Pre-image of functions in $C(L)$

Ali Rezaei Aliabad* and Morad Mahmoudi

Abstract. Let $C(L)$ be the ring of all continuous real functions on a frame L and $S \subseteq \mathbb{R}$. An $\alpha \in C(L)$ is said to be an overlap of S, denoted by $\alpha \triangleright S$, whenever $u \cap S \subseteq v \cap S$ implies $\alpha(u) \leq \alpha(v)$ for every open sets u and v in \mathbb{R}. This concept was first introduced by A. Karimi-Feizabadi, A.A. Estaji, M. Robat-Sarpoushi in *Pointfree version of image of real-valued continuous functions* (2018). Although this concept is a suitable model for their purpose, it ultimately does not provide a clear definition of the range of continuous functions in the context of pointfree topology. In this paper, we will introduce a concept which is called pre-image, denoted by pim, as a pointfree version of the image of real-valued continuous functions on a topological space X. We investigate this concept and in addition to showing $\text{pim}(\alpha) = \bigcap\{S \subseteq \mathbb{R} : \alpha \triangleright S\}$, we will see that this concept is a good surrogate for the image of continuous real functions. For instance, we prove, under some achievable conditions, we have $\text{pim}(\alpha \lor \beta) \subseteq \text{pim}(\alpha) \lor \text{pim}(\beta)$, $\text{pim}(\alpha \land \beta) \subseteq \text{pim}(\alpha) \land \text{pim}(\beta)$, $\text{pim}(\alpha\beta) \subseteq \text{pim}(\alpha)\text{pim}(\beta)$ and $\text{pim}(\alpha + \beta) \subseteq \text{pim}(\alpha) + \text{pim}(\beta)$.

* Corresponding author

Keywords: Frame, pointfree topology, $C(L)$, pre-image, prime ideal and maximal ideal in frames, f-algebra.

Mathematics Subject Classification [2010]: Primary: 06D22, Secondary: 54C05, 54C30.

Received: 24 February 2020, Accepted: 5 April 2020.

ISSN: Print 2345-5853, Online 2345-5861.
© Shahid Beheshti University

35
1 Introduction and preliminaries

A complete lattice L is said to be a frame if for any $a \in L$ and $B \subseteq L$, we have $a \land \bigvee B = \bigvee_{b \in B} (a \land b)$. We denote the top element and the bottom element of a frame L by \textbf{Top} and \bot, respectively. For every element a of a frame L the pseudocomplement of a is $a^c = \bigvee \{x \in L : x \land a = \bot\}$. Let L be a frame. The set of all prime ideals (respectively, maximal ideals) of L is denoted by $\text{Spec}(L)$ (respectively, $(\text{Max}(L))$. An element $p \in L$ is called prime if $p < \textbf{Top}$, and $a \land b \leq p$ implies $a \leq p$ or $b \leq p$. Clearly, $a \in L$ is a prime element if and only if $\bot a = \{x \in L : x \leq a\}$ is a prime ideal of L. We denote by $\text{Sp}(L)$ the set of all prime element of L. For every $a \in L$, define $\mathcal{h}^c(a) = \{p \in \text{Sp}(L) : a \not\leq p\}$. It is easily seen that $\{\mathcal{h}^c(a) : a \in L\}$ is a topology on $\text{Sp}(L)$. Here after we use $\text{Sp}(L)$ equipped with this topology.

Let X and Y be two partial ordered sets and $f : X \to Y$ and $g : Y \to X$ be two increasing maps. We say f is left adjoint of g (respectively, g is right adjoint of f) if $fg \leq I_Y$ and $gf \geq I_X$. It is easy to see that g is uniquely determined by f and vice versa. The right adjoint of a map $f : X \to Y$ (respectively, left adjoint of a map $g : Y \to X$), if there exists, is denoted by f_* (resp., g^*). Supposing X and Y are complete lattices, one can easily see that $f : X \to Y$ is a left adjoint map if and only if f preserves arbitrary joins and in this case $f_*(y) = \bigvee \{x \in X : f(x) \leq y\}$ for every $y \in Y$. A frame homomorphism is a map f from a frame L to a frame L' such that it preserves finite meets and arbitrary joins; clearly in this case we have $f(\bot) = \bot$ and $f(\textbf{Top}) = \textbf{Top}$. Obviously, every frame homomorphism is a left adjoint map. We denote by $\mathcal{O}X$ and \mathcal{O}_x the frames of all open subsets of a topological space X and the set of all open neighborhoods of $x \in X$, respectively. If X and Y are two topological spaces, then for every continuous function $f : X \to Y$ we define $\mathcal{O}f : \mathcal{O}Y \to \mathcal{O}X$ with $(\mathcal{O}f)(w) = f^{-1}(w)$ for every $w \in \mathcal{O}Y$. It is obvious that \mathcal{O} is a contravariant functor from the category \textbf{Top} to the category \textbf{Frm}. Let L and L' be two frames. For every frame homomorphism $f : L \to L'$ we can define $\text{Sp}(f) : \text{Sp}(L') \to \text{Sp}(L)$ with $(\text{Sp}(f))(q) = f_*(q)$. For any $a \in L$, we can write

$$(\text{Sp}(f))^{-1}(\mathcal{h}^c(a)) = \{q \in \text{Sp}(L') : f_*(q) \in \mathcal{h}^c(a)\}$$

$= \{q \in \text{Sp}(L') : a \not\leq f_*(q)\}$$

$= \{q \in \text{Sp}(L') : f(a) \not\leq q\} = \mathcal{h}^c(f(a)).$$
Therefore, Spf is a continuous map. It is easy to see that $SpI_L = I_{SpL}$ and $Spfg = SpgSpf$ whenever fg means the composition of f and g. Thus, $Sp : \text{ Frm} \rightarrow \text{ Top}$ is a contravariant functor. In fact the functor Sp is a right adjoint of the functor O.

Recall that an ordered ring is a ring A with a partial order \leq such that for every $a, b, c \in A$, from $a \leq b$ it follows that $a + c \leq b + c$ and if $a, b \geq 0$, then $ab \geq 0$. An ordered ring is called a lattice-ordered ring if A is a lattice under the partial order on A. By an f-ring we mean a lattice-ordered ring R with this property that $a(b \land c) = ab \land ac$ and $(b \land c)a = ba \land ca$ for every $a \in R^+$ and every $b, c \in R$. An algebra (over a field F) is a structure consisting of a set A with two operations “+” and “.”, and also a scaler multiplication such that $(A, +, \cdot)$ is a ring and A with addition and scaler multiplication is a vector space (over F), and in addition, for every $x, y \in A$ and every $c \in F$, we have

$$1_Fx = x \quad c(xy) = (cx)y = x(cy).$$

Finally, an f-algebra (over an ordered field) is an algebra with a partial order \leq such that $(A, +, \cdot, \leq)$ is an f-ring, and A with “+” and the scaler multiplication is a vector space (over F) in which $cx \geq 0$ for every $c \in F^+$ and every $x \in A^+$.

Suppose that A is a lattice-ordered ring and $a \in A$. The positive part of a, negative part of a, and $|a|$ are defined as $a^+ = a \lor 0$, $a^- = -a \lor 0$ and $|a| = a \lor -a$, respectively. Clearly, if A is an f-ring, then $a = a^+ - a^-$, $|a| = a^+ + a^-$, $a^+a^- = 0$ and $|a|^2 = a^2$ for any $a \in A$.

In the present part of this paper, for convenience of readers, we give a short review of $C(L)$, at a slightly different perspective from what is stated in the main texts.

A frame homomorphism $\alpha : O\mathbb{R} \rightarrow L$ is called continuous real function on a frame L and the set of all continuous real function on a frame L is denoted by $C(L)$. Although, this concept was first introduced by R.N. Ball and A.W. Hager in [1], B. Banaschewski studied this concept deeply in [2]; he also showed in [3] that $C(L)$ is a class which strictly contains $C(X)$. Note that we work under the axiomatic system of ZFC and in this system, we have $L(\mathbb{R}) \simeq O\mathbb{R}$. In this axiomatic system $C(L)$ has a simpler representation.

Supposing that $A, S \subseteq L$, we denote by $\downarrow A$ the set $\{x \in L : \exists a \in L\}$. Finally, an f-algebra (over an ordered field) is an algebra with a partial order \leq such that $(A, +, \cdot, \leq)$ is an f-ring, and A with “+” and the scaler multiplication is a vector space (over F) in which $cx \geq 0$ for every $c \in F^+$ and every $x \in A^+$.
A, \(x \leq a \}; we use \(\downarrow x \) instead of \(\downarrow \{x\} \) and \(\downarrow_S A \) instead of \(S \cap \downarrow A \). Clearly, for any \(S \subseteq L \), the map \(\downarrow_S : L \to P(S) \) is a meet-homomorphism but not a join-homomorphism, see [15]. A subset \(B \) of \(L \) is said to be a base for \(L \) if \(x = \bigvee \downarrow_B x \) for every \(x \in L \). Let \(L \) and \(L' \) be two frames and \(B \) be a base for \(L \). A map \(f : B \to L' \) is said to be conditional homomorphism if for every \(A \subseteq B \) and every finite \(F \subseteq B \) we have \(f(\bigvee A) = \bigvee f(A) \) and \(f(\bigwedge F) = \bigwedge f(F) \), provided that \(\bigvee A \in B \) and \(\bigwedge F \in B \). Supposing that \(B \) is a base for a frame \(L \), we call \(B \) a homomorphism maker if every conditional homomorphism from \(B \) to a frame \(L' \) has an extension homomorphism from \(L \) to \(L' \).

Proposition 1.1. Let \(B \) be a base for \(L \) closed under finite meets. Then \(B \) is homomorphism maker.

Proof. Let \(f : B \to L' \) be a conditional homomorphism. We define \(\tilde{f} : L \to L' \) with \(\tilde{f}(x) = \bigvee f(\downarrow_B (x)) \) and prove that \(\tilde{f} \) is a homomorphism extension of \(f \). Clearly, \(\tilde{f} \) is order preserving, \(\tilde{f}|_B = f \), \(f(\bot) = \bot \) and \(f(\text{Top}) = \text{Top} \). Assuming that \(x_\lambda \in L \) for every \(\lambda \in \Lambda \), since \(\tilde{f} \) is order preserving, we have \(\bigvee_{\lambda \in \Lambda} \tilde{f}(x_\lambda) \leq \tilde{f}(\bigvee_{\lambda \in \Lambda} x_\lambda) \). Conversely, for every \(b \in \downarrow_B (\bigvee_{\lambda \in \Lambda} x_\lambda) \),

\[
b = \bigvee_{\lambda \in \Lambda} b \land x_\lambda = \bigvee_{\lambda \in \Lambda} \bigvee \{c \in B : c \leq b \land x_\lambda\},
\]

which implies that

\[
f(b) = \bigvee_{\lambda \in \Lambda} \bigvee \{f(c) : c \in B, c \leq b \land x_\lambda\}
\]

\[
\leq \bigvee_{\lambda \in \Lambda} \bigvee \{f(c) : c \in B, c \leq x_\lambda\}
\]

\[
= \bigvee_{\lambda \in \Lambda} \tilde{f}(x_\lambda),
\]

and this shows that

\[
\tilde{f}(\bigvee_{\lambda \in \Lambda} x_\lambda) = \bigvee \{f(b) : b \in \downarrow \bigvee_{\lambda \in \Lambda} x_\lambda\} \leq \bigvee_{\lambda \in \Lambda} \tilde{f}(x_\lambda).
\]
Therefore, \(\bar{f}(\bigvee_{\lambda \in \Lambda} x_\lambda) = \bigvee_{\lambda \in \Lambda} \bar{f}(x_\lambda) \). Now, supposing that \(x, y \in L \), clearly
\[
\bar{f}(x \land y) = \bigvee \{f(c) : c \in B, c \leq x \land y\}
\]
\[
= \bigvee \{f(c_1 \land c_2) : c_1, c_2 \in B, c_1 \leq x, c_2 \leq y\}
\]
\[
= \bigvee \{f(c_1) \land f(c_2) : c_1, c_2 \in B, c_1 \leq x, c_2 \leq y\}
\]
\[
= \bigvee \{f(c_1) : c_1 \in B, c_1 \leq x\} \land \bigvee \{f(c_2) : c_2 \in B, c_2 \leq y\}
\]
\[
= \bar{f}(x) \land \bar{f}(y).
\]

In the above proposition, the condition “closedness under finite meets” cannot be omitted. For example, suppose that \(B = \{(a,b) : a,b \in \mathbb{Q}, a < b\} \) and \(f : B \rightarrow L \) with \(f(a,b) = \text{Top} \) for every \((a,b) \in B \). Obviously, \(B \) is a base for \(\mathcal{OR} \), \(f \) is conditional homomorphism and \(B \) is not homomorphism maker.

Corollary 1.2. Let \(B = \{(r,s) : r,s \in \mathbb{Q}\} \cup \{\mathbb{R}\} \). Clearly, \(B \) is a base for \(\mathcal{OR} \) and closed under finite meets. Hence, \(B \) is a homomorphism maker. In other words, a map \(f : B \rightarrow L \) has an extension homomorphism \(\alpha \in C(L) \) if and only if \(f \) has the following properties.

(R1) \(f((p,q) \land (r,s)) = f(p,q) \land f(r,s) \), whenever \(p,q,r,s \in \mathbb{Q} \) and \((p,q) \land (r,s) \neq \emptyset \).

(R2) \(f((p,q) \lor (r,s)) = f(p,q) \lor f(r,s) \), whenever \(p,q,r,s \in \mathbb{Q} \) and \(p \leq r < q \leq s \).

(R3) \(f(p,q) = \bigvee \{f(r,s) : r,s \in \mathbb{Q}, p < r < s < q\} \) for every \(p,q \in \mathbb{Q} \).

(R4) \(\text{Top} = f(\mathbb{Q}) = \bigvee \{f(p,q) : p,q \in \mathbb{Q}\} \).

Suppose that \(\diamond \) is an operation such as “+”, “-”, “\lor” and “\land”. For every \(\alpha, \beta \in C(L) \) and every \(p,q \in \mathbb{Q} \), we define
\[
(\alpha \diamond \beta)(p,q) = \bigvee \{\alpha(r,s) \land \beta(t,u) : r,s,t,u \in \mathbb{Q}, (r,s) \diamond (t,u) \subseteq (p,q)\},
\]
where \((r,s) \diamond (t,u) = \{a \diamond b : a \in (r,s), b \in (t,u)\} \). It can be proved that \(\alpha \diamond \beta \) is a conditional homomorphism on \(B = \{(r,s) : r,s \in \mathbb{Q}\} \cup \{\mathbb{R}\} \) and hence \(\alpha \diamond \beta \in C(L) \), see [2] and [14]. Also, for every \(r \in \mathbb{R} \) it is defined that
\(r(w) = \text{Top} \) if \(r \in w \) and \(r(w) = \bot \) if \(r \notin w \). It is clear to see that \(r \in C(L) \).

Now, \(r.\alpha \) is defined by \(\alpha r \). Consequently \(C(L) \) is an \(f \)-algebra with these operations.

Proposition 1.3. For every \(\alpha, \beta \in C(L) \) and every \(w \in \mathcal{O} \mathbb{R} \), we have

\[
(\alpha \circ \beta)(w) = \bigvee \{ \alpha(r, s) \land \beta(t, u) : r, s, t, u \in \mathbb{Q}, (r, s) \circ (t, u) \subseteq w \}
\]

\[
= \bigvee \{ \alpha(w_1) \land \beta(w_2) : w_1, w_2 \in \mathcal{O} \mathbb{R}, w_1 \circ w_2 \subseteq w \},
\]

where \(w_1 \circ w_2 = \{ a \circ b : a \in w_1, b \in w_2 \} \).

Proof. Assume that

\[
A_{a,b} = \{ \alpha(r, s) \land \beta(t, u) : r, s, t, u \in \mathbb{Q}, (r, s) \circ (t, u) \subseteq (a, b) \},
\]

\[
A_w = \{ \alpha(r, s) \land \beta(t, u) : r, s, t, u \in \mathbb{Q}, (r, s) \circ (t, u) \subseteq w \}
\]

and

\[
B_w = \{ \alpha(w_1) \land \beta(w_2) : w_1, w_2 \in \mathcal{O} \mathbb{R}, w_1 \circ w_2 \subseteq w \}.
\]

Since \((\alpha \circ \beta) \in C(L) \), it follows that

\[
(\alpha \circ \beta)(w) = (\alpha \circ \beta) \left(\bigcup \{ (a, b) : a, b \in \mathbb{Q}, (a, b) \subseteq w \} \right)
\]

\[
= \bigvee \{ (\alpha \circ \beta)(a, b) : a, b \in \mathbb{Q}, (a, b) \subseteq w \}
\]

\[
= \bigvee \left\{ \bigvee A_{a,b} : (a, b) \subseteq w \right\}.
\]

Therefore, clearly, \((\alpha \circ \beta)(w) \leq \bigvee A_w \leq \bigvee B_w \). Now, suppose that \(\alpha(r, s) \land \beta(t, u) \in A_w \). Obviously, there exist \(a, b \in \mathbb{Q} \) such that \((r, s) \circ (t, u) \subseteq (a, b) \subseteq w \). Hence, \(\alpha(r, s) \land \beta(t, u) \in A_{a,b} \) and consequently \(\bigvee A_w \leq \bigvee A_{a,b} \leq (\alpha \circ \beta)(w) \) and so \(\bigvee A_w = (\alpha \circ \beta)(w) \).

Finally, assume that \(\alpha(w_1) \land \beta(w_2) \in B_w \), where \(w_1 \circ w_2 \subseteq w \). Clearly, \(w_1 = \bigcup_{i \in I} (r_i, s_i) \) and \(w_2 = \bigcup_{j \in J} (t_j, u_j) \), where \(r_i, s_i, t_j, u_j \in \mathbb{Q} \) for every \(i \in I \) and every \(j \in J \). Thus,

\[
\bigcup_{i \in I} (r_i, s_i) \circ (t_j, u_j) = \bigcup_{i \in I} (r_i, s_i) \circ \bigcup_{j \in J} (t_j, u_j) = w_1 \circ w_2 \subseteq w
\]

and so \((r_i, s_i) \circ (t_j, u_j) \subseteq w \) for every \(i \in I \) and every \(j \in J \). Therefore, it is easy to see that \(\alpha(w_1) \land \beta(w_2) = \bigvee_{i \in I} \bigvee_{j \in J} \alpha(r_i, s_i) \land \beta(t_j, u_j) \leq \bigvee A_w \).

Hence, \(\bigvee B_w \leq \bigvee A_w \) and so \(\bigvee B_w = \bigvee A_w \).

\[\square \]
Throughout the paper, the notations \(L \) and \(C(L) \) stand for a frame and the \(f \)-algebra of all continuous real functions on the frame \(L \), respectively. The reader is referred to [2], [14], and [12], for more information about frames and \(C(L) \). Also, see [4], [5], [11], [15], and [10] for more information about general lattice theory and rings of continuous functions, respectively.

We need the following proposition which can be found in the literature.

Proposition 1.4. Let \(\alpha, \beta \in C(L) \) and \(a \in \mathbb{R} \). The following statements hold.

(a) If \(\alpha \geq 0 \), then \(\alpha(-\infty, x) = \bot \) for every \(x \leq 0 \).

(b) If \(\alpha \geq 0 \), then \(\alpha(x, +\infty) = \text{Top} \) for every \(x < 0 \).

(c) \((\alpha \lor \beta)(x, +\infty) = \alpha(x, +\infty) \lor \beta(x, +\infty) \) for every \(x \in \mathbb{R} \).

(d) \((\alpha \lor \beta)(-\infty, x) = \alpha(-\infty, x) \land \beta(-\infty, x) \) for every \(x \in \mathbb{R} \).

(e) \((\alpha \land \beta)(x, +\infty) = \alpha(x, +\infty) \land \beta(x, +\infty) \) for every \(x \in \mathbb{R} \).

(f) \((\alpha \land \beta)(-\infty, x) = \alpha(-\infty, x) \lor \beta(-\infty, x) \) for every \(x \in \mathbb{R} \).

(g) \((c\alpha)(w) = \alpha(\frac{1}{c}w) \) for every \(w \in O\mathbb{R} \) and each \(c \neq 0 \), where \(bw = \{ bx : x \in w \} \).

(h) \((e + \alpha)(w) = \alpha(w - c) \) for each \(w \in O\mathbb{R} \) and each \(c \in \mathbb{R} \), where \(w + b = \{ x + b : x \in w \} \).

2 Pre-image of a continuous real function on \(L \)

In [13], although it does not introduce a determined definition for pointfree version of the “image” of continuous real functions, using a concept, called “overlap”, an attempt has been made to fill the vacuum of the concept of image of continuous real functions in pointfree topology. In this main section, we give a determined version of the image of continuous real functions on a topological space \(X \) in the pointfree topology and we show that this is independent of what we see in [13].

Definition 2.1. For every \(\alpha \in C(L) \), we define \(\text{pim}(\alpha) \), called pre-image of \(\alpha \), as

\[\text{pim}(\alpha) = \bigcap \{ w \in O\mathbb{R} : \alpha(w) = \text{Top} \}. \]

At below we provide an example in which we demonstrate that \(\text{pim}(\alpha) \) is an appropriate model of image of the real-valued functions in pointfree topology.
Example 2.2. Let $C(X)$ be the ring of real-valued continuous functions on a topological space X. We know that for all $f \in C(X)$ we have $\mathcal{O}f \in C(\mathcal{O}X)$ and clearly, we can write

$$\text{Im}(f) = f(X) = \bigcap_{f(X) \subseteq w} w = \bigcap_{f^{-1}(w) = X} \mathcal{O}w : \mathcal{O}f(w) = \text{Top}.$$

Therefore, $\text{Im}(f) = \text{pim}(\mathcal{O}f)$.

Hereinafter, by \mathbb{R}_x, we mean $\mathbb{R} \setminus \{x\}$.

Proposition 2.3. For every $\alpha \in C(L)$, the following statements hold:

(a) $\text{pim}(\alpha) = \bigcap \{\mathbb{R}_x : \alpha(\mathbb{R}_x) = \text{Top}\}$.

(b) $x \notin \text{pim}(\alpha)$ if and only if $\alpha(\mathbb{R}_x) = \text{Top}$.

Proof. (a): Suppose that $\mathcal{B} = \{\mathbb{R}_x : \alpha(\mathbb{R}_x) = \text{Top}\}$. Obviously $\text{pim}(\alpha) \subseteq \bigcap \mathcal{B}$. Now, assuming $x \notin \text{pim}(\alpha)$, there exists $w \in \mathcal{O}\mathbb{R}$ such that $x \notin w$ and $\alpha(w) = \text{Top}$. Hence, $w \subset \mathbb{R}_x$, consequently $\alpha(\mathbb{R}_x) = \text{Top}$ and so $x \notin \mathbb{R}_x \in \mathcal{B}$. Therefore, $\bigcap \mathcal{B} \subseteq \text{pim}(\alpha)$ and subsequently $\text{pim}(\alpha) = \bigcap \mathcal{B}$.

(b): According to (a), it is obvious that we can write

$$x \notin \text{pim}(\alpha) \Rightarrow \exists \mathbb{R}_y, \alpha(\mathbb{R}_y) = \text{Top}, \ x \notin \mathbb{R}_y.$$

Since $x \notin \mathbb{R}_y$, $x = y$ and consequently $\alpha(\mathbb{R}_x) = \text{Top}$. Conversely, assume that $\alpha(\mathbb{R}_x) = \text{Top}$. Thus, $\text{pim}(\alpha) \subseteq \mathbb{R}_x$ and so $x \notin \text{pim}(\alpha)$. \qed

Estaji and at al. in [8], put

$R_\alpha = \{r \in \mathbb{R} : \text{coz}(\alpha - r) \neq \text{Top}\}$

for every $\alpha \in C(L)$, and they studied some of its properties. By Proposition 2.3, it is evident that $R_\alpha = \text{pim}(\alpha)$.

Recall that $w^* = \mathbb{R} \setminus \overline{w}$ and $\overline{w} = \bigcap_{x \in w^*} \mathbb{R}_x$ for every $w \in \mathcal{O}\mathbb{R}$.

Proposition 2.4. For every $w \in \mathcal{O}\mathbb{R}$ and every $\alpha \in C(L)$, the following statements hold:

(a) If $\alpha(w^*) = \perp$, then $\alpha(\mathbb{R}_x) = \text{Top}$ for all $x \in w^*$.

(b) If $\alpha(w^*) = \perp$, then $\text{pim}(\alpha) \subseteq \overline{w}$.

(c) If $r \in \text{pim}(\alpha)$ and $w \in \mathcal{O}_r$, then $\alpha(w) \neq \perp$.

Proof. (a): Suppose that $w \in \mathcal{O}R$ and $\alpha \in C(L)$. Then for every $x \in w^*$, we can write
\[
\mathbb{R}_x \cup w^* = \mathbb{R} \quad \Rightarrow \quad \alpha(\mathbb{R}_x) = \alpha(\mathbb{R}) = \alpha(\mathbb{R}_x \cup w^*) = \alpha(\mathbb{R}) = \text{Top}.
\]

(b): Since $\alpha(w^*) = \bot$, by part (a), for all $x \in w^*$, we have $\alpha(\mathbb{R}_x) = \text{Top}$ and so
\[
pim(\alpha) = \bigcap \{ \mathbb{R}_x : \alpha(\mathbb{R}_x) = \text{Top} \} \subseteq \bigcap_{x \in w^*} \mathbb{R}_x = w.
\]

(c): Suppose that $r \in \overline{\text{pim}(\alpha)}$ and $w \in \mathcal{O}_r$. Thus, there exists $y \in w \cap \text{pim}(\alpha)$ and therefore
\[
\text{Top} = \alpha(\mathbb{R}) = \alpha(\mathbb{R}_y \cup w) = \alpha(\mathbb{R}_y) \vee \alpha(w).
\]

On the other hand, since $y \in \text{pim}(\alpha)$, $\alpha(\mathbb{R}_y) \neq \text{Top}$ and so $\alpha(w) \neq \bot$. \qed

By Example 2.2, it is easy to see that if $\text{pim}(\mathcal{O}f) \subseteq w \in \mathcal{O}R$, then $\mathcal{O}f(w) = \text{Top}$. Also, if $\mathcal{O}f(w) \neq \bot$, for every $w \in \mathcal{O}_r$, $r \in \text{pim}(\alpha)$. So here are two natural questions.

Question 1: Suppose that $\alpha \in C(L)$ and $w \in \mathcal{O}R$. Can we imply $\alpha(w) = \text{Top}$ from $\text{pim}(\alpha) \subseteq w$?

Question 2: Suppose that $\alpha(w) \neq \bot$, for every $w \in \mathcal{O}_r$. Can we conclude that $r \in \overline{\text{pim}(\alpha)}$?

Example 2.8 shows that the answer to these two questions is generally negative (in the first question, even if w is an unbounded interval in \mathbb{R}). But, in the following proposition, we will find that the answer to the first question is positive under some conditions.

Proposition 2.5. Let $\alpha \in C(L)$, $w \in \mathcal{O}R$ and $\text{pim}(\alpha) \subseteq w$, then the following statements hold:

(a) If w is dense in \mathbb{R} and the boundary of w is finite, then $\alpha(w) = \text{Top}$.

(b) Let $\mathcal{U} \subseteq \mathcal{O}R$ be such that one of these families is bounded, $\text{pim}(\alpha) \subseteq \bigcap \mathcal{U}$ and $\alpha(u) = \text{Top}$ for every $u \in \mathcal{U}$. If $\bigcap_{u \in \mathcal{U}} \overline{u} \subseteq w$, then it follows that $\alpha(w) = \text{Top}$.
Proof. (a): It is clear.
(b): Without loss of generality, we can suppose that \(u \) is compact for all \(u \in \mathcal{U} \). Now, it is easy to see that there exist \(u_1, \ldots, u_n \in \mathcal{U} \) such that \(\bigcap_{i=1}^n u_i \subseteq w \). Therefore,
\[
\text{Top} = \bigwedge_{i=1}^n \alpha(u_i) = \alpha\left(\bigcap_{i=1}^n u_i\right) \leq \alpha(w) \Rightarrow \alpha(w) = \text{Top}.
\]

Suppose that \(\alpha \in C(L) \) and \(S \subseteq \mathbb{R} \). We recall from [13] that \(\alpha \) is an overlap of \(S \), denoted by \(\alpha \rhd S \), whenever \(i(u) \subseteq i(v) \) implies \(\alpha(u) \leq \alpha(v) \); that is, \(u \cap S \subseteq v \cap S \) implies \(\alpha(u) \leq \alpha(v) \). In the following propositions and example, we will see that although this concept and \(\text{pim}(\alpha) \) are closely related, but they are different from each other.

Proposition 2.6. Suppose that \(\alpha \in C(L) \) and \(OV(\alpha) = \{S \subseteq \mathbb{R} : \alpha \rhd S\} \). Then \(\text{pim}(\alpha) = \bigcap_{S \in OV(\alpha)} S \).

Proof. Let \(S \in OV(\alpha) \) and \(x \notin S \). Thus, \(\mathbb{R}_x \cap S = S \cap S \) and so \(\text{Top} = \alpha(\mathbb{R}) = \alpha(\mathbb{R}_x) \); that, \(x \notin \text{pim}(\alpha) \). Therefore, \(\text{pim}(\alpha) \subseteq \bigcap_{S \in OV(\alpha)} S \). Conversely, suppose \(x \notin \text{pim}(\alpha) \); it suffices to show that \(\mathbb{R}_x \in OV(\alpha) \). To see this, for every \(u, v \in \mathcal{O}\mathbb{R} \), we can write
\[
u \cap \mathbb{R}_x \subseteq v \cap \mathbb{R}_x \Rightarrow \alpha(u) = \alpha(u) \wedge \text{Top} = \alpha(u) \wedge \alpha(\mathbb{R}_x)
= \alpha(u \cap \mathbb{R}_x) \leq \alpha(v \cap \mathbb{R}) = \alpha(v).
\]

Proposition 2.7. Suppose that \(\alpha \in C(L) \), \(w \in \mathcal{O}\mathbb{R} \) and \(\alpha(w) = \text{Top} \), then \(\alpha \rhd w \).

Proof. Let \(u, v \in \mathcal{O}\mathbb{R} \) and \(u \cap w \subseteq v \cap w \). Hence
\[
\alpha(u) = \alpha(u) \wedge \text{Top} = \alpha(u) \wedge \alpha(w)
= \alpha(u \cap w) \leq \alpha(v \cap w) = \alpha(v) \wedge \alpha(w) = \alpha(v) \wedge \text{Top} = \alpha(v).
\]
In this way, it turns out that the following equality is in place, too.

\[\text{pim}(\alpha) = \bigcap \{ w \in \mathcal{O}_R : \alpha \upharpoonright w \}. \]

Example 2.8. There is a frame \(L \) and \(\beta \in C(L) \) such that \(\beta \upharpoonright \text{pim}(\beta) \). To see this, let \(L, \beta \) and the family \(\{S_c\}_{c \in \mathcal{I}} \) be same as in [13, Example 3.18]. Then, \(\text{pim}(\beta) \subseteq \bigcap_{c \in \mathcal{I}} S_c = \emptyset \). Thus, \(\beta \upharpoonright \text{pim}(\beta) \) does not hold. Furthermore, since \(\beta(\emptyset) = \bot \), there exists \(w \in \mathcal{O}_R \) such that \(\beta(w) \neq \top \). Thus, the answer to Question 1 is negative. Also, since \(\beta(\top) = \top \), there exists an element \(r \in \mathbb{R} \) such that for every \(w \in \mathcal{O}_R \), we have \(\beta(w) \neq \bot \), whereas \(r \notin \emptyset = \text{pim}(\beta) \). Therefore, the answer to Question 2 is also negative.

Now, we want to find the relationship between \(\text{pim}(|\alpha|) \) and \(\text{pim}(\alpha) \).

Lemma 2.9. For every \(\alpha \in C(L) \) and every \(x \in \mathbb{R} \), we have

\[|\alpha|(\mathbb{R}_x) = \left(\alpha(x, +\infty) \lor \alpha(-\infty, |x|) \right) \land \left(\alpha(-|x|, +\infty) \lor \alpha(-\infty, -x) \right). \]

Proof. By Proposition 1.4, the proof is straightforward. \(\square \)

The following corollary is followed from the above lemma immediately.

Corollary 2.10. Assume that \(\alpha \in C(L) \) and \(x \in \mathbb{R} \). Then the following statements hold:

(a) If \(x < 0 \), then \(|\alpha|(\mathbb{R}_x) = \top \).

(b) If \(x \geq 0 \), then \(|\alpha|(\mathbb{R}_x) = \alpha(\mathbb{R}_x) \land \alpha(\mathbb{R} \setminus x) \).

(c) \(\text{pim}(|\alpha|) \subseteq \mathbb{R}^+ \).

Proposition 2.11. \(\text{pim}(|\alpha|) = \{ |x| : x \in \text{pim}(\alpha) \} \) for every \(\alpha \in C(L) \).

Proof. Supposing \(A = \{ |x| : x \in \text{pim}(\alpha) \} \), clearly, \(A = \{ x \in \mathbb{R}^+ : x \in \text{pim}(\alpha) \text{ or } -x \in \text{pim}(\alpha) \} \). Accordingly to Lemma 2.9, for every \(x \geq 0 \), we can write

\[
x \notin A \iff x, -x \notin \text{pim}(\alpha) \iff \alpha(\mathbb{R}_x) = \alpha(\mathbb{R} \setminus x) = \top \iff |\alpha|(\mathbb{R}_x) = \top \iff x \notin \text{pim}(|\alpha|).
\]

\(\square \)
Proposition 2.12. The following relations are true for each \(\alpha \in C(L) \) and each \(r \in \mathbb{R} \):

(a) \(\text{pim}(r) = \{r\} \).
(b) \(\text{pim}(r\alpha) = r \text{pim}(\alpha) \).
(c) \(\text{pim}(r + \alpha) = r + \text{pim}(\alpha) \).

Proof. (a): Clearly, for every \(r \in \mathbb{R} \), we can write
\[
 r(\mathbb{R}_x) = \text{Top} \iff x \neq r.
\therefore \text{pim}(r) = \bigcap_{x \neq r} \mathbb{R}_x = \{r\}.
\]

(b): For every \(r \in \mathbb{R} \), we can write (without loss of generality, assume that \(r \neq 0 \))
\[
 \text{pim}(r\alpha) \subseteq \mathbb{R}_x \iff (r\alpha)(\mathbb{R}_x) = \text{Top} \iff \alpha(\frac{1}{r}\mathbb{R}_x) = \alpha(\mathbb{R}_{\frac{1}{r}}) = \text{Top}
\iff \text{pim}(\alpha) \subseteq \mathbb{R}_{\frac{1}{r}} \iff r \text{pim}(\alpha) \subseteq \mathbb{R}_x
\iff \text{pim}(r) \cdot \text{pim}(\alpha) \subseteq \mathbb{R}_x.
\]

(c): For every \(r \in \mathbb{R} \), we can write
\[
 \text{pim}(r + \alpha) \subseteq \mathbb{R}_x \iff (r + \alpha)(\mathbb{R}_x) = \text{Top} \iff \alpha(-r + \mathbb{R}_x) = \alpha(\mathbb{R}_{x-r}) = \text{Top}
\iff \text{pim}(\alpha) \subseteq \mathbb{R}_{x-r} = -r + \mathbb{R}_x \iff r + \text{pim}(\alpha) \subseteq \mathbb{R}_x
\iff \text{pim}(r) + \text{pim}(\alpha) \subseteq \mathbb{R}_x.
\]

Now, we state the relation between \(\text{pim}(\alpha) \), \(\text{pim}(\alpha^+) \), and \(\text{pim}(\alpha^-) \) in the following.

Proposition 2.13. For every \(\alpha \in C(L) \), the following relations hold:

(a) \(\text{pim}(\alpha) \cap (0, +\infty) = \text{pim}(\alpha^+) \setminus \{0\} \).
(b) \(\text{pim}(\alpha) \cap (-\infty, 0) = \text{pim}(\alpha^-) \setminus \{0\} \).
(c) \(\text{pim}(\alpha) \setminus \{0\} = ((\text{pim}(\alpha^+) \cup \text{pim}(\alpha^-)) \setminus \{0\} \).

Proof. (a): For every \(x > 0 \), by Proposition 1.4, we have
\[
 \alpha^+(-\infty, x) = (\alpha \lor \mathbb{0})(-\infty, x) = \alpha(-\infty, x) \wedge \mathbb{0}(-\infty, x) = \alpha(-\infty, x)
\]
and similarly,
\[\alpha^+(x, +\infty) = (\alpha \lor 0)(x, +\infty) = \alpha(x, +\infty) \lor 0(x, +\infty) = \alpha(x, +\infty). \]

Therefore, for every \(x > 0 \), we can deduce that
\[\alpha(\mathbb{R}_x) = \alpha(-\infty, x) \lor \alpha(x, +\infty) = \alpha^+(-\infty, x) \lor \alpha^+(x, +\infty) = \alpha^+(\mathbb{R}_x). \]

Hence, \((0, +\infty) \cap \text{pim}(\alpha) = \text{pim}(\alpha^+) \setminus \{0\}\).

(b): For every \(x < 0 \), by part (a), we can write
\[
-\alpha^-(\mathbb{R}_x) = -\alpha^-([-\infty, x) \lor (x, +\infty)] \\
= -\alpha^-(-\infty, x) \lor -\alpha^-(x, +\infty) \\
= \alpha^-(-x, +\infty) \lor \alpha^-(-\infty, -x) \\
= (-\alpha)^+(-x, +\infty) \lor (-\alpha)^+(-\infty, -x) \\
= -\alpha(-x, +\infty) \lor -\alpha(-\infty, -x) \\
= \alpha(-\infty, x) \lor \alpha(x, +\infty) = \alpha(\mathbb{R}_x).
\]

Therefore, \((-\infty, 0) \cap \text{pim}(\alpha) = \text{pim}(-\alpha^-) \setminus \{0\}\).

(c): Straightforward from (a) and (b), it is concluded that
\[\text{pim}(\alpha) \setminus \{0\} = ((\text{pim}(\alpha^+) \cup \text{pim}(-\alpha^-)) \setminus \{0\}. \]

\[\square \]

Question 3: Now, this question arises whether the following relations, similar to what we have for real functions on topological spaces, hold.

\[\text{pim}(\alpha \lor \beta) \subseteq \text{pim}(\alpha) \cup \text{pim}(\beta) \quad \text{pim}(\alpha \land \beta) \subseteq \text{pim}(\alpha) \cap \text{pim}(\beta) \]
\[\text{pim}(\alpha + \beta) \subseteq \text{pim}(\alpha) + \text{pim}(\beta) \quad \text{pim}(\alpha \beta) \subseteq \text{pim}(\alpha)\text{pim}(\beta). \]

We show that under some achievable conditions, the answer is positive. But first we need some preparations.

Definition 2.14. An ideal \(I \) in a frame \(L \) is called \(\lor \)-complete (countably \(\lor \)-complete) if from \(D \subseteq I \) (countable set \(D \subseteq I \)), it follows that \(\bigvee D \in I \).
Example 2.15. (a) Every principal ideal is \vee-complete.
(b) Suppose that ω_1 is the first uncountable ordinal and $L = \downarrow \omega_1$. Clearly L is a frame and if we put $P = L \setminus \{\text{Top}\}$, then P is a countably \vee-complete ideal whereas it is not a \vee-complete ideal.

Definition 2.16. For every $P \in \text{Spec}(L)$, we define $A_P(\alpha) = \{x \in \mathbb{R} : \alpha(x, +\infty) \in P\}$ and $B_P(\alpha) = \{x \in \mathbb{R} : \alpha(-\infty, x) \in P\}$.

Because these two sets $A_P(\alpha)$ and $B_P(\alpha)$ are important in our work, we discuss them briefly.

Lemma 2.17. Let $P \in \text{Spec}(L)$ and $\alpha \in C(L)$. Then
(a) $A_P(\alpha) \cup B_P(\alpha) = \mathbb{R}$.
(b) Any element of $A_P(\alpha)$ is an upper bound of $B_P(\alpha)$ and any element of $B_P(\alpha)$ is a lower bound of $A_P(\alpha)$.
(c) $\uparrow A_P(\alpha) = A_P(\alpha)$ and $\downarrow B_P(\alpha) = B_P(\alpha)$.

Proof. (a): Assuming $x \notin A_P(\alpha)$, it follows that $\alpha(x, +\infty) \notin P$. Since P is prime and $\alpha(x, +\infty) \land \alpha(-\infty, x) = \perp \in P$, we deduce that $\alpha(-\infty, x) \in P$. Hence $x \in B_P(\alpha)$.

(b): Assume that $x \in A_P(\alpha)$ and, on the contrary, there exists an element $c \in B_P(\alpha)$ such that $x < c$. Therefore, $\text{Top} = \alpha(\mathbb{R}) = \alpha(-\infty, c) \lor \alpha(x, +\infty) \in P$ and this is a contradiction. Similarly, any element of $B_P(\alpha)$ is a lower bound of $A_P(\alpha)$.

(c): Supposing $x \in \uparrow A_P(\alpha)$, there exists an element $a \in A_P(\alpha)$ such that $a \leq x$. Thus, $\alpha(x, +\infty) \leq \alpha(a, +\infty) \in P$ and consequently $x \in A_P(\alpha)$. \qed

Corollary 2.18. Let $P \in \text{Spec}(L)$ and $\alpha \in C(L)$. Then the following statements are equivalent:
(a) $\inf A_P(\alpha) \in \mathbb{R}$
(b) $A_P(\alpha) \neq \emptyset \neq B_P(\alpha)$.
(c) $\sup B_P(\alpha) \in \mathbb{R}$
(d) There exists an element $x \in \mathbb{R}$ such that

$$(x, +\infty) \subseteq (\inf A_P(\alpha), +\infty) \subseteq [x, +\infty) \text{ and }$$

$$(-\infty, x) \subseteq (-\infty, \sup B_P(\alpha)) \subseteq (-\infty, x].$$

(e) $\inf A_P(\alpha) = \sup B_P(\alpha) \in \mathbb{R}$.

Proof. (a) ⇒ (b): By hypothesis, clearly, \(A_P(\alpha) \neq \emptyset \) and there exists an element \(x \in \mathbb{R} \) such that \(x \notin A_P(\alpha) \). By Lemma 2.17, \(x \in B_P(\alpha) \). Thus, \(B_P(\alpha) \) is also non-empty.

(b) ⇒ (c): By Lemma 2.17, it is clear.

(c) ⇒ (d): Similar to (a) ⇒ (b), it follows that \(A_P(\alpha) \neq \emptyset \neq B_P(\alpha) \).

Hence, by part (b) of Lemma 2.17, \(A_P(\alpha) \) and \(B_P(\alpha) \) are non-empty closed subsets in \(\mathbb{R} \). If \(P \) is real with respect to every \(\alpha \in C(L) \), then we say \(P \) is real.

Definition 2.19. \(P \in \text{Spec}(L) \) is said to be real with respect to \(\alpha \in C(L) \) if \(A_P(\alpha) \) and \(B_P(\alpha) \) are non-empty closed subsets in \(\mathbb{R} \). If \(P \) is real with respect to every \(\alpha \in C(L) \), then we say \(P \) is real.

Lemma 2.20. Assume that \(P \in \text{Spec}(L) \) and \(\alpha \in C(L) \). Then, the following statements are equivalent:

(a) \(P \) is real with respect to \(\alpha \).
(b) \(\inf A_P(\alpha) \in A_P(\alpha) \) and \(\sup B_P(\alpha) \in B_P(\alpha) \).
(c) There is an element \(x \in \mathbb{R} \) such that \(A_P(\alpha) \cap B_P(\alpha) = \{x\} \).
(d) There exists an element \(x \in \mathbb{R} \) such that \(\alpha(\mathbb{R}_x) \in P \).

Proof. By Corollary 2.18, it is clear.

Lemma 2.21. Let \(P \in \text{Spec}(L) \) be countably \(\lor \)-complete. Then \(P \) is real.

Proof. Suppose that \(\alpha \in C(L) \). Since \(P \) is countably \(\lor \)-complete, it follows that \(\inf A_P(\alpha) \in \mathbb{R} \) and so, by Corollary 2.18, there exists an element \(x \in \mathbb{R} \) such that
\[
(x, +\infty) \subseteq (\inf A_P(\alpha), +\infty) \subseteq [x, +\infty)
\]
and
\[
(-\infty, x) \subseteq (-\infty, \sup B_P(\alpha)) \subseteq (-\infty, x].
\]
By Lemma 2.20, it is enough to show that \(x \in A_P(\alpha) \cap B_P(\alpha) \). This is obvious, since \(P \) is countably \(\lor \)-complete and \(\mathbb{Q} \) is dense in \(\mathbb{R} \).
By the above lemma, $\downarrow p$ is real for each $p \in \text{Sp}L$.

We need the following lemma for the next theorem.

Lemma 2.22. Let P be prime ideal in a frame L and $\alpha \in C(L)$. The following statements hold:

(a) $A_P(-\alpha) = -B_P(\alpha)$ and $B_P(-\alpha) = -A_P(\alpha)$.

(b) $B_P(\alpha^+) = (-\infty, 0) \cup B_P(\alpha)$.

(c) $A_P(\alpha^+) = (0, +\infty) \cap A_P(\alpha)$.

(d) $B_P(\alpha^-) = (-\infty, 0) \cup -A_P(\alpha)$.

(e) $A_P(\alpha^-) = (0, +\infty) \cap -B_P(\alpha)$.

If, in addition, $\hat{P}(\alpha) = \inf A_P(\alpha) \in \mathbb{R}$, then

(f) $\hat{P}(\alpha^+) = (\hat{P}(\alpha))^+$;

(g) $\hat{P}(\alpha^-) = (\hat{P}(\alpha))^-$.

Proof. (a): It is clear that

$$A_P(-\alpha) = \{x \in \mathbb{R} : -\alpha(x, +\infty) \in P\} = \{x \in \mathbb{R} : \alpha(-\infty, -x) \in P\} = -\{y \in \mathbb{R} : \alpha(-\infty, y) \in P\} = -B_P(\alpha).$$

Similarly, we conclude that $B_P(-\alpha) = -A_P(\alpha)$.

(b): We can write

$$B_P(\alpha^+) = \{x \in \mathbb{R} : \alpha^+(-\infty, x) \in P\} = \{x \in \mathbb{R} : 0(-\infty, x) \land \alpha(-\infty, x) \in P\} = \{x \in \mathbb{R} : 0(-\infty, x) \in P\} \cup \{x \in \mathbb{R} : \alpha(-\infty, x) \in P\} = (-\infty, 0) \cup B_P(\alpha).$$

(c): We can write

$$A_P(\alpha^+) = \{x \in \mathbb{R} : \alpha^+(x, +\infty) \in P\} = \{x \in \mathbb{R} : 0(x, +\infty) \lor \alpha(x, +\infty) \in P\} = \{x \in \mathbb{R} : 0(x, +\infty) \in P\} \cap \{x \in \mathbb{R} : \alpha(x, +\infty) \in P\} = (0, +\infty) \cap A_P(\alpha).$$

(d): By parts (a) and (b), it follows that

$$B_P(\alpha^-) = B_P((-\alpha)^+) = (-\infty, 0) \cup B_P(-\alpha) = (-\infty, 0) \cup -A_P(\alpha).$$

(e): Using (a) and (c), we do similar to (d).

(f): By part (b) and Corollary 2.18, we can write

$$(\hat{P}(\alpha))^+ = 0 \lor \hat{P}(\alpha) = \sup(-\infty, 0) \lor \sup B_P(\alpha) = \sup B_P(\alpha^+) = \hat{P}(\alpha^+).$$
(g): By part (d) and Corollary 2.18, we can write
\[(\hat{P}(\alpha))^- = 0 \lor -\hat{P}(\alpha) = \sup((-\infty, 0) \cup -A_P(\alpha)) = \sup B_P(\alpha^-) = \hat{P}(\alpha^-).\]

The following theorem is an improvement of [6, Proposition 2.3] (also, see [7, Proposition 3.9] and [9, Proposition 2.3]).

Theorem 2.23. Assume that \(P \in \text{Spec}(L)\) and is countably \(\lor\)-complete in \(L\). We define
\[\hat{P} : C(L) \to \mathbb{R}, \quad \hat{P}(\alpha) = \inf A_P(\alpha).\]
Then \(\hat{P}\) is an \(f\)-algebra homomorphism; that is,
(a) \(\hat{P}(\alpha + \beta) = \hat{P}(\alpha) + \hat{P}(\beta)\) for every \(\alpha, \beta \in C(L)\).
(b) \(\hat{P}(\alpha\beta) = \hat{P}(\alpha)\hat{P}(\beta)\) for every \(\alpha, \beta \in C(L)\).
(c) \(\hat{P}(r\alpha) = r\hat{P}(\alpha)\) for every \(r \in \mathbb{R}\) and every \(\alpha \in C(L)\).
(d) \(\hat{P}(\alpha \lor \beta) = \hat{P}(\alpha) \lor \hat{P}(\beta)\) for every \(\alpha, \beta \in C(L)\).
(e) \(\hat{P}(\alpha \land \beta) = \hat{P}(\alpha) \land \hat{P}(\beta)\) for every \(\alpha, \beta \in C(L)\).

Proof. (a): Let \(x = \hat{P}(\alpha + \beta)\). Since \(P\) is countably \(\lor\)-complete, we have
\[(\alpha + \beta)(x, +\infty) \in P.\]
Therefore,
\[(\alpha + \beta)(x, +\infty) = \bigvee \{\alpha(r, s) \land \beta(t, u) : (r, s) + (t, u) \subseteq (x, +\infty)\}\]
\[= \bigvee \{\alpha(r, s) \land \beta(t, u) : r + t \geq x\}\]
\[= \bigvee \{\alpha(r, +\infty) \land \beta(t, +\infty) : r + t \geq x\}\]
\[= \bigvee \{\alpha(r, +\infty) \land \beta(x - r, +\infty) : r \in \mathbb{R}\} \in P.\]

Hence
\[\bigvee \{\alpha(r, +\infty) \land \beta(x - r, +\infty) : r < \hat{P}(\alpha), r \in \mathbb{Q}\} \in P.\]

Since \(\alpha(r, +\infty) \notin P\) for every \(r < \hat{P}(\alpha)\), it follows that \(\beta(x - r, +\infty) \in P\) for every rational \(r < \hat{P}(\alpha)\) and so, by countably \(\lor\)-completeness of \(P\), we can write
\[\beta(x - \hat{P}(\alpha), +\infty) = \bigvee \{\beta(x - r, +\infty) : r < \hat{P}(\alpha), r \in \mathbb{Q}\} \in P.\]
Thus,
\[\hat{P}(\beta) \leq x - \hat{P}(\alpha) \implies \hat{P}(\alpha) + \hat{P}(\beta) \leq x. \] (1)

On the other hand, it is clear that for every \(s > \sup B_P(\alpha) = \hat{P}(\alpha) \), we have \(\alpha(-\infty, s) \notin P \). Therefore, similar to the above, it conclude that \(\beta(-\infty, x - s) \in P \) for every \(s > \hat{P}(\alpha) \). Consequently,
\[\beta(-\infty, x - \hat{P}(\alpha)) = \bigvee \{ \beta(-\infty, x - s) : s > \hat{P}(\alpha), s \in \mathbb{Q} \} \in P. \]

Hence, we can write
\[x - \hat{P}(\alpha) \leq \hat{P}(\beta) \implies x \leq \hat{P}(\alpha) + \hat{P}(\beta). \] (2)

The desired equality follows from (1) and (2).

(b): Case (1): \(\alpha, \beta \geq 0 \) and \(\hat{P}(\alpha \beta) = 0 \). In this case, we show that \(\hat{P}(\alpha) = 0 \) or \(\hat{P}(\beta) = 0 \). Since \(\hat{P}(\alpha \beta) = 0 \), \((\alpha \beta)(0, +\infty) \in P \) and since \(\alpha(-\infty, 0) = 0, \beta(-\infty, 0) = 0 \), we can write
\[(\alpha \beta)(0, +\infty) = \bigvee \{ \alpha(r, s) \land \beta(t, u) : (r, s)(t, u) \in (0, +\infty) \} \]
\[= \bigvee \{ \alpha(r, s) \land \beta(t, u) : r, t \geq 0 \} \]
\[= \bigvee \{ \alpha(r, +\infty) \land \beta(t, +\infty) : r, t \geq 0 \} \]
\[= \alpha(0, +\infty) \land \beta(0, +\infty) \in P. \]

Therefore, \(\beta(\mathbb{R}_0) = \beta(0, +\infty) \in P \) or \(\alpha(\mathbb{R}_0) = \alpha(0, +\infty) \in P \). Thus, \(\hat{P}(\alpha) = 0 \) or \(\hat{P}(\beta) = 0 \).

Case (2): \(\alpha, \beta \geq 0 \) and \(\hat{P}(\alpha \beta) = x > 0 \). In this case
\[\alpha \beta(x, +\infty) \in P \implies \alpha \beta(x, +\infty) = \bigvee_{r>0} \left(\alpha(r, +\infty) \land \beta\left(\frac{x}{r}, +\infty\right) \right) \in P. \]

Since \(\alpha(r, +\infty) \notin P \) for every \(0 < r < \hat{P}(\alpha) \), it follows that \(\beta(\frac{x}{r}, +\infty) \in P \) for every \(0 < r < \hat{P}(\alpha) \). Therefore, for every \(0 < r < \hat{P}(\alpha) \), we have \(\frac{x}{r} \geq \hat{P}(\beta) \) and so \(\frac{x}{\hat{P}(\alpha)} \geq \hat{P}(\beta) \). This implies that
\[x \geq \hat{P}(\alpha) \hat{P}(\beta). \] (3)
Since $\alpha(-\infty, s) \not\in P$ for every $s > \hat{P}(\alpha)$, similar to above, we conclude that $\beta(-\infty, \frac{x}{s}) \in P$ for every $s > \hat{P}(\alpha)$. Thus, $\frac{x}{s} \leq \hat{P}(\beta)$ for every $s > \hat{P}(\alpha)$ and consequently, $\frac{x}{\hat{P}(\alpha)} \leq \hat{P}(\beta)$. Hence,

$$x \leq \hat{P}(\alpha)\hat{P}(\beta). \quad (4)$$

From (3) and (4), it follows that $\hat{P}(\alpha\beta) = \hat{P}(\alpha)\hat{P}(\beta)$.

Final case: Let $\alpha, \beta \in C(L)$ be arbitrary. By previous cases, we can write

$$\hat{P}(\alpha\beta) = \hat{P}((\alpha^+ - \alpha^-)(\beta^+ - \beta^-))$$

$$= \hat{P}(\alpha^+)\hat{P}(\beta^+) - \hat{P}(\alpha^+)\hat{P}(\beta^-) - \hat{P}(\alpha^-)\hat{P}(\beta^+) + \hat{P}(\alpha^-)\hat{P}(\beta^-).$$

On the other hand, by Lemma 2.22, we have $\hat{P}(\alpha^-) = (\hat{P}(\alpha))^-$ and $\hat{P}(\alpha^+) = (\hat{P}(\alpha))^+$. Therefore

$$\hat{P}(\alpha\beta) = (\hat{P}(\alpha))^+(\hat{P}(\beta))^+ - (\hat{P}(\alpha))^+(\hat{P}(\beta))^-- (\hat{P}(\alpha))^-(\hat{P}(\beta))^+ + (\hat{P}(\alpha))^-(\hat{P}(\beta))^--$$

$$= (\hat{P}(\alpha)^+ - \hat{P}(\alpha)^-)(\hat{P}(\beta)^+ - \hat{P}(\beta)^-) = \hat{P}(\alpha)\hat{P}(\beta).$$

(c): If $r = 0$, the assertion is clear. If $r > 0$, then

$$\hat{P}(r\alpha) = \inf \{ x : r\alpha(x, +\infty) \in P \} = \inf \left\{ x : \alpha \left(\frac{x}{r}, +\infty \right) \in P \right\}$$

$$= \inf \{ ry : \alpha(y, +\infty) \in P \} = r\hat{P}(\alpha).$$

Finally, if $r < 0$, then

$$\hat{P}(r\alpha) = \inf \{ x : r\alpha(x, +\infty) \in P \} = \inf \{ x : -r\alpha(-\infty, -x) \in P \}$$

$$= \inf \left\{ x \in \mathbb{R} : \alpha(-\infty, \frac{x}{r}) \in P \right\} = \inf \{ ry : \alpha(-\infty, y) \in P \}$$

$$= r \sup \{ y : \alpha(-\infty, y) \in P \} = r\hat{P}(\alpha).$$

Therefore, $\hat{P}(r\alpha) = r\hat{P}(\alpha)$ for every $r \in \mathbb{R}$.

(d): Clearly, we can write

$$\hat{P}(\alpha \lor \beta) = \sup \{ x \in \mathbb{R} : (\alpha \lor \beta)(-\infty, x) \in P \}$$

$$= \sup \{ x : \alpha(-\infty, x) \cap \beta(-\infty, x) \in P \}$$

$$= \sup \left(\{ x : \alpha(-\infty, x) \in P \} \cup \{ x : \beta(-\infty, x) \in P \} \right)$$

$$= \sup \{ x : \alpha(-\infty, x) \in P \} \lor \sup \{ x : \beta(-\infty, x) \in P \}$$

$$= \hat{P}(\alpha) \lor \hat{P}(\beta).$$
(e): It is similar to the proof of the part (d).

Note that, by Lemma 2.20, we obtain the following result, clearly.

Corollary 2.24. Suppose that \(P \in \text{Spec}(L) \) is countably \(\lor \)-complete. Then \(\hat{P}(\alpha) = x \) if and only if \(\alpha(\mathbb{R}_x) \in P \).

Corollary 2.25. Assume that \(p \in \text{Sp}L \) and

\[
\hat{p} : C(L) \to \mathbb{R}, \quad \hat{p}(\alpha) = \inf\{x \in \mathbb{R} : \alpha(x, +\infty) \leq p\}.
\]

Then \(\hat{p} \) is an \(f \)-algebra homomorphism.

Proof. It suffices to put \(P = \downarrow p \), then, by Theorem 2.23, we are done.

We are now ready to answer the Question 3 which we raised earlier.

Theorem 2.26. Suppose that \(L \) is a frame in which every maximal ideal is countable \(\lor \)-complete. Then for every \(\alpha, \beta \in C(L) \), we have the following relations:

1. \(\text{pim}(\alpha + \beta) \subseteq \text{pim}(\alpha) + \text{pim}(\beta) \).
2. \(\text{pim}(\alpha\beta) \subseteq \text{pim}(\alpha)\text{pim}(\beta) \).
3. \(\text{pim}(\alpha \lor \beta) \subseteq \text{pim}(\alpha) \lor \text{pim}(\beta) \).
4. \(\text{pim}(\alpha \land \beta) \subseteq \text{pim}(\alpha) \land \text{pim}(\beta) \).

Proof. We only prove part (a); other parts are proved by the same manner. Suppose that \(x \in \text{pim}(\alpha + \beta) \). Thus, \((\alpha + \beta)(\mathbb{R}_x) \neq \text{Top} \) and so there exists an element \(M \in \text{Max}(L) \) such that \((\alpha + \beta)(\mathbb{R}_x) \in M \). Therefore, by Theorem 2.23 and Corollary 2.24, \(x = \hat{M}(\alpha + \beta) = \hat{M}(\alpha) + \hat{M}(\beta) \). Taking \(\hat{M}(\alpha) = a \) and \(\hat{M}(\beta) = b \), it is sufficient to show that \(a \in \text{pim}(\alpha) \) and \(b \in \text{pim}(\beta) \). To see this, by Corollary 2.24, \(\alpha(\mathbb{R}_a) \in M \) and \(\beta(\mathbb{R}_b) \in M \). Hence, \(\alpha(\mathbb{R}_a) \neq \text{Top} \neq \beta(\mathbb{R}_b) \), so \(a \in \text{pim}(\alpha) \) and \(b \in \text{pim}(\beta) \). Therefore, \(\text{pim}(\alpha + \beta) \subseteq \text{pim}(\alpha) + \text{pim}(\beta) \). \(\Box \)
3 Comparing $\text{pim}(\alpha)$ with images of two real functions $\overline{\alpha}$ and $\hat{\alpha}$

In this section, first, for any $\alpha \in C(L)$, we introduce two real functions $\overline{\alpha}$ and $\hat{\alpha}$ induced naturally by α, then we compare $\text{pim}(\alpha)$ with the images of these two functions.

Definition 3.1. Suppose that $\alpha \in C(L)$. By Corollary 2.25, we can define $\overline{\alpha} : \text{Sp}L \to \mathbb{R}$ with $\overline{\alpha}(p) = \hat{\alpha}(\alpha)$. Also, supposing $\overline{\alpha} : \text{Sp}L \to \mathbb{R}$ with $\overline{\alpha}(p) = \hat{\alpha}(\alpha)$, we can define $\hat{\alpha} : X_\alpha \to \mathbb{R}$ with $\hat{\alpha}(P) = \hat{P}(\alpha)$.

Note that the mapping $p \to \downarrow p$ is an embedding from $\text{Sp}L$ to $\text{Spec}(L)$, where $\text{Spec}(L)$ is equipped with hall-kernel topology (that is, the Zariski topology). Therefore, we can suppose that $\text{Sp}L$ is a subspace of $\text{Spec}(L)$ and so $\hat{\alpha}|_{\text{Sp}L} = \overline{\alpha}$.

Proposition 3.2. For every $\alpha \in C(L)$, $\hat{\alpha}$ is continuous and so is $\overline{\alpha}$.

Proof. Assume that (x, y) is an open interval in \mathbb{R}. Taking $a = \alpha(x, +\infty)$ and $b = \alpha(-\infty, y)$, it suffices to show that $(\hat{\alpha})^{-1}(x, y) = h^c_{X_\alpha}(a) \cap h^c_{X_\alpha}(b)$, where $h^c_{X_\alpha}(a) = X_\alpha \cap h^c(a)$. Too see this, for every $P \in X_\alpha$, we can write

\[
P \in (\hat{\alpha})^{-1}(x, y) \iff x < \hat{\alpha}(P) = \hat{P}(\alpha) < y \iff a = \alpha(x, +\infty) \notin P, b = \alpha(-\infty, y) \notin P \iff P \in h^c_{X_\alpha}(a) \cap h^c_{X_\alpha}(b).
\]

The following remark shows that $\overline{\alpha}$ is not a new concept.

Remark 3.3. Recall that $\text{Sp} \mathcal{O} \mathbb{R} = \{R_x : x \in \mathbb{R}\}$ and $g : \text{Sp} \mathcal{O} \mathbb{R} \to \mathbb{R}$ with $g(R_x) = x$ is a homeomorphism. For every continuous real function $\alpha \in C(L)$, we have $\text{Sp} \alpha : \text{Sp}L \to \text{Sp} \mathcal{O} \mathbb{R}$ with $(\text{Sp} \alpha)(p) = \alpha^*(p) = \bigvee\{w \in \mathcal{O} \mathbb{R} : \alpha(w) \leq p\}$. Since $\alpha^*(p) \in \text{Sp} \mathcal{O} \mathbb{R}$, there exists a unique $x \in \mathbb{R}$ such that $(\text{Sp} \alpha)(p) = \alpha^*(p) = R_x$. In fact, $(\text{Sp} \alpha)(p) = R_x$ if and only if $\alpha(R_x) \leq p$. Therefore, for every $\alpha \in C(L)$, we have a natural function $\overline{\alpha} = g \text{Sp} \alpha$ from $\text{Sp}L$ to \mathbb{R} with $\overline{\alpha}(p) = x$ such that $\alpha(R_x) \leq p$. Also, according to this fact, for every $p \in \text{Sp}L$, we can define a function $\hat{\alpha} : C(L) \to \mathbb{R}$ with $\hat{\alpha}(\alpha) = \overline{\alpha}(p)$.
Proposition 3.4. Assume that $\alpha \in C(L)$. Then $\text{Im}(\alpha) \subseteq \text{Im}(\hat{\alpha}) \subseteq \text{pim}(\alpha)$.

Proof. Clearly, $\text{Im}(\alpha) \subseteq \text{Im}(\hat{\alpha})$. Now, suppose that $x \in \text{Im}(\hat{\alpha})$. Thus, there exists a $P \in \text{Spec}(L)$ such that $\hat{\alpha}(P) = x$. Hence, $P(\alpha) = x$ and by Corollary 2.24, it follows that $\alpha(\mathbb{R}_x) \in P$. Therefore, $\alpha(\mathbb{R}_x) \neq \text{Top}$ and consequently $x \in \text{pim}(\alpha)$. □

The first inclusion in the above proposition may be strict. To see this, we need the following lemma.

Lemma 3.5. Suppose that L has no non-trivial complemented element. Then for every $\alpha \in C(L)$, there exists an element $x \in \mathbb{R}$ such that $\alpha(\mathbb{R}_x) \neq \text{Top}$.

Proof. Let $\alpha \in C(L)$ and, on the contrary, for every $x \in \mathbb{R}$, we have $\alpha(\mathbb{R}_x) = \text{Top}$. By hypothesis, for every $x \in \mathbb{R}$, we $\alpha(-\infty, x) = \text{Top}$ and $\alpha(x, +\infty) = \bot$ or $\alpha(-\infty, x) = \bot$ and $\alpha(x, +\infty) = \text{Top}$. It is easy to see that there exists an element $c \in \mathbb{R}$ such that $\alpha(c, +\infty) = \bot$ and so $x_0 = \inf\{x \in \mathbb{R} : \alpha(x, +\infty) = \bot\}$ exists. Thus, $\alpha(x_0, +\infty) = \bot$ and $\alpha(t, +\infty) = \text{Top}$ for every $t < x_0$ and so $\alpha(-\infty, t) = \bot$ for every $t < x_0$. Therefore, $\alpha(-\infty, x_0) = \bigvee\{\alpha(-\infty, t) : t < x_0\} = \bot$. Hence, $\alpha(\mathbb{R}_{x_0}) = \bot$ and this is a contradiction. □

In the following example we introduce a frame L such that $\text{Im}(\alpha) \subsetneq \text{pim}(\hat{\alpha})$ for every $\alpha \in C(L)$.

Example 3.6. Suppose $L = [0, 1) \times [0, 1) \oplus \text{Top}$. Clearly, L is a frame, Top is a \lor-prime element of L and $\text{Sp}L = \emptyset$. Therefore, L does not have any non-trivial complemented element and so, by Lemma 3.5, for every $\alpha \in C(L)$ we have $\alpha(\mathbb{R}_x) \neq \text{Top}$ for some $x \in \mathbb{R}$. We show that $C(L) = \{r : r \in \mathbb{R}\}$. To see this, assume that $\alpha \in C(L)$. Thus, there exists an element $r \in \mathbb{R}$ such that $\alpha(\mathbb{R}_r) \neq \text{Top}$. Now, for every $w \in \mathcal{O}_r$, since Top is \lor-prime, we can write

$$\text{Top} = \alpha(\mathbb{R}) = \alpha(w \cup \mathbb{R}_r) = \alpha(w) \lor \alpha(\mathbb{R}_r) \Rightarrow \alpha(w) = \text{Top}.$$

This conclude that $\alpha = r$. On the other hand, it is clear that $\text{Im}(\mathbb{R}) = \emptyset$, ...
whereas
\[x \in \text{Im}(\hat{r}) \iff \exists P \in \text{Spec}(L), \quad \hat{r}(P) = x \]
\[\iff \exists P \in \text{Spec}(L), \quad \hat{P}(r) = x \]
\[\iff \exists P \in \text{Spec}(L), \quad r(R_x) \in P \]
\[\iff r = x. \]

Therefore, \(\text{Im}(\hat{r}) = \{ r \} \).

Proposition 3.7. Assume that \(\alpha \in C(L) \). Then the following statements hold:

- (a) If \(\text{Sp} L \) is cofinal in \(L \setminus \{ \text{Top} \} \), then \(\text{Im}(\overline{\alpha}) = \text{Im}(\hat{\alpha}) = \text{pim}(\alpha) \).
- (b) If \(\bigcup X_\alpha = L \setminus \{ \text{Top} \} \), then \(\text{Im}(\hat{\alpha}) = \text{pim}(\alpha) \).

Proof. (a): It is enough to prove that \(\text{pim}(\alpha) \subseteq \text{Im}(\overline{\alpha}) \). Suppose that \(x \in \text{pim}(\alpha) \). Thus, \(\alpha(R_x) \neq \text{Top} \) and by hypothesis, there exists an element \(p \in \text{Sp} L \) such that \(\alpha(R_x) \leq p \) and this is equivalent to \(\overline{\alpha}(p) = \check{p}(\alpha) = x \). Therefore, \(x \in \text{Im}(\overline{\alpha}) \).

(b): Suppose that \(x \in \text{pim}(\alpha) \). Thus, \(\alpha(R_x) \neq \text{Top} \) and by hypothesis, there exists an element \(P \in X_\alpha \) such that \(\alpha(R_x) \in P \) and this is equivalent to \(\hat{\alpha}(P) = \hat{P}(\alpha) = x \). Therefore, \(x \in \text{Im}(\hat{\alpha}) \).

Acknowledgement

We would like to appreciate the referee for his/her accurate reading and valuable advices.

References

Ali Rezaei Aliabad Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email: aliabady_r@scu.ac.ir

Morad Mahmoudi Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email: moradmahmodi194@gmail.com