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Tense like equality algebras

Mohammad Ali Hashemi and Rajab Ali Borzooei∗

Abstract. In this paper, first we define the notion of involutive operator
on bounded involutive equality algebras and by using it, we introduce a new
class of equality algebras that we called it a tense like equality algebra. Then
we investigate some properties of tense like equality algebra. For two in-
volutive bounded equality algebras and an equality homomorphism between
them, we prove that the tense like equality algebra structure can be transfer
by this equality homomorphism. Specially, by using a bounded involutive
equality algebra and quotient structure of it, we construct a quotient tense
like equality algebra. Finally, we investigate the relation between tense like
equality algebras and tense MV-algebras.

1 Introduction and preliminaries

As a generalization of EQ-algebras defined in [16], Jenei introduced a new
class of logical algebras in [13] and called it equality algebras, where the
product operation in EQ-algebras is replaced by another binary operation
smaller or equal to the original product. An equality algebra consists of two
binary operations meet, equivalence and constant 1. Relations of equality
algebras with the other logical algebras are studied in many works [1, 2, 10,
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11, 17, 18]. In [10, 11, 14] the authors proved that any equality algebra has
a corresponding BCK-meet-semilattice and any BCK-meet-semilattice with
distributivity property has a corresponding equality algebra. In [17] the
authors have proved that there are relations between the equality algebras
and some of other logical algebras, such as residuated lattice, MTL-algebra,
BL-algebra, MV-algebra, Hertz-algebra, Heyting-algebra, Boolean-algebra,
EQ-algebra, and Hoop. Moisil introduced the n-valued  Lukasiewicz-Moisil
algebras in [15]. After him, Chang defined the MV-algebras as algebraic
structures for the infinite valued  Lukasiewicz propositional calculus in [7].
The propositional calculus by adding two unary operators G,H which are
called tense operators and the derived operators F :=− G− and P :=−

H−, where “−” denotes the classical negation connective is called tense
logic, for more details we refer to [5]. Tense operators for MV-algebras
and  Lukasiewicz-Moisil algebras were introduced in [12] and studied in [4,
8]. Tense operators in lattice effect algebras were introduced in [6]. Tense
operators are in certain sense quantifiers which quantify the time dimension
of the logic under consideration. The semantical interpretation of these
tense operators G and H is as follows. Consider a pair (T,≤), where T is
a non-void set and ≤ is a partial order on T . Let x ∈ T and f(x) be a
formula of a given logical calculus. We say that G(f(t)) is valid if for any
s ≥ t the formula f(s) is valid. Analogously, H(f(t)) is valid if f(s) is valid
for each s ≤ t. Thus the unary operators G and H constitute an algebraic
counterpart of the tense operations “it is always going to be the case that”
and “it has always been the case that”, respectively.” This concept was
generalized for the so-called basic algebras in [3], where the authors have
related the basic algebras with tense operators to the quantum structures
which are the so-called dynamic effect algebras. Operators such as state
and equality homomorphism on equality algebras are studied in [11, 18].
In Section 3, we define two unary operators that we call them tense like
operators and tense like equality algebras. We study on these new algebras
and their properties. The last section deals with relations of the tense like
equality algebras with tense MV-algebras and vice versa.
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2 Preliminaries

In this section, we give the basic definitions and results related to equality
algebras and MV-algebras which we will use in the next sections. Also, we
prove some properties of equality algebras.

Definition 2.1. [13] An equality algebra E = 〈X,∼,∧, 1〉 is an algebra of
type (2, 2, 0) such that the following axioms are fulfilled, for all x, y, z ∈ X:
(E1) 〈X,∧, 1〉 is a ∧-semilattice with the top element 1,
(E2) x ∼ y = y ∼ x,
(E3) x ∼ x = 1,
(E4) x ∼ 1 = x,
(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y,
(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z),
(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).

The operation ∧ is called meet (infimum) and ∼ is an equality operation.
We write x ≤ y if and only if x ∧ y = x, as usual. Define the following two
derived operations, the implication and the equivalence operation of the
equality algebra 〈X,∼,∧, 1〉 as follows,

x→ y = x ∼ (x ∧ y) and x↔ y = (x→ y) ∧ (y → x)

Proposition 2.2. [13]Let E = 〈X,∼,∧, 1〉 be an equality algebra. Then
the following statements hold, for all x, y, z ∈ X:

(i) x ∼ y ≤ x↔ y ≤ x→ y,

(ii) x ≤ (x ∼ y) ∼ y,

(iii) x ∼ y = 1 if and only if x = y,

(iv) x→ y = 1 if and only if x ≤ y,

(v) x→ y = 1 and y → x = 1 imply x = y,

(vi) 1→ x = x, x→ 1 = 1 and x→ x = 1,

(vii) x ≤ y → x,

(viii) y ≤ x implies x↔ y = x→ y = x ∼ y.

Proposition 2.3. [11]In any equality algebra E = 〈X,∼,∧, 1〉 the following
statements hold, for all x, y ∈ X:

(i) y ≤ x ∼ (x ∧ y),

(ii) if x ≤ y, then x ≤ x ∼ y,
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(iii) x ∼ y ≤ x ∼ (x ∧ y),
(iv) x ≤ (x ∼ (x ∧ y)) ∼ y,
(v) x→ y = x→ (x ∧ y),
(vi) x→ y ≤ (z ∧ x)→ (y ∧ z).

Definition 2.4. [17] Let E = 〈X,∼,∧, 1〉 be an equality algebra. Then it
is called commutative if, for any x, y ∈ X,

(x→ y)→ y = (y → x)→ x.

At last we bring the definition and some useful properties of MV-algebras
from [12].

Definition 2.5. [12] An MV-algebra 〈X,⊕,−, 0〉 is a set X equipped with
a binary operation ⊕, a unary operation −, and a distinguished constant 0
that, for any x, y, z ∈ X, satisfying
(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x,
(MV4) x−− = x,
(MV5) x⊕ 0− = 0−,
(MV6) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

Let X be an MV-algebra such that 1 = 0−. For any x, y ∈ X, define the
operations 	 and � on X by

x� y = (x− ⊕ y−)− and x	 y = x� y−. (2.1)

Now, we define a partial order ≤ on MV-algebra 〈X,⊕,−, 0〉 by x ≤ y
if and only if x− ⊕ y = 1, for any x, y ∈ X.

Lemma 2.6. [9]Let 〈X,⊕,−, 0〉 be an MV-algebra and ≤ be the natural
order. Then, for any x, y, z ∈ X, the following statements hold:

(i) 1− = 0,
(ii) x⊕ x− = 1,
(iii) x ∧ y = x� (x− ⊕ y) is a meet on 〈X,⊕,−, 0〉,
(iv) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z),
(v) x ≤ y if and only if y− ≤ x−,
(vi) if x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z.
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3 Tense like equality algebras

In this section, we introduce an operator on involutive equality algebras
which we call tense like operator. Some essential properties of tense like
operators and some examples are given. Then, using it we introduce a new
class of equality algebras which we called it a tense like equality algebra.

An equality algebra E = 〈X,∼,∧, 1〉 is called bounded if there exists an
element 0 ∈ X such that x ≥ 0, for all x ∈ X. In a bounded equality algebra
E , the negation on E is a map ′ : X → X defined by x′ = x → 0 = x ∼ 0,
for all x ∈ X. If (x′)′ = x, for all x ∈ X, then E = 〈X,∼,∧, 1〉 is called
involutive. Some results related to involutive equality algebras are obtained
in [17]. We say that, for any x, y ∈ X, the negation “ ′” on E satisfies

if x ≤ y, then y′ ≤ x′ (N).

A map F : X → X is called increasing (decreasing), if, x ≤ y, then
F (x) ≤ F (y) (F (y) ≤ F (x)).

Definition 3.1. Let E = 〈X,∼,∧, 0, 1〉 be a bounded involutive equality
algebra and G : X → X be a map. We call G an involutive operator if
G(x′) = G(x)′, for all x ∈ X.

Example 3.2. (i) Let E = 〈X,∼,∧, 1〉 be a linearly ordered equality
algebra and G be an identity map on X. Then G is an involutive and
increasing operator.

(ii) Let X = {0, a, b, 1} be a set such that 0 < a < b < 1. Then, for any
x, y ∈ X, define the operations ∧ and ∼ on X by

x ∧ y = min{x, y} and

∼ 0 a b 1

0 1 b a 0
a b 1 a a
b a a 1 b
1 0 a b 1

Then, by routine calculations, we can see that E = 〈X,∼,∧, 1〉 is an equality
algebra. Now, define G1, G2 : X → X by

x 0 a b 1

G1(x) 0 0 1 1
G2(x) 0 a b 1
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Thus, it is easy to see that Gi (1 ≤ i ≤ 2) is an involutive and increasing
operator on X.

(iii) Let X = {0, a, b, c, d, 1} be a set such that 0 < a < b < c < d < 1.
Then, for any x, y ∈ X, define the operations ∧ and ∼ on X by

x ∧ y = min{x, y} and

∼ 0 a b c d 1

0 1 d c b a 0
a d 1 a d c a
b c a 1 0 d b
c b d 0 1 a c
d a c d a 1 d
1 0 a b c d 1

By routine calculations, we can see that E = 〈X,∼,∧, 1〉 is an equality
algebra. Now, for 1 ≤ i ≤ 4, define Gi : X → X as

x 0 a b c d 1

G1(x) 0 d c b d 1
G2(x) 0 c d a b 1
G3(x) 0 b a d c 1
G4(x) 0 a b c d 1

Then, it is clear that Gi (1 ≤ i ≤ 4) is an involutive operator on X.

(iv) Let X = [0, 1] and E = 〈X,∼,∧, 1〉 be an equality algebra, where
x ∼ y = 1 − |x − y| and x ∧ y = min{x, y}, for any x, y ∈ X. It is
easy to see that E is an ivolutive equality algebra. Define G : X → X by
G(x) = |1−|1−3x||, for any x ∈ X. Then G is an involutive and decreasing
operator.

Let E = 〈X,∼,∧, 0, 1〉 be a bounded involutive equality algebra and
G : X → X be an involutive operator on X, we define the kernel of G as

kerG = {x ∈ X : G(x) = 1}

Example 3.3. [18] Let X = {0, c, a, b, 1} be a lattice with the diagram as
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given below. Define the operations ∼ and → on X by

c

b
a

1

0

∼ 0 c a b 1

0 1 0 0 0 0
c 0 1 b a c
a 0 b 1 c a
b 0 a c 1 b
1 0 c a b 1

→ 0 c a b 1

0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a b 1
1 0 c a b 1

Then E = 〈X,∼,∧, 1〉 is an equality algebra. Now, define Gi : X → X,
i = 1, 2, 3, by

x 0 c a b 1

G1(x) 0 1 c 1 1
G2(x) 0 1 a 1 1
G3(x) 0 1 b 1 1

Then Gi’s are involutive operators on X.

Remark 1. Let E = 〈X,∼,∧, 0, 1〉 be a bounded involutive equality algebra
and G : X → X be an involutive operator. Then kerG is not equality
subalgebra of X, in general. For example in the above example, c, b ∈ kerG1

but G1(c ∼ b) 6= 1. Therefore, c ∼ b /∈ kerG1.

But if we assume that G(x ∼ y) = G(x) ∼ G(y) for all x, y ∈ X, then
x ∼ y ∈ kerG, whenever x, y ∈ kerG. Since 1 ∈ kerG, kerG is an equality
subalgebra of E = 〈X,∼,∧, 1〉.

Definition 3.4. Let E = 〈X,∼,∧, 0, 1〉 be a bounded involutive equal-
ity algebra. A tense like equality algebra is a tripled (E , G,H), where
G,H : X → X are unary operators on X and G is an involutive opera-
tor on X and for any x, y ∈ X, the following hold:
(T0) G(1) = 1 and H(1) = 1,
(T1) G(x→ y) ≥ G(x)→ G(y) and H(x→ y) ≥ H(x)→ H(y),
(T2) G(x ∼ y) ≤ G(x) ∼ G(y) and H(x ∼ y) ≤ H(x) ∼ H(y),
(T3) G(x) ∧G(y) = G(x ∧ y) and H(x) ∧H(y) = H(x ∧ y),
(T4) x ≤ H(G(x)).
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Example 3.5. (i) Let E = 〈X,∼,∧, 1〉 be a linearly ordered equality
algebra and G = H be identity maps on X. Then (E , G,H) is a tense
like equality algebra.
(ii) Let E = 〈X,∼,∧, 1〉 be an equality algebra and G1 : X → X be an
involutive and increasing operator on X as Example 3.2(ii). If we define the
map H : X → X by

x 0 a b 1

H(x) a a 1 1

then (E , G1, H) is a tense like equality algebra. Also, kerG1 and kerH are
subalgebras of E = 〈X,∼,∧, 1〉, where

kerG1 = {b, 1} = kerH.

(iii) Let X = {0, c, a, b, 1} be an equality algebra as Example 3.3. Now,
define the map G : X → X by

x 0 c a b 1

G(x) 0 c b a 1

Then by routine calculations, we can see that G is an involutive operator
and satisfies in the axioms (T0)-(T3). If we take H = G, then, clearly the
axiom (T4) holds. Hence, (E , G,H) is a tense like equality algebra.

Now, we give some properties of tense like equality algebras.

Proposition 3.6. Let E = 〈X,∼,∧, 1〉 be an involutive equality algebra.
Then, for any x, y ∈ X, the following statements hold:

(i) If G(x) ≤ G(y), then G(x→ y) = 1. Moreover, if G is an injective,
then x ≤ y if and only if G(x) ≤ G(y).

(ii) H((x ∼ y)′) = H(x ∼ y)→ H(0).
(iii) if the negation “ ′” satisfies condition (N), then H(G(x′))′ ≤ x.
(iv) H(G(x) ∼ G(y)) ≤ x → HG(y) and H(G(x) ∼ G(y)) ≤ y →

HG(x).
(v) H(G(x) → G(y)) ≥ HG(x) ∼ HG(y) and H(G(x) → G(y)) ≥

HG(y).
(vi) If x ∈ kerG, then

G(x→ y) ≥ G(y), G(y → x) ≥ G(y), G(x ∼ y) ≤ G(y), G(x ∧ y) = G(y).

Moreover, if x ≤ y, then G(x ∼ y) = G(y).
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Proof. (i) If G(x) ≤ G(y) then, by Proposition 2.2(iv), we have G(x) →
G(y) = 1. Thus, by (T1), G(x→ y) = 1. If G is injective, then x→ y = 1,
and so x ≤ y. The proof of the converse is clear. Now, assume that x ≤ y.
Then, by Proposition 2.2(viii), we have x ∼ y = x → y. Hence, by (T2)
and Proposition 2.2(iii), the proof is clear.

(ii) Let x, y ∈ X. Then

H((x ∼ y)′) = H(x ∼ y → 0) , by (T1)

≥ H(x ∼ y)→ H(0) , by Proposition 2.2(i)

≥ H(x ∼ y) ∼ H(0) , by (T2)

≥ H((x ∼ y) ∼ 0))

= H((x ∼ y)′).

Hence, H((x ∼ y)′) = H(x ∼ y)→ H(0).
(iii) From (T4), we have x′ ≤ H(G(x′)), for every x′ ∈ X. Since condi-

tion (N) holds, the proof is clear.
(iv) By Proposition 2.2(i), x ∼ y ≤ x → y and, by Proposition 2.3(v)

and (vi), for any x, y, z ∈ X,

x→ (x ∧ y) = x→ y , x→ y ≤ (x ∧ z)→ (y ∧ z).

By these facts and (T2), we have

H(G(x) ∼ G(y)) ≤ HG(x) ∼ HG(y), by Proposition 2.2(i)

≤ HG(x)→ HG(y), by Proposition 2.3(vi)

≤ (HG(x) ∧ x)→ (x ∧HG(y)), by (T4)

= x→ (x ∧HG(y)), by Proposition 2.3(v)

= x→ HG(y).

(v) By (T1) and Proposition 2.2(i), for any x, y ∈ X we have,

H(G(x)→ G(y)) ≥ HG(x) ∼ HG(y).

Again, by the axiom (T1) and Proposition 2.2(vii), for any x, y ∈ X we
have H(G(x)→ G(y)) ≥ HG(y).

(vi) Let x ∈ kerG. Then by (T1), (T2) and Proposition 2.2(vi), for all
y ∈ X,

G(x→ y) ≥ G(x)→ G(y) = 1→ G(y) = G(y). (3.1)
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Again, by (T1), (T2), and Proposition 2.2(vi), for all y ∈ X,

G(y → x) ≥ G(y)→ G(x) = G(y)→ 1 = 1.

Then G(y → x) = 1, for all y ∈ X. Hence, G(x → y) ≥ G(y), for any
y ∈ X. By (T2) and (E4) we have,

G(x ∼ y) ≤ G(x) ∼ G(y) = 1 ∼ G(y) = G(y) (3.2)

for all y ∈ X. By (T3), we have,

G(x ∧ y) = G(x) ∧G(y) = 1 ∧G(y) = G(y)

for any y ∈ X. If x ≤ y, then x→ y = x ∼ y. Thus, by (3.2) and (3.1), for
any y ∈ X, we get that,

G(x ∼ y) ≤ G(y) ≤ G(x→ y) = G(x ∼ y).

Hence, G(x ∼ y) = G(y), for any x, y ∈ X.

Remark 2. The obtained results in the implications (i) and (vi) of Propo-
sition 3.6, hold for H, too.

Proposition 3.7. [17]Let E = 〈X,∼,∧, 0, 1〉 be a bounded lattice equality
algebra with the negation “ ′”. Then the following properties hold, for all
x, y ∈ X,

(i) (x ∨ y)′ = x′ ∧ y′,
(ii) x ≤ (x′)′,
(iii) x→ y ≤ y′ → x′, and if X is involutive, then x→ y = y′ → x′.

Proposition 3.8. Let (X,∼,∧, 0, 1) be a tense like equality algebra, where
X is an involutive lattice. Then, for any x, y ∈ X,

H(x→ y) ≥ H(x′)′ → H(y′)′.

Proof. For any x, y ∈ X, by Proposition 3.7(iii) and (T1), we have

H(x→ y) = H(y′ → x′) ≥ H(y′)→ H(x′) = H(x′)′ → H(y′)′.
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Definition 3.9. [11] Let E = 〈X,∼,∧, 1〉 be an equality algebra. A subset
D ⊆ X is called a deductive system of X if, for any x, y ∈ X:
(DS1) 1 ∈ D,
(DS2) if x ∈ D and x ≤ y, then y ∈ D,
(DS3) if x, x ∼ y ∈ D, then y ∈ D.
The set of all deductive systems of X is denoted by DS(X).

Proposition 3.10. [11]Every deductive system of an equality algebra E is
a subalgebra of E.

Let (XA,∼A,∧A, 1A) and (XB,∼B,∧B, 1B) be two equality algebras. A
map f : XA → XB is called an equality-homomorphism, if for any x, y ∈ XA,

f(x ∼A y) = f(x) ∼B f(y) and f(x ∧A y) = f(x) ∧B f(y)

A homomorphism between two equality algebras is defined in [18], where
the authors are investigated its relation with state morphisms. If the above
equality algebras are bounded, then f(0A) = 0B.

We give the basic properties of bounded equality homomorphisms as
follows.

Proposition 3.11. [18]Let EA = (XA,∼A,∧A, 0A, 1A), EB = (XB,∼B
,∧B, 0B, 1B) be two bounded equality algebras and f : XA → XB be a
bounded equality homomorphism. Then the following statements hold:

(i) f(1A) = 1B.
(ii) f is monotone.
(iii) f(x ∼A 0) = f(x) ∼B 0B.
(iv) ker f is a proper deductive system of XA.
(v) f(XA) is a subalgebra of EB.
(vi) f is injective if and only if ker f = {1}.
(vii) if DB ∈ DS(XB), then f−1(DB) ∈ DS(XA).
(viii) if f is surjective and ker f ⊆ D ∈ DS(XA), then f(D) ∈ DS(XB).

By the following theorem, we show that if there exists an equality homo-
morphism between two equality algebras, it can transfer tense like equality
algebras.

Theorem 3.12. Let EA = (XA,∼A,∧A, 0A, 1A) and EB = (XB,∼B,∧B, 0B, 1B)
be two involutive bounded equality algebras and f : XA → XB be an equality
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homomorphism. If (EA, GA, HA) is a tense like equality algebra, then there
are mappings GB, HB : f(XA) → f(XA) such that (f(XA), GB, HB) is a
tense like equality algebra.

Proof. Let Y = f(XA). By Proposition 3.11(v), Y is a subalgebra of EB.
Define G : Y → Y and H : Y → Y , for any x ∈ XA, by

G(f(x)) = f(GA(x)) and H(f(x)) = f(HA(x)) (3.3)

Since, f(1A) = 1B ∈ Y , G(1B) = H(1B) = 1. Thus, the axiom (T0) holds.
Moreover, for any a, b ∈ XA, we have

f(a→ b) = f(a)→ f(b) (3.4)

and if a ≤A b, then

f(a) ≤B f(b) (3.5)

Thus, for any x, y ∈ Y , there are a, b ∈ XA such that f(a) = x, f(b) = y
and we have

G(x→ y) = G(f(a)→ f(b)) , by (3.4)

= G(f(a→ b)) , by (3.3)

= f(GA(a→ b)) , by (3.5)

≥B f(GA(a))→ f(GA(b)) , by (3.3)

= G(f(a))→ G(f(b))

= G(x)→ G(y).

By the similar way, for any x, y ∈ Y , H(x → y) ≥B H(x) → H(y). Hence,
(T1) holds. By similar arguments, (T2)-(T4) hold. Now, it is enough to
prove (T5). Suppose x ∈ Y . Then there is an element a ∈ XA such that
f(a) = x and a ≤ HAGA(a). Thus f(a) ≤ f(HAGA(a)). Hence, for any
x ∈ Y , we have

x = f(a) ≤B f(HA(GA(a))) = H(f(GA(a))) = HG(f(a)) = HG(x).

Now, we show that G is an involutive operator. Let “ ′” be a negation on
XA and “−” be a negation on XB. Suppose x ∈ Y such that f(a) = x, for
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some a ∈ XA. Then

G(x−) = G(f(a)−) = G(f(a) ∼B 0B)

= G(f(a) ∼B f(0A)) , by Proposition 3.11(iii)

= G(f(a ∼A 0A))

= G(f(a′)) , by (3.3)

= f(GA(a′)) = f(GA(a)′)

= f(GA(a) ∼A 0A) , by Proposition 3.11(iii)

= f(GA(a)) ∼B f(0A) , by (3.3)

= G(f(a)) ∼B 0B = G(x) ∼B 0B

= G(x)−.

Therefore, (f(XA), G,H) is a tense like equality algebra.

Corollary 3.13. Let EA = (XA,∼A,∧A, 0A, 1A) and EB = (XB,∼B,∧B, 0B, 1B)
be two involutive bounded equality algebras and f : XA → XB be a surjec-
tive equality homomorphism. If (EA, GA, HA) is a tense like equality algebra,
then there are mappings G,H : XB → XB such that (XB, G,H) is a tense
like equality algebra.

Lemma 3.14. Let EA = (XA,∼A,∧A, 0A, 1A) and EB = (XB,∼B,∧B, 0B, 1B)
be two involutive bounded equality algebras and f : XA → XB be an injective
equality homomorphism. Then, for any x, y ∈ f(XA), the left inverse of f
satisfies

(i) f−1(1B) = 1A,

(ii) f−1(x ∼B y) = f−1(x) ∼A f−1(y),

(iii) f−1(x→ y) = f−1(x)→A f
−1(y),

(iv) if x ≤B y, then f−1(x) ≤A f−1(y).

Proof. The proof is a straightforward.

Theorem 3.15. Let EA = (XA,∼A,∧A, 0A, 1A) and EB = (XB,∼B,∧B, 0B, 1B)
be two involutive bounded equality algebras and f : XA → XB be an injec-
tive equality homomorphism. If (EB, GB, HB) is a tense like equality algebra,
then there are mappings G,H : XA → XA such that (EA, G,H) is a tense
like equality algebra.
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Proof. It is clear that f(XA) is a subalgebra of XB. If (EB, GB, HB) is
a tense like equality algebra, then (f(XA), GB, HB) becomes a tense like
equality algebra. Now, for any x ∈ XA, define G,H : XA → XA by

G(a) = f−1(GB(f(a))) , H(a) = f−1(HB(f(a))).

By Lemma 3.14(i), we have G(1A) = H(1A) = 1. Thus, (T0) holds. Let
a, b ∈ XA such that f(a) = x, f(b) = y, a = f−1(x) and b = f−1(y). Then

G(a→ b) = f−1(GB(f(a→ b))) , by (3.4)

= f−1(GB(f(a)→ f(b))), by (T1) and Lemma 3.14(iv)

≥A f−1(GB(f(a))→ GB(f(b))), by Lemma 3.14(iii)

= f−1(GB(f(a)))→ f−1(GB(f(b))), by (3.4)

= G(a)→ G(b).

Similarly, we can show that for any a, b ∈ XA, H(a → b) ≥A H(a) →
H(b). This follows that (T1) holds. By the similar arguments and Lemma
3.14, (T2)-(T4) hold. Now, suppose a ∈ XA. Then f(a) ∈ f(XA). Since,
(EB, GB, HB) is a tense like equality algebra, by (T5), we get that f(a) ≤
HBGB(f(a)). According to definition of H, for any a ∈ f(XA), we have
H(f−1(x)) = f−1(HB(x)) such that a = f−1(x). Thus, for any a ∈ XA;

a ≤A f−1(HB(GB(x))) = H(f−1(GA(f(a)))) = HG(a).

Now, we show that G is an involutive operator. Let “ ′” be negation on XA

and “−” be negation on XB. Then by Lemma 3.14(ii), we have

G(a′) = f−1(GB(f(a′))

= f−1(GB(f(a ∼A 0A))

= f−1(GB(f(a) ∼B 0B)), by Proposition 3.11(iii)

= f−1(GB(f(a)−))

= f−1(GB(f(a))−)

= f−1(GB(f(a)) ∼B 0B), by Lemma 3.14(ii)

= f−1(GB(f(a))) ∼A 0A

= G(a) ∼A 0A

= G(a)′.

Therefore, (XA, G,H) is a tense like equality algebra.
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If an equality homomorphism between two equality algebras is injective
and surjective, then it is called an equality isomorphism.

An immediate result of Corollary 3.13 and Theorem 3.15, is as follows:

Corollary 3.16. Let EA = (XA,∼A,∧A, 0A, 1A) and EB = (XB,∼B,∧B, 0B, 1B)
be two involutive bounded equality algebras and f : XA → XB be an equality
isomorphism. Then (EA, GA, HA) is a tense like equality algebra if and only
if (XB, GB, HB) is a tense like equality algebra.

Proposition 3.17. Let (E , G,H) be a tense like equality algebra and G(H)
is increasing. Then kerG ∈ DS(X) (kerH ∈ DS(X)).

Proof. By (T0), 1 ∈ kerG. Then (DS1) holds. If x ∈ kerG and x ≤ y,
since G is increasing, then 1 = G(x) ≤ G(y). Thus, G(y) = 1, and so
y ∈ kerG. Hence, (DS2) holds. Now, suppose x, x ∼ y ∈ kerG. Then,
G(x) = G(x ∼ y) = 1. Since G is increasing, by Proposition 2.3(iii), we
have,

1 = G(x ∼ y) ≤ G(x ∼ (x ∧ y)).

Thus, G(x ∼ (x ∧ y)) = 1. By Proposition 2.3(iv), x ≤ (x ∼ (x ∧ y)) ∼ y.
Then

1 = G(x) since G is increasing

≤ G((x ∼ (x ∧ y)) ∼ y) , by Proposition 2.3(iv) and (T2)

≤ G(x ∼ (x ∧ y)) ∼ G(y)

= 1 ∼ G(y)

= G(y).

So, G(y) = 1 and y ∈ kerG. Hence, (DS3) holds. Therefore, kerG ∈
DS(X).

Corollary 3.18. Let (E , G,H) be a tense like equality algebra and G (H)
is increasing. Then kerG (kerH) is a subalgebra of E.

Proof. By Propositions 3.10 and 3.17, the proof is clear.

Definition 3.19. [11] Let E = 〈X,∼,∧, 1〉 be an equality algebra. A subset
Θ ⊆ X ×X is called a congruence of X if it is an equivalence relation on
X and, for any x1, y1, x2, y2 ∈ X such that (x1, y1), (x2, y2) ∈ X × X, the
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following statements hold:
(CG1) (x1 ∧ x2, y1 ∧ y2) ∈ Θ,
(CG2) (x1 ∼ x2, y1 ∼ y2) ∈ Θ.
The set of all congruences of X is denoted by Con(X).

According to the aforementioned arguments, if G and H are (a): linear
respect to ∼ or (b): are increasing, then kerG, kerH ∈ DS(X), and so
kerG∩kerH ∈ DS(X). Let DG,H = kerG∩kerH. Then, for any x, y ∈ X,
define ΘDG,H by

xΘDG,Hy if and only if x ∼ y ∈ DG,H

Proposition 3.20. [11]If D ∈ DS(X), then D ∈ Con(X).

Let E = 〈X,∼,∧, 1〉 be an equality algebra and D ∈ DS(X). Denote

X/ΘD = {x/ΘD : x ∈ X},

where x/ΘD = {y ∈ X : (x, y) ∈ ΘD}. We define the operations ∼, → and
∧ on X/ΘD as

x/ΘD ∼ y/ΘD = (x ∼ y)/ΘD , x/ΘD ∧ y/ΘD = (x ∧ y)/ΘD

x/ΘD → y/ΘD = (x→ y)/ΘD.

Theorem 3.21. Let E = 〈X,∼,∧, 1〉 be an equality algebra and D ∈
DS(X). Then

E/ΘD = 〈X/ΘD,∼,∧, 1/ΘD〉
is an equality algebra.

Corollary 3.22. Let E = 〈X,∼,∧, 1, 0〉 be a bounded equality algebra, D ∈
DS(X) and X/ΘD = {x/ΘD : x ∈ X}, where x/ΘD = {y ∈ X : (x, y) ∈
ΘD}. Then E/ΘD = 〈X/ΘD,∼,∧, 1/ΘD〉 is a bounded equality algebra.

Proof. By Theorem 3.21, E/ΘD = 〈X/ΘD,∼,∧, 1/ΘD〉 is an equality alge-
bra. So it suffices to show that X/ΘD = {x/ΘD : x ∈ X} is bounded. From
x/ΘD ∧ y/ΘD = (x ∧ y)/ΘD, for all x, y ∈ X, we have x/ΘD ∧ 0/ΘD =
(x ∧ 0)/ΘD = 0/ΘD. Thus, for all x ∈ X, x/ΘD ≥ 0/ΘD. This means that
E/ΘD = 〈X/ΘD,∼,∧, 1/ΘD〉 is a bounded equality algebra.
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Theorem 3.23. Let E = 〈X,∼,∧, 1, 0〉 be a bounded involutive equal-
ity algebra and (E , G,H) be a tense like equality algebra, where G and
H satisfy (a) or (b). Then E/ΘDG,H = 〈X/ΘDG,H ,∼,∧, 1/ΘDG,H 〉 is a
bounded involutive equality algebra. Moreover, there are involutive opera-
tors G,H : X/ΘDG,H → X/ΘDG,H such that (E/ΘDG,H ,G,H) is a tense like
equality algebra.

Proof. By Theorem 3.21, E/ΘDG,H = 〈X/ΘDG,H ,∼,∧, 1/ΘDG,H 〉 is an equal-
ity algebra. Also, define (x/ΘDG,H )∗ = x/ΘDG,H ∼ 0/ΘDG,H , for all x/ΘDG,H ∈
X/ΘDG,H . Thus, for all x/ΘDG,H ∈ 〈X/ΘDG,H ,∼,∧, 1/DG,H 〉,

((x/ΘDG,H )∗)∗ = (x/ΘDG,H ∼ 0/ΘDG,H )∗

= ((x ∼ 0)/ΘDG,H )∗

= (x∗/ΘDG,H )∗

= x∗/ΘDG,H ∼ 0/ΘDG,H

= x∗∗/ΘDG,H

= x/ΘDG,H .

Hence, E/ΘDG,H = 〈X/ΘDG,H ,∼,∧, 1/DG,H 〉 is involutive. Also, for all
x, y ∈ X,

x/ΘDG,H ≤ y/ΘDG,H ⇔ x/ΘDG,H ∧ y/ΘDG,H = x/ΘDG,H

⇔ (x ∧ y)/ΘDG,H = x/ΘDG,H

⇔ x ∧ y = x

⇔ x ≤ y. (3.6)

Define G,H : X/ΘDG,H → X/ΘDG,H , for all x/ΘDG,H ∈ X/ΘDG,H as

G(x/ΘDG,H ) = G(x)/ΘDG,H and H(x/ΘDG,H ) = H(x)/ΘDG,H .

We show that (E/ΘDG,H ,G,H) is a tense like equality algebra. We investi-
gate the axioms (T0)-(T3) only for G.
(T0) According to the definition of G, we have

G(1/ΘDG,H ) = G(1)/ΘDG,H = 1/ΘDG,H .
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and similarly H(1/ΘDG,H ) = 1/ΘDG,H .
(T1) For all x/ΘDG,H , y/ΘDG,H ∈ X/ΘDG,H ,

G(x/ΘDG,H → y/ΘDG,H ) = G((x→ y)/ΘDG,H )

= G(x→ y)/ΘDG,H , by (3.6) and (T1)

≥ (G(x)→ G(y))/ΘDG,H

= G(x)/ΘDG,H → G(y)/ΘDG,H

= G(x/ΘDG,H )→ G(y/ΘDG,H ).

(T2) For all x/ΘDG,H , y/ΘDG,H ∈ X/ΘDG,H ,

G(x/ΘDG,H ∼ y/ΘDG,H ) = G((x ∼ y)/ΘDG,H )

= G(x ∼ y)/ΘDG,H by (3.6) and (T2)

≤ (G(x) ∼ G(y))/ΘDG,H

= G(x)/ΘDG,H ∼ G(y)/ΘDG,H

= G(x/ΘDG,H ) ∼ G(y/ΘDG,H ).

(T3) For all x/ΘDG,H , y/ΘDG,H ∈ X/ΘDG,H ,

G(x/ΘDG,H ∧ y/ΘDG,H ) = G((x ∧ y)/ΘDG,H )

= G(x ∧ y)/ΘDG,H by (T3)

= (G(x) ∧G(y))/ΘDG,H

= G(x)/ΘDG,H ∧G(y)/ΘDG,H

= G(x/ΘDG,H ) ∧G(y/ΘDG,H ).

(T4) For all x/ΘDG,H ∈ X/ΘDG,H ,

H(G(x/ΘDG,H )) = H(G(x)/ΘDG,H )

= H(G(x))/ΘDG,H , by (3.6) and (T4)

≥ x/ΘDG,H .

Finally, we show that G is an involutive operator. For all x/ΘDG,H ∈
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X/ΘDG,H ,

G((x/ΘDG,H )∗) = G(x∗/ΘDG,H )

= G(x∗)/ΘDG,H

= G(x)∗/ΘDG,H

= (G(x) ∼ 0)/ΘDG,H

= G(x)/ΘDG,H ∼ 0/ΘDG,H

= (G(x)/ΘDG,H )∗

= G(x/ΘDG,H )∗.

Hence, (E/ΘDG,H ,G,H) is a tense like equality algebra.

4 Relation between tense like equality algebras and tense
MV-algebras

In this section, we show that there is a connection between tense MV-
algebras and tense like equality algebras.

In [17], the authors showed that there is a connection between equality
algebras and MV-algebras as follows.

Theorem 4.1. [17]The following two statements hold:
(i) For any MV-algebra B = (B,⊕,−, 0), Ψ(B) = (B,↔,∧, 0, 1) is a

bounded commutative equality algebra, where → and the top element 1 are
defined by, x → y = x− ⊕ y and 1 = 0−, for all x, y ∈ X. Moreover, the
equivalence operation ↔ is defined by x ↔ y = (x → y) ∧ (y → x) and
x→ y = x↔ (x ∧ y).

(ii) For any bounded commutative equality algebra E = 〈X,∼,∧, 0, 1〉,
Φ(E) = (X,⊕,, 0) is an MV-algebra, where the operations ⊕ and − defined
by, x ⊕ y = x′ → y, x− = x′ and → denotes the implication of E, for all
x, y ∈ X.

Definition 4.2. [12] Let (X,⊕,−, 0, 1) be an MV-algebra and G,H : X →
X two unary operations on A. The structure (X,G,H) is called tense MV-
algebra if, for any x, y ∈ X, the following conditions are satisfied:
(A0) G(1) = 1 and H(1) = 1,
(A1) G(x → y) ≤ G(x) → G(y) and H(x → y) ≤ H(x) → H(y), where
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x→ y is defined by x− ⊕ y,
(A2) G(x)⊕G(y) ≤ G(x⊕ y) and H(x)⊕H(y) ≤ H(x⊕ y),
(A3) G(x)⊕G(x) = G(x⊕ x) and H(x)⊕H(x) = H(x⊕ x),
(A4) x ≤ GP (x) and x ≤ HF (x) where P and F are the unary operations
of X defined by Fx = (Gx−)− and Px = (Hx−)−,
(A5) F (x)⊕ F (x) = F (x⊕ x) and P (x)⊕ P (x) = P (x⊕ x).
In axioms (A1), (A2) and (A5), if we replace = by ≤, we call (X,G,H) an
equality tense MV-algebra.

Proposition 4.3. [12, Proposition 5.1]The following statements hold in
any tense MV-algebra (X,G,H),

(i) if x ≤ y, then G(x) ≤ G(y), H(x) ≤ H(y), F (x) ≤ F (y) and
P (x) ≤ P (y),

(ii) G(x→ y) ≤ F (x)→ F (y) and H(x→ y) ≤ P (x)→ P (y),
(iii) G(x)�G(y) ≤ G(x� y) and H(x)�H(y) ≤ H(x� y),
(iv) F (x⊕ y) ≤ F (x)⊕ F (y) and P (x⊕ y) ≤ P (x)⊕ P (y),
(v) G(x ∨ y) ≤ F (x) ∨G(y) and H(x ∨ y) ≤ P (x) ∨H(y),
(vi) G(x� x) = G(x)�G(x) and H(x� x) = H(x)�H(x),
(vii) F (x� x) = F (x)� F (x) and P (x� x) = P (x)� P (x),
(viii) x� F (y) ≤ F (P (x)� y),
(ix) PG(x) ≤ x and FH(x) ≤ x,
(x) PGP = P,GPG = G,HFH = H and FHF = F ,
(xi) G and H preserve the arbitrary infima, whenever they exist,
(xii) F and P preserve the arbitrary suprema, whenever they exist.

Corollary 4.4. Let (X,G,H) be a tense MV-algebra such that G and H
are involutive operators. Then H is the inverse map of G.

Proof. Suppose G and H are involutive operators, that is, G(x−) = G(x)−

and H(x−) = H(x)−, for any x ∈ X. Then by (A4), we have G = F ,
H = P , x ≤ GH(x) and x ≤ HG(x), for any x ∈ X. On the other hand,
by Proposition 4.3(ix), PG(x) ≤ x and FH(x) ≤ x, for any x ∈ X. Thus,
HG(x) = GH(x) = x, for any x ∈ X.

Theorem 4.5. Let (E , G,H) be a commutative tense like equality algebra
and Φ(E) = (X,⊕,−, 0) be its corresponding MV-algebra. If H is involutive
and G((H(x))) ≥ x, for any x ∈ X, then (Φ(E), G,H) is a tense MV-
algebra, where the operations ⊕ and − defined by x⊕ y = x′ → y, x− = x′

and → denotes the implication of E.
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Proof. By Theorem 4.1, (X,⊕,−, 0, 1) is an MV-algebra. We investigate
the axioms (A0)-(A5) for G. Clearly, the axiom (A0) holds. Then by (T1),
for any x, y ∈ X we have,

G(x→ y) = G(x− ⊕ y) = G(x′ ⊕ y) = G(x ∼ y) ≥ G(x)→ G(y).

On the other hand, for any x, y ∈ X we have,

G(x→ y) = G(x ∼ (x ∧ y)) , by (T2)

≤ G(x) ∼ G((x ∧ y))

= G(x) ∼ (G(x) ∧G(y))

= G(x)→ G(y).

Thus, (A1) holds. Moreover, for any x, y ∈ X, we have

G(x⊕ y) = G(x′ → y) , by (T1)

≥ G(x′)→ G(y)

= G(x′)′ ⊕G(y)

= G(x)⊕G(y).

Thus, (A2) holds. Also, for any x ∈ X, we have

G(x⊕ x) = G(x− → x)

≤ G(x−)→ G(x)

= G(x)′ → G(x)

= G(x)⊕G(x).

Hence, we have (A3). Since G is involutive, we can take G = F . This
implies that the axioms (A4) and (A5) hold for G. Similarly, we can show
that (A0)-(A5) hold for H, where we can suppose that H = P .

Theorem 4.6. Let X = (X,⊕,−, 0, 1) be an MV-algebra and (X,G,H)
be a tense MV-algebra such that G and H are involutive operators. Then
(Ψ(X ), G,H) is a bounded tense like equality algebra, where Ψ(X ) = (X,∧,↔
, 0, 1), and for any x, y ∈ X, define the operations ↔ and → as

x↔ y = (x→ y) ∧ (y → x), x→ y = x↔ (x ∧ y)and x→ y = x− ⊕ y.
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Proof. According to Theorem 4.1, Ψ(X ) = (X,∧,↔, 0, 1) is a bounded in-
volutive equality algebra. So it is clear that (T0) holds. Also, for any
x, y ∈ X, we have

G(x→ y) = G(x− ⊕ y)

≥ G(x−)⊕G(y) , by (A2)

= G(x)− ⊕G(y)

= G(x)→ G(y).

Then (T1) holds. Moreover, for any x, y ∈ X, by Proposition 4.3(i), we
have

G(x↔ y) = G((x→ y) ∧ (y → x))

≤ G(x→ y)

≤ G(x)→ G(y). by (A1), (4.1)

Similarly, for any x, y ∈ X, we have

G(x↔ y) ≤ G(y)→ G(x). (4.2)

Thus, (T2) holds. Clearly, we have G(x∧y) ≤ G(x)∧G(y), for any x, y ∈ X.
Then by Proposition 4.3(iv),

G(x ∧ y) = G(x� (x− ⊕ y))

≥ G(x)�G(x− ⊕ y)

≥ G(x)� (G(x−)⊕G(y)) , by (A2)

= G(x)� (G(x)− ⊕G(y))

= G(x) ∧G(y).

Hence, (T3) holds. Similarly, we can see that (T1)-(T3) hold, for H and
(T4) holds by Corollary 4.4. Therefore, (Ψ(X ), G,H) is a bounded tense
like equality algebra.

5 Conclusion

In this paper, we have considered equality algebras, introduced involutive
operators and tense like equality algebras. We investigated relations be-
tween these new notions with the notion of tense MV-algebras. Defining
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involutive operators on other logical algebras such as hoop algebras and
considering these algebras as tense like algebras could be topics for our next
task.

Acknowledgement

The authors are very indebted to the editor and anonymous referees for
their careful reading and valuable suggestions which helped to improve the
paper and its readability. This research is supported (for the first author)
by a grant of National Natural Science Foundation of China (11971384).

References

[1] Borzooei, R.A., Zarean, M. and Zahiri, O., Involutive equality algebras, Soft Com-
puting 22 (2018), 7505-7517.

[2] Borzooei, R.A., Zebardast, F. and Aaly Kologani, M., Some types of filters in equal-
ity algebras, Categ. General Alg. Struct. Appl. 7 (2017), 33-55.
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