Six model categories for directed homotopy

Document Type : Research Paper

Author

Universit\'e de Paris, CNRS, IRIF, F-75006, Paris, France.

Abstract

We construct a q-model structure, an h-model structure and an m-model structure on multipointed $d$-spaces and on flows. The two q-model structures are combinatorial and left determined and they coincide with the combinatorial model structures already known on these categories. The four other model structures (the two m-model structures and the two h-model structures) are accessible. We give an example of multipointed $d$-space and of flow which are not cofibrant in any of the model structures. We explain why the m-model structures, Quillen equivalent to the q-model structure of the same category, are better behaved than the q-model structures.

Keywords


[1] Adámek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete Categories: the Joy of Cats”, Repr. Theory Appl. Categ. 17 (2006), 1-507 (electronic), Reprint of the 1990 original [Wiley, New York].
[2] Adámek, J. and Rosický, J., “Locally Presentable and Accessible Categories”, Cambridge University Press, 1994.
[3] Barthel, T. and Riehl, E., On the construction of functorial factorizations for model categories, Algebr. Geom. Topol. 13(2)(2013), 1089-1124.
[4] Borceux, F.,“Handbook of Categorical Algebra 1: Basic Category Theory”, Cambridge University Press, 1994.
[5] , “Handbook of Categorical Algebra 2: Categories and Structures, Cambridge University Press, 1994.
[6] Chorny, B., Example of non accessible model categories, MathOverflow, 2019, URL:https://mathoverflow.net/q/326490 (version: 2019-03-27).
[7] Cole, M., Mixing model structures, Topology Appl. 153(7) (2006), 1016-1032.
[8] Dror Farjoun, E., Homotopy theories for diagrams of spaces, Proc. Amer. Math. Soc. 101(1) (1987), 181-189.
[9] Fajstrup, L. and Rosický, J., A convenient category for directed homotopy, Theory Appl. Categ. 21(1) (2008), 7-20.
[10] Garner, R., K¸edziorek, M., and Riehl, E., Lifting accessible model structures, J. Topol. 13(1) (2020), 59-76.
[11] Gaucher, P., A model category for the homotopy theory of concurrency, Homology Homotopy Appl. 5(1) (2003), 549-599.
[12] , Comparing globular complex and flow, New York J. Math. 11 (2005), 97-150.
[13] , Homological properties of non-deterministic branchings and mergings in higher dimensional automata, Homology Homotopy Appl. 7(1) (2005), 51-76.
[14] , T-homotopy and refinement of observation (III) : Invariance of the branching and merging homologies, New York J. Math. 12 (2006), 319-348 (electronic).
[15] , Homotopical interpretation of globular complex by multipointed d-space, Theory Appl. Categ. 22(22) (2009), 588-621 (electronic).
[16] , Enriched diagrams of topological spaces over locally contractible enriched categories, New York J. Math. 25 (2019), 1485-1510 (electronic).
[17] , Left properness of flows, arXiv:1907.01454, 2019.
[18] , Flows revisited: the model category structure and its left determinedness, Cah. Topol. Géom. Différ. Catég. LXI-2 (2020), 208-226.
[19] Grandis, M., Directed homotopy theory. I, Cah. Topol. Géom. Différ. Catég. 44(4) (2003), 281-316.
[20] Hess, K., Kedziorek, M., Riehl, E., and Shipley, B., A necessary and sufficient condition for induced model structures, J. Topol. 10(2) (2017), 324-369.
[21] Hirschhorn, P. S., “Model Categories and their Localizations”, Math. Surveys Monogr. 99, American Mathematical Society, 2003.
[22] Hovey, M., “Model Categories”, American Mathematical Society, 1999.
[23] Isaev, V., On fibrant objects in model categories, Theory Appl. Categ. 33(3) (2018), 43-66 (electronic).
[24] Jacobs, B., “Categorical Logic and Type Theory”, Stud. Logic Found. Math. 141, North-Holland Publishing Co., 1999.
[25] Kelly, G.M. and Lack, S., V-Cat is locally presentable or locally bounded if V is so, Theory Appl. Categ. 8 (2001), 555-575.
[26] Makkai, M. and Paré, R., “Accessible Categories: the Foundations of Categorical Model Theory”, Contemporary Mathematics 104, American Mathematical Society, 1989.
[27] May, J.P., Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1(1) (1975), 155, xiii+98.
[28] May, J.P. and Sigurdsson, J., Parametrized homotopy theory, Math. Surveys Monogr. 132, American Mathematical Society, 2006.
[29] Moser, L., Injective and projective model structures on enriched diagram categories, Homology Homotopy Appl. 21(2) (2019), 279-300.
[30] Quillen, D., “Homotopical Algebra”, Springer-Verlag, 1967.
[31] Raptis, G., Homotopy theory of posets, Homology Homotopy Appl. 12(2) (2010), 211-230.
[32] Roig, A., Model category structures in bifibred categories, J. Pure Appl. Algebra 95(2) (1994), 203-223.
[33] Rosický, J., On combinatorial model categories, Appl. Categ. Structures 17(3) (2009), 303-316.
[34] , Accessible model categories, Appl. Categ. Structures 25(2) (2017), 187-196.
[35] Salch, A., The Bousfield localizations and colocalizations of the discrete model structure, Topology Appl. 219 (2017), 78-89.
[36] Schwänzl, R. and Vogt, R.M., Strong cofibrations and fibrations in enriched categories, Arch. Math. (Basel) 79(6) (2002), 449-462.
[37] Shulman, M., Example of non accessible model categories, MathOverflow, 2019, URL:https://mathoverflow.net/q/326451 (version: 2019-03-27).
[38] Stanculescu, A.E., Bifibrations and weak factorisation systems, Appl. Categ. Structures 20(1) (2012), 19-30.
[39] Strøm, A., The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435-441.
[40] Weber, M., Multitensors as monads on categories of enriched graphs, Theory Appl. Categ. {28}(26) (2013), 857-932.