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Subpullbacks and coproducts of S-posets

Xingliang Liang and Yanfeng Luo

Abstract. In 2001, S. Bulman-Fleming et al. initiated the study of three
flatness properties (weakly kernel flat, principally weakly kernel flat, transla-
tion kernel flat) of right acts AS over a monoid S that can be described by
means of when the functor AS ⊗ − preserves pullbacks. In this paper, we
extend these results to S-posets and present equivalent descriptions of weakly
kernel po-flat, principally weakly kernel po-flat and translation kernel po-flat
S-posets. Moreover, we show that most of flatness properties of S-posets can
be transferred to their coproducts and vice versa.

1 Introduction and preliminaries

Let S be a pomonoid. A poset A is called a right S-poset (denoted by AS)
if there exists a right action A × S → A, (a, s) 7→ as, which satisfies (i)
the action is monotone in each variable, (ii) a(st) = (as)t and a1 = a for
all a ∈ A and s, t ∈ S. Left S-posets are defined analogously. The nota-
tion AS (respectively, SA) will often be used to denote a right (respectively,
left) S-poset, and ΘS = {θ} is the one-element right S-poset. All right
(respectively, left) S-posets form a category, denoted Pos-S (respectively,
S-Pos) (see [4]), whose morphisms are the functions that preserve both
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the action and the order. In these categories, as in the category Pos of
posets, the monomorphisms and epimorphisms are the injective and surjec-
tive morphisms, respectively. In Pos-S and S-Pos, a morphism g : A→ B
is called an order embedding if g(a) ≤ g(a′) implies a ≤ a′ for all a, a′ ∈ A.
A surjective order embedding is called an order isomorphism.

A nonempty subset I of a pomonoid S is called an ordered right ideal
of S if (i) IS ⊆ I and (ii) a ≤ b ∈ I implies a ∈ I for all a, b ∈ S. An S-
subposet BS of a right S-poset AS is called strongly convex if a ≤ b implies
a ∈ BS for any a ∈ AS and b ∈ BS . Clearly, if I is an ordered right ideal of
a pomonoid S, then I is a strongly convex S-subposet of the S-poset S. A
pomonoid S is called weakly right reversible if for any s, s′ ∈ S, there exist
u, v ∈ S such that us ≤ vs′.

Preliminary work on flatness properties of S-posets, was done by Fakhrud-
din in [6, 7], and continued in recent papers [1, 3, 9, 12] etc.

To define the tensor product A ⊗S B of a right S-poset AS and a left
S-poset SB (see [12]), we first equip the Cartesian product A × B with
component-wise order. Let A ⊗S B = (A × B)/ρ, where ρ is the order-
congruence on the right S-poset A×B (on which S acts trivially) generated
by the relation H = {((as, b), (a, sb))| a ∈ AS , b ∈SB, s ∈ S}. The equiva-
lence class of (a, b) in A⊗SB is denoted a⊗b. The order relation on A⊗SB
will be described in Lemma 2.1. Similar to S-acts, it is easy to see that
A⊗S S can be equipped with a natural right S-action, and A⊗S S ∼= A for
all S-posets AS . It can be seen that a⊗ s ≤ a′ ⊗ t in A⊗S S if and only if
as ≤ a′t in AS .

Subpullbacks and subequalizers in the category S-Pos are defined in [1].
The categories S-Pos and Pos are poset-enriched concrete categories, where
the order relation on morphism sets is defined pointwise (i.e. f ≤ g for
f, g : A→ B if and only if f(a) ≤ g(a) for every a ∈ A). In such categories,
a diagram

SP

p1

��

p2 //
SN

g

��
SM

f //
SQ

(P1)

is called the subpullback diagram for f and g if
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(1) the diagram (P1) is subcommutative (i.e. fp1 ≤ gp2), and

(2) if

SP
′

p′1
��

p′2 //
SN

g

��
SM

f //
SQ

is a diagram in S-Pos such that fp′1 ≤ gp′2, then there exists a unique
morphism ϕ : SP

′ →SP such that p1ϕ = p′1 and p2ϕ = p′2.

In S-Pos or Pos, SP may in fact be realized as

P = {(m,n) ∈M ×N | f(m) ≤ g(n)}

with restrictions p1 and p2 of the projections of M × N onto SM and SN
(note that P is possibly empty). The subpullback diagram (P1) is denoted
by P (M,N, f, g,Q) and tensoring it by any right S-poset AS one gets the
subcommutative diagram

A⊗SP
idA⊗p1

��

idA⊗p2 // A⊗SN
idA⊗g
��

A⊗SM
idA⊗f // A⊗SQ

in Pos. For the subpullback of mappings idA⊗ f and idA⊗ g, we may take

P ′ = {(a⊗m, a′ ⊗ n) ∈ (A⊗SM)× (A⊗SN) | a⊗ f(m) ≤ a′ ⊗ g(n)}

with p′1, p
′
2 being the restrictions of the projections.

From the definition of subpullbacks it follows that there exists a unique
monotonic mapping φ : A⊗S P → P ′ such that, in the diagram
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A⊗SP

idA⊗p1

��

idA⊗p2

))

φ

$$
P ′

p′1

��

p′2
// A⊗SN

idA⊗g

��
A⊗SM

idA⊗f // A⊗SQ

(P2)

we have p′iφ = idA ⊗ pi for i = 1, 2. This mapping is called the φ corre-
sponding to the subpullback diagram P (M,N, f, g,Q) for AS . It can be seen
that the mapping φ in diagram (P2) is given by

φ(a⊗ (m,n)) = (a⊗m, a⊗ n)

for all a ∈ AS and (m,n) ∈SP . Note that for φ to be surjective requires

(∀a, a′ ∈ AS)(∀m ∈SM)(∀n ∈SN)[a⊗ f(m) ≤ a′ ⊗ g(n)⇒

(∃a′′ ∈ AS)(∃m′ ∈SM)(∃n′ ∈SN)

(f(m′) ≤ g(n′) ∧ a⊗m = a′′ ⊗m′ ∧ a′ ⊗ n = a′′ ⊗ n′)],
and for φ to be order embeddable requires

(∀a, a′ ∈ AS)(∀m,m′ ∈SM)(∀n, n′ ∈SN)

[f(m) ≤ g(n) ∧ f(m′) ≤ g(n′) ∧ a⊗m ≤ a′ ⊗m′ ∧ a⊗ n ≤ a′ ⊗ n′ ⇒
a⊗ (m,n) ≤ a′ ⊗ (m′, n′) in A⊗S P ].

Moreover, if the mapping φ is both a surjection and an order embedding,
then φ is an order isomorphism.

Similar to S-acts, coproducts of S-posets are disjoint unions, with S-
action and order defined componentwise.
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If A =
·⋃
i∈I
Ai, where Ai are strongly convex right S-subposets of AS , then

by the mapping corresponding to the subpullback diagram P (M,N, f, g,Q)
for Ai, i ∈ I, we mean the unique monotonic mapping φi which makes, in
the diagram

Ai ⊗S P

idAi
⊗p1

��

idAi
⊗p2

**

φi

$$
P ′i

p′1i

��

p′2i
// Ai ⊗S N

idAi
⊗g

��
Ai ⊗S M

idAi
⊗f

// Ai ⊗S Q

(P2i)

we have p′jiφi = idAi ⊗ pj for j = 1, 2, where

P ′i = {(a⊗m, a′ ⊗ n) ∈ (Ai ⊗S M)× (Ai ⊗S N) | a⊗ f(m) ≤ a′ ⊗ g(n)}

and p′1i, p
′
2i are the restrictions of projections to P ′i .

It is shown in [2, 10] that, if we require either bijectivity or surjectivity
of φ for pullback diagram of certain types, we not only recover most of
the well-known forms of flatness, but obtain some new properties of acts
as well. Furthermore, some of these results are extended to S-posets, and
the classes of right S-posets corresponding to all of the cells in the first and
second columns of Figure 1 are considered in [9]. This paper continues the
investigation of the classes of right S-posets AS over S for which the functor
AS ⊗ − has certain subpullback preservation properties. The variations of
the types of subpullbacks considered in [9] and this paper are of the following
types:
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P (S, S, ι, ι, S)

φ surjective
�
�

P (Ss, Ss, ι, ι, S)

φ surjective
�
�

P (I, I, ι, ι, S)

φ surjective
�
�

P (M,M, ι, ι, Q)

φ surjective
�
�

P (S, S, f, f, S)

φ surjective
�
�

P (Ss, Ss, f, f, S)

φ surjective
�
�

P (I, I, f, f, S)

φ surjective
�
�

P (M,M, f, f,Q)

φ surjective
�
�

P (S, S, f, f, S)

φ order isomorphic

P (Ss, Ss, f, f, S)

φ order isomorphic

P (I, I, f, f, S)

φ order isomorphic

P (M,N, f, g,Q)

φ order isomorphic

Figure 1.

Where I (Ss) stands for a (principal) left ideal of S, and ι for a monomorphism of
left S-posets. Every rectangle stands for a class of right S-posets that is defined by
the property it contains. In the second and third columns, for instance, a rectangle
with the text “φ order isomorphic P (M,N, f, g,Q)” denotes the class of all right
S-posets AS such that the mapping φ is order isomorphic corresponding to every
subpullback diagram P (M,N, f, g,Q). But in the first column, for instance, a
rectangle with the text “φ surjective P (Ss, Ss, ι, ι, S)” denotes the class of all right
S-posets AS such that the mapping φ is surjective corresponding to every pullback
diagram P (Ss, Ss, ι, ι, S). A line between two rectangles indicates that the class
of right S-posets corresponding to the rectangle at the upper end of the line is
contained in the class corresponding to the rectangle at the lower end.

An S-poset AS is called subpullback flat (respectively, subequalizer flat) if the
functor AS ⊗ − takes subpullbacks (respectively, subequalizers) in S-Pos to sub-
pullbacks (respectively, subequalizers) in Pos. Clearly, AS is subpullback flat if
and only if the mapping φ is order isomorphic corresponding to every subpullback
diagram P (M,N, f, g,Q) in S-Pos.

It is proved in [1] that an S-poset AS is subpullback flat and subequalizer flat
if and only if AS satisfies the following conditions:

(P): (∀a, a′ ∈ AS)(∀u, v ∈ S)(au ≤ a′v
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⇒ (∃a′′ ∈ AS)(∃s, t ∈ S)(a = a′′s ∧ a′ = a′′t ∧ su ≤ tv));

(E): (∀a ∈ AS)(∀u, v ∈ S)(au ≤ av
⇒ (∃a′ ∈ AS)(∃s ∈ S)(a = a′s ∧ su ≤ sv)).

It is shown in [9] that an S-poset AS satisfies condition (P ) if and only if the
mapping φ is surjective corresponding to every subpullback diagram
P (M,N , f, g,Q). Conditions (WP ) and (PWP ) are also introduced in [9]. An
S-poset AS is said to satisfy condition (WP ) if the mapping φ is surjective corre-
sponding to every subpullback diagram P (I, I, f, f, S), where I is a left ideal of S.
An S-poset AS is said to satisfy condition (PWP ) if the mapping φ is surjective
corresponding to every subpullback diagram P (Ss, Ss, f, f, S), s ∈ S.

In Section 2 of this paper, we introduce three additional flatness properties
(weakly kernel po-flat, principally weakly kernel po-flat, translation kernel po-flat)
of S-posets by means of subpullback preservation, and present equivalent descrip-
tions of them (both for arbitrary and for cyclic S-posets).

It is shown in [10] that most of flatness properties of acts over a monoid S
are equivalent to the surjectivity or bijectivity of mappings corresponding to the
pullback diagrams in special cases. Furthermore, it is shown in [8] that these
flatness properties can be transferred to their coproducts. The purpose of Section
3 of this paper is to carry over these results to the setting of S-posets, and we show
that flatness properties introduced in [9] can be transferred from S-posets over a
pomonoid S to their coproducts.

Although much of our work follows directly from the unordered case, some care
is needed. Moreover, the results need to be stated and justified, which is the aim
of this article.

2 Subpullbacks and flatness

In this section, we discuss the classes of right S-posets AS corresponding to the
three lowest cells in the third column of Figure 1. We give an alternative description
of a right (cyclic, one-element) S-poset having the corresponding property.

We begin with the following result used by many authors and formulated in [12,
Theorem 5.2].

Lemma 2.1. Let AS be a right S-poset, SB a left S-poset, a, a′ ∈ AS, b, b′ ∈ SB.
Then a ⊗ b ≤ a′ ⊗ b′ in A ⊗S B if and only if there exist a1, a2, · · · , an ∈ AS,
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b2, · · · , bn ∈ SB and s1, t1, · · · , sn, tn ∈ S such that

a ≤ a1s1

a1t1 ≤ a2s2 s1b ≤ t1b2
a2t2 ≤ a3s3 s2b2 ≤ t2b3

...
...

antn ≤ a′ snbn ≤ tnb′.

Definition 2.2. A right S-poset AS is called

(i) weakly kernel po-flat if the mapping φ is order isomorphic corresponding to
every subpullback diagram P (I, I, f, f, S), where I is a left ideal of S;

(ii) principally weakly kernel po-flat if the mapping φ is order isomorphic corre-
sponding to every subpullback diagram P (Ss, Ss, f, f, S), s ∈ S;

(iii) translation kernel po-flat if the mapping φ is order isomorphic corresponding
to every subpullback diagram P (S, S, f, f, S).

From Figure 1 and Theorems 2.1, 2.2, 2.3, 2.4, 3.2, 4.1, 5.3 of [9], we see that
the new properties just defined are related to properties already studied as shown
in Figure 2.

TF

PWF
@
@

�
�

WF (PWP)
�
�

@
@

@
@

""

F (WP)
TKF

?
PWKF�

�
(P)

@
@

�
�
WKF

bb

�
�

@
@

SPF

Figure 2.

Note 2.3. SPF = subpullback flatness, F = flatness, WF = weak flatness, PWF =
principal weak flatness, WKF = weak kernel po-flatness, PWKF = principal weak
kernel po-flatness, TKF = translation kernel po-flatness, TF = torsion freeness.
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If S is a pomonoid and t ∈ S, then ρt : S → S will denote the right translation
by t, that is, ρt(s) = st for every s ∈ S.

Recall that a binary relation σ on an S-poset AS is called a compatible quasi-
order on AS if it is transitive, compatible with the S-action, and contains the
relation ≤ on AS . The relationship between order-congruences and compatible
quasi-order on AS is given in [13].

Suppose that ρ is a right order congruence on a pomonoid S. Define a relation
ρ̂ by

s ρ̂ t⇔ [s]ρ ≤ [t]ρ in S/ρ.

It is clear that ρ̂ is a compatible quasi-order on AS .
The subkernel or directed kernel of an S-poset morphism f : AS → BS is de-

fined by
−→
kerf = {(a, a′) ∈ A× A | f(a) ≤ f(a′)} (see [5]). It is shown in [13] that−→

kerf is a compatible quasi-order on AS . Furthermore, we first give equivalent char-
acterizations of weak kernel flatness, principal weak kernel flatness and translation
kernel flatness, both for arbitrary and for cyclic S-posets. If ρ is an equivalence
relation on S and s ∈ S, then s̄ denotes the equivalence class of s modulo ρ.

Proposition 2.4. A right S-poset AS is weakly kernel po-flat if and only if AS
satisfies condition (WP ) and for every left ideal I of S and every morphism f :

SI →S S the following condition holds:

(∀a, a′ ∈ AS)(∀s, s′, t, t′ ∈ I)

a⊗ s ≤ a′ ⊗ s′ in A⊗ I, f(s) ≤ f(t)
a⊗ t ≤ a′ ⊗ t′ in A⊗ I, f(s′) ≤ f(t′)

}
=⇒

a⊗ (s, t) ≤ a′ ⊗ (s′, t′) in A⊗S
−→
kerf .

Proof. It follows from Lemma 5.1 of [9] and Definition 2.2.

As a direct consequence, we have

Corollary 2.5. A cyclic right S-poset S/ρ is weakly kernel po-flat if and only if
S/ρ satisfies condition (WP ) and for every left ideal I of S and every morphism
f : SI →S S the following condition holds:

(∀s, s′, t, t′ ∈ I)

1̄⊗ s ≤ 1̄⊗ s′ in S/ρ⊗ I, f(s) ≤ f(t)
1̄⊗ t ≤ 1̄⊗ t′ in S/ρ⊗ I, f(s′) ≤ f(t′)

}
=⇒

1̄⊗ (s, t) ≤ 1̄⊗ (s′, t′) in S/ρ⊗S
−→
kerf .
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Proposition 2.6. A right S-poset AS is principally weakly kernel po-flat if and
only if AS satisfies condition (PWP ) and the following condition holds:

(∀a, a′ ∈ AS)(∀s, s′, t, t′, z, x ∈ S such that
−→
kerρx ⊆

−→
kerρz)

asx ≤ a′s′x, sz ≤ tz
atx ≤ a′t′x, s′z ≤ t′z

}
=⇒ a⊗ (sx, tx) ≤ a′ ⊗ (s′x, t′x) in A⊗S P ,

where SP = {(ux, vx) | u, v ∈ S, uz ≤ vz}.

Proof. Necessity. Let AS be principally weakly kernel po-flat. Then AS satisfies
condition (PWP ). Suppose that

asx ≤ a′s′x, sz ≤ tz,
atx ≤ a′t′x, s′z ≤ t′z

for some a, a′ ∈ AS and s, s′, t, t′, z, x ∈ S such that
−→
kerρx ⊆

−→
kerρz. Define a

mapping f : S(Sx) →S S by f(x) := z. Since
−→
kerρx ⊆

−→
kerρz, f is well-defined.

Clearly, f is a morphism of left S-posets. Using Theorem 4.1 of [9], from the
inequality asx ≤ a′s′x we obtain that there exist b ∈ AS and u, v ∈ S such that
as = bu, a′s′ = bv and ux ≤ vx. Hence we have

a⊗ sx = as⊗ x = bu⊗ x = b⊗ ux ≤ b⊗ vx
= bv ⊗ x = a′s′ ⊗ x = a′ ⊗ s′x

in A⊗S Sx. Analogously, a⊗ tx ≤ a′ ⊗ t′x in A⊗S Sx. Because AS is principally
weakly kernel po-flat, the mapping φ is an order embedding corresponding to the
subpullback diagram P (Sx, Sx, f, f, S). Then the inequalities

a⊗ sx ≤ a′ ⊗ s′x, f(sx) ≤ f(tx),
a⊗ tx ≤ a′ ⊗ t′x, f(s′x) ≤ f(t′x)

imply

a⊗ (sx, tx) ≤ a′ ⊗ (s′x, t′x) in A⊗S P,

where
P = {(ux, vx) ∈ Sx× Sx | f(ux) ≤ f(vx)}

= {(ux, vx) | u, v ∈ S, uz ≤ vz}.

Sufficiency. Let φ be the canonical mapping corresponding to the subpullback
diagram P (Sx, Sx, f, f, S) for AS , where s ∈ S and f : S(Sx)→SS is a morphism.
Because AS satisfies condition (PWP ), the mapping φ is surjective corresponding
to every subpullback diagram P (Sx, Sx, f, f, S) by Theorem 4.1 of [9]. Next wet
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show that φ is also an order embedding corresponding to every subpullback diagram
P (Sx, Sx, f, f, S). Suppose that

a⊗ sx ≤ a′ ⊗ s′x in A⊗S Sx, f(sx) ≤ f(tx),
a⊗ tx ≤ a′ ⊗ t′x in A⊗S Sx, f(s′x) ≤ f(t′x)

for some a, a′ ∈ AS and s, t, s′, t′, x ∈ S. Then

asx ≤ a′s′x, sz ≤ tz,
atx ≤ a′t′x, s′z ≤ t′z,

where z = f(x). By assumption

a⊗ (sx, tx) ≤ a′ ⊗ (s′x, t′x) in A⊗S P,

where SP = {(ux, vx) | u, v ∈ S, uz ≤ vz} =
−→
kerf . Hence φ is an order embedding,

and so AS is principally weakly kernel po-flat.

Using Proposition 2.6, we have the following description for a principally weakly
kernel po-flat cyclic S-poset.

Corollary 2.7. A cyclic right S-poset S/ρ is principally weakly kernel po-flat if
and only if S/ρ satisfies condition (PWP ) and the following condition holds:

(∀s, s′, t, t′, z, x ∈ S such that
−→
kerρx ⊆

−→
kerρz)

sx ρ̂ s′x, sz ≤ tz
tx ρ̂ t′x, s′z ≤ t′z

}
=⇒ 1̄⊗ (s, t) = 1̄⊗ (s′, t′) in S/ρ⊗S P ,

where SP = {(ux, vx) | u, v ∈ S, uz ≤ vz}.
Proposition 2.8. A right S-poset AS is translation kernel po-flat if and only if
AS satisfies condition (PWP ) and the following condition holds:

(∀a, a′ ∈ AS)(∀s, s′, t, t′, z ∈ S)

as ≤ a′s′, sz ≤ tz
at ≤ a′t′, s′z ≤ t′z

}
=⇒ a⊗ (s, t) ≤ a′ ⊗ (s′, t′) in A⊗S

−→
kerρz.

Proof. It is similar to that of Proposition 2.6.

For a cyclic right S-poset, Proposition 2.8 yields the following

Corollary 2.9. A cyclic right S-poset S/ρ is translation kernel po-flat if and only
if S/ρ satisfies condition (PWP ) and the following condition holds:

(∀s, s′, t, t′, z ∈ S)

s ρ̂ s′, sz ≤ tz
t ρ̂ t′, s′z ≤ t′z

}
=⇒ 1̄⊗ (s, t) ≤ 1̄⊗ (s′, t′) in S/ρ⊗S

−→
kerρz.
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We now consider whether a one-element S-poset ΘS = {θ} satisfies each of our
new properties. In preparation, we need to give the definition of connectedness for
S-posets.

Definition 2.10. An S-poset SB is called connected if for all b, b′ ∈ SB there exist
elements s1, t1, · · · , sn, tn ∈ S and b2, · · · , bn ∈ SB such that

s1b ≤ t1b2
s2b2 ≤ t2b3

...
snbn ≤ tnb′.

The foregoing sequence of inequalities will be called a scheme of length n con-
necting b and b′.

Proposition 2.11. For any pomonoid S, the following statements are equivalent:

(i) ΘS is principally weakly kernel po-flat;

(ii) ΘS is translation kernel po-flat;

(iii) For every z ∈ S,
−→
kerρz is connected as a left S-poset.

Proof. (i)⇒(ii) is clear.

(ii)⇒(iii). Take (s, t), (s′, t′) ∈ −→kerρz. Using translation kernel po-flatness,

θs ≤ θs′, sz ≤ tz,
θt ≤ θt′, s′z ≤ t′z

imply θ⊗(s, t) ≤ θ⊗(s′, t′) in Θ⊗S
−→
kerρz. By Lemma 2.1, there exist s1, t1, · · · , sn, tn ∈

S and b2, · · · , bn ∈
−→
kerρz such that

θ ≤ θs1

θt1 ≤ θs2 s1(s, t) ≤ t1b2
θt2 ≤ θs3 s2b2 ≤ t2b3

...
...

θtn ≤ θ snbn ≤ tn(s′, t′).

The right hand part of a scheme corresponding to the latter inequality shows that−→
kerρz is connected.

(iii)⇒(i). Note first from Theorem 4.1 of [9] that ΘS always satisfies condition

(PWP ). Consider any x, z ∈ S such that
−→
kerρx ⊆

−→
kerρz. Because

−→
kerρz is con-

nected, there exists a scheme corresponding to the inequality θ⊗ (s, t) ≤ θ⊗ (s′, t′)
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in Θ⊗S
−→
kerρz for any (s, t), (s′, t′) ∈ −→kerρz. Multiplying each inequality in the right

hand column of this scheme (on the right) by x establishes

θ ⊗ (sx, tx) ≤ θ ⊗ (s′x, t′x) in Θ⊗S P,

where SP = {(ux, vx) | u, v ∈ S, uz ≤ vz}, and so, by Proposition 2.6, ΘS is
principally weakly kernel po-flat and the proof is complete.

From Corollary 5.4 of [9], it follows that ΘS satisfies condition (WP ) if and
only if S is weakly right reversible. So, using Proposition 2.4, we have

Proposition 2.12. ΘS is weakly kernel po-flat if and only if S is weakly right

reversible, and for every left ideal I of S,
−→
kerf is connected for every homomorphism

f : SI →S S.

The following example from [2, Proposition 26] illustrates that principal weak
kernel flatness does not imply weak kernel flatness.

Example 2.13. Let S be a right zero semigroup K with 1 adjoined and |K| >
1. The order of S is discrete. Then S is not weakly right reversible, and so
by Proposition 2.12, ΘS is not weakly kernel po-flat. Now we show that ΘS is

principally weakly kernel po-flat. By Proposition 2.11, we need to check that
−→
kerρz

is connected as a left S-poset for every z ∈ S. Since the order of S is discrete,−→
kerρz = kerρz and connectedness only involves equalities. Thus, we could directly
apply Proposition 26 from [2] and obtain the result.

Note 2.14. From the preceding example we obtain that there exists a principally
weakly kernel po-flat right S-poset, but does not satisfy conditions (WP ), (WP )w,
(P ) or (P )w, and is not subpullback flat, flat, po-flat, weakly flat, or weakly po-flat
by Theorem 6.2 of [9].

We have been unable so far to answer the question of whether principally
weakly kernel po-flat and translation kernel po-flat are equivalent, we also have
not yet been able to provide a suitable example to distinguish them. But, if S is
an ordered lpp monoid, then all translation kernel po-flat S-posets are principally
weakly kernel po-flat.

Recall that a pomonoid S is called an ordered lpp monoid if the S-subposet
Sx is projective for all x ∈ S. By Proposition 4.8 of [12], a pomonoid S is an
ordered lpp monoid if and only if for every a ∈ S there exists an idempotent e of
S such that a = ea and sa ≤ ta implies se ≤ te for s, t ∈ S. These pomonoids
comprise quite an extensive class, including all I-regular pomonoids and all right
po-cancellable pomonoids (See [12], for more information).
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Theorem 2.15. If S is an ordered lpp monoid, then all translation kernel po-flat
S-posets are principally weakly kernel po-flat.

Proof. Suppose S is an ordered lpp monoid and AS is translation kernel po-flat.
To show that AS is principally weakly kernel po-flat, we check the condition of
Proposition 2.6. Suppose that a, a′ ∈ AS and s, s′, t, t′, z, x ∈ S are such that−→
kerρx ⊆

−→
kerρz and

asx ≤ a′s′x, sz ≤ tz,
atx ≤ a′t′x, s′z ≤ t′z.

Because S is an ordered lpp monoid, there exists e ∈ E(S) such that ex = x (and
hence ez = z), and px ≤ qx implies pe ≤ qe for all p, q ∈ S. Because AS satisfies
condition (PWP ), from (as)x ≤ (a′s′)x, we obtain c ∈ AS and p, q ∈ S such that
as = cp, a′s′ = cq and px ≤ qx by Theorem 4.1 of [9]. From (at)x ≤ (a′t′)x, we
obtain d ∈ AS and g, h ∈ S such that at = dg, a′t′ = dh and gx ≤ hx. Because S
is an ordered lpp monoid, we have pe ≤ qe and ge ≤ he. We can now calculate

ase = cpe ≤ cqe = a′s′e,
ate = dge ≤ dhe = a′t′e.

Therefore, we have ase ≤ a′s′e and ate ≤ a′t′e. Moreover,

sez = sz ≤ tz = tez and s′ez = s′z ≤ t′z = t′ez.

Using translation kernel po-flatness of AS , we know that a⊗(se, te) ≤ a′⊗(s′e, t′e)

in A ⊗S
−→
kerρz by Proposition 2.8. Using Lemma 2.1, there exist a1, · · · , an ∈

AS , (x2, y2), · · · , (xn, yn) ∈ −→kerρz, and s1, t1, · · · , sn, tn ∈ S such that

a ≤ a1s1

a1t1 ≤ a2s2 s1(se, te) ≤ t1(x2, y2)
a2t2 ≤ a3s3 s2(x2, y2) ≤ t2(x3, y3)

...
...

antn ≤ a′ sn(xn, yn) ≤ tn(s′e, t′e).

Multiplication of each inequality in the right-hand column on the right by x pro-
duces the scheme

a ≤ a1s1

a1t1 ≤ a2s2 s1(sx, tx) ≤ t1(x2x, y2x)
a2t2 ≤ a3s3 s2(x2x, y2x) ≤ t2(x3x, y3x)

...
...

antn ≤ a′ sn(xnx, ynx) ≤ tn(s′x, t′x),



Subpullbacks and coproducts of S-posets 15

where each (xix, yix), i = 2, · · · , n, belongs to P = {(ux, vx) | u, v ∈ S, uz ≤ vz}.
In other words,

a⊗ (sx, tx) ≤ a′ ⊗ (s′x, t′x) in A⊗S P,
as was to be shown.

3 Flatness and coproducts

In this section, we will show that most of flatness properties of S-posets over a
pomonoid S can be transferred to their coproducts.

Recall from [12] that an S-posetAS is called decomposable if there exist nonempty

strongly convex S-subposets A1, A2 ⊆ A such that A = A1

·∪A2 (i.e. A = A1 ∪A2

and A1 ∩A2 = ∅). Otherwise AS is called indecomposable.

Lemma 3.1. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right S-subposets of AS. Let

SB be a left S-poset. If a⊗ b ≤ a′ ⊗ b′ in Ai ⊗S B, then a⊗ b ≤ a′ ⊗ b′ in A⊗S B.

Proof. It is obvious.

The next result will be useful for the remainder of this section.

Lemma 3.2. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right strongly convex S-subposets

of AS. Let SB be a left S-poset and suppose that a⊗ b ≤ a′ ⊗ b′ in A⊗SB. Then
a ∈ Ai for some i ∈ I, if and only if a′ ∈ Ai.

Proof. Necessity. Let a ⊗ b ≤ a′ ⊗ b′ in A ⊗S B. Using Lemma 2.1, there exist
a1, · · · , an ∈ AS , b2, · · · , bn ∈ SB and s1, t1, · · · , sn, tn ∈ S such that

a ≤ a1s1

a1t1 ≤ a2s2 s1b ≤ t1b2
a2t2 ≤ a3s3 s2b2 ≤ t2b3 (∗)

...
...

antn ≤ a′ snbn ≤ tnb′.

Since a ∈ Ai, we have a1 ∈ Ai. Otherwise there exists j 6= i ∈ I such that a1 ∈ Aj ,
and so a1s1 ∈ Aj . The inequality a ≤ a1s1 and the fact that Aj is strongly convex
imply a ∈ Aj which is a contradiction. Thus a1 ∈ Ai and a1t1 ∈ Ai. Again the
inequality a1t1 ≤ a2s2 implies a2 ∈ Ai. Otherwise there exists j 6= i ∈ I such that
a2 ∈ Aj , and so a2s2 ∈ Aj . Applying strong convexity of Aj to the inequality
a1t1 ≤ a2s2, we obtain a1t1 ∈ Aj , and so this implies that a1t1 ∈ Ai ∩ Aj = ∅
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which is again a contradiction. By continuing this process we get an ∈ Ai. Since
antn ≤ a′ and Ai is strongly convex, we have a′ ∈ Ai, as required.

Sufficiency. Suppose that a ⊗ b ≤ a′ ⊗ b′ in A ⊗S B. By Lemma 2.1, we get
the above system of inequalities (∗). Since a′ ∈ Ai and Ai is strongly convex, we
have antn ∈ Ai, and so an ∈ Ai. Applying strong convexity of Ai to the inequality
an−1tn−1 ≤ ansn, we obtain an−1tn−1 ∈ Ai, and so an−1 ∈ Ai. By continuing this
process we get a1s1 ∈ Ai. Again applying strong convexity of Ai to the inequality
a ≤ a1s1, we have a ∈ Ai, as required.

Using Lemmas 3.1 and 3.2, we immediately get the following

Corollary 3.3. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right strongly convex S-

subposets of AS. Let SB be a left S-poset. If a ∈ Ai, then a⊗ b ≤ a′⊗ b′ in A⊗SB
if and only if a⊗ b ≤ a′ ⊗ b′ in Ai ⊗S B.

Lemma 3.4. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right strongly convex S-subposets

of AS. Let SB be a left S-poset and a ⊗ b ∈ A ⊗SB for a ∈ AS and b ∈ SB. If
a ∈ Ai for some i ∈ I, then a⊗ b ∈ Ai ⊗SB.

Proof. If there exists j 6= i such that a ⊗ b ∈ Aj ⊗S B, then a ⊗ b = a′ ⊗ b′ for
some a′ ∈ Aj and b′ ∈ SB. By Lemma 3.2, a′ ∈ Ai which is a contradiction. Hence
a⊗ b ∈ Ai ⊗S B, as required.

Corollary 3.5. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right strongly convex S-

subposets of AS. Let φ : A ⊗S P → P ′ be the mapping corresponding to the
subpullback diagram P (M,N, f, g,Q) for AS. If φi = φ|Ai⊗SP , then φi : Ai⊗SP →
P ′i .

Proof. Because φ(a ⊗ (m,n)) = (a ⊗m, a ⊗ n) for all a ∈ AS and (m,n) ∈S P , it
suffices to show that a⊗m ∈ Ai ⊗S M and a⊗ n ∈ Ai ⊗S N for a ∈ Ai, m ∈SM
and n ∈SN . But these are true by Lemma 3.4.

Lemma 3.6. Let A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right strongly convex S-subposets

of AS. Let φ : A⊗SP → P ′ be a mapping and φi = φ|Ai⊗SP . Then φ is the mapping
corresponding to the subpullback diagram P (M,N, f, g,Q) for AS, if and only if φi
is the mapping corresponding to the subpullback diagram P (M,N, f, g,Q) for Ai.
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Proof. Necessity. Suppose that φ is the mapping corresponding to the subpull-
back diagram P (M,N, f, g,Q) for AS . We need to prove that p′1iφi = idAi

⊗ p1

and p′2iφi = idAi
⊗ p2 in the diagram (P2i). By assumption, the lower square

P ′i

p′1i

��

p′2i // Ai ⊗SN

idAi
⊗g

��
Ai ⊗SM

idAi
⊗f
// Ai ⊗SQ

in diagram (P2i) is subcommutative. Next to show p′1iφi = idAi ⊗ p1. Let ai ⊗
(m,n) ∈ Ai ⊗S P . Then

p′1iφi(ai ⊗ (m,n)) = p′1i(ai ⊗m, ai ⊗ n) = ai ⊗m

= idAi(ai)⊗ p1(m,n) = (idAi ⊗ p1)(ai ⊗ (m,n)).

It can also be seen that p′2iφi = idAi ⊗ p2. Since φi makes p′jiφi = idAi ⊗ pj for
j = 1, 2, in the diagram (P2i), then by uniqueness, φi is the mapping corresponding
to the subpullback diagram P (M,N, f, g,Q) for Ai.

Sufficiency. Let φi be the mapping corresponding to the subpullback diagram
P (M,N, f, g,Q) for Ai, i ∈ I. Since the lower square

P ′

p′1

��

p′2 // A⊗SN

idA⊗g

��
A⊗SM

idA⊗f // A⊗SQ
in the diagram (P2) is subcommutative, it suffices to show that p′1φ = idA ⊗ p1

and p′2φ = idA ⊗ p2. Let (a⊗ (m,n)) ∈ A⊗SP . Then there exists i ∈ I such that
a ∈ Ai. Thus we have

p′1φ(a⊗ (m,n)) = p′1φi(a⊗ (m,n)) = p′1(a⊗m, a⊗ n) = a⊗m

= idAi(a)⊗ p1(m,n) = idA(a)⊗ p1(m,n) = (idA ⊗ p1)(a⊗ (m,n)).

The same argument shows that p′2φ = idA ⊗ p2.

The following two theorems are our main results in this section.

Theorem 3.7. Let φ be the mapping corresponding to the subpullback diagram
P (M,N, f, g,Q) for AS and let φi, i ∈ I, be as in Lemma 3.6. Then φ is surjective
if and only if φi is surjective for every i ∈ I.
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Proof. Necessity. Let φ be surjective. Since ai, a
′
i ∈ Ai, we have ai, a

′
i ∈ AS . By

Lemma 3.1, ai ⊗ f(m) ≤ a′i ⊗ g(n) in Ai ⊗S Q implies ai ⊗ f(m) ≤ a′i ⊗ g(n) in
A⊗S Q. Using surjectivity of φ,

(∃a′′i ∈ AS)(∃m′ ∈SM)(∃n′ ∈SN)

(f(m′) ≤ g(n′) ∧ ai ⊗m = a′′i ⊗m′ ∧ a′i ⊗ n = a′′i ⊗ n′).
By Lemma 3.2, ai ⊗m = a′′i ⊗m′ in A ⊗S M and ai ∈ Ai imply a′′i ∈ Ai. Hence
φi is surjective.

Sufficiency. Let φi be surjective for every i ∈ I and suppose that a⊗ f(m) ≤
a′ ⊗ g(n) in A ⊗S Q for a, a′ ∈ AS , m ∈ SM , n ∈ SN . Since a ∈ AS , there exists
i ∈ I such that a ∈ Ai. By Corollary 3.3, we have a⊗f(m) ≤ a′⊗g(n) in Ai⊗SQ.
Using surjectivity of φi,

(∃a′′ ∈ Ai)(∃m′ ∈SM)(∃n′ ∈SN)

(f(m′) ≤ g(n′) ∧ a⊗m = a′′ ⊗m′ ∧ a′ ⊗ n = a′′ ⊗ n′).
By Lemma 3.1, a⊗m = a′′⊗m′ in Ai⊗SM and a′⊗n = a′′⊗n′ in Ai⊗SN imply
that a ⊗m = a′′ ⊗m′ in A ⊗SM and a′ ⊗ n = a′′ ⊗ n′ in A ⊗SN , respectively.
Thus φ is surjective, as required.

Theorem 3.8. Let φ be the mapping corresponding to the subpullback diagram
P (M,N, f, g,Q) for AS and let φi, i ∈ I, be as in Lemma 3.6. Then φ is an order
embedding if and only if φi is an order embedding for every i ∈ I.

Proof. Necessity. Let φ be an order embedding and suppose that

f(m) ≤ g(n) ∧ f(m′) ≤ g(n′) ∧ (a⊗m ≤ a′ ⊗m′) ∧ (a⊗ n ≤ a′ ⊗ n′),
where a⊗m ≤ a′⊗m′ in Ai⊗SM and a⊗n ≤ a′⊗n′ in Ai⊗SN for i ∈ I. Because
a, a′ ∈ Ai, and by Lemma 3.1, we have a⊗m ≤ a′⊗m′ in A⊗SM and a⊗n ≤ a′⊗n′
in A ⊗S N . Using order embeddability of φ, we obtain a ⊗ (m,n) ≤ a′ ⊗ (m′, n′)
in A ⊗SP . But a ∈ Ai and so a ⊗ (m,n) ≤ a′ ⊗ (m′, n′) in Ai ⊗SP by Corollary
3.3. Hence φi is an order embedding.

Sufficiency. Let φi is an order embedding for every i ∈ I and suppose that

f(m) ≤ g(n) ∧ f(m′) ≤ g(n′) ∧ (a⊗m ≤ a′ ⊗m′) ∧ (a⊗ n ≤ a′ ⊗ n′),
where a⊗m ≤ a′ ⊗m′ and a⊗ n ≤ a′ ⊗ n′ in A⊗S M and A⊗S N , respectively.
Because a ∈ AS , there exists i ∈ I such that a ∈ Ai. By Corollary 3.3, a ⊗m ≤
a′ ⊗ m′ in A ⊗S M and a ⊗ n ≤ a′ ⊗ n′ in A ⊗S N imply a ⊗ m ≤ a′ ⊗ m′ in
Ai ⊗SM and a⊗ n ≤ a′ ⊗ n′ in Ai ⊗S N , respectively. Using order embeddability
of φi, we obtain a ⊗ (m,n) ≤ a′ ⊗ (m′, n′) in Ai ⊗S P . By Lemma 3.1, we have
a ⊗ (m,n) ≤ a′ ⊗ (m′, n′) in A ⊗S P , and so φ is an order embedding. The proof
is complete.



Subpullbacks and coproducts of S-posets 19

For every subpullback diagram, the corresponding φ is a surjection or an order
embedding if and only if the corresponding φi is a surjection or an order embedding,
and surjectivity or order isomorphism of φ for a special subpullback diagram is
equivalent to certain kind of flatness property. It follows from Theorems 2.1, 2.2,
2.3, 2.4, 3.2, 4.1, 5.3 of [9] and Definition 2.2 that

Proposition 3.9. Let S be a pomonoid and A =
·⋃
i∈I
Ai, where Ai, i ∈ I, are right

strongly convex S-subposets of AS. Then AS is torsion free, principally weakly
flat, weakly flat, flat, pullback flat, subpullback flat, principally weakly kernel po-
flat, weakly kernel po-flat, translation kernel po-flat, and satisfies conditions (P ),
(WP ), (PWP ) if and only if Ai has these properties for every i ∈ I.

From Proposition 3.9 and Theorem 2.3 of [12], we have

Corollary 3.10. Let S be a pomonoid. Then a right S-poset AS is torsion free,
principally weakly flat, weakly flat, flat, pullback flat, subpullback flat, principally
weakly kernel po-flat, weakly kernel po-flat, translation kernel po-flat, and satisfies
conditions (P ), (WP ), (PWP ) if and only if its strongly convex indecomposable
components have these properties.
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