Abundant semigroups with medial idempotents

Abdulsalam El-Qallali

Abstract

The effect of the existence of a medial or related idempotent in any abundant semigroup is the subject of this paper. The aim is to naturally order any abundant semigroup S which contains an ample multiplicative medial idempotent u in a way that \mathcal{L}^{*} and \mathcal{R}^{*} are compatible with the natural order and u is a maximum idempotent. The structure of an abundant semigroup containing an ample normal medial idempotent studied in [6] will be revisited.

1 Introduction

A partial order relation \leqslant on any semigroup S with set of idempotents E is a natural partial order if for any $e, f \in E$:

$$
e=e f=f e \quad \text { implies } \quad e \leqslant f
$$

When the natural partial order on S is compatible with the binary operation, S is said to be naturally ordered. The book of Blyth and Janowitz [3] con-

Keywords: Abundant semigroups, ample semigroups, medial idempotents, naturally ordered semigroups..
Mathematics Subject Classification [2010]: 20M99.
Received: 27 August 2019, Accepted: 4 October 2019.
ISSN: Print 2345-5853, Online 2345-5861.
(C) Shahid Beheshti University
tains a substantial literature on partially ordered semigroups. Most of the results of the theory concentrate on naturally ordered semigroups. Blyth, McFadden and McAlister (see [2], [4] and [5]) study the structure of several classes of naturally partially ordered regular semigroups that contain maximum idempotents with respect to the imposed orders. Much of this work and related ideas has already been transferred to the abundant case (see, for example, [12], [13], [14] and [16]). Blyth and McFadden [4] describe the structure of all regular semigroups that possess a normal medial idempotent. Subsequently, medial idempotents played a role in the structure of certain classes of regular semigroups, leading on to related work for abundant semigroups. McAlistar and McFadden [19] prove that any regular semigroup which is locally inverse and contains a medial idempotent can be naturally ordered with a maximum idempotent. The main objective of this current paper (Theorem 4.9) is to show that any abundant semigroup with an ample multiplicative medial idempotent can be naturally ordered with a maximum idempotent such that \mathcal{L}^{*} and \mathcal{R}^{*} are compatible in a specific way with the partial order, termed as \mathcal{L}^{*} and \mathcal{R}^{*} are abundant in the sense described in Section 4. The approach to this result is an adaptation of that of [19]. Blyth and McFadden [5] study the structure of regular semigroups that possess normal medial idempotents. This structure is extended to the related class of abundant semigroups (see [6]). In this paper, we revisit this structure to naturally order such abundant semigroups.

In the first section, we review some concepts related to general abundant semigroups. In Section 3, we present the necessary background on medial and related idempotents. Seeking for completeness and a self-contained text, we demonstrate in this section - and perhaps elsewhere - proofs for some known (or almost known) results. The main result of the paper is contained in Section 4, where we show that any abundant semigroup with an ample multiplicative medial idempotent can be naturally ordered with a maximum idempotent such that \mathcal{L}^{*} and \mathcal{R}^{*} are abundant. We revisit in Section 5 the structure of abundant semigroups that possess ample normal medial idempotents and give an additional order to that presented in Section 4.

Any undefined notation and terminology be as in [15].

2 Abundant semigroups

We shall review in this section some of the basic concepts which will be used frequently throughout the paper. The main theme is abundant semigroups. The study of such semigroups was initiated by Fountain [11], though he introduced the concept earlier in [10]. The investigation of this class of semigroups relies heavily on the basic facts of the relations \mathcal{L}^{*} and \mathcal{R}^{*}. The relation \mathcal{L}^{*} is defined on a semigroup S by:

$$
\mathcal{L}^{*}=\left\{(a, b) \mid \text { for all } s, t \in S^{1} a s=a t \Longleftrightarrow b s=b t\right\}
$$

and the relation \mathcal{R}^{*} is defined dually. Evidently, \mathcal{L}^{*} is right congruence and \mathcal{R}^{*} is left congruence.

As a consequence of the definition we have from [11] the following result.
Lemma 2.1. If e is an idempotent of a semigroup S, then for any $a \in S$; a $\mathcal{L}^{*} e$ if and only if the following two statements hold:
(i) $a e=a$;
(ii) as $=$ at implies es $=e t$; for any $s, t \in S^{1}$.

A dual statement of Lemma 2.1 holds for \mathcal{R}^{*}. A semigroup S is abundant if each \mathcal{L}^{*}-class and each \mathcal{R}^{*}-class contains an idempotent. It has been practiced that abundant semigroups may be treated analogously to regular semigroups (see [9], [11] and [18]). At the same time, the class of abundant semigroups properly contains the class of regular semigroups. It is well known and easy to see that for any semigroup S

$$
\mathcal{L} \subseteq \mathcal{L}^{*} \quad \text { and } \quad \mathcal{R} \subseteq \mathcal{R}^{*}
$$

where \mathcal{L} and \mathcal{R} are the well know Green's relations on S. Equality holds when S is regular.

An abundant semigroup S with set of idempotents E is said to be quasiadequate if E is a band and is adequate if E is a semilattice. The class of quasi-adequate (adequate) semigroups is an analogue to and properly contains the class of orthodox (inverse) semigroups. The study of adequate semigroups in general was initiated by Fountain [10], and the investigation of the class of quasi-adequate semigroups was initiated by El-Qallali and Fountain [9].

The \mathcal{L}^{*}-class (\mathcal{R}^{*}-class) containing an element a of a semigroup S is denoted by $L_{a}^{*}\left(R_{a}^{*}\right)$ or $L_{a}^{*}(S)\left(R_{a}^{*}(S)\right)$ in case of ambiguity. For an element a of an abundant semigroup S, a typical idempotent in $L_{a}^{*}\left(R_{a}^{*}\right)$ is denoted by $a^{*}\left(a^{\dagger}\right)$.

From [10] we have the following result.
Proposition 2.2. If S is an adequate semigroup with semilattice of idempotents E, then for any elements $a, b \in S$:
(i) $a \mathcal{L}^{*} b\left(a \mathcal{R}^{*} b\right)$ if and only if $a^{*}=b^{*}\left(a^{\dagger}=b^{\dagger}\right)$;
(ii) $(a b)^{*}=\left(a^{*} b\right)^{*}$ and $(a b)^{\dagger}=\left(a b^{\dagger}\right)^{\dagger}$;
(iii) $(a b)^{*} b^{*}=(a b)^{*}$ and $a^{\dagger}(a b)^{\dagger}=(a b)^{\dagger}$.

It is noticeable that for any semigroup homomophism $\phi: S \rightarrow T$, and for any $a, b \in S$:

$$
a \mathcal{L}(S) b \Longrightarrow a \phi \mathcal{L}(T) b \phi, \text { and } a \mathcal{R}(S) b \Longrightarrow a \phi \mathcal{R}(T) b \phi
$$

But in general

$$
a \mathcal{L}^{*}(S) b \nRightarrow a \phi \mathcal{L}^{*}(T) b \phi, \text { and } a \mathcal{R}^{*}(S) b \nRightarrow a \phi \mathcal{R}^{*}(T) b \phi
$$

The following example illustrates this observation.
Example 2.3 (see [7]). Let A be a cancellative monoid and i its only unit. Let α be the relation defined on A by the rule: $(x, y) \in \alpha$ if and only if $x=i=y$ or $x \neq i \neq y$. Then α is a congruence on A where equivalence classes are: $\{i\}$ and $A \backslash\{i\}$. Let B be the semigroup $\{0,1\}$ under the usual multiplication. Let ψ be the semigroup isomorphism from A / α onto B. Notice that for any $a \in A \backslash\{i\}$, we have $(i, a) \in \mathcal{L}^{*}(A)$. However $(i \alpha) \psi=1$ and $(a \alpha) \psi=0$. As $(1,0) \notin \mathcal{L}^{*}(B)$ then $(i \alpha, a \alpha) \notin \mathcal{L}^{*}(A / \alpha)$.

In [8], the following restricted class of homomorphisms is considered. A homomorphism $\phi: S \rightarrow T$ of semigroups is said to be an admissible homomorphism if for any elements $a, b \in S$,

$$
a \mathcal{L}^{*}(S) b \Longrightarrow a \phi \mathcal{L}^{*}(T) b \phi \quad \text { and } \quad a \mathcal{R}^{*}(S) b \Longrightarrow a \phi \mathcal{R}^{*}(T) b \phi
$$

Recall that the natural homomorphism of A onto (A / α) of Example 2.3 is not admissible.

As a direct consequence of the following proposition any admissible homomorphic image of an abundant semigroup is abundant.

Proposition 2.4 ([8]). Let S be an abundant semigroup and $\phi: S \rightarrow T$ be a semigroup homomorphism. Then ϕ is admissible if and only if for each $a \in S$ there are idempotents $e, f \in S$ with $e \in L_{a}^{*}, f \in R_{a}^{*}$ such that:

$$
a \phi \mathcal{L}^{*}(T) e \phi \quad \text { and } \quad a \phi \mathcal{R}^{*}(T) f \phi
$$

Analogously; a congruence ρ on an abundant semigroup S is admissible if for any $a \in S$, and any $s, t \in S^{1}$

$$
\left.(a s, a t) \in \rho \Longrightarrow\left(a^{*} s, a^{*} t\right) \in \rho \text { for some } a^{*} \text { (hence for any } a^{*}\right)
$$

and

$$
\left.(s a, t a) \in \rho \Longrightarrow\left(s a^{\dagger}, t a^{\dagger}\right) \in \rho \text { for some } a^{\dagger} \text { (hence for any } a^{\dagger}\right)
$$

Obviously, any congruence on any regular semigroup is admissible and any cancellative congruence on any abundant semigroup is admissible. The congruence α on the cancellative monoid A of Example 2.3 is not admissible.

A subsemigroup U of a semigroup S is a $*$-subsemigroup of S if for any $a \in U$, there exist idempotents $e, f \in U$ such that $a \mathcal{L}^{*}(S) e$ and $a \mathcal{R}^{*}(S) f$. Clearly any $*$-subsemigroup is abundant.

The following lemma could be concluded from [8].
Lemma 2.5. Let S be an abundant semigroup with set of idempotents E. Then for any $e \in E$ the set eSe is $a *$-subsemigroup of S.

Proof. Obviously $e S e$ is a subsemigroup of S. Let a be an element in $e S e$ with $f \mathcal{L}^{*}(S) a$ for some $f \in E$. As $a e=a=a f$, then $f e=f$ and $e f$ is an idempotent in $e S e$. Moreover, aef $=a f=a$ and for any $s, t \in S^{1}$:

$$
a s=a t \Longrightarrow f s=f t \Longrightarrow e f s=e f t .
$$

By Lemma 2.1, ef $\mathcal{L}^{*} a$. Together with dual argument, this gives that $e S e$ is a $*$-subsemigroup.

The easy proof of the following corollary is omitted.
Corollary 2.6. If S is adequate then for any idempotent e in S; eSe is adequate.

An adequate semigroup S is called an ample semigroup if for any element a and any idempotent e in S

$$
e a=a(e a)^{*} \text { and } a e=(a e)^{\dagger} a
$$

The following corollary is an easy consequence of Corollary 2.6.
Corollary 2.7. If S is ample then for any idempotent e in S; eSe is ample.
Let $\langle E\rangle$ be the semiband generated by a set of idempotents E. It is noted in [10] that a semiband may be abundant but not regular as demonstrated by the following example.

Example 2.8. Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and $D=$ $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$; and put

$$
S=\left\{2^{m} A, 2^{n} B, 2^{n} C, 2^{n} D \mid m \geqslant 1, n \geqslant 0\right\}
$$

It is easy to see that S is a semigroup under matrix multiplication. Further S is generated by B and C and these elements are the only idempotents in S. It is routine to check that the \mathcal{L}^{*}-classes of S are: $\left\{2^{m} A, 2^{n} B \mid m \geqslant 1, n \geqslant 0\right\}$ and $\left\{2^{n} C, 2^{n} D \mid n \geqslant 0\right\}$, and the \mathcal{R}^{*}-classes are: $\left\{2^{m} A, 2^{n} C \mid m \geqslant 1, n \geqslant 0\right\}$ and $\left\{2^{n} B, 2^{n} D \mid n \geqslant 0\right\}$. Thus each \mathcal{L}^{*}-class and each \mathcal{R}^{*}-class contains an idempotent. Therefore S is an abundant semiband. Clearly, it is not regular.

Also, not every semiband is abundant, we illustrate this by an example from [1] as follows.

Example 2.9. Choose a seven element semiband B with representation $\left\langle a, b \mid a^{2}=a, b^{2}=b,(a b)^{2}=(b a)^{2}\right\rangle$ from the list of all semibands of type two in [1, Theorem 2]. Then $B=\left\{a, b, a b, b a,(a b)^{2}, b a b, a b a\right\}$ and $E=$ $\left\{a, b,(a b)^{2}\right\}$ is the set of idempotents of B. It is routine to check that neither $L_{a b}^{*}$ nor $R_{a b}^{*}$ has an idempotent, so B is not abundant.

The class of ample semigroups properly contains the class of inverse semigroups and it is contained properly in the class of adequate semigroups
(see [10] for further details). We follow Lawson [18] in saying that a semigroup S with set of idempotents E satisfies the regularity condition if $\langle E\rangle$ is a regular subsemigroup. The semigroup S of Example 2.8 is an abundant semigroup which does not satisfy the regularity condition. However, if S is regular or quasi-adequate then it satisfies the regularity condition [9].

On any semigroup S, it is well known that its set of idempotents E is partially ordered by ω, where

$$
e \omega f \text { if and only if } e=e f=f e \text { for any } e, f \in E
$$

This order is called the natural order on E. A partial order \leqslant on S - as we recall from the introduction - is a natural partial order if it extends ω in the sense that

$$
e \omega f \Longrightarrow e \leqslant f
$$

Recall that the natural partial order on S is a natural order if it is compatible - on both sides - with the binary operation of S.

Let S be an abundant semigroup with set of idempotents E. The two relations \leqslant_{l} and \leqslant_{r} are defined for any $x, y \in S$ by $x \leqslant_{l} y$ if and only if
for any y^{*} there is an x^{*} such that $x^{*} \omega y^{*}$ and $x=y x^{*}$,
and $x \leqslant_{r} y$ if and only if

$$
\text { for any } y^{\dagger} \text { there is an } x^{\dagger} \text { such that } x^{\dagger} \omega y^{\dagger} \text { and } x=x^{\dagger} y
$$

These are natural partial order relations on S [18].
Put $\eta=\leqslant_{l} \cap \leqslant_{r}$. The relation η is a natural partial order on S. In general η is not compatible with the binary operation of S. If S is idempotentconnected (as defined in [8]) and $\langle E\rangle$ is a regular subsemigroup then η is compatible on S if and only if S is locally ample [18], that is each local submonoid $e S e$ for $e \in E$ is an ample subsemigroup. In particular, if S is ample, so it is idempotent-connected [8], then as $e S e$ is ample for any idempotent e in S (Corollary 2.7), the relation η is a natural order on S. The order relation η on S can be redefined (see [18]); for any $x, y \in S$:
$x \eta y$ if and only if $e y=x=y f$ for some idempotents $e, f \in S$.
For any $x, y \in S$ we get by the fact that S is ample the equivalence of the following two statements:
(i) There exists $e \in E$ such that $x=e y$;
(ii) There exists $f \in E$ such that $x=y f$.

Clearly, $e \eta f$ if and only if $e \omega f$ for any $e, f \in E$. So we can state for reference the following proposition without any further argument which will be in use frequently.

Proposition 2.10. Let S be an ample semigroup with semilattice of idempotents E. Then the relation η defined for any $x, y \in S$ by the rule: $x \eta y$ if and only if $x=e y$ for some $e \in E$, is a natural order on S.

Corollary 2.11. Let S and η be as in Proposition 2.10. Then for any $x, y \in S$:

$$
x \eta y \text { implies } x^{\dagger} \omega y^{\dagger} \text { and } x^{*} \omega y^{*} .
$$

Proof. For any $x, y \in S$:

$$
\begin{aligned}
x \eta y & \Longrightarrow e y=x=y f \text { for some } e, f \in E \\
& \Longrightarrow(e y)^{\dagger}=x^{\dagger}, x^{*}=(y f)^{*} \\
& \Longrightarrow e y^{\dagger}=x^{\dagger}, x^{*}=y^{*} f \\
& \Longrightarrow x^{\dagger}=x^{\dagger} y^{\dagger}, x^{*}=y^{*} x^{*} \\
& \Longrightarrow x^{\dagger} \omega y^{\dagger}, x^{*} \omega y^{*} .
\end{aligned}
$$

Hence the result holds.

3 Medial and related idempotents

The concept of medial idempotents was introduced by Blyth and McFadden [5], and used in constructing classes of regular semigroups. It has attracted several authors and has been applied in investigating not only the class of regular semigroups, but also in studying the structure of classes of abundant semigroups. As examples of this approach the reader may refer to [6], [16], [17] and [20]. The subject of this section is to concentrate on some consequences of the existence of medial or related idempotents in certain class of semigroups.

Let S be a semigroup and $E(S)$ be the set of idempotents in S. For $E=$ $E(S)$ let $\langle E\rangle$ be the semiband generated by E. From now on for the purpose of this paper an idempotent u is called a medial idempotent if $e u e=e$ for any $e \in E$. In this case the following terminologies will be adopted which may be slightly different from the ones that appear in the literature.
(1) The medial idempotent u is strong medial if eue $=e$ for any $e \in\langle E\rangle$.
(2) The medial idempotent u is normal medial if u is strong medial and $u\langle E\rangle u$ is a semilattice [5].
(3) The medial idempotent u is ample normal medial if u is normal medial and $u S u$ is ample (strong normal in the sense of [17]).
(4) The medial idempotent u is ample (adequate) medial if $u S u$ is ample (adequate).
(5) The medial idempotent u is band medial if $u E u$ is a band [20].
(6) The medial idempotent u is multiplicative medial if $u e f u \in E$ for any $e, f \in E$.
(7) The medial idempotent u is ample multiplicative medial if u is multiplicative medial and $u S u$ is ample.

Let S be a semigroup with set of idempotents E containing a medial idempotent u. Observe that $S u$ is a subsemigroup of S, and for any $e \in E$, $e u$ is an idempotent in $S u$. Also for any idempotent g in $S u, g \in E u$. The following lemma is evident.

Lemma 3.1. If u is a medial idempotent then:
(i) $S u, u S$ and $u S u$ are subsemigroups of S;
(ii) $E(S u)=E u, E(u S)=u E$, and $E(u S u)=u E u$.

Lemma 3.2. If u is strong medial, then it is multiplicative medial.
Proof. Let $e, f \in E$. Then $e f \in\langle E\rangle$. As u is strong medial efuef $=e f$. That is uefuuefu=uefu so uefu $\in E$. Hence the result holds.

Lemma 3.3. The medial idempotent u is multiplicative medial if and only if $u\langle E\rangle u=u E u$.

Proof. Assume u is multiplicative medial and let $x \in u\langle E\rangle u$. Choose $z \in\langle E\rangle$ such that $x=u z u$. There exist $e_{1}, e_{2}, \ldots, e_{n} \in E$ and $z=e_{1} e_{2} \ldots e_{n}$. Since $e u e=e$ for any $e \in E$, and by the hypothesis condition;

$$
u e_{1} e_{2} u \in E, u e_{2} e_{3} u \in E, \ldots, u e_{n-1} e_{n} u \in E
$$

Thus

$$
\begin{gathered}
u e_{1} u e_{1} e_{2} u \in E, u e_{1} u e_{1} e_{2} u e_{2} e_{3} u \in E, \ldots, \\
u e_{1} u e_{1} e_{2} u e_{2} e_{3} u \ldots u e_{n-1} e_{n} u \in E,
\end{gathered}
$$

so that,

$$
u e_{1} e_{2} e_{3} \ldots e_{n-1} e_{n} u \in E, u z u \in E, \quad \text { and } \quad x \in u E u
$$

Therefore $u\langle E\rangle u \subseteq u E u$. However it is clear that $u E u \subseteq u\langle E\rangle u$. Hence, $u\langle E\rangle u=u E u$.

On the other hand, if $u\langle E\rangle u=u E u$, then for any $e, f \in E$; uefu $\in u\langle E\rangle u$ and there exists $h \in E$ such that uefu $=u h u$. As uhuuhu $=u h u$ then $u e f u \in E$ and u is multiplicative medial.

Corollary 3.4. If u is multiplicative medial then u is band medial.
Proof. Let u be multiplicative medial. By Lemma 3.3; $u\langle E\rangle u=u E u$. Recall from Lemma 3.1 that $u E u \subseteq E$. If x and y are two elements in $u E u, x=u e u$, $y=u f u$ for some $e, f \in E$. Then euf $\in\langle E\rangle$ and ueufu $\in u E u$. So there is an idempotent z such that $u(e u f) u=u z u$, so then $x y=u e u u f u=$ $u(e u f) u=u z u$ and $u z u \in E$. Therefore $x y$ is an idempotent belonging to $u E u$. Hence the result holds.

If u is a strong medial idempotent, then it is easy to observe that for any $x \in\langle E\rangle, u x u$ is an idempotent which is an inverse of x in $\langle E\rangle$. This clarifies the first part of the following proposition.

Proposition 3.5. If u is strong medial then:
(1) $\langle E\rangle$ is a regular semigroup;
(2) $\langle E\rangle u=E u$;
(3) $u\langle E\rangle=u E$;
(4) $u\langle E\rangle u=u E u$.

Moreover, $E u, u E$ and $u E u$ are bands.

Proof. (1) This is from the previous remark.
(2) For any $z \in\langle E\rangle ; z u z u=z u$ so that $z u \in E$ and $z u \in E u$. Therefore $\langle E\rangle u \subseteq E u$. Obviously $E u \subseteq\langle E\rangle u$. Hence $E u=\langle E\rangle u$.
(3) and (4)] follow similarly to (2).

For any $e, f \in E$

$$
(e u f u)(e u f u)=(e u f) u(e u f) u=e u f u \quad(e u f \in\langle E\rangle)
$$

Then $E u$ is a band. Likewise $u E$ and $u E u$ are bands.
The following result from [4] recognizes a medial idempotent in any naturally ordered semigroup which contains a maximum idempotent.

Proposition 3.6. If (S, \leqslant) is a naturally ordered semigroup with set of idempotents E which contains a maximum idempotent u, then u is medial.

Proof. Since for any $e \in E$, as $e \leqslant u$, then $e u \leqslant u$ and $e u e u \leqslant e u u=e u$. Also $e \leqslant e u$ and $e e u \leqslant e u e u$, that is $e u \leqslant e u e u$. Hence $e u e u=e u$ so that $e и e=$ eиeeиe and eue $\in E$. Now eeue $=$ eue $=$ euee, and by the natural order of S eue $\leqslant e$. But also $e \leqslant u$ which implies $e \leqslant e u e$. Hence eue $=e$.

Again as in [4] we have the following proposition.
Proposition 3.7. Let (S, \leqslant) be a naturally ordered semigroup with set of idempotents E containing a maximum idempotent u. Then for any $e, f \in E$:
(i) ue is the maximum idempotent in L_{e};
(ii) $f \mathcal{L} e$ if and only if $u f=u e$;
(iii) eu is the maximum idempotent in R_{e};
(iv) $f \mathcal{R} e$ if and only if $f u=e u$.

Proof. By Proposition 3.6, it follows directly from the hypothesis that $u e \in$ E and $e \mathcal{L}$ ue for any $e \in E$. If $e, f \in E$ such that $e \mathcal{L} f$, then $f \leqslant u$, $f=f e \leqslant u e$, so (i) holds, and then (ii) is evident. (iii) and (iv) follow similarly.

In what follows - for the rest of the section - let S be an abundant semigroup with set of idempotents E containing a medial idempotent u. The easy proof of the following lemma is omitted.

Lemma 3.8. For any $a \in S ; a^{\dagger} u a=a=a u a^{*}$.

The following technical lemma which appears in [20] will be in use frequently.

Lemma 3.9. For any $a \in S$:
(1) $a \mathcal{L}^{*} u a \mathcal{L}^{*} u a^{*}$;
(2) $a \mathcal{R}^{*}$ au $\mathcal{R}^{*} a^{\dagger} u$;
(3) $u a^{*} u \mathcal{L}^{*}$ uau $\mathcal{R}^{*} u a^{\dagger} u$.

Proof. Since \mathcal{L}^{*} is right congruence and \mathcal{R}^{*} is left congruence, then (3) is a direct consequence of (1) and (2). As (2) is dual to (1), it suffices to prove (1). Since for any $s, t \in S^{1}$

$$
a s=a t \Longrightarrow u a s=u a t \Longrightarrow a^{\dagger} u a s=a^{\dagger} u a t \Longrightarrow a s=a t
$$

Then $a \mathcal{L}^{*} u a$. Also

$$
\begin{aligned}
a s=a t & \Longrightarrow a^{*} s=a^{*} t \Longrightarrow u a^{*} s=u a^{*} t \\
& \Longrightarrow a u a^{*} s=a u a^{*} t \Longrightarrow \quad a s=a t
\end{aligned}
$$

and $a \mathcal{L}^{*} u a^{*}$. Hence the result holds.
Proposition 3.10. The subsemigroups $S u$ and $u S$ are $*$-subsemigroups of S.

Proof. Let $x u \in S u$ where $x \in S$. Notice that $x^{*} u \mathcal{L}^{*}(S) x u$ and $x^{*} u \in$ $S u \cap E$. By Lemma $3.9(2) ; x^{\dagger} u \mathcal{R}^{*}(S) x u$ and $x^{\dagger} u \in S u \cap E$. Hence $S u$ is a *-subsemigroup of S.

Similarly $u S$ is a $*$-subsemigroup of S.
The following corollary appears in [17] which is a direct consequence of Lemmas 2.5 and 3.1 and Propositions 3.5 and 3.10.

Corollary 3.11. If u is a strong medial idempotent, then $S u, u S$ and $u S u$ are quasi-adequate semigroups. Moreover

$$
\begin{gathered}
E(u S)=u\langle E\rangle=u E, E(S u)=\langle E\rangle u=E u \\
\text { and } E(u S u)=u\langle E\rangle u=u E u
\end{gathered}
$$

Proposition 3.12. If u is a strong medial idempotent, then $u S u$ is adequate if and only if $u E u$ is a semilattice.

Proof. As $u S u$ is a $*$-subsemigroup of S (Lemma 2.5) so it is abundant and by Corollary $3.11 E(u S u)=u E u$. Hence the result holds.

Proposition 3.13. If u is a normal medial idempotent, then:
(1) Eu is a left normal band which is a set of representatives of the \mathcal{R}^{*}-classes of S;
(2) $u E$ is a right normal band which is a set of representatives of the \mathcal{L}^{*}-classes of S.

Proof. As (2) is dual to (1) it is suffices to prove (1). Clearly $E u \subseteq E$. By Proposition 3.5 Eu is a band. Moreover, for any $e u, f u, g u \in E u(e, f, g \in E)$

$$
e u f u g u=e u g u u f u=e u g u f u
$$

($u E u$ is a semilattice as a consequence of Lemmas 3.2 and 3.3) and $E u$ is a left normal band.

Let $x \in S$ and $e, f \in E$ such that $e \mathcal{R}^{*} x \mathcal{R}^{*} f$. By Lemma 3.9; $x \mathcal{R}^{*} x u$ so $e \mathcal{R}^{*} x u$ and $u e \mathcal{R}^{*} u x u$, where $u x u \in u S u$, and $u x^{\dagger} u \mathcal{R}^{*} u x u$. The idempotents $u x^{\dagger} u$ and $u e u$ are in $E(u S u)$. Notice that $u e \in E$, ue $\mathcal{R} u x^{\dagger} u$ and $u e=\left(u x^{\dagger} u\right) u e$. Thus

$$
u e u=\left(u x^{\dagger} u\right)(u e u)=u e u u x^{\dagger} u=u e u x^{\dagger} u=u x^{\dagger} u
$$

Likewise $u f u=u x^{\dagger} u$. Hence $u e u=u f u$.
Since eu $\mathcal{R} e, f u \mathcal{R} f$ and $e u, f u \in E u$, then $e u$ and $f u$ are idempotents \mathcal{R}^{*}-related to x. Thus eu \mathcal{R} fu. But also eu \mathcal{L} ueu $=u f u \mathcal{L} f u$. Therefore $e u=f u$. Hence the set $E u$ is as required.

Fountain [10] provides a semigroup $H=A \cup B \cup\{v\}$ where A is the infinite cyclic semigroup generated by an element a, B is the infinite cyclic monoid generated by an element b and $b^{0}=v$ where the binary operation on H extends that of A and B as follows

$$
a^{m} b^{m}=a^{n+m}, \quad b^{n} a^{m}=a^{n+m} ; \text { for } m>0, n \geqslant 0
$$

The semigroup H is adequate but is not ample, and v is an adequate medial idempotent $(v H v=H)$ which is not an ample medial idempotent.

If u is an ample medial idempotent, then as described in Proposition 2.10, η is a natural order relation on $u S u$. For any $e \in E(u S u)$; $e u=e$ so that $e \eta u$, and u is a maximum idempotent in $u S u$ with respect to the order η. For reference we state the following result.

Proposition 3.14. If S is an abundant semigroup with an ample medial idempotent u, then $(u S u, \eta)$ is a naturally ordered ample semigroup with a maximum idempotent u.

4 Naturally ordering an abundant semigroup

Let S be an abundant semigroup with set of idempotents E containing an ample multiplicative medial idempotent u. It follows from Section 3 that:
(1) $E(u S u)=u E u=u\langle E\rangle u$ (Lemmas 3.1 and 3.3), denote this set by E^{0}, it is clearly a semilattice;
(2) $u S u$ is a $*$-subsemigroup of S (Lemma 2.5);
(3) $(u S u, \eta)$ is a naturally ordered ample semigroup with a maximum idempotent u (Proposition 3.14).

The aim of this section is to naturally order S in a way to have a maximum idempotent with respect to the imposed order. This will be a generalization to abundant semigroups of the result of McAlister and McFadden [19] in regular semigroups.

Consider

$$
T=\{(e, x, f) \in E u \times u S u \times u E \mid u e x=x=x f u\}
$$

Notice that for any $e \in E u, f \in u E$ it follows that $f e=u f e u \in u S u$. In fact by the multiplicativety of $u ; f e \in E^{0}$ and clearly T is a semigroup with respect to the binary operation defined by

$$
(e, x, f)(g, y, h)=(e, x f g y, h) \text { for any }(e, x, f) \text { and }(g, y, h) \in T
$$

The following lemmas add more information.
Lemma 4.1. The semigroup T is abundant.
Proof. Let (e, a, f) be an element of T. As $a \in u S u$, there exist $a^{*}, a^{\dagger} \in E^{0}$ ($u S u$ is a $*$-subsemigroup), and $u e a=a$ which implies $u e a^{\dagger}=a^{\dagger}$ so

$$
a^{\dagger}=u e u a^{\dagger}=a^{\dagger} u e u a^{\dagger}=a^{\dagger} e a^{\dagger} .
$$

Therefore ($e, a^{\dagger}, a^{\dagger}$) is an idempotent in T.
Since $\left(e, a^{\dagger}, a^{\dagger}\right)(e, a, f)=\left(e, a^{\dagger} e a, f\right)=(e, a, f)$, for any (g, b, h) and (i, c, k) in T

$$
\begin{aligned}
(g, b, h)(e, a, f)=(i, c, k) & (e, a, f) \\
& \Longrightarrow(g, \text { bhea, } f)=(i, c k e a, f) \\
& \Longrightarrow g=i, \text { bhea }=\text { ckea } \\
& \Longrightarrow g=i, \text { bhe } a^{\dagger}=\text { ckea }{ }^{\dagger} \\
& \Longrightarrow(g, b, h)\left(e, a^{\dagger}, a^{\dagger}\right)=(i, c, k)\left(e, a^{\dagger}, a^{\dagger}\right)
\end{aligned}
$$

Therefore $\left(e, a^{\dagger}, a^{\dagger}\right) \mathcal{R}^{*}(e, a, f)$ (dual of Lemma 2.1).
Similarly; $\left(a^{*}, a^{*}, f\right)$ is an idempotent in T which is \mathcal{L}^{*}-related to (e, a, f). Hence the result holds.

For T to play a role in ordering S, an order on T should be defined first. The obvious choice is to adjust the order on T by coordinates. For ordering the middle components of the elements of T we choose the natural order η (of Proposition 2.10) as considered on $u S u$. For the first components take the finest partial order on the set $E u$ and define \leqslant_{l} on $E u$ to be:

$$
e \leqslant_{l} g \text { if and only if } e=g \text { or } g=u ; \quad e, g \in E u
$$

Similarly, define \leqslant_{r} on $u E$ by:

$$
f \leqslant_{r} h \text { if and only if } f=h \text { or } h=u ; \quad f, h \in u E .
$$

Accordingly, define \leqslant on T by:

$$
(e, a, f) \leqslant(g, b, h) \text { if and only if } e \leqslant_{l} g, a \eta b, f \leqslant_{r} h
$$

for any (e, a, f) and (g, b, h) in T.
Lemma 4.2. The relation \leqslant is a natural order on the abundant semigroup T where (u, u, u) is a maximum idempotent.

Proof. Clearly \leqslant on T is a partial order. Let $(e, a, f),(g, b, h)$ and (i, c, k) be elements in T such that $(e, a, f) \leqslant(g, b, h)$, that is $e \leqslant_{l} g, a \eta b$ and $f \leqslant r h$. As u is multiplicative medial $f i, h i \in E^{0}$ and either $f=h$ so then
$f i=h i$ and - in particular - fi $\eta h i$, or $h=u$ so then $f i, u \in E^{0}$ and $f i \eta u$ (Proposition 3.14) so that $f i u=f i$ and $f i u i=f i$. In either case fi $\eta h i$. Thus afic η bhic.

Hence $(e, a, f)(i, c, k) \leqslant(g, b, h)(i, c, k)$. Similarly $(i, c, k)(e, a, f) \leqslant(i, c, k)(g, b, h)$. Therefore the order \leqslant on T is compatible.

Let (e, a, f) be an idempotent in T, that is afea $=a$, which implies a^{*} fea $=a^{*}$. As $a \in u S u\left(u S u\right.$ is a $*$-subsemigroup of S) then a^{*} can be chosen to be in E^{0}. Recall that $f e \in E^{0}$, and thus $a^{*}=\left(a^{*} f e a\right)^{\dagger}=a^{*} f e a^{\dagger}$. But also afea $a^{\dagger}=a^{\dagger}$ with $a^{\dagger} \in E^{0}$. Therefore $a^{\dagger}=a a^{*} f e a^{\dagger}=a a^{*}=a$ and $a \in E^{0}$.

If (g, b, h) is an idempotent in $T\left(b \in E^{0}\right)$ such that $(e, a, f) \omega(g, b, h)$, that is

$$
(e, a, f)(g, b, h)=(e, a, f)=(g, b, h)(e, a, f)
$$

then $e=g, a f g b=a=b h e a$, and $h=f$. Hence $a b=a$ and $a \eta b$ so that $(e, a, f) \leqslant(g, b, h)$, and the order on T is natural.

It is clear (u, u, u) is an idempotent in T and for any idempotent (e, a, f) in $T\left(a \in E^{0}\right)$, a ηu (Proposition 3.14) and $(e, a, f) \leqslant(u, u, u)$.

To relate the order relation \leqslant on T to the algebraic structure of T we introduce the abundancy condition of the relations \mathcal{L}^{*} and \mathcal{R}^{*} on any naturally ordered abundant semigroup in the following sense.

The relation \mathcal{L}^{*} is said to be abundant on any naturally ordered abundant semigroup (H, \leqslant) if for any two elements a and b in $H a \leqslant b$ implies $a^{*} \leqslant b^{*}$, for some idempotents a^{*} and b^{*}, \mathcal{L}^{*}-related to a and b respectively.

The relation \mathcal{R}^{*} is abundant on (H, \leqslant) is defined similarly.
Recall from Proposition 2.10, the natural order relation η is defined on any ample semigroup M. It follows from Corollary 2.11 that \mathcal{L}^{*} and \mathcal{R}^{*} are abundant on (M, η).

Corollary 4.3. The relations \mathcal{L}^{*} and \mathcal{R}^{*} are abundant on (T, \leqslant).
Proof. Let (e, a, f) and (g, b, h) be elements of T such that $(e, a, f) \leqslant(g, b, h)$, then $a \eta b, f \leqslant_{r} h$. From Corollary 2.11; $a \eta b$ implies $a^{*} \eta b^{*}$ that is $a^{*} b^{*}=a^{*}$ $\left(a^{*}, b^{*} \in E^{0}\right)$. As $a f u=a$, then $a^{*} f u=a^{*}, a^{*} f a^{*}=a^{*}$ and $a^{*} f b^{*} a^{*}=a^{*}$ so that $\left(b^{*}, a^{*}, f\right)$ is an idempotent in T and $\left(b^{*}, a^{*}, f\right) \leqslant\left(b^{*}, b^{*}, h\right)$. It is routine to check that $\left(a^{*}, a^{*}, f\right) \mathcal{L}\left(b^{*}, a^{*}, f\right)$. So we conclude from the proof
of Lemma 4.1 that $\left(b^{*}, a^{*}, f\right) \mathcal{L}^{*}(e, a, f)$ and $\left(b^{*}, b^{*}, h\right) \mathcal{L}^{*}(g, b, h)$. Hence \mathcal{L}^{*} is abundant on T.

By a similar argument it follows that \mathcal{R}^{*} is abundant on T.
Let $\theta: T \rightarrow S$ be defined by $(e, a, f) \theta=e a f$. Obviously θ is a homomorphism. Since for any $x \in S$ and any x^{\dagger}, x^{*}; we have $x^{\dagger} u \in E u, u x^{*} \in u E$ and $u x^{\dagger} u x u=u x u=u x u x^{*} u$ (see Lemma 3.8). Therefore, $\left(x^{\dagger} u, u x u, u x^{*}\right) \in T$ and $\left(x^{\dagger} u, u x u, u x^{*}\right) \theta=x$. So then θ is an epimorphism. Moreover, if (e, a, f) and (g, b, h) are elements of T such that $(e, a, f) \theta=(g, b, h) \theta$, that is eaf $=g b h$, then $u e a f=u g b h$ which implies $a f=b h$, and $e a f u=g b h u$ which implies $e a=g b$, so $a=b$. Hence

$$
(e, a, f) \theta=(g, b, h) \theta \text { if and only if } e a=g b, a=b \text { and } a f=b h
$$

Lemma 4.4. For any element (e, a, f) in T we have: $a^{*} f, e a^{\dagger} \in E$ and $a^{*} f \mathcal{L}^{*}$ eaf \mathcal{R}^{*} ea a^{\dagger} in S, where a^{*} and a^{\dagger} are chosen to be in E^{0}.

Proof. Let $a \in u S u$ and a^{*} be chosen to be in E^{0} so that $a^{*}, f u \in E^{0}$ and

$$
a^{*} f a^{*} f=a^{*} f u a^{*} f=a^{*} a^{*} f u f=a^{*} f
$$

therefore $a^{*} f \in E$. Notice that for any $s, t \in S^{1}$:

$$
\begin{aligned}
e a f s=e a f t & \Longrightarrow u e a f s=u e a f t \\
& \Longrightarrow a f s=a f t \quad \text { (definition of } \mathrm{T}) \\
& \Longrightarrow a^{*} f s=a^{*} f t \\
& \Longrightarrow a a^{*} f s=a a^{*} f t \\
& \Longrightarrow e a f s=e a f t
\end{aligned}
$$

Therefore $a^{*} f \mathcal{L}^{*}$ eaf. Similarly, $e a^{\dagger}$ is an idempotent \mathcal{R}^{*}-related to eaf.
Corollary 4.5. The homomorphism θ is admissible.
Proof. Let (e, a, f) and (g, b, h) be in T such that $(e, a, f) \mathcal{L}^{*}(g, b, h)$. Conclude from the proof of Lemma 4.1 that $\left(a^{*}, a^{*}, f\right)$ and $\left(b^{*}, b^{*}, h\right)$ are idempotents in T where a^{*} and b^{*} are chosen to be in E^{0} and

$$
\left(a^{*}, a^{*}, f\right) \mathcal{L}^{*}(e, a, f), \quad(g, b, h) \mathcal{L}^{*}\left(b^{*}, b^{*}, h\right)
$$

So that $\left(a^{*}, a^{*}, f\right) \mathcal{L}\left(b^{*}, b^{*}, h\right)$. Thus

$$
\left(a^{*}, a^{*} f b^{*}, h\right)=\left(a^{*}, a^{*}, f\right) \text { and }\left(b^{*}, b^{*} h a^{*}, f\right)=\left(b^{*}, b^{*}, h\right) .
$$

Therefore $a^{*} f b^{*}=a^{*}, h=f$ and $b^{*} h a^{*}=b^{*}$ where $a^{*} f, b^{*} h \in E$ (Lemma 4.4). Hence $a^{*} f b^{*} h=a^{*} h=a^{*} f$ and $b^{*} h a^{*} f=b^{*} h$ and then $a^{*} f \mathcal{L} b^{*} h$.

By Lemma 4.4

$$
(e, a, f) \theta=e a f \mathcal{L}^{*} a^{*} f \mathcal{L} b^{*} h \mathcal{L}^{*} g b h=(g, b, h) \theta
$$

Similarly

$$
(e, a, f) \mathcal{R}^{*}(g, b, h) \Longrightarrow(e, a, f) \theta \mathcal{R}^{*}(g, b, h) \theta
$$

Hence the result holds.

Let ρ be the kernel of θ, that is for any two elements (e, a, f) and (g, b, h) in T :

$$
(e, a, f) \rho(g, b, h) \text { if and only if } e a f=g b h
$$

Obviously ρ is a congruence on T. Since θ is epimorphism, T / ρ is isomorphic to S. Similar to Corollary 4.5, we have the following.

Lemma 4.6. The congruence ρ is admissible.

Proof. Let $(e, a, f),(g, s, h)$ and (i, t, j) be elements in T. Then

$$
\begin{aligned}
((e, a, f)(g, s, h),(e, a, & f)(i, t, j)) \in \rho \\
& \Longrightarrow \quad \text { eafgsh }=\text { eafitj } \\
& \Longrightarrow a^{*} f g s h=a^{*} \text { fitj } \quad(\text { Lemma 4.4 }) \\
& \Longrightarrow\left(\left(a^{*}, a^{*}, f\right)(g, s, h),\left(a^{*}, a^{*}, f\right)(i, t, j)\right) \in \rho
\end{aligned}
$$

Similarly

$$
\begin{aligned}
(g, s, h)(e, a, f),(i, f, j) & (e, a, f)) \in \rho \\
& \Longrightarrow\left((g, s, h)\left(e, a^{\dagger}, a^{\dagger}\right),(i, t, j)\left(e, a^{\dagger}, a^{\dagger}\right)\right) \in \rho
\end{aligned}
$$

Hence the result holds.

A closed bracelet modulo ρ is a finite subset A of T consisting of $2(n+1)$ (for n a positive integer) elements

$$
\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}\right\}
$$

satisfying:

$$
a_{1} \equiv b_{1} \leqslant a_{2} \equiv b_{2} \leqslant \ldots \leqslant a_{n-1} \equiv b_{n-1} \leqslant a_{n} \equiv b_{n} \leqslant a_{n+1} \equiv b_{n+1} \leqslant a_{1}
$$

where \equiv denotes equivalence module ρ, provided that $b_{i} \neq a_{i+1}$; for $i=$ $1,2, \ldots, n$ and $b_{n+1} \neq a_{1}$. In this case n is said to be the length of the closed bracelet. Notice that $n=m-1$ where m is the number of \leqslant 's in A. We may denote this closed bracelet modulo ρ by \mathcal{A}. A sub-closed bracelet of \mathcal{A} is a subset

$$
B=\left\{c_{1}, d_{1}, c_{2}, d_{2}, \ldots, c_{m-1}, d_{m-1}, c_{m}, d_{m}\right\}
$$

of A such that B itself can be set up as a closed bracelet modulo ρ. The use of bracelets in contexts of this kind was introduced in [3].

Lemma 4.7. All the elements of every closed bracelet modulo ρ belong to the same ρ-class.

Proof. The proof is by induction. Consider the closed bracelet \mathcal{A} modulo ρ of length n, where

$$
a_{i}=\left(e_{i}, x_{i}, f_{i}\right), b_{i}=\left(g_{i}, y_{i}, h_{i}\right) ; \quad i=1, \ldots, n+1
$$

Recall that two elements (e, x, f) and (g, y, h) in T are ρ-equivalent if and only if $e x f=g y h$, and this is so if and only if

$$
e x=g y, x f=y h \text { and } x=y
$$

It follows from of the order of T that

$$
x_{1}=y_{1} \eta x_{2}=y_{2} \eta \ldots \eta x_{n-1}=y_{n-1} \eta x_{n}=y_{n} \eta x_{n+1}=y_{n+1} \eta x_{1}
$$

As η is a partial order we conclude that all the elements in the closed bracelet \mathcal{A} have their middle components x_{i}, y_{i} equal. So we may write these elements in the following form

$$
a_{i}=\left(e_{i}, x, f_{i}\right), b_{i}=\left(g_{i}, x, h_{i}\right)
$$

To show that the statement of the lemma is true for any closed bracelet modulo ρ of length $n=1$, consider a subset $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ of T such that

$$
a_{1} \equiv b_{1} \leqslant a_{2} \equiv b_{2} \leqslant a_{1}
$$

where

$$
b_{1} \neq a_{2}, b_{2} \neq a_{1}, a_{i}=\left(e_{i}, x, f_{i}\right), b_{i}=\left(g_{i}, x, h_{i}\right) \text { for } i=1,2
$$

There are three cases to be considered in the comparison $b_{2} \leqslant a_{1}$ (the case where $b_{2}=a_{1}$ is excluded).

Case $1\left(e_{1}=u=f_{1}\right)$: Here $x=e_{1} x f_{1}=g_{1} x h_{1}$ while $g_{1} \leqslant_{l} e_{2}, h_{1} \leqslant_{r} f_{2}$. Since $b_{1} \neq a_{2}$, there are only three subcases. The first of these is $e_{2}=u=f_{2}$ and this immediately implies $a_{1}=a_{2}$. The second is $g_{1}=e_{2}$ and $f_{2}=u$ which leads to $e_{2} x=g_{1} x=e_{1} x\left(b_{1} \equiv a_{1}\right)$ and $x f_{1}=x f_{2}\left(f_{1}=u=f_{2}\right)$. Hence $a_{2} \equiv a_{1}$. The last subcase is $e_{2}=u$ and $h_{1}=f_{2}$ and is completely analogous to the preceding. Therefore, in these subcases, all the elements $a_{1}, a_{2}, b_{1}, b_{2}$ are ρ-related.

Case $2\left(e_{1}=u, h_{2}=f_{1}\right)$: We have in this case the following relations

$$
x=e_{1} x=g_{1} x, \quad g_{1} \leqslant_{l} e_{2} .
$$

There are precisely two ways in which $g_{1} \leqslant_{l} e_{2}$, namely $g_{1}=e_{2}$ or $e_{2}=u$.
(i) If $g_{1}=e_{2}$, then

$$
x=e_{1} x=g_{1} x=e_{2} x=g_{2} x \quad\left(a_{1} \equiv b_{1}, a_{2} \equiv b_{2}\right)
$$

(ii) If $e_{2}=u$, then

$$
x=e_{1} x, x=e_{2} x=g_{2} x \quad\left(a_{2} \equiv b_{2}\right)
$$

Either way $e_{1} x=g_{2} x$. From the assumption we have $x f_{1}=x h_{2}$. Therefore $a_{1} \equiv b_{2}$. Hence also in this case all the elements $a_{1}, a_{2}, b_{1}, b_{2}$ are ρ-related.

Case $3\left(g_{2}=e_{1}, f_{1}=u\right)$: This is completely analogous to the case 2 .

Therefore, the lemma is true for any closed bracelet modulo ρ of length $n=1$. For the induction hypothesis, assume the statement of the lemma is true for any sub-closed bracelet of length $n-1$ of the closed bracelet \mathcal{A} modulo ρ of length n. In the comparison $b_{n+1} \leqslant a_{1}$ where $b_{n+1} \neq a_{1}$ we have - as before - three cases to be considered.

Case i $\left(e_{1}=u, f_{1}=u\right)$: Here

$$
x=e_{1} x f_{1}=g_{1} x h_{1} \quad\left(a_{1} \equiv b_{1}\right)
$$

From $b_{1} \leqslant a_{2}$, it follows that $g_{1} \leqslant_{l} e_{2}$ and $h_{1} \leqslant r f_{2}$. In this case, as $b_{1} \neq a_{2}$ we have three subcases:
(i) $e_{2}=u$ and $f_{2}=u$: this implies $a_{1}=a_{2}$;
(ii) $g_{1}=e_{2}$ and $f_{2}=u$: this leads to

$$
e_{2} x=g_{1} x=e_{1} x \quad\left(b_{1} \equiv a_{1}\right)
$$

but also $x f_{2}=x u=x f_{1}$. thus $a_{2} \equiv a_{1}$;
(iii) $e_{2}=u$ and $h_{1}=f_{2}$: this is an analogue of $(i i)$.

These subcases lead to $a_{1} \equiv a_{2}$, so we have the sub-closed bracelet

$$
a_{1} \equiv b_{2} \leqslant \ldots \leqslant a_{n} \equiv b_{n} \leqslant a_{n+1} \equiv b_{n+1} \leqslant a_{1}
$$

of length $\mathrm{n}-1$. By the induction hypothesis all the elements

$$
a_{1}, b_{2}, \ldots, a_{n-1}, b_{n-1}, a_{n}, b_{n}, a_{n+1}, b_{n+1}
$$

belong to the same ρ-class. But also $a_{2} \equiv a_{1} \equiv b_{1}$. Thus all the elements of the closed bracelet \mathcal{A} are ρ-related. Hence the statement of the lemma is true in this case.

Case ii $\left(e_{1}=u, h_{n+1}=f_{1}\right)$: We have - in this case - the following relations

$$
\begin{array}{ccccc}
x=e_{1} x=g_{1} x & \left(a_{1} \equiv b_{1}\right) & \text { and } & g_{1} \leqslant l e_{2} & \left(b_{1} \leqslant a_{2}\right) \\
e_{2} x=g_{2} x & \left(a_{2} \equiv b_{2}\right) & \text { and } & g_{2} \leqslant l e_{3} & \left(b_{2} \leqslant a_{3}\right) \\
\vdots & \vdots & & \vdots & \vdots \\
e_{n} x=g_{n} x & \left(a_{n} \equiv b_{n}\right) & \text { and } & g_{n} \leqslant l e_{n+1} & \left(b_{n} \leqslant a_{n+1}\right) \\
e_{n+1} x=g_{n+1} x & \left(a_{n+1} \equiv b_{n+1}\right) & \text { and } & g_{n+1} \leqslant l e_{1} & \left(b_{n+1} \leqslant a_{1}\right) .
\end{array}
$$

When $g_{1} \leqslant_{l} e_{2}$, either $g_{1}=e_{2}$ and so

$$
x=e_{1} x=g_{1} x=e_{2} x=g_{2} x
$$

or $e_{2}=u$ so then $x=e_{2} x=g_{2} x$ and $e_{1} x=x=e_{2} x$. In either case:

$$
x=e_{1} x=g_{1} x=e_{2} x=g_{2} x .
$$

Similarly, $g_{2} \leqslant_{l} e_{3}$ implies

$$
x=e_{1} x=g_{1} x=e_{2} x=g_{2} x=e_{3} x=g_{3} x
$$

It follows by a simple induction argument that

$$
x=e_{1} x=g_{1} x=e_{2} x=g_{2} x=\cdots=e_{n} x=g_{n} x=e_{n+1} x=g_{n+1} x
$$

that is $g_{n+1} x=e_{1} x$. As $h_{n+1}=f_{1}$, then $x h_{n+1}=x f_{1}$ and $b_{n+1} \equiv a_{1}$. Thus $a_{n+1} \equiv a_{1}$.

Thus we have the sub-closed bracelet

$$
a_{n+1} \equiv b_{1} \leqslant a_{2} \equiv b_{2} \leqslant \ldots \leqslant a_{n-1} \equiv b_{n-1} \leqslant a_{n} \equiv b_{n} \leqslant a_{n+1}
$$

of length $n-1$. By the induction hypothesis all the elements

$$
a_{n+1}, b_{1}, a_{2}, \ldots, a_{n}, b_{n}
$$

are ρ-related. But also $a_{1} \equiv a_{n+1} \equiv b_{n+1}$. Hence all the elements of the closed bracelet \mathcal{A} are ρ-related and the statement of the lemma is true in this case.

Case iii $\left(g_{n+1}=e_{1}, f_{1}=u\right)$: This is completely analogous to the previous case.

Hence the result holds.
The main part of the proof of Lemma 4.7 is essentially the same as that in [19]. Its presentation here is for completing the text.

An open bracelet modulo ρ is a finite subset

$$
\left\{\bar{x}, a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}, \bar{y}\right\}
$$

of T with $a_{i}=\left(e_{i}, x_{i}, f_{i}\right), b_{i}=\left(g_{i}, y_{i}, h_{i}\right)$ for $i=1, \ldots, n, \bar{x}=(e, x, f)$ and $\bar{y}=(g, y, h)$ satisfying

$$
\bar{x} \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \equiv b_{2} \leqslant \ldots \leqslant a_{n} \equiv b_{n} \leqslant \bar{y}
$$

In this \bar{x} is called the initial clasp and \bar{y} the terminal clasp.
The following corollary is a result similar to that of [3, Theorem 6.1]. We present it here with its direct proof.

Corollary 4.8. The abundant semigroup T / ρ can be partially ordered in such a way that the natural map $T \rightarrow T / \rho$ is isotone.
Proof. Define \leqslant_{ρ} on T / ρ for any two elements $x \rho, y \rho(x, y \in T)$ in T / ρ by $x \rho \leqslant \rho y \rho$ if and only if there are $2 n$ (n a positive integer) elements $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ in T such that

$$
x \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \equiv b_{2} \leqslant \ldots \leqslant a_{n} \equiv b_{n} \leqslant y
$$

That is, there is an open bracelet modulo ρ with initial clasp x and terminal clasp y.

It is obvious that $x \rho \leqslant_{\rho} x \rho$ for any $x \rho \in T / \rho$ so the relation \leqslant_{ρ} on T / ρ is reflexive. Equally clear is that it is transitive. Suppose $x \rho \leqslant \rho y \rho$ and $y \rho \leqslant{ }_{\rho} x \rho$. Then there are elements

$$
a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}
$$

in T such that

$$
x \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \equiv \ldots a_{n} \equiv b_{n} \leqslant y
$$

and

$$
y \leqslant c_{1} \equiv d_{1} \leqslant c_{2} \equiv \ldots \leqslant c_{k} \equiv d_{k} \leqslant x
$$

Notice that if for some positive integer $t, b_{t}=a_{t+1}$, then we may delete the elements b_{t}, a_{t+1} from the sequence and renumber the rest accordingly. Thus clearly we can assume without loss of generality that for $i=1, \ldots, n$ and $j=1, \ldots, k$

$$
b_{i} \neq a_{i+1}, \quad d_{j} \neq c_{j+1}, \quad x \neq a_{1}, \quad b_{n} \neq y, \quad y \neq c_{1}, \quad d_{k} \neq x
$$

We then have a closed bracelet modulo ρ. It follows by Lemma 4.7 that $x \equiv y$ and $x \rho=y \rho$. Hence the relation \leqslant_{ρ} on T / ρ is partial order.

As for any $x, y \in T ; x \leqslant y$ (in T) implies $x \rho \leqslant_{\rho} y \rho$ in T / ρ then the natural map $T \rightarrow T / \rho$ is isotone.

Armed with these results we can naturally order S as required. The following theorem completes the process.

Theorem 4.9. The abundant semigroup S with an ample multiplicative medial idempotent u can be naturally ordered in such a way that u is the maximum idempotent.

Proof. For any $x, y \in S$; choose \bar{x}, \bar{y} in T so that $\bar{x} \theta=x$ and $\bar{y} \theta=y$. Order S by δ, where $x \delta y$ if and only there exists an open bracelet modulo ρ

$$
\bar{x} \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \ldots a_{n} \equiv b_{n} \leqslant \bar{y}
$$

It is obvious that δ is reflexive. If $x, y \in S$ so that $x \delta y$ and $y \delta x$ where $\bar{x} \theta=x$, and $\bar{y} \theta=y$ for some $\bar{x}, \bar{y} \in T$, then we have the following two open bracelets

$$
\bar{x} \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \ldots a_{n} \equiv b_{n} \leqslant \bar{y}
$$

and

$$
\bar{y} \leqslant c_{1} \equiv d_{1} \leqslant c_{2} \ldots c_{m} \equiv d_{m} \leqslant \bar{x} .
$$

By the same argument as in Corollary 4.8 we get $\bar{x} \equiv \bar{y}$, that is, $\bar{x} \theta=\bar{y} \theta$. Thus $x=y$ and δ is symmetric. The transitivity of δ is evident. Therefore δ is partial order.

For the compatibility of δ on S, let $x \delta y$ in S and $z \in S$ where $\bar{z} \theta=z$ and $\bar{z} \in T$. For any $1 \leqslant i \leqslant n$ we have $a_{i} \equiv b_{i}$, that is $a_{i} \theta=b_{i} \theta$ so $a_{i} \theta \bar{z} \theta=b_{i} \theta \bar{z} \theta$ and $a_{i} \bar{z} \equiv b_{i} \bar{z}$. Since the order \leqslant on T is compatible (Lemma 4.2), we have

$$
\bar{x} \bar{z} \leqslant a_{1} \bar{z} \equiv b_{1} \bar{z} \leqslant a_{2} \bar{z} \equiv \ldots \ldots \leqslant a_{n} \bar{z} \equiv b_{n} \bar{z} \leqslant \bar{y} \bar{z}
$$

Therefore

$$
x z \delta y z
$$

Similarly $z x \delta y z$. Hence the order δ is compatible on S.
For the order δ to be natural, let e and f be idempotents in S. We may put

$$
\bar{e}=(e u, u e u, u e) \text { and } \bar{f}=(f u, u f u, u f)
$$

and \bar{e}, \bar{f} are idempotents in T such that $\bar{e} \theta=e, \bar{f} \theta=f$. If $e f=e=f e$, then

$$
u f u u e u=u f u f e u=u f e u=u e u,
$$

so that ueu $\eta u f u$. Choose $\bar{h}=(f u, u e u, u f)$, then \bar{h} is an idempotent in T and $\bar{h} \leqslant \bar{f}$. Also

$$
\bar{h} \theta=f u u e u u f=\text { fueuf }=f u f e f u f=f e f=e=\bar{e} \theta .
$$

Hence $\bar{e} \equiv \bar{h} \leqslant \bar{f}$ and $e \delta f$ in S. Therefore, the order δ on S is natural and the semigroup (S, δ) is naturally ordered. Finally, let k be an idempotent in S. Then $\bar{k}=(k u, u k u, u k)$ is an idempotent in T where $\bar{k} \theta=k$; put $\bar{u}=(u, u, u)$ then \bar{u} is the maximum idempotent in T (see the proof of Lemma 4.2) and $\bar{k} \leqslant \bar{u}$. By the definition of the order on S this implies $k \delta u$ in S so that u is the maximum idempotent in S. Hence the result holds.

As $u S u$ is ample, consider the natural order relation η of Proposition 2.10 on $u S u$. The order relation δ on S (as stated in the proof of Theorem 4.9) has the following property.

Corollary 4.10. For any $x, y \in u S u$

$$
x \delta y \quad \text { implies } \quad x \eta y .
$$

Proof. Let $x, y \in u S u$ such that $x \delta y$. Then for some a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in T we have

$$
\bar{x} \leqslant a_{1} \equiv b_{1} \leqslant a_{2} \equiv \ldots a_{n} \equiv b_{n} \leqslant \bar{y}
$$

where we may put $\bar{x}=\left(x^{\dagger}, x, x^{*}\right), \bar{y}=\left(y^{\dagger}, y, y^{*}\right)\left(x^{\dagger}, x, x^{*}, y^{\dagger}, y, y^{*}\right.$ are in $u S u)$ and $a_{i}=\left(e_{i}, x_{i}, f_{i}\right), b_{i}=\left(g_{i}, y_{i}, h_{i}\right)$ for $i=1, \ldots, n$. Notice that

$$
\bar{x} \leqslant a_{1} \text { implies } x \eta x_{1} \quad \text { and } \quad a_{1} \equiv b_{1} \text { implies } x_{1}=y_{1} .
$$

The process will continue so we have

$$
x \eta x_{1}, x_{1}=y_{1}, y_{1} \eta x_{2}, \ldots, x_{n}=y_{n}, y_{n} \eta y
$$

Hence $x \eta y$.
The easy proof of the following corollary is omitted.
Corollary 4.11. For any $e, f \in E(u S u)$,

$$
e \delta f \quad \text { if and only if } \quad e \omega f
$$

To introduce another property of δ, consider the elements x_{i} for $i=$ $1, \ldots, 5$ in T such that:

$$
x_{1} \leqslant x_{2} \equiv x_{3} \leqslant x_{4} \equiv x_{5} \quad \text { where } x_{i}=\left(e_{i}, u a_{i} u, f_{i}\right) \quad\left(a_{i} \in S\right)
$$

It follows from the order of T and the ρ-equivalence in T that:
(1) $e_{1} \leqslant_{l} e_{2}, u a_{1} u \eta u a_{2} u$ and $u e_{1} u a_{1} u=u a_{1} u$;
(2) $e_{2} u a_{2} u=e_{3} u a_{3} u$ and $u a_{2} u=u a_{3} u$;
(3) $e_{3} \leqslant_{l} e_{4}, u a_{3} u \eta u a_{4} u$ and $u e_{3} u a_{3} u=u a_{3} u$;
(4) $e_{4} u a_{4} u=e_{5} u a_{5} u$ and $u a_{4} u=u a_{5} u$.

These imply correspondingly that:
(i) $e_{1} \leqslant l e_{2}, u a_{1}^{\dagger} u \eta u a_{2}^{\dagger} u\left(\right.$ Corollary 2.11) and $u e_{1} u a_{1}^{\dagger} u=u a_{1}^{\dagger} u$;
(ii) $e_{2} u a_{2}^{\dagger} u=e_{3} u a_{3}^{\dagger} u$ and $u a_{2}^{\dagger} u=u a_{3}^{\dagger} u$;
(iii) $e_{3} \leqslant l e_{4}, u a_{3}^{\dagger} u \eta u a_{4}^{\dagger} u$ and $u e_{3} u a_{3}^{\dagger} u=u a_{3}^{\dagger} u$;
(iv) $e_{4} u a_{4}^{\dagger} u=e_{5} u a_{5}^{\dagger} u$ and $u a_{4}^{\dagger} u=u a_{5}^{\dagger} u$.

Therefore, we have the following.
(a) $u e_{1} u a_{1}^{\dagger} u=u a_{1}^{\dagger} u$ and $u a_{1}^{\dagger} u u a_{2}^{\dagger} u=u a_{1}^{\dagger} u$. This implies that $g_{1}=$ $\left(e_{1}, u a_{1}^{\dagger} u, u a_{2}^{\dagger} u\right)$ is an idempotent in T which is \mathcal{R}-related to $\left(e_{1}, u a_{1}^{\dagger} u, u a_{1}^{\dagger} u\right)$. Then recall from the proof of Lemma 4.1 that $x_{1} \mathcal{R}^{*}\left(e_{1}, u a_{1}^{\dagger} u, u a_{1}^{\dagger} u\right)$. Hence $g_{1} \mathcal{R}^{*} x_{1}$. Clearly $g_{1} \leqslant g_{2}$ where $g_{2}=\left(e_{2}, u a_{2}^{\dagger} u, u a_{2}^{\dagger} u\right)$, and g_{2} is an idempotent in T which is \mathcal{R}^{*}-related to x_{2}.
(b) $e_{2} u a_{2}^{\dagger} u=e_{3} u a_{3}^{\dagger} u$. As $u a_{3}^{\dagger} u \eta u a_{4}^{\dagger} u$ then $e_{3} u a_{3}^{\dagger} u=e_{3} u a_{3}^{\dagger} u u a_{4}^{\dagger} u$ and $g_{3}=\left(e_{3}, u a_{3}^{\dagger} u, u a_{4}^{\dagger} u\right)$ is an idempotent in $T, g_{2} \equiv g_{3}$, and

$$
g_{3} \mathcal{R}\left(e_{3}, u a_{3}^{\dagger} u, u a_{3}^{\dagger} u\right) \mathcal{R}^{*} x_{3}
$$

and $g_{3} \leqslant g_{4}$ where $g_{4}=\left(e_{4}, u a_{4}^{\dagger} u, u a_{4}^{\dagger} u\right)$. Recall that $g_{4} \mathcal{R}^{*} x_{4}$.
(c) By the same procedure as above

$$
\begin{gathered}
e_{4} u a_{4}^{\dagger} u=e_{5} u a_{5}^{\dagger} u, \quad u a_{4}^{\dagger} u=u a_{5}^{\dagger} u \\
g_{5}=\left(e_{5}, u a_{5}^{\dagger} u, u a_{5}^{\dagger} u\right), \quad g_{5} \mathcal{R}^{*} x_{5}, \quad g_{4} \equiv g_{5}
\end{gathered}
$$

Hence, we have the open bracelet modulo ρ

$$
g_{1} \leqslant g_{2} \equiv g_{3} \leqslant g_{4} \equiv g_{5}
$$

where:

$$
\begin{aligned}
& g_{i}=\left(e_{i}, u a_{i}^{\dagger} u, u a_{i+1}^{\dagger} u\right) ; \quad i=1,3\left(x_{i} \leqslant x_{i+1} i=1,3\right) \\
& g_{i}=\left(e_{i}, u a_{i}^{\dagger} u, u a_{i}^{\dagger} u\right) ; \quad i=2,4,5\left(x_{i} \equiv x_{i+1} i=2,4\right)
\end{aligned}
$$

and $g_{i} \in E(T)$ with $g_{i} \mathcal{R}^{*} x_{i}$.
Dually there exists a subset of idempotents $\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right\}$ of T such that $h_{i} \mathcal{L}^{*} x_{i}$, where:

$$
\begin{aligned}
h_{i} & =\left(u a_{i+1}^{*} u, u a_{i}^{*} u, f_{i}\right) ; \quad i=1,3\left(x_{1} \leqslant x_{2}, x_{3} \leqslant x_{4}\right), \\
h_{i} & =\left(u a_{i}^{*} u, u a_{i}^{*} u, f_{i}\right) ; \quad i=2,4,5\left(x_{2} \equiv x_{3}, x_{4} \equiv x_{5}\right)
\end{aligned}
$$

and $h_{1} \leqslant h_{2} \equiv h_{3} \leqslant h_{4} \equiv h_{5}$ is open bracelet modulo ρ.
By a simple induction we capture the following result.
Corollary 4.12. If $\left\{x_{i} \mid i=1,2, \ldots, n\right\}$ is a subset of T such that

$$
x_{1} \leqslant x_{2} \equiv x_{3} \leqslant x_{4} \equiv \ldots \leqslant x_{n-1} \equiv x_{n}
$$

where $x_{i}=\left(e_{i}, u a_{i} u, f_{i}\right)$, for $i=1,2, \ldots, n\left(a_{i} \in S\right)$. Then:
(1) there is a subset $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ of idempotents in T such that

$$
g_{1} \leqslant g_{2} \equiv g_{3} \leqslant \ldots \leqslant g_{n-1} \equiv g_{n}
$$

where $g_{i} \mathcal{R}^{*} x_{i}$ for $i=1,2, \ldots, n-1$,

$$
g_{i}= \begin{cases}\left(e_{i}, u a_{i}^{\dagger} u, u a_{i+1}^{\dagger} u\right) & \text { if } x_{i} \leqslant x_{i+1} \\ \left(e_{i}, u a_{i}^{\dagger} u, u a_{i}^{\dagger} u\right) & \text { if } x_{i} \equiv x_{i+1}\end{cases}
$$

and $g_{n}=\left(e_{n}, u a_{n}^{\dagger} u, u a_{n}^{\dagger} u\right)$;
(2) there is a subset $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of idempotents in T such that

$$
h_{1} \leqslant h_{2} \equiv h_{3} \leqslant \ldots h_{n-1} \equiv h_{n}
$$

where $h_{i} \mathcal{L}^{*} x_{i}$ for $i=1,2, \ldots, n-1$

$$
h_{i}= \begin{cases}\left(u a_{i+1}^{*} u, u a_{i}^{*} u, f_{i}\right) & \text { if } x_{i} \leqslant x_{i+1} \\ \left(u a_{i}^{*} u, u a_{i}^{*} u, f_{i}\right) & \text { if } x_{i} \equiv x_{i+1}\end{cases}
$$

and $h_{n}=\left(u a_{n}^{*} u, u a_{n}^{*} u, f_{n}\right)$.
Corollary 4.13. The relations \mathcal{L}^{*} and \mathcal{R}^{*} are abundant on (S, δ).
Proof. Let $a, b \in S$ such that $a \delta b$. Then there is an open bracelet modulo ρ

$$
\bar{a} \equiv x_{1} \leqslant x_{2} \equiv x_{3} \leqslant \ldots \leqslant x_{n-1} \equiv x_{n} \leqslant \bar{b}
$$

where $\bar{a} \theta=a$ and $\bar{b} \theta=b$.
We may write - without loss of generality - $\bar{a}=\left(a^{\dagger} u, u a u, u a^{*}\right)$ and $\bar{b}=\left(b^{\dagger} u, u b u, u b^{*}\right)$. By Corollary 4.12 there is a subset of idempotents $\left\{g_{0}, g_{1}, g_{2}, \ldots, g_{n}, g_{n+1}\right\}$ in T such that

$$
g_{0} \equiv g_{1} \leqslant g_{2} \equiv g_{3} \leqslant \ldots \leqslant g_{n-1}=g_{n} \leqslant g_{n+1}, \quad g_{0} \mathcal{R}^{*} \bar{a}, \quad g_{n+1} \mathcal{R}^{*} \bar{b}
$$

where $g_{0}=\left(a^{\dagger} u, u a^{\dagger} u, u a^{\dagger} u\right)$ and $g_{n+1}=\left(b^{\dagger} u, u b^{\dagger} u, u b^{\dagger} u\right)$. So then $g_{0} \theta \delta g_{n+1} \theta$ in S. As θ is admissible (Corollary 4.5) we have $g_{0} \theta \mathcal{R}^{*} \bar{a} \theta$ and $g_{n+1} \theta \mathcal{R}^{*} \bar{b} \theta$, where $g_{0} \theta=a^{\dagger} u$ and $g_{n+1} \theta=b^{\dagger} u$.

Then $a^{\dagger} u \mathcal{R}^{*} a$, and $b^{\dagger} u \mathcal{R}^{*} b$ (see Lemma 3.9) where $a^{\dagger} u \delta b^{\dagger} u$. Hence \mathcal{R}^{*} is abundant on (S, δ). Similarly \mathcal{L}^{*} is abundant on (S, δ).

We conclude the section by the following result.
Proposition 4.14. Let S be an abundant semigroup containing an idempotent u such that $u S u$ is an ample subsemigroup of S. The idempotent u is multiplicative medial if and only if there is a natural order \leqslant on S such that u is a maximum idempotent and for any $x, y \in u S u$,

$$
x \leqslant y \quad \text { implies } \quad x \eta y
$$

where η is the order relation on $u S u$ as defined in Proposition 2.10.

Proof. If u is multiplicative medial, then - as $u S u$ is ample - the result follows from the proof of Theorem 4.9 and Corollary 4.10.

Conversely let (S, \leqslant) be a naturally ordered abundant semigroup with set of idempotents E, and u be a maximum idempotent such that $u S u$ is an ample subsemigroup of S. Moreover suppose for any $x, y \in u S u$ that

$$
x \leqslant y \quad \text { implies } \quad x \eta y
$$

Then by Proposition 3.6, u is medial and by Lemma 2.5, $u S u$ is a $*$ subsemigroup of S. Let $e, f \in E$; clearly uefu $\in u S u$. By Lemma 3.9, $u e f \mathcal{L}^{*} u(e f)^{*}$ so that uefu $\mathcal{L}^{*} u(e f)^{*} u$. As u is medial, then $u(e f)^{*} u$ is an idempotent and $u(e f)^{*} u \in E(u S u)$. Since $u e f u \leqslant u$ (as $e \leqslant u, f \leqslant u$ and \leqslant is compatible), then $u e f u \leqslant u(e f)^{*} u$ and by the hypothesis $u e f u \eta u(e f)^{*} u$. In particular, there exists an idempotent g in $u S u$ such that

$$
g u(e f)^{*} u=u e f u
$$

Hence $u e f u$ is an idempotent and u is multiplicative medial as required.

5 Another order for an abundant semigroup

For any abundant semigroup S with set of idempotents E containing a strong medial idempotent u such that $u S u$ is ample, $\langle E\rangle$ is a regular subsemigroup (Proposition 3.5) and $E(u S u)=u\langle E\rangle u=u E u$ (Corollary 3.11). Thus $u E u$ is a semilattice. As mentioned in [17], we do not need to impose the following two conditions:
(1) $u\langle E\rangle u$ is a semilattice (see Proposition 3.12);
(2) $\langle E\rangle$ is regular
in the hypothesis of [6, theorem 4.5] as they follow from the premises.
Let S be an abundant semigroup with set of idempotents E containing a strong medial idempotent u such that $u S u$ is ample. Thus u is ample multiplicative medial (Lemma 3.2) and the semigroup S can be naturally ordered in such a way that u is a maximum idempotent (Theorem 4.9) such that \mathcal{L}^{*} and \mathcal{R}^{*} are abundant (Corollary 4.13). The objective of this section
is to impose a natural order on S which does not coincide with the one produced in Section 4.

Let S be an abundant semigroup where $E(S)=E$ and S contains a strong medial idempotent u such that $u S u$ is ample. We identify $u E u$ by E^{0} and $u S u$ by S^{0}. Consider

$$
W=\left\{(e, a, f) \in E u \times S^{0} \times u E \mid e \mathcal{L} a^{\dagger}, f \mathcal{R} a^{*} ; a^{\dagger}, a^{*} \in E^{0}\right\}
$$

Then W is a semigroup with the binary operation defined for any two elements (e, a, f) and (g, b, h) by the rule:

$$
(e, a, f)(g, b, h)=\left(e(a f g)^{\dagger}, a f g b,(f g b)^{*} h\right)
$$

As $a, b, f g \in S^{0}$, then $(a f g)^{\dagger}$ and $(f g b)^{*}$ are chosen to be in E^{0}. In fact, we have from [6] that W is an abundant semigroup containing a strong medial idempotent $\bar{u}=(u, u, u)$ such that $\bar{u} W \bar{u}$ is ample.

Impose the order \leqslant_{w} on W defined for any elements (e, a, f) and (g, b, h) in W by the rule

$$
(e, a, f) \leqslant_{w}(g, b, h) \quad \text { if and only if } \quad e \omega g, a \eta b, f \omega h
$$

It is evident that \leqslant_{w} is partial order. In fact this order is compatible, for if $(e, a, f) \leqslant_{w}(g, b, h)$ and (i, c, j) in W then $e \omega g, a \eta b$, and $f \omega h$. Since $f i, h i \in E^{0}$ and $f=f h$, then $f i=f h i=f h i i=$ hifi ($u E$ is right normal from Proposition 3.13). Hence fi ω hi and fi η hi. Thus afi η bhi. By Corollary 2.11

$$
(a f i)^{\dagger} \eta(b h i)^{\dagger} \text { and }(a f i)^{\dagger}(b h i)^{\dagger}=(a f i)^{\dagger} \quad\left((a f i)^{\dagger},(b h i)^{\dagger} \in E^{0}\right)
$$

Notice that:

$$
\begin{aligned}
e(a f i)^{\dagger} & =e(a f i)^{\dagger}(b h i)^{\dagger}=e g(a f i)^{\dagger}(b h i)^{\dagger} \quad(e \omega g) \\
& =e(a f i)^{\dagger} g(b h i)^{\dagger} \quad(E u \text { is left normal - Proposition 3.13) }
\end{aligned}
$$

and

$$
g(b h i)^{\dagger} e(a f i)=g e(b h i)^{\dagger}(a f i)^{\dagger}=e(a f i)^{\dagger}
$$

Therefore $e(a f i)^{\dagger} \omega g(b h i)^{\dagger}$. Also fi η hi implies fic η hic and again by Corollary 2.11

$$
(f i c)^{*} \eta(h i c)^{*}
$$

As $(f i c)^{*} j=j(f i c)^{*} j(u E$ is right normal $)$ then

$$
(h i c)^{*}(f i c)^{*} j=(h i c)^{*} j(f i c)^{*} j .
$$

That is

$$
(f i c)^{*} j=(h i c)^{*} j(f i c)^{*} j
$$

and clearly

$$
(f i c)^{*} j(h i c)^{*} j=(\text { fic })^{*}(h i c)^{*} j=(f i c)^{*} j
$$

Hence $(f i c)^{*} j \omega(h i c)^{*} j$. However afi η bhi so afic η bhic. Therefore,

$$
\left(e(a f i)^{\dagger}, a f i c,(f i c)^{*} j\right) \leqslant_{w}\left(g(b h i)^{\dagger}, b h i c,(h i c)^{*} j\right)
$$

That is $(e, a, f)(i, c, j) \leqslant_{w}(g, b, h)(i, c, j)$. Similarly;

$$
(i, c, j)(e, a, f) \leqslant_{w}(i, c, j)(g, b, h)
$$

and the order \leqslant_{w} on W is compatible.
To see that the order is natural, let (e, a, f) and (g, b, h) be idempotents in W. Then as in [6], or as can be verified directly, $a, b \in E^{0}$. If $(e, a, f)(g, b, h)=$ $(e, a, f)=(g, b, h)(e, a, f)$ then

$$
e(a f g)=e=g(b h e), \quad a f g b=a=b h e a, \quad(f g b) h=f=(h e a) f
$$

Notice that $g e=e=e g$. Then $e \omega g$. Similarly $f \omega h$. As $a, f g$, he are all in E^{0} and

$$
(a f g) b=a=b(h e a)
$$

then $a \eta b$ (in $u S u$). Hence $(e, a, f) \leqslant w(g, b, h)$ in W and the order on W is natural. In conclusion, we have the following.

Proposition 5.1. The semigroup $\left(W, \leqslant_{w}\right)$ is a naturally ordered abundant semigroup.

Corollary 5.2. The relations \mathcal{L}^{*} and \mathcal{R}^{*} are abundant on $\left(W, \leqslant_{w}\right)$.
Proof. Recall from [6], that for any (e, a, f) in W, each of $\left(e, a^{\dagger}, a^{\dagger}\right)$ and $\left(a^{*}, a^{*}, f\right)$ are idempotents in W, and

$$
\left(a^{*}, a^{*}, f\right) \mathcal{L}^{*}(e, a, f) \mathcal{R}^{*}\left(e, a^{\dagger}, a^{\dagger}\right)
$$

If $(e, a, f) \leqslant_{w}(g, b, h)$ in W, then $e \omega g, f \omega h$ and $a \eta b$. However $a \eta b$ implies $a^{\dagger} \eta b^{\dagger}$ and $a^{*} \eta b^{*}\left(a^{\dagger}, b^{\dagger} \in E^{0}\right)$ (by Corollary 2.11). Then

$$
\left(e, a^{\dagger}, a^{\dagger}\right) \leqslant_{w}\left(g, b^{\dagger}, b^{\dagger}\right) \quad \text { and } \quad\left(a^{*}, a^{*}, f\right) \leqslant_{w}\left(b^{*}, b^{*}, h\right)
$$

Hence the result holds.

For any $x \in S ; x^{*}, x^{\dagger} \in E$ and $x u \in S u$. Also $S u$ is a $*$-subsemigroup of S (Proposition 3.10) and $x^{\dagger} u \in R_{x u}^{*}(S) \cap E u$ (Lemma 3.9(2)). Similarly $u x \in u S$ and $u x^{*} \in L_{u x}^{*}(S) \cap u E$.

The two idempotents $x^{\dagger} u$ and $u x^{*}$ are uniquely determined by x (see [6]), and $u x^{\dagger} u \mathcal{R}^{*} u x u$ so that $u x^{\dagger} u=(u x u)^{\dagger}$, also $x^{\dagger} u \mathcal{L} u x^{\dagger} u$ so $x^{\dagger} u \in L_{(u x u)^{\dagger}}$. Similarly, $u x^{*}$ belongs to $R_{(u x u)^{*}}$.

Therefore $\left(x^{\dagger} u, u x u, u x^{*}\right) \in W$ and $\theta: S \rightarrow W$ defined by $x \theta=\left(x^{\dagger} u, u x u, u x^{*}\right)$ is an isomorphism [6].

Define an order \leqslant_{S} on S for any two elements x and y in S by:

$$
x \leqslant_{S} y(\text { in } S) \quad \text { if and only if } \quad x \theta \leqslant_{w} y \theta(\text { in } W)
$$

Since θ is an isomorphism the order \leqslant_{w} on W is a natural order in which \mathcal{L}^{*} and \mathcal{R}^{*} are abundant. Thus we have the following proposition.

Proposition 5.3. If S is an abundant semigroup containing a strong medial idempotent u such that $u S u$ is ample, then S is naturally ordered with respect to \leqslant_{S}, where for any $x, y \in S$;

$$
x \leqslant_{S} y \text { if and only if } x^{\dagger} u \omega y^{\dagger} u, \text { uxu } \eta u y u, \text { and } u x^{*} \omega u y^{*}
$$

such that \mathcal{L}^{*} and \mathcal{R}^{*} are abundant.

Acknowledgement

The author would like to thank Professor Victoria Gould for her valuable comments and support during the preparation of this paper for publication.

References

[1] Benzaken, C. and Mayr, H.C., Notion de demi-bande demi-bandes de type deux, Semigroup Forum 10(1) (1975), 115-128.
[2] Blyth, T.S., The structure of certain ordered regular semigroups, Proc. Roy. Soc. Ed. Sect. A: Math. 75(3) (1976), 235-257.
[3] Blyth, T.S. and Janowitz, M.F., "Residuation Theory", International Ser. Monogr. Pure Appl. Math. 102, 1972.
[4] Blyth, T.S. and McFadden, R., Naturally ordered regular semigroups with a greatest idempotent, Proc. Roy. Soc. Ed. Sect A 91 (1981), 107-122.
[5] Blyth, T.S. and McFadden, R., On the construction of a class of regular semigroups, J. Algebra 81 (1983), 1-22.
[6] El-Qallali, A., On the construction of a class of abundant semigroups, Acta Math. Hung. 56(1-2) (1990), 77-91.
[7] El-Qallali, A., Congruences on Ample Semigroups, Semigroup Forum 99 (2019), 607-631.
[8] El-Qallali, A. and Fountain, J.B., Idempotent-connected abundant semigroups, Proc. Roy. Soc. Ed. Sect A 91 (1981), 79-90.
[9] El-Qallali, A. and Fountain, J.B., Quasi-adequate semigroups, Proc. Roy. Soc. Ed. Sect A 91 (1981), 91-99.
[10] Fountain, J.B., Adequate semigroups, Proc. Ed. Math. Soc. 22 (1979), 113-125.
[11] Fountain, J.B., Abundant semigroups, Proc. London. Math. Soc. 44 (1982), 103-125.
[12] Guo, X.J. and Shum, K.P., Naturally ordered abundant semigroups for which each idempotent has a greatest inverse, Eur. J. Pure Apl. Math. 4(3) (2011), 210-220.
[13] Guo, X.J. and Luo, Y.F., The natural partial orders on abundant semigroups, Adv. Math. (China) 34 (2005), 197-304.
[14] Guo, X.J. and Xie, X.Y., Naturally ordered semigroups in which each idempotent has a greatest inverse, Comm. Algebra 35 (2007), 2324-2334.
[15] Howie, J.M., "An Introduction to Semigroup Theory", Academic Press, 1976.
[16] Hou, Y.L. Guo, J.Y., and Guo, X.J., Abundant semigroups with a *-normal idempotent, Math. Slovaca 67 (2017), 863-874.
[17] Chen, H., Construction of a kind of abundant semigroups, Math. Commun. 11 (2006), 165-171.
[18] Lawson, M.W. The natural partial order on an abundant semigroup, Proc. Ed. Math. Soc. 30 (1987), 169-186.
[19] McAlister, D.B., and McFadden, R., Maximum idempotents in naturally ordered regular semigroups, Proc. Ed. Math. Soc. 26 (1983), 213-220.
[20] Ni, X., Abundant semigroups with quasi-medial idempotents, Internat. J. Pure Apl. Math. 72(1) (2011), 81-91.

Abdulsalam El-Qallali Department of Mathematics, Faculty of Science, University of Tripoli, Libya.
Email: a.el-qallali@uot.edu.ly

