛿𝑖; 𝑗 , for all 𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then

(a) The map 𝜓 : 𝐸𝑛𝑑𝐶/R (𝐴) −→ 𝑀𝑛 (K𝐶); 𝑓 ↦−→ 𝑀𝐶
𝑓 is an isomorphism of

K𝐶−algebras.

(b) 𝑓 is invertible in 𝐶/R, if and only if 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) is invertible in K𝐶 .

Proof. (a) By Theorem 5.3 (3); we are just still have to show that 𝜓 is surjective.
Let 𝑀 = (𝑎𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛 and 𝑓 =

∑
𝑖, 𝑗
𝑎𝑖, 𝑗𝜇𝑖𝜀 𝑗 . Then 𝑇𝑟 (𝜀𝑖0 𝑓 𝜇 𝑗0)𝑑𝑖𝑚(𝑉)−1 = 𝑎𝑖0, 𝑗0 ,

for all 𝑖0, 𝑗0, 1 ≤ 𝑖0, 𝑗0 ≤ 𝑛, and so 𝜓( 𝑓 ) = 𝑀.
(b) Assume that 𝑓 is invertible in 𝐶/R. Then:

1𝐼 = 𝑑𝑒𝑡𝐶𝑛 (1𝐴)
= 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 𝑓 −1)
= 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 )𝑑𝑒𝑡𝐶𝑛 ( 𝑓 −1)
= 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 −1)𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ).

Hence, (𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ))−1 = 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 −1).
Inversely, if 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ) is invertible, then 𝑀𝐶

𝑓 is invertible, so there exists 𝑁 ∈
𝑀𝑛 (K𝐶) such that 𝑀𝐶

𝑓 𝑁 = 𝑁𝑀𝐶
𝑓 = 𝐼𝑛, but 𝑁 = 𝜓(𝑔) for some unique 𝑔 ∈

𝐸𝑛𝑑𝐶/R (𝐴). Hence

𝜓(1𝐴) = 𝐼𝑛 = 𝑀𝐶
𝑓 𝑁 = 𝜓( 𝑓 )𝜓(𝑔) = 𝜓( 𝑓 𝑔)

and similarly 𝜓(1𝐴) = 𝜓(𝑔 𝑓 ), then 𝑓 𝑔 = 𝑔 𝑓 = 1𝐴 𝑚𝑜𝑑 (R𝐴,𝐴).
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Example 5.7. Let 𝐶 = (𝑃𝑟𝑜 𝑗 (𝑅); ⊗𝑅; 𝑅) be the category of finitely genarated and
projective modules over a commutative ring 𝑅. This is a modular category with
simple objects isomorphic to 𝑅. Let 𝑉 be a free finitely generated and projective
𝑅−module with basis (𝑥𝑖)𝑖=𝑛𝑖=1 . By Corollary 5.6, 𝑟𝑎𝑛𝑞 (𝑉) = 𝑛 and 𝑑𝑒𝑡𝐶𝑛 ( 𝑓 ),
𝑓 ∈ 𝐸𝑛𝑑𝐶 (𝑉), coincides with its classical determinant, 𝑖.𝑒 of a representative
matrix of 𝑓 .

Example 5.8. This is due to Reshetikhin and Turaev [14]. It deals with the
semisimple ribbon 𝐴𝑏−category (in fact modular [14]) associated to the Hopf
algebra 𝑈𝑞, i.e, the finite dimensional quotient of the Hopf algebra 𝑈𝑞 (𝑆𝑙2(C))
for 𝑞 a root of unity. Moreover, a general principe is given in [14] to construct
modular categories upon categories of modules over quantum groups at roots of
unity. The objects of 𝐶 are finite dimensional𝑈𝑞−modules and the simple objects
are highest weight modules {𝑉𝜆}𝜆 (see [10, 14], for more details). Hence, the
quantum determinant of an endomorphism 𝑓 of an 𝑈𝑞−module is computed via
the associated square matrix of 𝑓 , by Theorem 5.3 (1).
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