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Duality theory of p-adic Hopf algebras

Tomoki Mihara

Abstract. We show the monoidal functoriality of Schikhof duality, and
cultivate new duality theory of p-adic Hopf algebras. Through the duality,
we introduce two sorts of p-adic Pontryagin dualities. One is a duality be-
tween discrete Abelian groups and affine formal group schemes of specific
type, and the other one is a duality between profinite Abelian groups and an-
alytic groups of specific type. We extend Amice transform to a p-adic Fourier
transform compatible with the second p-adic Pontryagin duality. As applica-
tions, we give explicit presentations of a universal family of irreducible p-adic
unitary Banach representations of the open unit disc of the general linear
group and its q-deformation in the case of dimension 2.

1 Introduction

Let k be a non-Archimedean local field. We denote by Ok its valuation ring,
and by p the characteristic of the residue field of Ok. As a p-adic analogue of
the reflexivity of Hilbert spaces, Schikhof duality (cf. [6] Theorem 4.6) gives
a contravariant categorical equivalence between Banach k-vector spaces and
localisations of compact Hausdorff flat linear topological Ok-modules. We

Keywords: Pontryagin duality, p-adic, Hopf.
Mathematics Subject Classification [2010]: 11S80, 14L05, 16T05.
Received: 26 July 2019, Accepted: 29 September 2019.

ISSN: Print 2345-5853, Online 2345-5861.

© Shahid Beheshti University

81



82 T. Mihara

show the monoidal functoriality of Schikhof duality in Theorem 3.2, and
study a new duality between Hopf monoid objects in Theorem 3.6.

Through the duality restricted to commutative cocommutative Hopf
monoid objects, we introduce two sorts of p-adic Pontryagin dualities. One
is a contravariant categorical equivalence between discrete Abelian groups
(discrete side) and affine formal group schemes over Ok of specific type
(compact side), and the other one is a contravariant categorical equivalence
between profinite Abelian groups (compact side) and analytic groups over
k of specific type (discrete side). Therefore they are variants of the duality
between compactness and discreteness.

We explain the relation with classical results. Iwasawa isomorphism is
a well-known isomorphism between the Iwasawa algebra Ok[[Zp]] and the
formal power series algebra Ok[[T ]], which represents the affine formal group
scheme U1/Ok given as the completion of the multiplicative group scheme
Gm/Ok . Through the identification of Ok[[Zp]] and the continuous dual of the
continuous function algebra C(Zp, k), it gives an isomorphism called Amice
transform from the continuous dual of C(Zp, k) to the algebra of global
sections on U1/Ok . Therefore Amice transform gives a non-trivial connection
between functions on the profinite Abelian group Zp and the affine formal
group scheme U1/Ok . In addition, the second p-adic Pontryagin duality
sends Zp to U1/Ok , and hence Amice transform can be regarded as a p-adic
analogue of Fourier transform for the specific dual pair (Zp, U1/Ok). The
duality between Hopf monoid objects yields a Hopf monoid isomorphism
in a wider case in Theorem 4.23, and hence can be regarded as a p-adic
analogue of Fourier transform extending Amice transform.

The notion of a representation of an affine formal group scheme G of
specific type can be formulated in terms of a comodule object. Through
the duality between Hopf monoid objects, it can be naturally identified
with the notion of a module object over the dual Hopf monoid A of the
coordinate ring of G . By the functoriality of G , every A-module object can
be regarded as a unitary Banach k-linear representation of the discrete group
G (Ok). Then the regular A-module can be regarded as a universal family
of irreducible unitary Banach k-linear representations of G (Ok) which can
be obtained in this way.

As applications of the duality between Hopf monoid objects, we give
explicit presentations of the universal family of irreducible unitary Banach k-
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linear representations of the open unit disc, that is, the discrete group of the
Ok-valued points of the affine formal group scheme given as the completion,
of the general linear group and a q-deformation of the universal family in
the case of dimension 2.

We explain contents of this paper. First, §2 consists of two subsections.
In §2.1, we recall compact Hausdorff flat linear topological Ok-modules. In
§2.2, we recall Banach k-vector spaces. Secondly, §3 consists of two subsec-
tions. In §3.1, we show the monoidal functoriality of Schikhof duality. In
§3.2, we study the associated duality between Hopf monoid objects. Thirdly,
§4, consists of three subsections. In §4.1, we investigate the p-adic Pon-
tryagin duality between discrete Abelian groups and affine formal groups
schemes over Ok of specific type. In §4.2, we investigate the p-adic Pon-
tryagin duality between profinite Abelian groups and analytic groups over
k of specific type. In §4.3, we study the p-adic Fourier transform. Finally,
§5 consists of two subsections. In 5.1, we give an explicit description of
the universal family of irreducible unitary Banach k-linear representations
of the open unit disc of the general linear group. In 5.2, we give a similar
description of a q-deformation of the universal family.

2 Preliminaries

We fix a Grothendieck universe U in order to avoid set-theoretic problems.
A set x is said to be U -small if x ∈ U . Throughout this paper, let k denote
a fixed U -small local field, that is, a complete discrete valuation field with
finite residue field, Ok ⊂ k the valuation ring of k, and p the characteristic
of the residue field of Ok.

We introduce the convention and the terminology for categories, which
is always assumed to be small but is not assumed to be U -small. We de-
note by C (respectively, Ck) the Abelian category of U -small Ok-modules
(respectively, k-vector spaces) and Ok-linear homomorphisms. Then the tri-
ads (C ,⊗Ok , Ok) and (Ck,⊗k, k) form symmetric monoidal categories. The
correspondence M  k⊗OkM restricted to U gives a symmetric monoidal
functor (C ,⊗Ok , Ok)→ (Ck,⊗k, k). We abbreviate “(C ,⊗Ok , Ok)-enriched”
(respectively, “(Ck,⊗k, k)-enriched”) to “Ok-linear” (respectively, “k-linear”).
For an Ok-linear category Θ, we denote by kΘ the k-linear category obtained
as the localisation of Θ by the symmetric monoidal functor (C ,⊗Ok , Ok)→
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(Ck,⊗k, k). For an Ok-linear functor Φ, we denote by kΦ the k-linear ex-
tension of Φ.

We denote by Set the category of U -small sets and maps, by Top the cat-
egory of U -small topological spaces and continuous maps, by PTop ⊂ Top
the full subcategory of U -small totally disconnected compact Hausdorff
topological spaces, by Grp the category of U -small discrete groups and
group homomorphisms, by Ab ⊂ Grp the full subcategory of U -small dis-
crete Abelian groups, by PGrp the category of U -small profinite groups and
continuous group homomorphisms, and by PAb ⊂ PGrp the full subcate-
gory of U -small profinite Abelian groups. For topological spaces X and Y ,
we denote by C(X,Y ) the set of continuous maps X → Y .

2.1 Topological module A topological Ok-module is an Ok-module
M equipped with a topology for which the addition M ×M →M and the
scalar multiplication Ok×M →M are continuous. We denote by O(M) the
set of open Ok-submodules of M . We say that M is linear if O(M) forms
a fundamental system of neighbourhoods of 0 ∈ M , is flat if its underlying
Ok-module is flat, and is compact Hausdorff if its underlying topological
space is compact and Hausdorff.

Example 2.1. Let I be a set, and M a topological Ok-module, e.g. Ok. We
denote by M I the direct product of I-copies of the underlying Ok-module of
M equipped with the direct product topology. Then M I forms a topological
Ok-module. If M is compact (respectively, Hausdorff, flat, linear), then so
is M I .

Let M0 and M1 be compact Hausdorff linear topological Ok-modules.
For each (L0, L1) ∈ O(M0) × O(M1), we equip M0/L0 ⊗Ok M1/L1 with
the discrete topology so that it again forms a compact Hausdorff linear
topological Ok-module by the finiteness of its underlying set. We denote by
M0⊗̂OkM1 the inverse limit of (M0/L0⊗OkM1/L1)(L0,L1)∈O(M0)×O(M1) with
respect to canonical projections equipped with the inverse limit topology.
We give an explicit example of the completed tensor product.

Proposition 2.2. Let I0 and I1 be sets. Then there is a natural homeo-
morphic Ok-linear isomorphism OI0×I1k → OI0k ⊗̂OkOI1k .

Proof. Let (L0, L1) ∈ O(OI0k )×O(OI1k ). Put ML0,L1
:= OI0k /L0⊗OkOI1k /L1.

Let h ∈ {0, 1}. For each i ∈ Ih, we denote by δIh,i ∈ OIhk the characteristic
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function of {i} ⊂ Ih. By the definition of the direct product topology, there
is a finite subset Jh ⊂ Ih such that {(mi)i∈Ih ∈ OIhk | ∀i ∈ Jh,mi = 0} ⊂ Lh.

We denote by fL0,L1 the composite of the canonical projection OI0×I1k �
OJ0×J1
k and the following Ok-linear homomorphism, which is continuous by

the continuity of the Ok-module structure of ML0,L1 :

OJ0×J1
k → ML0,L1

(ci0,i1)(i0,i1)∈J0×J1
7→

∑

(i0,i1)∈J0×J1

cI0,i1(δI0,i0 + L0)⊗ (δI1,i1 + L1)

Then fL0,L1 is independent of the choice of (J0, J1) by (δI0,i0 +L0)⊗(δI1,i1 +
L1) = 0 ∈ ML0,L1 for any (i0, i1) ∈ (I0 \ J0) × (I1 \ J1), and is surjective
because {(δI0,i0 + L0)⊗ (δI1,i1 + L1) | (i0, i1) ∈ I0 × I1} generates ML0,L1 .

By the definition, (fL0,L1)(L0,L1) forms a compatible system of surjective
continuous Ok-linear homomorphisms, and hence induces a continuous Ok-
linear homomorphism f : OI0×I1k → OI0k ⊗̂OkOI1k , whose image is dense by
the surjectivity of the composite with any canonical projection. Let c =
(ci0,i1)(i0,i1)∈I0×I1 ∈ ker(f). For any (i0, i1) ∈ I0 × I1, we have ci0,i1 = 0
by (ci0,i1 + ℘)(δI0,i0 + L0) ⊗ (δI1,i1 + L1) = fL0,L1(c) = 0 ∈ ML0,L1

∼=
(Ok/℘){i0} ⊗Ok (Ok/℘){i1} ∼= Ok/℘ for any open ideal ℘ ⊂ Ok, where L0

and L1 denote O
I0\{i0}
k × ℘O{i0}k ∈ O(OI0k ) and O

I1\{i1}
k × ℘O{i1}k ∈ O(OI1k )

respectively. It implies c = 0. Therefore f is injective. Since OI0×I1k is

compact and OI0k ⊗̂OkOI1k is Hausdorff, f is a homeomorphism.

By the definition, the completed tensor product of compact Hausdorff
linear topological Ok-modules is again a compact Hausdorff linear topolog-
ical Ok-module. Moreover, we show that it also preserves the flatness.

Proposition 2.3. For any compact Hausdorff flat linear topological Ok-
modules M0 and M1, M0⊗̂OkM1 is also a compact Hausdorff flat linear
topological Ok-module.

Proof. It is reduced to the case where M0 and M1 are direct products of
copies of Ok by [8] Expose VIIB 0.3.8. Corollaire. When M0 and M1 are
direct products of copies of Ok, then the assertion immediately follows from
Proposition 2.2.
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We denote by C ch
fl the Ok-linear category of U -small compact Haus-

dorff flat linear topological Ok-modules and continuous Ok-linear homomor-
phisms. By Proposition 2.3, the correspondence (M0,M1)  M0⊗̂OkM1

restricted to U gives an Ok-linear bifunctor ⊗̂Ok : C ch
fl × C ch

fl → C ch
fl and

a k-linear bifunctor ⊗̂Ok : kC ch
fl × kC ch

fl → kC ch
fl , for which C ch

fl and kC ch
fl

naturally form symmetric monoidal categories.

A topological Ok-algebra is said to be compact Hausdorff flat linear
if its underlying topological Ok-module is a compact Hausdorff flat linear
topological Ok-module. It is elementary to show that the notion of a U -
small compact Hausdorff flat linear topological Ok-algebra is equivalent to
that of a monoid object in (C ch

fl , ⊗̂Ok , Ok).

Let I be a set. We equip OIk with the pointwise multiplication OIk×OIk →
OIk, for which it forms a commutative compact Hausdorff flat linear topolog-
ical Ok-algebra and hence a commutative monoid object in (C ch

fl , ⊗̂Ok , Ok)
as long as I is U -small.

Let G be a profinite group. We denote by Ok[[G]] the compact Hausdorff
flat linear topological Ok-algebra given as the inverse limit of
((Ok/℘)[G/K])(℘,K) with respect to the canonical projections, where ℘ runs
through all open ideals of Ok and K runs though all open normal subgroups
of G, and hence forms a monoid object in (C ch

fl , ⊗̂Ok , Ok) as long as G is
U -small. The canonical embedding ιcG : Ok[G] ↪→ Ok[[G]] is an Ok-algebra
homomorphism whose image generates a dense Ok-subalgebra, and hence
Ok[[G]] is an analogue of Ok[G].

We denote by Alg(Ok) the category of monoid objects in (C ch
fl , ⊗̂Ok , Ok)

and monoid homomorphisms, and by CAlg(Ok) ⊂ Alg(Ok) the full sub-
category of commutative monoid objects in (C ch

fl (k), ⊗̂Ok , Ok). The corre-
spondence G  Ok[[G]] restricted to U gives a functor Ok[[•]] : PGrp →
Alg(Ok), which induces a functor PAb→ CAlg(Ok).

2.2 Banach space A Banach k-vector space is a k-vector space V
equipped with a map ‖ • ‖ : V → [0,∞) called the norm satisfying the
following:

(i) The map V × V → [0,∞), (v0, v1) 7→ ‖v0 − v1‖ is a complete ultra-
metric.
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(ii) For any (c, v) ∈ k × V , ‖cv‖ = |c| ‖v‖ holds.

We say that V is unramified if ‖v‖ ∈ {|c| | c ∈ k} for any v ∈ V . We put
V ◦ := {v ∈ V | ‖v‖ ≤ 1}.
Example 2.4. Let X be a topological space, and V a Banach k-vector
space, e.g. k. We denote by Cbd(X,V ) ⊂ C(X,V ) the k-vector subspace
of bounded continuous maps. Then Cbd(X,V ) forms a Banach k-vector
space with respect to the supremum norm ‖ • ‖ : Cbd(X,V )→ [0,∞), f 7→
supx∈X ‖f(x)‖. If V is unramified, then so is Cbd(X,V ), because {|c| |
c ∈ k} is closed in [0,∞) by the discreteness of the valuation. We denote
by C0(X,V ) ⊂ Cbd(X,V ) the k-vector subspace of functions f : X → V
such that for any ε ∈ (0,∞), there is a compact subset C ⊂ X such that
‖f(x)‖ < ε for any x ∈ X \ C. Then C0(X,V ) is closed in Cbd(X,V ), and
hence forms a Banach k-vector space with respect to the restriction of the
supremum norm. Suppose that X is compact. Then we have C0(X,V ) =
Cbd(X,V ) = C(X,V ) by the maximal modulus principle, and hence regard
C(X,V ) as a Banach k-vector space.

Example 2.5. Let M be a compact Hausdorff flat linear topological Ok-
module. We denote by MDch

fl ⊂ C(M,k) the k-vector subspace of continuous

Ok-linear homomorphisms M → k. Then MDch
fl is closed in Cbd(M,k), and

hence forms a Banach k-vector space with respect to the restriction of the
supremum norm.

Let V0 and V1 be Banach k-vector spaces, and f : V0 → V1 a k-linear
homomorphism. We say that f is bounded if there is a C ∈ (0,∞) such that
‖f(v)‖ ≤ C‖v‖ for any v ∈ V0, and is submetric (respectively, isometric)
if ‖f(v)‖ ≤ ‖v‖ (respectively, ‖f(v)‖ = ‖v‖) for any v ∈ V0. Since the
valuation of k is not trivial, a k-linear homomorphism between Banach k-
vector spaces is bounded if and only if it is continuous by [2] 2.1.8 Corollary
3.

Let V0 and V1 be Banach k-vector spaces. We denote by V1⊗̂kV2 the
completed non-Archimedean tensor product of V1 and V2 (cf. [1] p. 12). We
give an explicit example of the completed tensor product analogous to the
one in Proposition 2.2.

Proposition 2.6. Let I0 and I1 be discrete sets. Then there is a natural
isometric k-linear isomorphism C0(I0, k)⊗̂kC0(I1, k)→ C0(I0 × I1, k).
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Proof. Take a uniformiser $ ∈ Ok. Put V0 := C0(I0, k)⊗̂kC0(I1, k) and
V1 := C0(I0 × I1, k). Since V ◦0 and V ◦1 are naturally identified with the $-

adic completion of O⊕I0k ⊗Ok O⊕I1k and O
⊕(I0×I1)
k respectively, the Ok-linear

isomorphism O⊕I0k ⊗Ok O⊕I1k → O
⊕(I0×I1)
k associated to idI0×I1 extends to

a unique continuous Ok-linear isomorphism V ◦0 → V ◦1 , which extends to a
unique isometric k-linear isomorphism V0 → V1.

We denote by Ban(k) (respectively, Ban≤(k)) the k-linear (respectively,
Ok-linear) category of U -small Banach k-vector spaces and bounded (re-
spectively, submetric) k-linear homomorphisms, by Banur

≤ (k) ⊂ Ban≤(k) the
full subcategory of U -small unramified Banach k-vector spaces. The cor-
respondence I  C0(I, k) restricted to U gives a functor C0(•, k) : Set →
Banur

≤ (k). The correspondence (V0, V1) V0⊗̂kV1 restricted to U gives a k-
linear (respectively, an Ok-linear) bifunctor ⊗̂k : Ban(k)×Ban(k)→ Ban(k)
(respectively, Banur

≤ (k)× Banur
≤ (k)→ Banur

≤ (k)), for which Ban(k) (respec-
tively, Banur

≤ (k)) naturally forms a symmetric monoidal category.

Proposition 2.7. The localisation kBanur
≤ (k) → Ban(k) of the inclusion

Banur
≤ (k) ↪→ Ban(k) is an equivalence of category.

Proof. The following proof is essentially the same as the argument in the
proof of [9] Theorem 1.2, in which k is assumed to be of characteristic 0.
Denote by F the functor in the assertion. The fullness of F follows from the
definition of a bounded homomorphism and non-triviality of the valuation
of k. The faithfulness of F follows from the flatness of hom modules. For
a Banach k-vector space V , denote by V ur the underlying k-vector space of
V equipped with the norm V ur → [0,∞), v 7→ inf{|c| | c ∈ k ∧ ‖v‖ ≤ |c|}.
Then V ur forms a Banach k-vector space, and the identity map IV : V → V ur

is an isomorphism in Ban(k). The correspondence V  V ur restricted to
U gives an endofunctor (•)ur of Ban(k), and the correspondence V  IV
restricted to U gives a natural equivalence I : idBan(k) ⇒ (•)ur. Moreover,
IV is the identity for any unramified Banach k-vector space V . Therefore
(•)ur induces a quasi-inverse of F , because F is fully faithful.

A Banach k-algebra is a Banach k-vector space A equipped with a k-
algebra structure satisfying ‖f0f1‖ ≤ ‖f0‖ ‖f1‖ for any (f0, f1) ∈ A2 and
‖1‖ = 1 as long as A is not a zero ring. It is elementary to show that
the notion of a U -small Banach k-algebra is equivalent to that of a monoid
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object in (Banur
≤ , ⊗̂k, k). We note that there are several distinct formulations

of the notion of a Banach k-algebra, and such an equivalence does not
necessarily hold if one applies another formulation.

Let X be a topological space. We equip Cbd(X, k) with the pointwise
multiplication Cbd(X, k) × Cbd(X, k) → Cbd(X, k), for which it forms a
commutative Banach k-algebra and hence a commutative monoid object in
(Banur

≤ , ⊗̂k, k) as long as X is U -small.
In order to introduce another example of a monoid object in (Banur

≤ , ⊗̂k, k),
we recall the notion of a (possibly uncountable) infinite sum. Let I be a
discrete set, and f : I → k a map. We denote by

∑
i∈I f(i) the limit of the

net (
∑

i∈J f(i))J⊂I,#J<∞ indexed by the set of finite subsets J ⊂ I directed
with respect to the inclusion relation. When I = {i ∈ N | i < n} for some
n ∈ N (respectively, I = N), then

∑
i∈I f(i) coincides with the usual finite

sum
∑n−1

i=0 f(i) (respectively, the usual infinite sum
∑∞

i=0 f(i)). Moreover,
it is elementary to show that

∑
i∈I f(i) converges in k if and only if f lies

in C0(I, k).
Let G be a discrete group. We equip C0(G, k) with the convolution

product

C0(G, k)× C0(G, k)→ C0(G, k), ((cg)g∈G, (dg)g∈G) 7→ (
∑

h∈G
chdh−1g)g∈G,

where the sum in the definition makes sense by the argument above, for
which it forms a Banach k-algebra and hence a monoid object in (Banur

≤ , ⊗̂k, k)

as long as G is U -small. The canonical embedding ιdG : k[G] ↪→ C0(G, k) is
an k-algebra homomorphism whose image is dense, and hence C0(G, k) is
an analogue of k[G].

We denote by Alg(k) the category of monoid objects in (Banur
≤ (k), ⊗̂k, k)

and monoid homomorphisms, and by CAlg(k) ⊂ Alg(k) the full subcate-
gory of commutative monoid objects in (Banur

≤ (k), ⊗̂k, k). The correspon-
dence G  C0(G, k) restricted to U gives a functor C0(•, k) : Grp →
Alg(k), which induces a functor Ab→ CAlg(k). The correspondence X  
Cbd(X, k) restricted to U gives a functor Cbd(•, k) : Topop → CAlg(k). We
recall non-Archimedean Gel’fand–Naimark theorem.

Proposition 2.8. The functor Cbd(•, k) restricted to PTop is fully faithful.

Proof. The assertion immediately follows from [1] 9.2.7 Corollary.
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3 Monoidal Structure

We introduce symmetric monoidal structures on Banur
≤ (k), Ban(k), C ch

fl ,

and kC ch
fl , and verify the monoidal functoriality of Schikhof duality (cf. [6]

Theorem 4.6 and [9] Theorem 1.2). As a corollary, we obtain a duality
between Hopf monoid objects.

3.1 Monoidal functoriality Let V be a Banach k-vector space. We

denote by V DBan the Ok-module of submetric k-linear homomorphism V →
k equipped with the topology of pointwise convergence. Then V DBan forms a
compact Hausdorff flat linear topological Ok-module because OV

◦
k equipped

with the direct product topology is a compact Hausdorff flat linear topolog-
ical Ok-module and the evaluation map V DBan → OV

◦
k , m 7→ (m(v))v∈V ◦ is

a homeomorphism onto the closed image. The correspondence V  V DBan

restricted to U gives a functor DBan : Ban≤(k)op → C ch
fl . We put Dur

Ban :=
DBan|Banur

≤ (k)op .

Example 3.1. For any profinite groupG, C(G, k)Dur
Ban is naturally identified

with Ok[[G]] through a unique continuous Ok-bilinear extension Ok[[G]] ×
C(G, k)→ k of the canonical pairing Ok[G]× C(G, k)→ k, (cg)g∈G ⊗ f 7→∑

g∈G cgf(g) through ιcG × idC(G,k).

On the other hand, let M be a compact Hausdorff flat linear topological
Ok-module. For any continuous Ok-linear homomorphism v : M → k, its
supremum norm ‖v‖ := supm∈M |v(m)| is finite by the compactness of M .

We denote by MDch
fl the k-vector space of continuous Ok-linear homomor-

phisms M → k equipped with the supremum norm. Then MDch
fl forms an

unramified Banach k-vector space by the discreteness of the valuation of k.
For a Banach k-vector space V , we denote by ηBan(V ) : V → V DBanDch

fl

the evaluation map. For a compact Hausdorff flat linear topological Ok-
module M , we denote by ηch

fl (M) : M →MDch
fl DBan the evaluation map. The

correspondences V  ηBan(V ) and M  ηch
fl (M) restricted to U give natu-

ral transformations ηBan : idBan≤(k)op ⇒ Dch
fl ◦DBan and ηch

fl : idC ch
fl
⇒ DBan ◦

Dch
fl . By Schikhof duality, ηBan(V ) and ηch

fl (M) (respectively, kηch
fl (M)) are

isomorphisms in Banur
≤ (k) and C ch

fl (respectively, Ban(k) and kC ch
fl ) re-

spectively for any U -small unramified Banach k-vector space V (respec-
tively, U -small Banach k-vector space V ) and any U -small compact Haus-
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dorff flat linear topological Ok-module M , and (Dur
Ban,D

ch
fl ) (respectively,

(DBan, kDch
fl )) gives an equivalence of categories between Banur

≤ (k) and C ch
fl

(respectively, Ban(k) identified with kBanur
≤ (k) by Proposition 3.13 and

kC ch
fl ). Further, we show the compatibility with the other structures.

Theorem 3.2. The pair (Dur
Ban,D

ch
fl ) (respectively, (DBan, kDch

fl )) gives an
equivalence of symmetric monoidal Ok-linear categories (Banur

≤ (k), ⊗̂k, k)op

and (C ch
fl , ⊗̂Ok , Ok) (respectively, symmetric monoidal k-linear categories

(Ban(k), ⊗̂k, k)op and (kC ch
fl , ⊗̂Ok , Ok)).

In order to verify Theorem 3.2, we prepare several lemmas.

Lemma 3.3. The correspondence I  OIk (respectively, C0(I, k)) restricted
to U gives a symmetric monoidal functor O•k : (Set,×, 1)→ (C ch

fl , ⊗̂Ok , Ok)op

(respectively, C0(•, k) : (Set,×, 1)→ (Banur
≤ (k), ⊗̂k, k)).

Proof. The functoriality is obvious. We show that the functors are com-
patible with the symmetric monoidal structures. For U -small sets I0 and
I1, denote by T(I0, I1) the isomorphism OI0×I1k → OI0k ⊗̂OkOI1k in C ch

fl (re-
spectively, C0(I0, k)⊗̂kC0(I1, k) → C0(I0 × I1, k) in Banur

≤ (k)) explicitly
constructed in the proof of Proposition 2.2 (Proposition 2.6). The cor-
respondence (I0, I1)  T(I0, I1) gives a natural equivalence T: O•0×•1k →
O•0k ⊗̂OkO•1k (respectively, C0(•0, k)⊗̂kC0(•1, k) ⇒ C0(•0 × •1, k)) with the
desired coherence by the construction.

We recall classical results on classifications of unramified Banach k-
vector spaces and compact Hausdorff flat linear topological Ok-modules.

Lemma 3.4. (i) For any unramified Banach k-vector space V , there is an
isometric k-linear isomorphism C0(I, k)→ V for some set I.

(ii) For any compact Hausdorff flat linear topological Ok-module M ,
there is a homeomorphic Ok-linear isomorphism M → OIk for some set
I.

Proof. The first assertion follows from [5] IV 3 Corollaire 1 (cf. [2] 2.5.2
Lemma 2 and the proof of [7] Proposition 10.1), and the second assertion
follows from [8] Expose VIIB 0.3.8. Corollaire.

Proof of Theorem 3.2. The linearity immediately follows from the defini-
tion of the enrichment. The localisation by (Ck,⊗k, k) is compatible with
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the monoidal structures, and hence it suffices to verify that Dur
Ban and Dch

fl

form symmetric monoidal functors by the argument on ηBan and ηch
fl in the

beginning of this subsection.

We construct a natural equivalence (•0)Dur
Ban⊗̂Ok(•1)Dur

Ban ⇒ (•0⊗̂k•1)Dur
Ban

with the desired coherence. For this purpose, it suffices to show that the

Ok-linear homomorphism V
Dur

Ban
0 ⊗Ok V

Dur
Ban

1 → (V0⊗̂kV1)Dur
Ban associated to

the Ok-linear pairing (V
Dur

Ban
0 ⊗Ok V

Dur
Ban

1 ) ⊗Ok (V0 ⊗Ok V1) ∼= (V
Dur

Ban
0 ⊗Ok

V0) ⊗Ok (V
Dur

Ban
1 ⊗Ok V1) → k ⊗Ok k ∼= k extends to a unique homeomor-

phic Ok-linear isomorphism V
Dur

Ban
0 ⊗̂OkV

Dur
Ban

1 → (V0⊗̂kV1)Dur
Ban in C ch

fl for
any unramified Banach k-vector spacesV0 and V1. By Lemma 3.4 (i), it
is reduced to the case V0 = C0(I, k) and V1 = C0(J, k) for sets I and J .
By Lemma 3.3, we have a natural homeomorphic Ok-linear isomorphism
C0(I, k)Dur

Ban⊗̂OkC0(J, k)Dur
Ban ∼= OIk⊗̂OkOJk ∼= OI×Jk

∼= C0(I × J, k)Dur
Ban ∼=

(C0(I, k)⊗̂kC0(J, k))Dur
Ban extending the given homomorphism. Therefore

Dur
Ban forms a symmetric monoidal equivalence.

We construct a natural equivalence (•0)Dch
fl ⊗̂k(•1)Dch

fl ⇒ (•0⊗̂Ok•1)Dch
fl

with the desired coherence. For this purpose, it suffices to show that the

k-linear homomorphism M
Dch

fl
0 ⊗kMDch

fl
1 → (M0⊗̂OkM1)Dch

fl associated to the

Ok-linear pairing (M
Dch

fl
0 ⊗kMDch

fl
1 )⊗Ok (M0⊗OkM1) ∼= (M

Dch
fl

0 ⊗OkM0)⊗Ok
(M

Dch
fl

1 ⊗̂OkM1) → k ⊗ k ∼= k extends to a unique isometric k-linear iso-

morphism M
Dch

fl
0 ⊗̂kMDch

fl
1 → (M0⊗̂OkM1)Dch

fl for any compact Hausdorff flat
linear topological Ok-modules M0 and M1. By Lemma 3.4 (ii), it is reduced
to the case M0 = OI0k and M1 = OI1k for sets I0 and I1. By Lemma 3.3,

we have a natural isometric k-linear isomorphism (OI0k )Dch
fl ⊗̂k(OI1k )Dch

fl ∼=
C0(I0, k)⊗̂kC0(I1, k) ∼= C0(I0 × I1, k) ∼= (OI0×I1k )Dch

fl ∼= (OI0k ⊗̂OkOI1k )Dch
fl ex-

tending the given homomorphism. Therefore DOk and Dch
fl are symmetric

monoidal functors.

We also have a relation to Cartesian products of topological spaces.

Corollary 3.5. (i) For any profinite groups G0 and G1, the Ok-algebra iso-
morphism Ok[G0]⊗Ok Ok[G1]→ Ok[G0×G1] associated to idG0×G1 extends
to a unique homeomorphic Ok-algebra isomorphism Ok[[G0]]⊗̂OkOk[[G1]]→
Ok[[G0 ×G1]].
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(ii) For any topological spaces X0 and X1, the k-algebra homomor-
phism Cbd(X1, k) ⊗k Cbd(X0, k) → Cbd(X0 × X1, k), (f1(x1), f0(x0)) 7→
f0(x0)f1(x1) extends to a unique isometric k-algebra isomorphism

Cbd(X1, k)⊗̂kCbd(X0, k)→ Cbd(X0 ×X1, k).

Proof. The assertion (i) immediately follows from Theorem 3.2 and the
assertion (ii) applied to the underlying topological spaces of G0 and G1. We
show the assertion (ii). In the case where X0 and X1 are totally disconnected
compact Hausdorff topological spaces, the assertion immediately follows
from Proposition 2.8, because ⊗̂k satisfies the universality of the coproduct.
In the general case, the assertion follows from the fact that the inclusion
PTop ↪→ Top is a right adjoint functor (cf. [4] Corollary 2.3). We note that
the universality and the adjoint property are formalisable without using
categories, and hence we do not have to assume the U -smallness of X0 and
X1.

3.2 Hopf monoid For a symmetric monoidal category (S ,⊗, I), we
denote by Hopf(S ,⊗, I) the category of Hopf monoid objects in (S ,⊗, I)
and Hopf monoid homomorphisms. As an immediate consequence of Theo-
rem 3.2, we obtain the following:

Theorem 3.6. The pair (Dur
Ban,D

ch
fl ) (respectively, (DBan, kDch

fl )) gives an
equivalence of categories Hopf(Banur

≤ (k), ⊗̂k, k)op and Hopf(C ch
fl , ⊗̂Ok , Ok)

(respectively, Hopf(Ban(k), ⊗̂k, k)op and Hopf(kC ch
fl , ⊗̂Ok , Ok)).

We give an explicit example of a Hopf monoid object in (C ch
fl , ⊗̂Ok , Ok).

We recall one of the simplest example of a Hopf Ok-algebra, that is, a Hopf
monoid object in (C ,⊗Ok , Ok), is the group algebra over Ok. Similarly, we
construct two sorts of Hopf monoid objects in (C ch

fl , ⊗̂Ok , Ok) by using a
topological group.

Proposition 3.7. (i) Let G be a U -small profinite group. Then the monoid
object structure of Ok[[G]] in (C ch

fl , ⊗̂Ok , Ok) extends to a unique Hopf monoid
object structure in (C ch

fl , ⊗̂Ok , Ok) such that ιcG preserves the comultiplica-
tion, the counit, and the antipode. Moreover, Ok[[G]] is cocommutative.

(ii) Let G be a U -small discrete group. Then the monoid object struc-
ture of C0(G, k) in (Banur

≤ , ⊗̂k, k) extends to a unique Hopf monoid object
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structure in (Banur
≤ (k), ⊗̂k, k) such that ιdG preserves the comultiplication,

the counit, and the antipode. Moreover, C0(G, k) is cocommutative.

Proof. (i) The uniqueness and the cocommutativity follow from the fact
that the image of ιcG is dense in Ok[[G]]. The system ((Ok/℘)[G/K])(℘,K)

forms an inverse system in the under category Ok[G]/Hopf(C ,⊗Ok , Ok) with
respect to the canonical projections, where ℘ runs through open ideals of Ok
and K runs through open normal subgroups of G. By the definition of ⊗̂Ok ,
the systems of comultiplications, counits, and antipodes induce a comulti-
plication, a counit, and an antipode on Ok[[G]] respectively with respect to
(⊗̂Ok , Ok), for which Ok[[G]] forms a Hopf monoid object in (C ch

fl , ⊗̂Ok , Ok)
satisfying the desired conditions again because the image of ιcG is dense in
Ok[[G]].

(ii) The uniqueness and the cocommutativity follow from the fact that
the image of ιdG is dense in C0(G, k). Take a uniformiser $ ∈ Ok. Since
C0(G, k)◦ is naturally identified with the $-adic completion of Ok[G], the
Hopf Ok-algebra structure of Ok[G] induces a comultiplication C0(G, k)◦ →
(C0(G, k)⊗̂kC0(G, k))◦, a counit C0(G, k)◦ → Ok, and an antipode
C0(G, k)◦ → C0(G, k)◦, which extend to a comultiplication, a counit, and an
antipode on C0(G, k) respectively with respect to (⊗̂k, k), for which C0(G, k)
forms a Hopf monoid object in (Banur

≤ (k), ⊗̂k, k) satisfying the desired con-

ditions again because the image of ιdG is dense in C0(G, k).

Corollary 3.8. (i) Let G be a U -small profinite group. Then the monoid
object structure of C(G, k) extends to a unique Hopf monoid object struc-
ture in (Banur

≤ (k), ⊗̂k, k) such that the composite of the comultiplication and
the isometric k-linear isomorphism ι : C(G, k)⊗̂kC(G, k) → C(G × G, k)
in Corollary 3.5 (ii) coincides with the composition to the multiplication
G×G→ G, the counit is ιcG(1) ∈ Ok[[G]] ∼= C(G, k)Dur

Ban, and the antipode
is the involution C(G, k) → C(G, k) given as the composition to the map
G→ G, g 7→ g−1.

(ii) Let G be a U -small discrete group. Then the monoid object structure
of OGk extends to a unique Hopf monoid object structure in (C ch

fl , ⊗̂Ok , Ok)
such that the composite of the comultiplication and the homeomorphic Ok-
linear isomorphism OGk ⊗̂OkOGk → OG×Gk in Lemma 3.3 coincides with the
composition to the multiplication G×G→ G, the counit is ιdG(1) ∈ C0(G, k) ∼=
(OGk )Dch

fl , and the antipode is the involution OGk → OGk , (cg)g∈G 7→ (cg−1)g∈G.
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Proof. The assertions immediately follow from Example 3.1, Lemma 3.3,
Theorem 3.6, and Proposition 3.7 by the fact that the dual of the comul-
tiplication of Ok[[G]] (respectively, C0(G, k)) coincides with the pointwise
multiplication of C(G, k) (respectively, OGk ).

4 Pontryagin duality

We introduce two sorts of p-adic Pontryagin dualities in terms of functors of
points. Through the duality in Theorem 3.6, we establish p-adic analogues
of Fourier transform and Plancherel’s theorem extending Amice transform
C(Zp, k)Dur

Ban → Ok[[T ]].

4.1 Discrete Abelian group For a Banach k-algebra A, we denote

by AGm/k the discrete group which shares the underlying group with (A◦)×.
The correspondence A  AGm/k restricted to U gives a functor
Gm/k : CAlg(k) → Ab, which is an analytic geometric counterpart of S1.

For any U -small set I, the correspondence A  (AGm/k)I restricted to U
gives a functor GIm/k : CAlg(k) → Ab. A functor G : CAlg(k) → Ab is said

to be a torus if it is naturally isomorphic to GIm/k for some U -small set
I, and is said to be a multiplicative analytic group over k if it is naturally
isomorphic to the kernel of a natural transformation between tori. We es-
tablish a p-adic Pontryagin duality between discrete Abelian groups and
multiplicative analytic groups over k.

Example 4.1. (i) Let n ∈ N \ {0}. For a Banach k-algebra A, we denote
by Aµn/k ⊂ AGm/k the subgroup {f ∈ AGm/k | fn = 1}. The correspondence
A Aµn/k restricted to U gives a functor µn/k : CAlg(k)→ Ab, which is a
multiplicative analytic group over k because it is the kernel of the natural
transformation Gm/k → Gm/k given by the n-th power.

(ii) Let DN denote the set {(n0, n1) ∈ (N \ {0})2 | ∃d ∈ N, dn0 =

n1}. For a Banach k-algebra A, we denote by AẐ(1)/k the inverse limit
of (Aµn/k)n∈N\{0} with respect to the system of n−1

0 n1-th powers Aµn1/k →
Aµn0/k indexed by (n0, n1) ∈ DN equipped with the discrete topology. The

correspondence A AẐ(1)/k restricted to U gives a functor

Ẑ(1)/k : CAlg(k)→ Ab,
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which is a multiplicative analytic group over k because it is the kernel of
the natural transformation

GN\{0}m/k → GDN
m/k, (fn)n∈N 7→ (f−1

n0
f
n−1

0 n1
n1 )(n0,n1)∈DN .

For discrete Abelian groups G and H, we denote by H omAb(G,H) the
discrete set of group homomorphisms G → H equipped with the point-
wise multiplication. Let G be a U -small discrete Abelian group. The
correspondence A  H omAb(G,AGm/k) restricted to U gives a functor
H omAb(G,Gm/k) : CAlg(k) → Ab. Since Gm/k is a counterpart of S1,
HomAb(•,Gm/k) is a p-adic analogue of the Pontryagin dual.

Proposition 4.2. For any U -small discrete Abelian group G,

H omAb(G,Gm/k)

forms a multiplicative analytic group over k.

In order to verify Proposition 4.2, we prepare several lemmata.

Lemma 4.3. For any U -small discrete Abelian group G, H omAb(G,Gm/k)
is representable by C0(G, k).

Proof. By Proposition 3.7 (ii), C0(G, k) represents a functor Ĝ : CAlg(k)→
Ab. Denote by u ∈H omAb(G,C0(G, k)Gm/k) the composite of the canoni-
cal embedding G ↪→ k[G] and ιdG, and by F the natural transformation Ĝ⇒
H omAb(G,Gm/k) determined by the equality F (C0(G, k))(idC0(G,k)) = u
by Yoneda’s lemma because u is a group homomorphism. We show that
F is a natural equivalence. Let A be a commutative monoid object in
(Banur

≤ (k), ⊗̂k, k). Then F (A) is the group homomorphism

HomCAlg(k)(C0(G, k), A)→H omAb(G,AGm/k), ϕ 7→ ϕ ◦ u.

Since the image of u generates a dense k-subalgebra of C0(G, k), F (A) is
injective. Let ψ ∈ H omAb(G,AGm/k). For any g ∈ G, we have ‖ψ(g)‖ = 1
by ψ(g) ∈ (A◦)×. Therefore the k-algebra homomorphism ϕ : k[G] → A
associated to ψ by the universality of the group algebra satisfies ‖ϕ(f)‖ ≤
‖ιdG(f)‖ for any f ∈ k[G]. It implies that ϕ extends to a unique submetric
k-algebra homomorphism ϕ̂ : C0(G, k) → A through ιdG, because the image
of ιdG is dense in C0(G, k). We have F (A)(ϕ̂) = ϕ̂ ◦ u = ψ. It implies the
surjectivity of F (A). Thus F is a natural equivalence.
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Corollary 4.4. For any U -small set I, GIm/k is representable by C0(Z⊕I , k).

Proof. The assertion immediately follows from Lemma 4.3 applied to the
case G = Z⊕I by the universality of the direct sum, because the identity
functor Ab→ Ab is represented by Z.

Proof of Proposition 4.2. Denote by ϕ0 the group homomorphism Z⊕G →
G associated to idG, and by ϕ1 the group homomorphism Z⊕ ker(ϕ0) → Z⊕G
associated to the inclusion ker(ϕ0) ↪→ Z⊕G. By Proposition 3.7 (ii),

C0(ϕ0, k) : C0(Z⊕G, k)→ C0(G, k)

and C0(ϕ1, k) : C0(Z⊕ ker(ϕ0), k)→ C0(Z⊕G, k) form Hopf monoid homomor-
phisms. By Lemma 4.3 and Corollary 4.4, they induce natural transforma-

tions F0 : H omAb(G,Gm/k) ⇒ GGm/k and F1 : GGm/k ⇒ Gker(ϕ0)
m/k . We show

that (H omAb(G,Gm/k), F0) satisfies the universality of the kernel of F1.
By ϕ1 ◦ ϕ0 = 0, we have C0(ϕ1, k) ◦ C0(ϕ0, k) = C0(0, k) = 0, and

hence F1 ◦ F0 = 0. Let A be a U -small commutative monoid object in
(Banur

≤ (k), ⊗̂k, k). We show that (HomAb(G,AGm/k), F0(A)) satisfies the
universality of the kernel of F1(A). By F1◦F0 = 0, we have F1(A)◦F0(A) =
0. By the definition of F0, F0(A) is the inclusion HomAb(G,AGm/k) ↪→
(AGm/k)G. Let f ∈ ker(F1(A)) ⊂ (AGm/k)G. For any (g0, g1) ∈ G2, we have
g0g1 − g0 − g1 ∈ ker(ϕ0), and hence

f(g0g1) = (f(g0g1)f(g0)−1f(g1)−1)f(g0)f(g1)
= F1(f)(g0g1 − g0 − g1)f(g0)f(g1) = f(g0)f(g1)

by the construction of the natural isomorphism in the proof of Lemma 4.3.
It implies that f is a group homomorphism G→ AGm/k , and hence is an el-
ement of the image of F0(A). Therefore (HomAb(G,AGm/k), F0(A)) satisfies
the universality of the kernel of F1(A). It implies that
(H omAb(G,Gm/k), F0) satisfies the universality of the kernel of F1.

We denote by PAbk the category of multiplicative analytic groups over
k and natural transformations. By Proposition 4.2, the correspondence
G  H omAb(G,Gm/k) gives a functor H omAb(•,Gm/k) : Abop → PAbk.
Now we state a p-adic analogue of the Pontryagin duality.

Theorem 4.5. The functor H omAb(•,Gm/k) is fully faithful and essen-
tially surjective.
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By the axiom of choice and the smallness of Ab, Theorem 4.5 implies
that Abop is naturally equivalent to PAbk. However, there seems to be
no natural construction of an inverse of H omAb(•,Gm/k). Although the
fullness and the faithfulness immediately follows from the proof of Corollary
3.8 (ii) because the maximal spectrum of OGk modulo the maximal ideal of
Ok is canonically homeomorphic to the Stone–Čech compactification of G,
we give an alternative proof constructing an ”inverse correspondence”. In
order to verify Theorem 4.5, we prepare several notions and lemmata.

Let G be a multiplicative analytic group over k. We denote by
H omPAbk(G ,Gm/k) the discrete set HomPAbk(G ,Gm/k) equipped with the
pointwise multiplication. We note that H omPAbk(G ,Gm/k) is not U -small
in our context, and hence is not an object of Ab. Therefore the correspon-
dence G  H omPAbk(G ,Gm/k) does not give a functor

H omPAbk(•,Gm/k) : PAbk → Abop.

Nevertheless, it will essentially play a role of an inverse of H omAb(•,Gm/k).
Indeed, it is functorial in the sense that for any natural transformation F
between multiplicative analytic groups G0 and G1 over k, the map

H omPAbk(F,Gm/k) : H omPAbk(G1,Gm/k)→H omPAbk(G0,Gm/k), γ 7→ γ ◦ F

is a group homomorphism, and the correspondence F  H omPAbk(F,Gm/k)
preserves identities and compositions.

Let G be a U -small discrete Abelian group. For any g ∈ G, ιdG(g)
is a group-like element of C0(G, k) because ιdG preserves the comultipli-
cation, and hence ιdG(g) ∈ Gm/k(C0(G, k)) yields a natural transformation
ηAb(G)(g) : H omAb(G,Gm/k)⇒ Gm/k by Lemma 4.3 and Yoneda’s lemma.

Lemma 4.6. For any U -small discrete Abelian group G, the map

ηAb(G) : G → H omPAbk(H omAb(G,Gm/k),Gm/k)

g 7→ ηAb(G)(g)

is a group isomorphism.

Proof. The map ηAb(G) is a group homomorphism because the evaluation at
C0(G, k) preserves the multiplication by the definition of H omPAbk(G,Gm/k).
For a Hopf monoid homomorphism ϕ : C0(k) → C0(G, k), we denote by
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F (ϕ) the natural transformation H omAb(G,Gm/k)⇒ Gm/k corresponding
to ϕ by Lemma 4.3 and Corollary 4.4. The map

F : HomHopf(Banur
≤ (k),⊗̂k,k)(C0(Z, k),C0(G, k))

→ HomPAbk(H omAb(G,Gm/k),Gm/k), ϕ 7→ F (ϕ)

is bijective by Yoneda’s lemma. Put H := F−1 ◦ηAb(G). It suffices to verify
the bijectivity of H.

We have H(g)(f) =
∑

n∈Z f(n)ιdG(g)n for any (g, f) ∈ G × C0(Z, k)
by the construction. In particular, we obtain H(g)(ιc

Ẑ
(1)) = ιdG(g) for any

g ∈ G×C0(Z, k). Therefore the injectivity of ιdG implies that of H. We show
the surjectivity of H. Let ϕ be a Hopf monoid homomorphism C0(Z, k)→
C0(G, k). Since ιdZ(1) is a group-like element of C0(Z, k), ϕ(ιdZ(1)) is a group-
like element of C0(G, k). Therefore we have

∑
g∈G ϕ(ιdZ(1))(g)ιdG(g)⊗ ιdG(g) = ϕ(ιdZ(1))⊗ ϕ(ιdZ(1))

=
∑

(g0,g1)∈G2 ϕ(ιdZ(1))(g0)ϕ(ιdZ(1))(g1)ιdG(g0)⊗ ιdG(g1)

in C0(G, k)⊗̂kC(G, k) for any (g0, g1) ∈ G2. It implies that there is at

most one g ∈ G satisfying ϕ(ιdZ(1))(g) 6= 0 by Proposition 2.6, and such
a g satisfies ϕ(ιdZ(1))(g)2 = ϕ(ιdZ(1))(g), that is, ϕ(ιdZ(1))(g) = 1. By
ϕ(ιdZ(1)) ∈ C0(G, k)×, it implies that there is a g ∈ G such that ϕ(ιdZ(1)) =
ιdG(g). For any f ∈ C0(Z, k), we have H(g)(f) =

∑
n∈Z f(n)ιdG(g)n =∑

n∈Z f(n)ϕ(ιdZ(1))n = ϕ(f). It implies ϕ = H(g). Therefore H is surjec-
tive.

Lemma 4.7. For any multiplicative Abelian group G over k, there is a
U -small Abelian group G such that H omAb(G,Gm/k) is isomorphic to G .

Proof. Since G is a multiplicative analytic group over k, there is a tuple
(I, J, F,H) of U -small sets I and J and natural transformations F : GIm/k →
GJm/k and H : G → GIm/k such that (G , H) satisfies the universality of the
kernel of F . By Corollary 4.4 and Lemma 4.6, there is a unique group
homomorphism

ϕ : Z⊕J → Z⊕I

such that ηAb(Z⊕I) ◦ ϕ = H omAb(H omPAbk(F,Gm/k),Gm/k) ◦ ηAb(Z⊕J).

Put G := coker(ϕ). Since G is a quotient of Z⊕I , G is U -small. We
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denote by π the canonical projection Z⊕I � G. By the left exactness of the
functor H omAb(•, AGm/k) : Abop → Ab for any commutative monoid object
A in (Banur

≤ (k), ⊗̂k, k), (H omAb(G,Gm/k),H omAb(π,Gm/k)) satisfies the
universality of the kernel of F identified with H omPAbk(ϕ,Gm/k) through

the natural isomorphisms H omAb(Z⊕I ,Gm/k)⇒ GIm/k and

H omAb(Z⊕J ,Gm/k)⇒ GJm/k.

Thus G is naturally isomorphic to H omAb(G,Gm/k).

By Lemma 4.3, Lemma 4.6, and Lemma 4.7, we obtain the following:

Corollary 4.8. Every multiplicative analytic group G over k is representable
by C0(G, k) for a U -small Abelian group G isomorphic to H omPAbk(G ,Gm/k).

Proof of Theorem 4.5. The fullness and faithfulness immediately follow from
Lemma 4.6. The essential surjectivity precisely coincides with the assertion
of Lemma 4.7.

By Theorem 4.5, we obtain the following:

Corollary 4.9. The category PAbk forms an Abelian category with respect
to a natural Ab-enrichment, and admits all U -small colimits and all U -
small limits.

Remark 4.10. The functor C0(•, k) : Ab→ Hopf(Banur
≤ (k), ⊗̂k, k) does not

preserve U -small limits. For example, the limit of (Z/nZ)n∈N\{0} in Ab with

respect to the canonical projections is Ẑ equipped with the discrete topol-
ogy, while the colimit of (µn/k)n∈N\{0} ∼= (H omAb(Z/nZ,Gm/k))n∈N\{0} in
PAbk is the functor µ∞/k : CAlg(k) → Ab which assigns the torsion group

of AGm/k to each commutative monoid object A in (Banur
≤ (k), ⊗̂k, k). The

natural transformation µ∞/k ⇒ H omAb(Ẑ,Gm/k) given by the universal-
ity of the colimit of (µn/k)n∈N\{0} is not a natural isomorphism, because

ιd
Ẑ

: Ẑ ↪→ C0(Ẑ, k)Gm/k assigns to 1 ∈ Ẑ a Z-torsionfree element. It implies
that µ∞/k is not a multiplicative analytic group over k and does not admit
a maximal multiplicative analytic subgroup over k.
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4.2 Profinite Abelian group Let A be a compact Hausdorff flat
linear topological Ok-algebra. Then A× ⊂ A is the intersection of the
preimages of the multiplicative groups of finite quotients, and hence is a
closed subset. Therefore it forms a profinite group. We denote by AGm/Ok

the discrete group which shares the underlying group with A×.

The correspondence A  AGm/Ok restricted to U gives a functor
Gm/Ok : CAlg(Ok) → Ab, which is a formal geometric counterpart of S1.

For any U -small set I, the correspondence A (AGm/Ok )I restricted to U
gives a functor GIm/Ok : CAlg(Ok) → Ab. A functor G : CAlg(Ok) → Ab is

said to be a torus if it is naturally isomorphic to GIm/Ok for some U -small
set I, and is said to be a multiplicative formal group over Ok if it is nat-
urally isomorphic to the kernel of a natural transformation between tori .
We establish a p-adic Pontryagin duality between profinite Abelian groups
and multiplicative formal groups over Ok in a parallel way to the p-adic
Pontryagin duality in §4.1.

Example 4.11. (i) Let n ∈ N \ {0}. For a compact Hausdorff flat linear
topological Ok-algebra A, we denote by Aµn/Ok ⊂ AGm/Ok the subgroup
{f ∈ AGm/Ok | fn = 1}. The correspondence A  Aµn/Ok restricted to U
gives a functor µn/Ok : CAlg(Ok) → Ab, which is a multiplicative formal
group over Ok by a completely similar similar argument in Example 4.1 (i).

(ii) Let DN denote the set introduced in Example 4.1 (ii). For a compact

Hausdorff flat linear topological Ok-algebra A, we denote by AẐ(1)/Ok the
inverse limit of (Aµn/Ok )n∈N\{0} with respect to the system of n−1

0 n1-th
powers Aµn1/Ok → Aµn0/Ok indexed by (n0, n1) ∈ DN equipped with the

discrete topology. The correspondence A  AẐ(1)/Ok restricted to U gives
a functor Ẑ(1)/Ok : CAlg(Ok)→ Ab, which is a multiplicative formal group
over Ok by a completely similar similar argument in Example 4.1 (ii).

For profinite Abelian groups G and H, we denote by H omPAb(G,H)
the discrete Abelian group whose underlying set is the set of continuous
group homomorphisms G→ H and whose operation is the pointwise multi-
plication. Let G be a U -small profinite Abelian group. The correspondence
A H omPAb(G,A×) restricted to U gives a functor

H omPAb(G,Gm/Ok) : CAlg(Ok)→ Ab.
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We note that this convention is misleading because H omPAb(G,Gm/Ok)
is not a functor which assigns the discrete Abelian group of continuous
group homomorphism G→ AGm/Ok to each commutative monoid object A
in (C ch

fl , ⊗̂Ok , Ok), but employ it in order to formulate a p-adic Pontryagin
duality in a parallel way to the p-adic Pontryagin duality in §4.1. Since
Gm/Ok is a counterpart of S1, HomPAb(•,Gm/Ok) is a p-adic analogue of the
Pontryagin dual.

Proposition 4.12. For any U -small profinite Abelian group G,

H omPAb(G,Gm/Ok)

forms a multiplicative formal group over Ok.

In order to verify Proposition 4.12, we prepare several lemmata.

Lemma 4.13. For any U -small profinite Abelian group G,

H omPAb(G,Gm/Ok)

is representable by Ok[[G]].

Proof. By Proposition 3.7 (i), Ok[[G]] represents a functor Ĝ : CAlg(Ok)→
Ab. Denote by u ∈ H omPAb(G,Ok[[G]]×) the composite of the canonical
embedding G ↪→ Ok[G] and ιcG, and by F the natural transformation Ĝ ⇒
H omPAb(G,Gm/Ok) determined by the equality F (Ok[[G]])(idOk[[G]]) = u
by Yoneda’s lemma because u is a continuous group homomorphism. For
any U -small commutative monoid object A in (C ch

fl , ⊗̂Ok , Ok), F (A) is the
map HomCAlg(Ok)(Ok[[G]], A) → H omPAb(G,A×), ϕ 7→ ϕ ◦ u, which is
bijective by the universality of the Iwasawa algebra. Therefore F is a natural
equivalence.

Let I be a set. We denote by Ẑ⊕̂I the profinite completion of the direct
sum Ẑ⊕I of I-copies of the underlying discrete group of Ẑ. For each i ∈ I,
we denote by ιI,i : Ẑ→ Ẑ⊕̂I the composite of the i-th canonical embedding

Ẑ ↪→ Ẑ⊕I and the canonical embedding Ẑ⊕I ↪→ Ẑ⊕̂I .

Lemma 4.14. Let I be a set. For any profinite group G, the map

H omPAb(Ẑ⊕̂I , G)→ GI , χ 7→ (χ(ιI,i(1)))i∈I

is a group isomorphism, where GI is equipped with the pointwise multipli-
cation.
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Proof. Since every subgroup of Ẑ of finite index is closed, ιI,i is continuous
for any i ∈ I. Therefore the assertion immediately follows from the univer-
sality of the completion and the direct sum, because the forgetful functor
PAb→ Ab is represented by Ẑ.

Corollary 4.15. For any U -small set I, GIm/Ok is representable by Ok[[Ẑ⊕̂I ]].

Proof. The assertion immediately follows from Lemma 4.13 applied to the
case G = Ẑ⊕̂I and Lemma 4.14.

Proof of Proposition 4.12. For a set I and a profinite group H, denote by
ϕI,H the group isomorphism H omPAb(Ẑ⊕̂I , H)→ HI in Lemma 4.14. De-

note by ϕ0 the group homomorphism ϕ−1
G,G(idG) : Ẑ⊕̂G → G, and by ϕ1 the

composite of the group homomorphism ϕker(ϕ),ker(ϕ) : Z⊕̂ ker(ϕ0) → ker(ϕ0)

and the inclusion ker(ϕ0) ↪→ Z⊕̂G. By Proposition 3.7 (i),

Ok[[ϕ0]] : Ok[[Ẑ⊕̂G]]→ Ok[[G]]

and Ok[[ϕ1]] : Ok[[Ẑ⊕̂ ker(ϕ0)]] → Ok[[Ẑ⊕̂G]] form Hopf monoid homomor-
phisms. By Lemma 4.13 and Corollary 4.15, they induce natural trans-

formations F0 : H omPAb(G,Gm/Ok) ⇒ GGm/Ok and F1 : GGm/Ok ⇒ Gker(ϕ0)
m/Ok

.
Since ϕ0 is a continuous surjective group homomorphism between compact
Hausdorff topological groups, ker(ϕ0) ⊂ Ẑ⊕̂G is closed and the group iso-

morphism Ẑ⊕̂G/ ker(ϕ0) → G induced by ϕ0 is a homeomorphism. There-
fore (H omPAb(G,Gm/Ok), F0) satisfies the universality of the kernel of F1

by a completely similar argument in the second paragraph in the proof of
Proposition 4.2.

We denote by AbOk the category of multiplicative formal groups over
Ok and natural transformations. By Proposition 4.12, the correspondence
G  H omPAb(G,Gm/Ok) gives a functor H omPAb(•,Gm/Ok) : PAbop →
AbOk . Now we state a p-adic analogue of the Pontryagin duality.

Theorem 4.16. The functor H omPAb(•,Gm/Ok) is fully faithful and es-
sentially surjective.

By the axiom of choice and the smallness of PAb, Theorem 4.16 implies
that PAbop is naturally equivalent to AbOk , but there is an issue on an
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inverse similar to that for H omAb(•,Gm/k). Although the fullness and the
faithfulness immediately follows from the proof of Corollary 3.8 (i) because
the Berkovich spectrum of C(G, k) is canonically homeomorphic to G by
[1] 9.2.7 Corollary, we give an alternative proof constructing an “inverse
correspondence”. For this purpose, we prepare several notions and lemmata.

Let G be a multiplicative formal group over Ok. We denote by

H omAbOk
(G ,Gm/Ok)

the set HomAbOk
(G ,Gm/Ok) equipped with the pointwise multiplication and

the topology generated by all subsets of the form {g ∈ HomAbOk
(G ,Gm/Ok) |

g(A)(ϕ) ∈ U} for some tuple (A,ϕ,U) of a commutative monoid object A
in (C ch

fl , ⊗̂Ok , Ok), a ϕ ∈ G (A), and an open subset U ⊂ A. It actually
forms a topological group by the definition of the pointwise multiplication.
By a reason similar to that for H omPAbk(•,Gm/k), the correspondence G  
H omAbOk

(G ,Gm/Ok) does not give a functor H omAbOk
(•,Gm/Ok) : AbOk →

Abop, but is functorial in the sense that for any natural transformation F
between multiplicative formal groups G0 and G1 over Ok, the map

H omAbOk
(F,Gm/Ok) : H omAbOk

(G1,Gm/Ok)

→H omAbOk
(G0,Gm/Ok), γ 7→ γ ◦ F

is a group homomorphism, and the correspondence F  H omAbOk
(F,Gm/Ok)

preserves identities and compositions.

Let G be a U -small profinite Abelian group. For any g ∈ G, ιcG(g)
is a group-like element of Ok[[G]] because g is a group-like element of
Ok[G], and hence ιcG(g) ∈ Ok[[G]]× determines a natural transformation
ηPAb(G)(g) : H omPAb(G,Gm/Ok) ⇒ Gm/Ok by Lemma 4.13 and Yoneda’s
lemma.

Lemma 4.17. For any U -small profinite Abelian group G, the map

ηPAb(G) : G → H omAbOk
(H omPAb(G,Gm/Ok),Gm/Ok)

g 7→ ηPAb(G)(g)

is a homeomorphic group isomorphism.
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Proof. The map ηPAb(G) is a group homomorphism because the evaluation
at Ok[[G]] preserves the multiplication by the definition of
H omAbOk

(G,Gm/Ok). For any pair (A,ϕ) of a commutative monoid object

A in (C ch
fl , ⊗̂Ok , Ok) and a ϕ ∈H omPAb(G,A×), ϕ corresponds to a contin-

uous Ok-algebra homomorphism ϕ̃ : Ok[[G]] → A by Lemma 4.13, and the
preimage of the open subset {g ∈ HomAbOk

(H omPAb(G,Gm/Ok),Gm/Ok) |
g(A)(ϕ) ∈ U} by ηPAb(G) coincides with {g ∈ G | ηPAb(G)(g)(A)(ϕ) ∈
U} = {g ∈ G | ϕ̃(ιcG(g)) ∈ U}, which is open by the continuity of ϕ̃ and ιcG,
for any open subset U ⊂ A. Therefore ηAb(G) is continuous.

For a Hopf monoid homomorphism ϕ : Ok[[Ẑ]] → Ok[[G]], we denote
by F (ϕ) the natural transformation H omPAb(G,Gm/Ok) ⇒ Gm/Ok corre-
sponding to ϕ by Lemma 4.13 and Corollary 4.15. The map

F : HomHopf(Cch
fl
,⊗̂Ok ,Ok)(Ok[[Ẑ]], Ok[[G]]) → HomAbOk

(H omPAb(G,Gm/Ok ),Gm/Ok )

ϕ 7→ F (ϕ)

is bijective by Yoneda’s lemma. PutH := F−1◦ηPAb(G). It suffices to verify
the bijectivity of H. We have H(g)(ιc

Ẑ
(n)) = ιcG(g)n for any (g, n) ∈ G× Z

by the construction. In particular, we obtain H(g)(ιc
Ẑ
(1)) = ιcG(g) for any

g ∈ G×Ok[[Ẑ]]. Therefore the injectivity of ιcG implies that of H.
We show the surjectivity of H. Let ϕ be a Hopf monoid homomor-

phism Ok[[Ẑ]] → Ok[[G]]. Since ιc
Ẑ
(1) is a group-like element of Ok[[Ẑ]],

ϕ(ιc
Ẑ
(1)) is a group-like element of Ok[[G]]. Let G0 ⊂ G be an open sub-

group. Denote by πG0 : Ok[[G]] → Ok[[G/G0]] the canonical projection.
Then πG0(ϕ(ιc

Ẑ
(1))) is a group-like element of Ok[G/G0], and hence there

is a unique gG0 ∈ G/G0 such that πG0(ϕ(ιc
Ẑ
(1))) = ιcG/G0

(gG0). By the

uniqueness, (gG0)G0 forms an element of the profinite completion of G, and
hence corresponds to a unique g ∈ G. It implies ϕ(ιc

Ẑ
(1)) = ιcG(g). For any

n ∈ Z, we have H(g)(ιc
Ẑ
(n)) = ιcG(g)n = ϕ(ιc

Ẑ
(1))n = ϕ(ιc

Ẑ
(n)). It implies

ϕ = H(g) because the image of Z is dense in Ẑ. Therefore H is surjective.
For any open subgroup G0 ⊂ G, the composite of ιcG and πG0 gives a

continuous group homomorphism ϕ : G → Ok[[G/G0]]×, and the image of
G0 by H coincides with the open subset

{
g ∈ HomAbOk

(H omPAb(G,Gm/Ok ),Gm/Ok )
∣∣∣g(Ok[[G/G0]])(ϕ) ∈ OkιcG/G0

(1)
}

by ϕ(g) = πG0(ιcG(g)) = ιcG/G0
(gG0). Therefore H is open.
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Lemma 4.18. For any multiplicative formal group G over Ok, there is a
U -small profinite Abelian group G such that H omPAb(G,Gm/Ok) is iso-
morphic to G .

Proof. The assertion follows from a completely parallel argument in the
proof of Lemma 4.7 by Corollary 4.15 and Lemma 4.17.

By Lemma 4.13, Lemma 4.17, and Lemma 4.18, we obtain the following:

Corollary 4.19. Every multiplicative formal group G over Ok is repre-
sentable by Ok[[G]] for a U -small profinite Abelian group G isomorphic to
H omAbOk

(G ,Gm/Ok).

Proof of Theorem 4.16. The fullness and faithfulness immediately follow
from Lemma 4.17. The essential surjectivity precisely coincides with the
assertion of Lemma 4.18.

Corollary 4.20. The category AbOk forms an Abelian category with respect
to a natural Ab-enrichment, and admits all U -small colimits and all U -
small limits.

Proof. By Theorem 4.16 and the classical Pontryagin duality, the assertion
immediately follows from the elementary fact that the full subcategory of Ab
consisting of U -small torsion Abelian groups admits all U -small colimits
and all U -small limits.

Remark 4.21. The functor Ok[[•]] : PAb → Hopf(C ch
fl , ⊗̂Ok , Ok) preserves

U -small limits unlike C0(•, k) (cf. Remark 4.10). Therefore for any func-
tor G : CAlg(Ok) → Grp, the set Σ of multiplicative formal subgroups of
G over Ok forms a partially ordered set with respect to inclusions, which
corresponds to a U -small diagram in PAb by Theorem 4.16, and the image
of its limit in PAb by Ok[[•]] gives a Hopf monoid in (C ch

fl , ⊗̂Ok , Ok), which
represents a multiplicative formal subgroup of G over Ok satisfying the uni-
versality of the colimit of Σ. It implies that G admits a unique maximal
multiplicative formal subgroup over Ok.

Following the traditional convention of a representation of an algebraic
group, we define the notion of a representation of formal group schemes
of a certain type. Let G be a functor CAlg(Ok) → Grp represented by a
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commutative Hopf monoid object A in (C ch
fl , ⊗̂Ok , Ok). A representation of

G is a right A-comodule object in (C ch
fl , ⊗̂Ok , Ok). A representation of G is

said to be irreducible if it admits precisely two quotients as representations of
G . By Theorem 3.2, the irreducibility of a representation of G is equivalent
to the irreducibility of its dual as a Banach left ADch

fl -module in the sense
that it admits precisely two closed ADch

fl -submodules.

The left regular ADch
fl -module forms a “universal family” of irreducible

unitary Banach k-linear representations of the discrete group G (Ok) in
the sense that for any irreducible unitary Banach k-linear representation
V of G (Ok) which is “analytic” in the sense that it admits a continuous
Ok-linear homomorphism ρ : V Dur

Ban → V Dur
Ban⊗̂OkA for which V Dur

Ban forms
a representation of G such that (id

V
Dur

Ban
⊗ g)(ρ(µ))(v) = µ(gv) for any

(g, µ, v) ∈ G (Ok) × V Dur
Ban × V , there is a submetric k-linear homomor-

phism π : ADch
fl → V with dense image such that gπ(1) = π(g) for any

g ∈ G (Ok) = HomCAlg(Ok)(A,Ok) ⊂ ADch
fl .

Let G be a multiplicative formal group over Ok. By Corollary 4.19, G
is represented by a commutative Hopf monoid object A in (C ch

fl , ⊗̂Ok , Ok).
Therefore the notion of a representation of G makes sense as long as we fix
A, which is unique up to Hopf monoid isomorphism. At least, the following
holds for any choice of such an A:

Theorem 4.22. Every representation of a multiplicative formal group G
finitely generated over Ok is completely reducible, that is, admits a homeo-
morphic Ok-linear isomorphism to the direct product of finitely many irre-
ducible representations preserving the action of G .

Proof. By Corollary 4.19, there is a U -small profinite Abelian group G
such that G is represented by Ok[[G]]. It suffices to show that every Ok[[G]]-
comodule object in
(C ch

fl , ⊗̂Ok , Ok) admits a Ok[[G]]-comodule isomorphism to the direct prod-
uct of finitely many Ok[[G]]-comodule objects in (C ch

fl , ⊗̂Ok , Ok) admitting
precisely two quotients as Ok[[G]]-subcomodule objects in (C ch

fl , ⊗̂Ok , Ok).
By Theorem 3.2, it suffices to show that every C(G, k)-module object V in
(Banur

≤ (k), ⊗̂k, k) of finite dimension admits a C(G, k)-module isomorphism
to the direct sum of finitely many irreducible C(G, k)-module objects in
(Banur

≤ (k), ⊗̂k, k). It immediately follows from the fact that idempotents
generates a dense k-subalgebra of C(G, k).
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4.3 Fourier transform We denote by A1
Ok

the forgetful functor
CAlg(Ok) → Set. For a functor X : CAlg(Ok) → Set, we denote by
H0(X ,A1

Ok
) the set of natural transformations X ⇒ A1

Ok
equipped with

the pointwise Ok-algebra structure. When X is representable by a com-
mutative monoid object A in (C ch

fl , ⊗̂Ok , Ok), then H0(X ,A1
Ok

) is naturally
isomorphic to the underlying Ok-algebra of A. Therefore if X is an affine
formal scheme over Spf(Ok) represented by a commutative compact Haus-
dorff flat linear topological Ok-algebra, then H0(X ,A1

Ok
) can be regarded

as the underlying Ok-algebra of global sections. Therefore H0(X ,A1
Ok

) is a
generalised notion of a ring of functions on X .

Let G be a U -small profinite Abelian group. We denote by Ĝ the
composite of H omPAb(G,Gm/Ok) and the forgetful functor Ab→ Set. Let

f ∈ C(G, k)Dur
Ban . For a commutative monoid object A in (C ch

fl , ⊗̂Ok , Ok), we

denote by f̂(A) : Ĝ(A)→ A the group homomorphism which assigns to each
χ ∈ Ĝ(A) = H omPAb(G,A×) a unique h ∈ A satisfying f(µ◦χ) = µ(h) for

any µ ∈ ADch
fl , which exists by the bijectivity of ηch

fl (A) : A→ ADch
fl Dur

Ban . The

correspondence A f̂(A) gives a natural transformation f̂ : Ĝ⇒ A1
OK

. We

denote by FG the ring homomorphism C(G, k)Dur
Ban → H0(Ĝ,A1

OK
), f 7→ f̂ .

It gives a nontrivial conversion connecting two function rings C(G, k) and
H0(Ĝ,A1

Ok
), and is a p-adic analogue of Fourier transform. We note that

we do not need to take the first dual in the Archimedean setting, because
every Hilbert space admits a canonical isomorphism to its first dual. We
show a counterpart of Plancherel’s theorem.

Theorem 4.23. For any U -small profinite Abelian group G, FG is a ring
isomorphism.

Proof. We denote by δ : G → C(G, k)Dur
Ban the map which assigns the delta

function δg : C(G, k)→ k, f 7→ f(g) concentrated at g to each g ∈ G. The

assertion immediately follows from the fact that the map H0(Ĝ,A1
Ok

) →
C(G, k)Dur

Ban which assigns to each natural transformation h : Ĝ⇒ A1
Ok

the

submetric k-linear homomorphism C(G, k)→ k, f 7→ h(C(G, k)Dur
Ban)(δ)(f)

gives the inverse transform by the construction.

We explain the relation to Iwasawa theory. For this purpose, we recall
several classical notions. The group homomorphism Z→ Ok[[T ]]×, c 7→ (1+
T )c extends to a unique continuous group homomorphism Zp → Ok[[T ]]×,
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which extends to a unique continuousOk-algebra homomorphismOk[[Zp]]→
Ok[[T ]] by the universality of Iwasawa algebra through ιcZp , which is a home-
omorphic isomorphism and is called Iwasawa’s isomorphism. The evalua-
tion map C(Zp, k) × Zp → k extends to a unique continuous Ok-bilinear
pairing C(Zp, k)×Ok[[Zp]]→ k, which induces a homeomorphic Ok-algebra
isomorphism Ok[[Zp]]→ C(Zp, k)Dur

Ban . Combining these two homeomorphic
Ok-algebra isomorphisms, we obtain a homeomorphic Ok-algebra isomor-
phism C(Zp, k)Dur

Ban → Ok[[T ]], which is called Amice transform. We will
observe in Theorem 4.24 that F is an extension of Amice transform.

TheOk-algebraOk[[T ]] forms a commutative cocommutative Hopf monoid
object in (C ch

fl , ⊗̂Ok , Ok) with respect to the comultiplication Ok[[T ]] →
Ok[[T ]]⊗̂OkOk[[T ]], T 7→ ((1 +T )⊗ (1 +T ))− (1⊗ 1), the counit Ok[[T ]]→
Ok, T 7→ 0, and the antipode Ok[[T ]] → Ok[[T ]], T 7→ (1 + T )−1 − 1. The
functor U1/Ok : CAlg(Ok)→ Ab represented by Ok[[T ]] is naturally equiva-
lent to the unitary group of dimension 1, that is, the functor which assigns
to each commutative monoid object A in (C ch

fl , ⊗̂Ok , Ok) the unit group {f ∈
A× | limn→∞(f−1)n = 0} equipped with the discrete topology. Indeed, the
evaluation at 1 + T ∈ Ok[[T ]] gives a natural isomorphism between them.
By the definition, U1/Ok is an affine formal group scheme over Spf(Ok). In

particular, H0(U1/Ok ,A
1
Ok

) is canonically isomorphic to the underlying Ok-
algebra of Ok[[T ]]. Therefore Amice transform can be canonically regarded
as an Ok-algebra isomorphism C(Zp, k)Dur

Ban → H0(U1/Ok ,A
1
Ok

).
The multiplicative formal group H omPAb(Zp,Gm/Ok) is also naturally

equivalent to the unitary group of dimension 1. Indeed, the evaluation at
1 ∈ Zp gives a natural isomorphism between them. Therefore FZp also
can be canonically regarded as an Ok-algebra isomorphism C(Zp, k)Dur

Ban →
H0(U1/Ok ,A

1
Ok

). Since Iwasawa’s isomorphism Ok[[Zp]]→ Ok[[1 +T ]] forms
a Hopf monoid homomorphism which sends ιcZp(1) to 1+T , we immediately
obtain the following:

Theorem 4.24. The ring homomorphism FZp and Amice transform coin-
cides with each other as ring homomorphisms C(Zp, k)Dur

Ban → H0(U1/Ok ,A
1
Ok

)

5 Example

We constructed examples of Hopf monoid objects derived from groups in
Proposition 3.7 and Corollary 3.8. Now we survey several examples of Hopf
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monoid objects which are not derived from groups. They are helpful to
grasp the computation of the dual Hopf monoid object.

5.1 General linear group Let n ∈ N. Put In := {(i, j) ∈ N2 | i, j <
n}. We denote by Un/Ok the completion of the general linear group scheme
over Spf(Ok). Then it is an affine formal group scheme over Spf(Ok) repre-
sented by the Hopf monoid object Ok[[Ti,j | (i, j) ∈ In]] with U -small inde-
terminates in (C ch

fl , ⊗̂Ok , Ok). The dual of the corresponding Hopf monoid
object forms a cocommutative Hopf monoid object An in (Banur

≤ (k), ⊗̂k, k).
The left regular An-module forms a universal family of irreducible unitary
Banach k-linear representations of Un/Ok(Ok) in the sense in §4.2.

When n = 0, then Un/Ok is the constant presheaf associated to the
trivial group, and An is canonically isomorphic to Ok[[{1}]] ∼= Ok. When
n = 1, then Un/Ok is canonically naturally equivalent to the unitary group
of dimension 1, which is represented by Ok[[Zp]] by the argument in §4.3,
and hence An is canonically isomorphic to C(Zp, k) as a Hopf monoid object
in (Banur

≤ (k), ⊗̂k, k). We study an explicit presentation of An for the general
case. Put ∆n := {i ∈ N | i < n} and Jn := In \ {(i, i) | i ∈ ∆n}. Since the
Ok-linear homomorphism

ON
∆n×NJn

k → Ok[[Ti,j | (i, j) ∈ In]]

(ca,b)(a,b)∈N∆n×NJn 7→
∑

(a,b)∈N∆n×NJn
ca,b


∏

i∈∆n

T
a(i)
i,i


 ∏

(i,j)∈Jn
T
b(i,j)
i,j






is a homeomorphic isomorphism, the underlying Banach k-vector space of
An can be canonically identified with C0(N∆n × NJn , k). We study its Ok-
algebra structure through the presentation.

The projection ON
∆n×NJn

k � ON
∆n

k , (ca,b)(a,b)∈N∆n×NJn 7→ (c(a,0))a∈N∆n

induces an isometric k-linear homomorphism C0(N∆n , k) ↪→ An. The pro-
jection corresponds to the embedding Un1/Ok ⇒ Un/Ok into the multiplicative

formal subgroup of diagonal matrices. Since U1/Ok is represented by Ok[[Zp]]
by Lemma 4.13 and §4.3, Un1/Ok is represented by Ok[[Znp ]] by Remark 4.21.

Therefore C0(N∆n , k) regarded as a closed k-subalgebra of An is canonically
identified with C(Znp , k). Thus the embedding of the completion of the max-
imal torus corresponds to the embedding of the commutative Ok-algebra of
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continuous functions on the weight space Znp . We describe An in terms of
difference operators on C(Znp , k).

For each i ∈ ∆n, we denote by δi : ∆n → Zp the characteristic function of
{i}, and by ∂

∂κi
the difference operator C(Znp , k)→ C(Znp , k), f(κ) 7→ f(κ+

δi)− f(κ). For an (i, a) ∈ ∆n ×N, we abbreviate ( ∂
∂κi

)a to ∂a

∂κai
. For an a ∈

N∆n , we abbreviate
∏
i∈∆n

∂a(i)

∂κ
a(i)
i

to ∂a

∂κa . For an element f of a Q-algebra A

and an a ∈ N, we abbreviate the binomial coefficient

(
f
a

)
∈ A to BA(f, a).

For an (a, κ) ∈ (N∆n)2, we abbreviate
∏
i∈∆n

(−1)a(i)−κ(i)BQ(a(i), κ(i)) ∈
Ok to C(a, κ), where BQ(a(i), κ(i)) is an integer and hence gives an element

of Ok even if ch(k) = p.

By the definition, the homeomorphic Ok-linear isomorphism ON
∆n

k →
Ok[[Znp ]] assigns to each (ca)a∈N∆n ∈ ON∆n

k the convergent sum

∑

a∈N∆n

∏

i∈∆n

ca(ι
c
Znp (δi)− 1)a(i).

In particular, for any a ∈ N∆n , the delta function N∆n → Ok centred at a
corresponds to the essentially finite sum

∏

i∈∆n

(ιcZnp (δi)− 1)a(i) =
∑

κ∈N∆n

C(a, κ)ιZnp (κ),

where N∆n is regarded as a subset of Znp through the natural identification

Znp ∼= Z∆n
p . Therefore every f ∈ C(Znp , k) corresponds to

(
∑

κ∈N∆n

C(a, κ)f(κ))a∈N∆n = (
∂af

∂κa
(0))a∈N∆n ∈ C0(N∆n , k).

In the case n = 1 and ch(k) = 0, the inverse correspondence C0(N∆n , k)→
C(Znp , k) is the isometric k-linear homomorphism which assigns to each

(ca)a∈N ∈ C0(N, k) ∼= C0(N∆n , k) the continuous function f(κ) given as the
convergent sum Znp ∼= Zp → k, κ 7→ ∑∞

a=0 caBk(κ, a) by Mahler’s theorem
(cf. Theorem 1 in [3]).

For an i ∈ ∆n, we denote by κi : Znp → k the composite of the (i+ 1)-st
projection Znp � Zp and the inclusion Zp ↪→ k. For a finite subset U ⊂
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N∆n × NJn , we denote by EU ∈ An ∼= C0(N∆n × NJn , k) the characteristic
function of U . For an (i, j) ∈ Jn, we denote by δ(i,j) ∈ N∆n×NJn ∼= N∆ntJn

the characteristic function ∆ntJn → N of {(i, j)}, and put Ei,j := E{δ(i,j)}.
For an (i, j) ∈ In, we define Xi,j as Ti,j in the case (i, j) ∈ Jn, and as

1 + Ti,i in the case (i, j) /∈ Jn. Then the comultiplication of ON
∆n×NJn

k
∼=

Ok[[Ti,j | (i, j) ∈ In]] sends Xi,j to
∑n−1

h=0 Xi,h ⊗ Xh,j for any (i, j) ∈ In.
The descriptions of the correspondence C(Znp , k) → C0(N∆n , k) and the

comultiplication of ON
∆n×NJn

k allow us to compute the multiplication on An
in the following explicit way:

Proposition 5.1. (i) For any ((i, j),m) ∈ Jn × N, Emi,j = m!E{mδ(i,j)}.

(ii) For any ((i, j), (j′, i′)) ∈ J2
n satisfying j 6= j′, Ei,jEj′,i′ = E{δ(i,j)+δ(j′,i′)}.

(iii) For any (i, j, i′) ∈ ∆3
n satisfying (i, j), (j, i′), (i, i′) ∈ Jn, Ei,jEj,i′ =

Ei,i′ + E{δ(i,j)+δ(j,i′)}.
(iv) For any (i, j) ∈ Jn, Ei,jEj,i = κi + E{δ(i,j)+δ(j,i)}.

(v) For any (f, b) ∈ C(Znp , k)× NJn,

fE{b} =
∑

a∈N∆n




 ∏

(i,j)∈∆n

(
1 +

∂

∂κi

)b(i,j)

 ∂af

∂κa


 (0)E{a+b}

E{b}f =
∑

a∈N∆n




 ∏

(i,j)∈∆n

(
1 +

∂

∂κj

)b(i,j)

 ∂af

∂κa


 (0)E{a+b},

where N∆n is regarded as a submonoid of N∆n × NJn through the zero ex-
tension.

In particular, for any (f, (i, j)) ∈ C(Znp , k)× Jn, we have

fEi,j =
∑

a∈N∆n

(
∂a

∂κa
(f +

∂f

∂κi
))(0)E{a+δ(i,j)}

and Ei,jf =
∑

a∈N∆n ( ∂a

∂κa (f + ∂f
∂κj

))(0)E{a+δ(i,j)} by Proposition 5.1 (v).

By the results above, we obtain explicit presentations of the commu-
tators. For any ((i, j), (j′, i′)) ∈ J2

n satisfying j 6= j′ and i 6= i′, we have
Ei,jEj′,i′ − Ej′,i′Ei,j = 0. For any (i, j, i′) ∈ ∆3

n satisfying i 6= i′, we have



Duality theory of p-adic Hopf algebras 113

Ei,jEj,i′ −Ej,i′Ei,j = Ei,i′ . For any (i, j) ∈ Jn, we have Ei,jEj,i−Ej,iEi,j =
κi − κj . For any (f, (i, j)) ∈ C(Znp , k) × Jn, we have fEi,j − Ei,jf =∑

a∈N∆n ( ∂a

∂κa ( ∂f∂κi −
∂f
∂κj

))(0)E{a+δ(i,j)}.
Suppose ch(k) = 0 in the following in this subsection. We denote by

Lie(Un/Ok) the Lie algebra
⊕

(i,j)∈In k
∂

∂Ti,j
of Un/Ok over k, and by Ãn the

universal enveloping algebra of Lie(Un/Ok). By the computation above, the
inclusion Lie(Un/Ok) ↪→ An preserves the commutators, and hence extends

to a k-algebra homomorphism ϕn : Ãn → An. The following gives a descrip-
tion of An as a completion of Ãn with respect to a seminorm:

Theorem 5.2. The image of Ok[BÃn( ∂
∂Ti,i

,m) | (m, i) ∈ N×∆n][ 1
m!

∂m

∂Tmi,j
|

(m, (i, j)) ∈ N× Jn] ⊂ Ãn by ϕn is a dense Ok-subalgebra of A◦n.

In order to verify Theorem 5.2, we prepare several lemmata. For a d ∈ N,
we put NIn<d := {b ∈ NIn |∑(i,j)∈In b(i, j) < d}.

Lemma 5.3. Let a ∈ NJn. Put d :=
∑

(i,j)∈Jn a(i, j). Then the product of

( 1
a(i,j)!E

a(i,j)
i,j )(i,j)∈Jn with respect to any fixed ordering on Jn is contained in

E{a} +
⊕

b∈NIn<d
OkE{b}.

Proof. The assertion immediately follows from the computation of the mul-
tiplication above and the submetry of the comultiplication of An.

Lemma 5.4. For any (f, i, ε) ∈ C(Znp , k) × ∆n × (0,∞), there exists an

m ∈ N such that ‖( ∂
∂κi

)p
m
f‖ < ε.

Proof. By 0 < |p| < 1, it suffices to verify that for any (f, i) ∈ C(Zp, k)×∆n,
there exists an m ∈ N such that ‖( ∂

∂κi
)p
m
f‖ ≤ ‖pf‖. Since Znp is compact

and f is continuous, there is an m ∈ N such that for any (a0, a1) ∈ (Znp )2,
a0 − a1 ≤ pmZnp implies |f(a0) − f(a1)| ≤ ‖pf‖. Denote by 〈•, •〉 the
canonical pairing Ok[[Znp ]]× C(Znp , k)→ k. For any κ ∈ Znp , we have

∂p
m
f

∂κp
m

i

(κ) = 〈(ιcZnp (δi)− 1)p
m
ιcZnp (κ), f〉

= (f(κ+ pmδi)− f(κ)) +

pm−1∑

a=1

(−1)p
m−aBQ(pm, a)f(κ+ aδi),

and hence |(( ∂
∂κi

)p
m
f)(κ)| ≤ ‖pf‖.
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Lemma 5.5. For any (f, i) ∈ C(Znp , k) ×∆n, there exists an f̃ ∈ C(Zp, k)

such that (1 + ∂
∂κi

)f̃ = f and ‖f̃‖ ≤ ‖f‖.

Proof. By Lemma 5.4,
∑∞

a=0(−1)a ∂
af
∂κai

uniformly converges to an f̃ ∈ C(Znp , k).

By the submetry of ∂
∂κi

, we have (1 + ∂
∂κi

)f̃ = f and ‖f̃‖ ≤ ‖f‖.

Lemma 5.6. The image of Ok[BÃn( ∂
∂Ti,i

,m) | (m, i) ∈ N × ∆n] ⊂ Ãn by

ϕn is a dense Ok-subalgebra of C(Znp , Ok).

Proof. By Corollary 3.5 (i), it is reduced to the case n = 1. By Mahler’s
theorem (cf. Theorem 1 in [3]), we have ϕ1(T1,1) = κ1, and {BC(Zp,k)(κ1, a) |
a ∈ N} generates a dense Ok-submodule of C(Zp, Ok). Therefore the asser-
tion follows from the fact that ϕ1 is a k-algebra homomorphism.

Proof of Theorem 5.2. We denote by A ⊂ A◦n the image. It suffices to
verify E{a+b} ∈ A for any (a, b) ∈ N∆n × NJn . Put d :=

∑
i∈∆n

a(i) +∑
(i,j)∈Jn b(i, j). We show E{a+b} ∈ A by induction on d. If d = 0,

then E{a+b} = E{0} = 1 ∈ A. Suppose d > 0. If a 6= 0, then we have
E{b} ∈ A by the induction hypothesis, and hence E{a+b} ∈ A by Proposition
5.1 (v), Lemma 5.5, and the bijectivity of the correspondence C(Znp , k) →
C0(N∆n , k), f 7→ (∂

af
∂κa )a∈N∆n . If a = 0, then we have E{a+b} = E{b} ∈ A by

the induction hypothesis and Lemma 5.3.

By Theorem 5.2, we obtain an explicit description of universal families
(cf. §4.2) of irreducible unitary Banach k-linear representations the discrete
groups of Ok-valued points of closed formal subgroup schemes of Un/Ok using
completions of universal enveloping algebras.

5.2 Quantum group Continuing from §5.1, suppose ch(k) = 0 through-
out this subsection. We fix a q ∈ Ok satisfying |q − 1| < 1. By Theo-
rem 5.2, we obtain an expression of A◦2 as the closure of C(Z2

p, k)[ 1
m!E

m
i,j |

(m, (i, j)) ∈ N × J2]. We consider an analogous description for the q-
deformation U2,q/Ok of U2/Ok . Following the traditional formulation of the q-
deformation of the commutators of the Hopf Ok-algebra Ok[Ti,j | (i, j) ∈ I2]
representing GL2/Ok , we define the q-deformation Ok[[Ti,j | (i, j) ∈ I2]]q
of Ok[[Ti,j | (i, j) ∈ I2]] as the Hopf monoid object in (C ch

fl , ⊗̂Ok , Ok)
whose underlying Hopf monoid object is the quotient of the compact Haus-
dorff flat linear topological Ok-algebra freely generated by the U -small set
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{Tq,i,j | (i, j) ∈ I2} of non-commutative indeterminates by the two-sided
closed ideal generated by

{
(1 + Tq,i,i)Tq,i′,j − q(−1)

i

Tq,i′,j(1 + Tq,i,i)
∣∣∣(i, (i′, j)) ∈ ∆2 × J2

}

∪
{
Tq,0,0Tq,1,1 − Tq,1,1Tq,0,0 − (q − q−1)Tq,0,1Tq,1,0, Tq,0,1Tq,1,0 − Tq,1,0Tq,0,1

}

and whose comultiplication is characterised by the properties that it sends
1 + Tq,i,i to ((1 + Tq,i,i) ⊗ (1 + Tq,i,i)) + (Tq,i,j ⊗ Tq,j,i) and Tq,i,j to ((1 +
Tq,i,i) ⊗ Tq,i,j) + (Tq,i,j ⊗ (1 + Tq,j,j)) for any (i, j) ∈ J2. We denote its
dual by A2,q. When q = 1, then A2,q is canonically isomorphic to A2 in
Hopf(Banur

≤ (k), ⊗̂k, k), and hence A2,q is a q-deformation of A2. Since Tq,0,0
and Tq,1,1 commute with each other modulo the two-sided ideal generated
by {Tq,1,2, Tq,2,1}, Aq,2 forms a C(Z2

p, k)-algebra in a way similar to A2.

We denote by Ok[[Tq,i,j | (i, j) ∈ I2]] the compact Hausdorff flat linear

topological Ok-module
∏
a∈NI2 OkT

a(0,0)
q,0,0 T

a(1,1)
q,1,1 T

a(0,1)
q,0,1 T

a(1,0)
q,1,0 . By the defini-

tion of commutators, (T
a(0,0)
q,0,0 T

a(1,1)
q,1,1 T

a(0,1)
q,0,1 T

a(1,0)
q,1,0 )a∈NI2 is Ok-linearly inde-

pendent, and the inclusion

⊕

a∈NI2
OkT

a(0,0)
q,0,0 T

a(1,1)
q,1,1 T

a(0,1)
q,0,1 T

a(1,0)
q,1,0 ↪→ Ok[[Ti,j | (i, j) ∈ I2]]q

extends to a unique isomorphism Ok[[Tq,i,j | (i, j) ∈ I2]]→ Ok[[Ti,j | (i, j) ∈
I2]]q in C ch

fl . Therefore it induces an isomorphism A2,q → C0(N∆2 ×NJ2 , k)
in Banur

≤ (k) in the same way as the isomorphism A2 → C0(N∆2 × NJ2 , k).

For a finite subset U ⊂ N∆2 × NJ2 , we denote by Eq,U ∈ A2,q
∼=

C0(N∆2 × NJ2 , k) the characteristic function of U . For an (i, j) ∈ J2, we
put Eq,i,j := Eq,{δ(i,j)}. Then we obtain the completely same results for
A2,q as Proposition 5.1, Lemma 5.3, and Lemma 5.6 under the careful com-
putation of the vanishing of the contribution of Tq,1,1Tq,0,0 − Tq,0,0Tq,1,1 =
(q − q−1)Tq,0,1Tq,1,0. By a reasoning completely similar to Theorem 5.2, we
obtain the following:

Theorem 5.7. The Ok-subalgebra

Ok[BC(Z2
p,k)(κi,m) | (m, i) ∈ N×∆2][

1

m!
Emq,i,j | (m, (i, j)) ∈ N× J2] ⊂ A2,q

is dense in A◦2,q.
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We note that although A2 and A2,q admits the same presentation of
topological generators of the closed unit discs, the Ok-algebra structure
heavily depends on q.
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