Algebraic models of cubical weak ∞-categories with connections

Document Type : Research Paper

Author

Laboratoire de Math´ematiques d’Orsay, UMR 8628 Universit´e de Paris-Saclay and CNRS

Abstract

In this article we adapt some aspects of Penon’s article [23] to cubical geometry. More precisely we define a monad on the category CSets of cubical sets (without degeneracies) whose algebras are models of cubical weak ∞-categories with connections.

Keywords


[1] Antolini, R., Geometric realisations of cubical sets with connections, and classifying spaces of categories, Appl. Categ. Structures 10(5) (2002), 481-494.
[2] Ashley, N., Simplicial T-complexes and crossed complexes: a nonabelian version of a theorem of Dold and Kan, Dissertationes Math. (Rozprawy Mat.) 265 (1988), 1-61. With a preface by R. Brown. xviii, 396.
[3] Batanin, M., On the Penon method of weakening algebraic structures, J. Pure Appl. Algebra 172(1) (2002), 1-23.
[4] Bourke, J., Iterated algebraic injectivity and the faithfulness conjecture, https://arxiv.org/pdf/1811.09532.pdf.
[5] Al-Agl, F.A., Brown, R., and Steiner, R., Multiple categories: The equivalence of a globular and a cubical approach, Adv. Math. 170 (2002), 71-118.
[6] Brown, R., Higgins, Ph., and Sivera, R., “Nonabelian Algebraic Topology”, Europ. Math. Soc., Tracts in Mathematics 15, 2011.
[7] Cheng, E. and Makkai, M., A note on Penon’s definition of weak n-category, Cah. Topol. Géom. Différ. Catég. 50 (2009), 83-10.
[8] Coppey, L. and Lair, Ch. Leçons de théorie des esquisses, Université Paris VII, (1985).
[9] Foltz, F., Sur la catégorie des foncteurs dominés, Cah. Topol. Géom. Différ. Catég. 11(2) (1969), 101-130.
[10] Grandis, M. and Mauri, L., Cubical sets and their site, Theory Appl. Categ. 11 (2003), 185-201.
[11] Hirschhorn, Ph., “Model Categories and Their Localizations”, Math. Surveys Monogr. 99, 2003.
[12] Kachour, K., Définition algébrique des cellules non-strictes, Cah. Topol. Géom. Différ. Catég. 1 (2008), 1-68.
[13] Kachour, C., Algebraic models of cubical weak higher structures, To appear in Categ. General Alg. Structures Appl.
[14] Kachour, C., Algebraic definition of weak (∞, n)-categories, Theory Appl. Categ. 30(22) (2015), 775-807.
[15] Kachour, C., An algebraic approach to weak ω-groupoids, Australian Category Seminar, 14 September 2011. http://web.science.mq.edu.au/groups/coact/seminar/cgi-bin/speaker-info.cgi?name=Camell+Kachour
[16] Kachour, C. and Weber, M., “Introduction to Higher Cubical Operads”, First Part: The Cubical Operad of Cubical Weak ∞-Categories, Prépublication de l’IHES, http://preprints.ihes.fr/2017/M/M-17-19.pdf
[17] Kachour, C. and Weber, M., “Introduction to Higher Cubical Operads”, Second Part: The Functor of Fundamental Cubical Weak ∞-Groupoids for Spaces, Prépublication de l’IHES, http://preprints.ihes.fr/2018/M/M-18-03.pdf
[18] Kachour, C., Combinatorial approach to the category Θ0 of cubical pasting diagrams, https://arxiv.org/abs/2102.09787
[19] Kachour, C., (∞, n)-ensembles cubiques, talk in CLE, Paris, November 2016. https: //sites.google.com/site/logiquecategorique/Contenus/201611-kachour
[20] Lafont, Y., Metayer, F., and Worytkiewicz, K., A folk model structure on omega-cat, Adv. Math. 224 (2010), 1183-1231.
[21] Lair, Ch., “Condition syntaxique de triplabilité d’un foncteur algébrique esquissé”, Diagrammes 1, 1979.
[22] Maltsiniotis, G., La catégorie cubique avec connections est une catégorie test stricte, (preprint) (2009), 1-16.
[23] Penon, J., Approche polygraphique des ∞-catégories non-strictes, Cah. Topol. Géom. Différ. Catég. 40(1) (1999), 31-80.
[24] Penon, J., ∞-catégorification de structures équationnelles, Séminaires Itinérants de Catégories (S.I.C) á Amiens, Septembre 2005.
[25] Tuyéras, R., “Sketches in Higher Category Theory”, Ph.D. Thesis, Cambridge University Press 95(1), 2017.
[26] Verity, D., “Enriched Categories, Internal Categories and Change of Base”, Ph.D. Thesis, http://www.tac.mta.ca/tac/reprints/articles/20/tr20.pdf.