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The symmetric monoidal closed category
of cpo M-sets

Halimeh Moghbeli-Damaneh

Abstract. In this paper, we show that the category of directed complete
posets with bottom elements (cpos) endowed with an action of a monoid M
on them forms a monoidal category. It is also proved that this category is
symmetric closed.

1 Introduction and preliminaries

The category Dcpo of directed complete partially ordered sets plays an
important role in theoretical computer science, discrete mathematics, and
specially in Domain Theory (see [1]). This category is complete, cocom-
plete, and closed (see [1, 7, 8]). It has also been shown that the category
Cpo of directed complete partially ordered sets with bottom elements and
strict continuous maps between them is monoidal closed, complete, and
cocomplete (see [1, 8]).

In [10], we have studied the category CpoAct-M of cpo-acts; that is
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cpos with an action of a monoid M on them. In other words, we study
M -sets in the category Cpo. Among other things, we have shown that this
category is not cartesian closed. In this paper, we show that the category
CpoAct-M is a symmetric monoidal closed category. In fact, it is well-
know that the category Cpo is a symmetric monoidal category. Hence
and since CpoAct-M

∼= CpoM
op

, it follows that the category CpoAct-M

is a symmetric monoidal category. Furthermore, we can not deduce the
closedness of CpoAct-M from the closedness of Cpo. Therefore, in the final
section we prove that this category is closed. Because of the constructive
proofs and descriptions through our manuscript, and the important role of
domain theory in denotational semantics, we think that our results would
be useful and interesting for theoretical computer scientists, as well as for
algebraists and order theorists. More precisely, the action of a monoid
on a set would always be an important concept for computer scientists,
where they use this concept in automata theory. Moreover, the subject of
finding a mathematical model for programming languages would also be an
interesting and helpful tools for computer scientists. From this point of view,
the domain theory was introduced as a mathematical model for semantics
of programming languages [1]. Furthermore, there are many models for
semantics of the programming language PCF (Programming Computable
Functionals) which one of them is Domain models, that is, cpos with a
family of actions of the natural numbers, where such cpos called SFP in
the contexts, see [17]. By knowing SFP cpos, one can have, for example,
any finite cpo N-act with the identity actions, as a SFP cpo, where N is
considered with the binary operation min. On the other hands, an important
problem in domain theory is the modelling of non-deterministic features
of programming languages. There have been found some models in the
literature, see, for example, [14–16]. In fact, to find such models, Plotkin and
Smyth introduced the concept of a powerdomain, that is, a subset of a cpo,
see [18]. In fact, they use the concept of a d-cone which is a commutative
dcpo-monoid (in the sense of [11]) with an action of the monoid R+, of
positive real numbers.

In the following we give some preliminaries needed in the sequel.

Dcpos and cpos. First of all, we recall some basic concepts of posets,
dcpos, and cpos. For more information one can see [1, 4, 7, 8].
A partially ordered set (or a poset, for short) is a pair (A,≤), where A is a
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set and ≤ is a binary relation on A which is also reflexive, antisymmetric,
and transitive.

Let (A,≤) be a poset and S ⊆ A. An element a ∈ A is said to be an
upper bound of S if s ≤ a for each s ∈ S. Moreover, it is said to be the
supremum or the join of S, denoted by

∨
S, if it is an upper bound of S

and a ≤ b for each upper bound b of S.
A non-empty subset D of a partially ordered set (A,≤) is called directed,

denoted by D ⊆d A, if for every a, b ∈ D there exists c ∈ D such that
a, b ≤ c; and A is called directed complete, or briefly a dcpo, if for every
D ⊆d A, the supremum of D, denoted by

∨dD (read the directed join of
D), exists in A. A dcpo which has a bottom (least) element ⊥ is said to be
a cpo.

A dcpo map or a continuous map f : A → B between dcpos is a map
with the property that for every D ⊆d A, f(D) is a directed subset of B
and f(

∨dD) =
∨d f(D). A dcpo map f : A → B between cpos is called

strict if f(⊥) = ⊥. Thus we have the categories Dcpo and Cpo, of all
dcpos and cpos with (strict) continuous maps between them, respectively.

The following lemmas are frequently used in this paper.

Lemma 1.1. [4, 8] Let {Ai : i ∈ I} be a family of dcpos. Then the directed
join of a directed subset D ⊆d

∏
i∈I Ai is calculated as

∨dD = (
∨dDi)i∈I ,

where
Di = {a ∈ Ai : ∃d = (dk)k∈I ∈ D, a = di}

for all i ∈ I.

Lemma 1.2. [10] Let A be a dcpo. Then D ⊆ A⊥ = ⊥ ⊕ A is directed if
and only if D ⊆d A or D = {⊥} ∪D′, where D′ = ∅ or D′ ⊆d A.

M-sets and cpo M-sets. Now, we recall the preliminary notions of the
action of a monoid. For more information, see [6, 9, 10, 12].

A monoid is a triple (M, ∗, 1), where M is a set, ∗ is an associative
binary operation on M , and 1 is an element of M called its identity element
with the property that m ∗ 1 = m = 1 ∗m, for all m ∈ M . From now on,
whenever there is no confusion, we will write M for (M, ∗, 1) and also write
m ∗ n simply as mn.

Let M be a monoid with the identity 1. An M -set (or M -act) is a pair
(A; (λm)m∈M ) where A is a set and for each m ∈M , λm : A→ A, λm(a) :=
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am is a map, called an action, such that λ1 = idA and λm ◦ λn = λnm,
for all m,n ∈ M . That is, a(nm) = (an)m, a1 = a, for all a ∈ A. A map
f : A → B between M -sets A and B is said to be action-preserving or an
M -set map, if f(am) = f(a)m for all a ∈ A and m ∈M . The category of all
M -sets with action-preserving maps between them is denoted by Act-M .

Also, we recall from [10] that a cpo M -act is an M -act in the category
Cpo. In other words, an M -set (A; (λm)m∈M ) is called a cpo M -act if A is
a cpo and λm : A→ A is a strict continuous map, for each m ∈M .

Also, by a cpo M -set map between cpo M -sets, we mean a strict contin-
uous map which is also an M -set map. We denote the category of all cpo
M -sets and cpo M -set maps between them by CpoAct-M . Recall (see [10])
that this category is both complete and cocomplete.

Category Theory. Now, we recall from [2] the definitions of category
and functor, for those who are not familiar with the subject. A category A
consists of a class, also denoted by A, whose elements will be called objects
of the category and for every pair A,B of objects, a set A(A,B), whose
elements will be called morphisms or arrows from A to B, and also for
every triple A,B,C of objects, there exists a composition law A(A,B) ×
A(B,C) → A(B,C), the composite of the pair (f, g) will be written g ◦ f
or just gf , which also satisfies the associativity axiom, that is, for arbitrary
morphisms f ∈ A(A,B), g ∈ A(B,C), h ∈ A(C,D), the equality h◦(g◦f) =
(h ◦ g) ◦ f holds. Moreover, for every object A there exists a morphism
IdA ∈ A(A,A), called the identity on A, which satisfies the usual identity
axiom, that is, for every pair of morphisms f ∈ A(A,B), g ∈ A(B,C) the
equalities IdB ◦ f = f and g ◦ IdB = g hold.

Also, a functor F from a category A to a category B consists of a map-
ping A → B between the classes of objects of A and B; the image of A ∈ A
is written FA, and a mapping A(A,A′) → B(FA,FA′), for every pair of
objects A,A′ of A; the image of f ∈ A(A,A′) is written Ff . Moreover,
F must preserve the monoid structure on arrows, that is, for every pair of
morphisms f ∈ A(A,A′), g ∈ A(A′, A′′), F (g ◦ f) = Ff ◦ Fg, and for every
object A ∈ A, F (IdA) = IdFA.

Monoidal closed category. Finally we recall the definition of a monoidal
category from [3]. A monoidal category A is a category together with a
bifunctor ⊗ : A × A → A, (A,B) 7→ A ⊗ B, called the tensor product,
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an object I ∈ A, and three natural isomorphisms aABC : (A ⊗ B) ⊗ C ∼=
A ⊗ (B ⊗ C), rA : A ⊗ I ∼= A, lA : I ⊗ A ∼= A, for all A,B,C ∈ Obj(A),
satisfying the usual coherence axioms for a monoidal category (see axioms
4-5 in Definition 6.1.1 of [3]). If, furthermore, both - ⊗ A and A ⊗ - have
right adjoints for each A ∈ A, then A is called a biclosed category. A
monoidal category (A,⊗, I, (lA)A∈Obj(A), (rA)A∈Obj(A)) is symmetric if, for
each pair A,B ∈ Obj(A), there exists a natural isomorphism δAB : A⊗B ∼=
B⊗A satisfying the coherence axioms (see 2-4 in Definition 6.1.2 of [3]). A
biclosed symmetric monoidal category is called a symmetric monoidal closed
category.

2 The category CpoAct-M is a symmetric monoidal category

In this section, using the categorical properties of the category Cpo, we
show that the category CpoAct-M is a symmetric monoidal category.

First, we notice the following lemma with a sketch of its proof.

Lemma 2.1. The category CpoAct-M is isomorphic to the functor category
CpoM

op
, where M is considered as a one object category with elements of

M as arrows.

Proof. Define the functor Φ: CpoAct-M → CpoM
op

as follows. For a cpo
M -set (A; (λm)m∈M ), define Φ(A) : Mop → Cpo to be the functor given
by Mop ; A and (m : Mop → Mop) ; (Φ(m) : A → A) with Φ(m)(a) =
λm(a). Also, for each cpo M -set map f : A → B, let Φ(f) : Φ(A) → Φ(B)
be the natural transformation whose only component is f .

Conversely, define the functor Ψ: CpoM
op → CpoAct-M as follows. Let,

for each functor F : Mop → Cpo, Ψ(F ) = FMop with the actions λm :=
F (m) for m ∈Mop. Moreover, for any natural transformation η : F → G in
CpoM

op
, define Ψ(η) to be the only component ηMop of η which is a strict

continuous map. By the natural property of η, one can see that ηMop is also
an M -set map, then so it is a cpo M -set map. Now, one can easily check
that Φ and Ψ are actually functors and Φ ◦Ψ = Id, Ψ ◦Φ = Id. This proves
the lemma.

Now, we recall the following two propositions.
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Proposition 2.2. [5, 13] Let A be a monoidal category and B any small
category. Then the functor category AB is monoidal with the tensor product
F ⊗G given by F ⊗G(B) = F (B)⊗G(B), for every pair (F,G) of functors
from B to A and every B ∈ Obj(B), and the constant functor I : B → A as
its unit which takes any object in B to the unit object I of A.

Proposition 2.3. [5] Let A be a symmetric monoidal category and B any
small category, then so is the functor category AB.

Recall from [1] that the category Cpo is a symmetric monoidal category,
in which the tensor product of two cpos A and B, which is also called smash
product, is the cpo A ⊗ B = ⊥ ⊕ (A \ {⊥A}) × (B \ {⊥B}). Furthermore,
for two cpo maps f : A → B and g : C → D, the tensor map f ⊗ g : A ⊗
C → B ⊗ D defined by (f ⊗ g)(⊥) = ⊥ and (f ⊗ g)((a, c)) = (f(a), g(c))
if f(a) 6= ⊥B and g(c) 6= ⊥D, and otherwise (f ⊗ g)((a, c)) = ⊥ for all
(a, c) ∈ (A \ {⊥A})× (C \ {⊥C}).

Therefore, applying Lemma 2.1 and Propositions 2.2, 2.3, we obtain the
following theorem.

Theorem 2.4. The category CpoAct-M is a symmetric monoidal category
in which the tensor product of two cpo M -sets A and B is the cpo A⊗B =
⊥⊕ (A \ {⊥A})× (B \ {⊥B}) with the actions defined by

(a, b) ·m =

{
(am, bm) if am 6= ⊥A and bm 6= ⊥B

⊥ otherwise

and ⊥ · m = ⊥, for all m ∈ M and (a, b) ∈ A ⊗ B. The two element
chain I = 2 = {⊥,>} with the identity actions plays the role of the identity
for tensor product in the category CpoAct-M . Moreover, the left and the
right unit isomorphisms are given by the cpo M -act maps lA : I ⊗ A → A
defined by (>I, a) 7→ a, ⊥ 7→ ⊥A and rA : A⊗ I→ A defined by (a,>I) 7→ a,
⊥ 7→ ⊥A.

3 The closedness of the category CpoAct-M

In this section, we show that the symmetric category CpoAct-M is closed.
First, we recall from [3] and [2] the following two propositions.



The monoidal category of cpo M -sets 111

Proposition 3.1. [Prop. 6.1.4 of [3]] A symmetric monoidal category A is
closed if and only if, for each object A ∈ A, the functor A⊗ - : A → A has
a right adjoint.

Proposition 3.2. [Prop. 3.2.4 of [2]] Consider a functor F : A → B with
a left adjoint G : B → A. If C is any small category, then G∗ : BC → AC is
itself a left adjoint to F∗ : AC → BC, where F∗ : AC → BC , H 7→ F ◦H.

We recall from [1] that the functor A⊗- : Cpo→ Cpo is the left adjoint
to the functor (-)A : Cpo→ Cpo, where for a cpo B, BA denotes the set of
all strict continuous maps from A to B. Hence, and by Proposition 3.1, the
symmetric monoidal category Cpo is closed. Furthermore, by the above
Proposition, (A ⊗ -)∗ : CpoM

op → CpoM
op

is a left adjoint to the functor
((-)A)∗ : CpoM

op → CpoM
op

.
Notice that, (A⊗ -)∗ : CpoM

op → CpoM
op

, H 7→ (A⊗ -) ◦H, where

(A⊗ -) ◦H : Mop → Cpo

Mop � //

m
��

A⊗HMop

idA⊗Hm

��
Mop � // A⊗HMop

and Hm : HMop → HMop, x 7→ Hm(x) := xm are actions and

idA ⊗Hm((a, b)) =

{
(a, bm) if am 6= ⊥HMop

⊥ otherwise

also idA ⊗Hm(⊥) = ⊥, for all m ∈M and (a, b) ∈ A⊗HMop.

Next, consider the functor (-)A∗ : CpoM
op → CpoM

op
, H 7→ (-)A∗ ◦ H,

where
(-)A∗ ◦H : Mop → Cpo

Mop � //

m

��

(HMop)A

Hm
A

��
Mop � // (HMop)A

and Hm : HMop → HMop, x 7→ Hm(x) := xm, are actions and
Hm

A : (HMop)A → (HMop)A given by Hm
A(f) = Hm ◦ f , for all f ∈
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(HMop)A, whereHm◦f : A→ (HMop) defined by (Hm◦f)(a) = Hm(f(a)) :=
(f(a))m, for all a ∈ A.

In other words, we have an adjoint pair

(A⊗ -)∗ : CpoAct-M → CpoAct-M

and
(-)A∗ : CpoAct-M → CpoAct-M ,

where for any cpo M -set B, (A⊗ -)∗(B) = A⊗ B is a cpo M -set with the
action

(a, b) ·m =

{
(a, bm) if am 6= ⊥B

⊥ otherwise

and ⊥ ·m = ⊥, for all m ∈M and (a, b) ∈ A⊗B. Also, for any cpo M -set
B, the cpo M -set (-)A∗ (B) = BA = HomCpo(A,B) with the action defined
by (fm)(a) = f(a)m, for all f ∈ BA and m ∈M . Consequently,

(i) for any cpo M -set A with the trivial actions, the functor (A⊗ -)∗ is
the same as the functor (A⊗ -) given in Theorem 2.4, and the functor (-)A∗
is its right adjoint.

(ii) for a cpo M -set A with a non-trivial actions the functor

(A⊗ -)∗ : CpoAct-M → CpoAct-M

is different from the functor A ⊗ - : CpoAct-M → CpoAct-M given in The-
orem 2.4. In Fact, while both of these functors take a cpo M -set B to the
cpo A⊗B, the actions defined on it are different.

In the following, unlike the above remark, we find a right adjoint for the
functor A⊗ - : CpoAct-M → CpoAct-M given in Theorem 2.4, for a general
cpo M -set A. This proves that the symmetric monoidal category CpoAct-M

is closed.

Theorem 3.3. For any cpo M -set A, HomCpoAct-M
((M × (A \ {⊥A}))⊥, -)

is an endofunctor on CpoAct-M .

Proof. First notice that the (M×(A\{⊥A}))⊥ with the pointwise order and
action and the zero element ⊥ is a cpo M -set (see [10]). Now, we show that
for a cpo M -set B, HomCpoAct-M

((M × (A\{⊥A}))⊥, B) with the pointwise
order and the actions defined by (fm)(n, a) = f(mn, a) and (fm)(⊥) = ⊥B,
for all (n, a) ∈ M × (A \ {⊥A}), m ∈ M and f ∈ HomCpoAct-M

((M ×
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(A \ {⊥A}))⊥, B), is a cpo M -set. It is a cpo with the bottom element
f⊥ : (M × (A \ {⊥A}))⊥ → B, x 7→ ⊥B. In fact, for each directed subset
F ⊆d HomCpoAct-M

((M × (A \ {⊥A}))⊥, B),
∨d F is calculated pointwise.

Recall from [1, 12] that
∨d F is a cpo map. Furthermore,

∨d F is action-
preserving. To see this, let m ∈M and (n, a) ∈M × (A \ {⊥A}). Then

d∨
F ((n, a) ·m) =

d∨
f∈F

f((n, a) ·m) =

d∨
f∈F

(f(n, a))m

= (
d∨

f∈F
f(n, a))m = (

d∨
F (n, a))m,

where the third equality is true because B is a cpo M -set. Moreover,

d∨
F (⊥ ·m) =

d∨
F (⊥) =

d∨
f∈F

f(⊥) =

d∨
f∈F
⊥B = ⊥B

= (

d∨
f∈F

f(⊥))m = (

d∨
F (⊥))m.

Now, we show that the actions are strict continuous. The actions are strict,
because

(f⊥m)(n, a) = f⊥(mn, a) = ⊥B = f⊥(n, a)

for all (n, a) ∈M × (A \ {⊥A}) and m ∈M , also (f⊥m)(⊥) = ⊥B = f⊥(⊥).
To prove continuity, let F ⊆d HomCpoAct-M

((M × (A \ {⊥A}))⊥, B) and
m ∈M , then

((

d∨
F )m)(n, a) = (

d∨
F )(mn, a) =

d∨
f∈F

(f(mn, a)) =

d∨
f∈F

(fm)(n, a)

for all (n, a) ∈M × (A \ {⊥A}), also

((

d∨
F )m)(⊥) = ⊥B =

d∨
f∈F

fm(⊥) = (

d∨
Fm)(⊥).

Consequently, HomCpo((M × (A \ {⊥A}))⊥, B) is a cpo M -set.
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Theorem 3.4. The functor A⊗- : CpoAct-M → CpoAct-M is a left adjoint
to the functor HomCpo((M × (A \ {⊥A}))⊥, -) : CpoAct-M → CpoAct-M .

Proof. We do this in four steps:
Step (I). Defining counit: We show that for every cpo M -set B, the map

ηB : A⊗HomCpo((M × (A \ {⊥A}))⊥, B)→ B

defined by ηB(a, f) = f(1, a) and ηB(⊥) = ⊥B, for all (a, f) ∈ A ⊗
HomCpo((M × (A \ {⊥A}))⊥, B), is a couniversal cpo M -set map from
B to the functor A ⊗ −. First, we show that ηB is a cpo M -set map.
It is strict by its definition. It is also action-preserving. In fact, for ev-
ery m ∈ M , ηB(⊥ · m) = ηB(⊥) = ⊥B = ⊥Bm = ηB(⊥)m, and for
(a, g) ∈ A⊗HomCpo((M × (A \ {⊥A}))⊥, B), we consider two cases:

Case (1): If am 6= ⊥A and gm 6= f⊥, then

ηB((a, g) ·m) = ηB(am, gm) = gm(1, am)

= g(m, am) = g((1, a) ·m) = g((1, a))m = ηB(a, g)m.

Case (2): If am = ⊥A or gm = f⊥, then

ηB((a, g) ·m) = ηB(⊥) = ⊥B = g((1, a) ·m) = g((1, a))m = ηB((a, g))m,

where the third equality is true because if am = ⊥A, then g((1, a) ·m) =
g(⊥) = ⊥B. Also if am 6= ⊥A, then by hypothesis gm = f⊥. Thus

g((1, a) ·m) = g((m, am)) = gm((1, am)) = f⊥((1, am)) = ⊥B.

To prove continuity, let D ⊆d A ⊗ HomCpo((M × (A \ {⊥A}))⊥, B).
Then, by Lemma 1.2, we consider two cases:

Case (1): Let

D ⊆d (A \ {⊥A})× (HomCpo((M × (A \ {⊥A})⊥, B) \ {f⊥}).

Then, by Lemma 1.1,
∨dD = (

∨dD′,
∨d F ), where D′ = DomD and F =

CodD. So

ηB(
d∨
D) = ηB((

d∨
D′,

d∨
F )) =

d∨
F (1,

d∨
D′) =

d∨
F (

d∨
x∈D′

(1, x))

=

d∨
g∈F

d∨
x∈D′

g(1, x) =

d∨
(x,g)∈D

g(1, x) =

d∨
(x,g)∈D

ηB((x, g)),
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where the forth equality is true because
∨d F is calculated pointwise and

each g ∈ F is continuous. Moreover, the fifth equality is true because∨d
(x,g)∈D g(1, x) ≤

∨d
g∈F

∨d
x∈D′ g(1, x); and if g(1, x) ≤ b, for all (x, g) ∈ D

and some b ∈ B, then
∨d

g∈F
∨d

x∈D′ g(1, x) ≤ b. To see this, let g ∈ F
and x ∈ D′, then there exist y ∈ A \ {⊥A} and h ∈ HomCpo((M × (A \
{⊥A}))⊥, B)\{f⊥} such that (y, g) ∈ D and (x, h) ∈ D. Since D is directed,
there exists (z, k) ∈ D with (y, g), (x, h) ≤ (z, k). This gives y, x ≤ z and
g, h ≤ k. So g(1, x) ≤ g(1, z) ≤ k(1, z) ≤ b for all g ∈ F and x ∈ D′, as
required.

Case (2): Let D = D′ ∪ {⊥} where D′ ⊆ (A \ {⊥A})× (HomCpo((M ×
(A \ {⊥A})⊥, B)) \ {f⊥}) is directed. We also have

∨dD =
∨dD′ and then

using the Case (1),

ηB(

d∨
D) = ηB(

d∨
D′) =

d∨
x∈D′

ηB(x) =

d∨
x∈D′

ηB(x) ∨ ηB(⊥) =

d∨
x∈D

ηB(x).

Therefore, ηB is a cpo M -set map.
Step (II). Universal property of the counit: Let C be a cpo M -set and
h : A⊗C → B be a cpo M -set map. Then the map ĥ : C → HomCpo((M ×
(A \ {⊥A}))⊥, B), defined by

ĥ(x)(m, a) =

{
h(a, xm) if xm 6= ⊥C

⊥B if xm = ⊥C
,

ĥ(⊥C) = f⊥, and ĥ(x)(⊥) = ⊥B for x ∈ C, a ∈ A \ {⊥A}, and m ∈ M ,
is a unique cpo M -set map satisfying ηB ◦ IdA ⊗ ĥ = h. First, we see that
ĥ is well-defined. In fact, we show that ĥ(x) is a cpo M -set map, for all
x ∈ C. Notice that ĥ(x) is strict by its definition. To prove continuity, let
D ⊆d (M × (A \ {⊥A}))⊥, then, by Lemma 1.2, we consider two cases:

Case (1): D ⊆d M × (A \ {⊥A}). Then D = {n} ×D′ where D′ ⊆d A
and n ∈M . Also

∨dD = (n,
∨dD′). Now we consider two subcases:
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Subcase (1a): xn 6= ⊥C : Then

ĥ(x)(

d∨
D) = ĥ(x)((n,

d∨
D′)) = h((

d∨
D′, xn))

= h(

d∨
y∈D′

(y, xn)) =

d∨
y∈D′

h(y, xn)

=
d∨

y∈D′

ĥ(x)(n, y) =
d∨

(n,y)∈D

ĥ(x)(n, y).

Subcase (1b): xn = ⊥C : Then

ĥ(x)(

d∨
D) = ĥ(x)((n,

d∨
D′)) = ⊥B =

d∨
(n,y)∈D

ĥ(x)(n, y).

Case (2): D = D′ ∪ {⊥} where D′ = {n} ×D′′ in which D′′ ⊆d A and
n ∈M . Then by Case (1),

ĥ(x)(

d∨
D) = ĥ(x)(

d∨
D′) =

d∨
(n,y)∈D′

ĥ(x)(n, y)

= (
d∨

(n,y)∈D′

ĥ(x)(n, y)) ∨ ⊥B

= (
d∨

(n,y)∈D′

ĥ(x)(n, y)) ∨ ĥ(x)(⊥)

=

d∨
(ĥ(x)(D)).

Now, we show that ĥ(x) is action-preserving, for all x ∈ C. First notice
that

ĥ(x)(⊥ ·m) = ĥ(x)(⊥) = ⊥B = ⊥Bm = (ĥ(x)(⊥))m.

Also for (n, a) ∈M × (A \ {⊥A}) and m ∈M , we consider two cases:
Case (1): am 6= ⊥A, then we consider two subcases:

Subcase (1a′): xnm 6= ⊥C , then

ĥ(x)((n, a) ·m) = ĥ(x)((nm, am)) = h(am, xnm) =



The monoidal category of cpo M -sets 117

h((a, xn) ·m) = (h((a, xn)))m = (ĥ(x)((n, a)))m,

where the last equality is true because xn 6= ⊥C (otherwise, we get
xnm = ⊥Cm = ⊥C , which is a contradiction).
Subcase (1b′): xnm = ⊥C : Then we consider two subcases:
(1) xn = ⊥C : Then

ĥ(x)((n, a) ·m) = ĥ(x)((nm, am)) = ⊥B = ⊥Bm = (ĥ(x)(n, a))m.

(2) xn 6= ⊥C : Then

ĥ(x)((n, a) ·m) = ĥ(x)((nm, am)) = ⊥B = h(⊥) =

h((a, xn) ·m) = (h((a, xn)))m = (ĥ(x)((n, a)))m,

as required.

Case (2): am = ⊥A. Then ĥ(x)((n, a) · m) = ĥ(x)(⊥) = ⊥B. Also
(ĥ(x)((n, a)))m = ⊥B. In fact, if xn = ⊥C , then (ĥ(x)((n, a)))m = ⊥Bm =
⊥B. If xn 6= ⊥C , then (ĥ(x)((n, a)))m = (h(a, xn))m = h((a, xn) · m) =
h(⊥) = ⊥B (the third equality is true by the definition of actions on A⊗C
and the fact am = ⊥A). Consequently, ĥ(x) is action-preserving and so it
is a cpo M -set map.

Now, we show that ĥ is a cpo M -set map, first note that it is strict by its
definition. To prove continuity, let D ⊆d C. Then ĥ(

∨dD) =
∨d

x∈D ĥ(x),

because ĥ(
∨dD)(⊥) = ⊥B =

∨d
x∈D ĥ(x)(⊥) = (

∨d
x∈D ĥ(x))(⊥), and for

(m, a) ∈M × (A \ {⊥A}) we consider two cases:

Case (1): (
∨dD)m = ⊥C , then for all x ∈ D, xm = ⊥C . Thus

ĥ(
d∨
D)(m, a) = ⊥B =

d∨
x∈D

ĥ(x)(m, a) = (
d∨

x∈D
ĥ(x))(m, a).
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Case (2): (
∨dD)m 6= ⊥C . Take K = {x ∈ D | xm 6= ⊥C}, then

ĥ(
d∨
D)(m, a) = h(a, (

d∨
D)m) = h(a,

d∨
x∈D

xm)

= h(a,
d∨

x∈K
xm) =

d∨
x∈K

h(a, xm)

=

d∨
x∈K

ĥ(x)(m, a) =

d∨
x∈K

ĥ(x)(m, a) ∨ ⊥B

=
d∨

x∈K
ĥ(x)(m, a) ∨

d∨
x∈D\K

ĥ(x)(m, a)

=
d∨

x∈D
ĥ(x)(m, a) = (

d∨
x∈D

ĥ(x))(m, a).

Now, we show that ĥ is action-preserving. To see this, let x ∈ C and m ∈
M . We must prove that ĥ(xm) = ĥ(x)m. First notice that ĥ(xm)(⊥) =
⊥B = (ĥ(x)m)(⊥) (the last equality is true by the definition of actions on
HomCpo((M × (A \ {⊥A}))⊥, B)), also for each (n, a) ∈M × (A \ {⊥A}) we
consider two cases:

Case (1): xmn = ⊥C , then

ĥ(xm)(n, a) = ⊥B = ĥ(x)(mn, a) = ĥ(x)m(n, a)

Case (2): xmn 6= ⊥C , then

ĥ(xm)(n, a) = h(a, xmn) = ĥ(x)(mn, a) = (ĥ(x)m)(n, a)

(the last equality is true by the definition of action on the cpo M -set
HomCpo((M × (A \ {⊥A}))⊥, B)). Therefore, ĥ is a cpo M -set map.

In this part, we show that ηB ◦ (id⊗ ĥ) = h. First notice that

(ηB ◦ (id⊗ ĥ))(⊥) = ηB((id⊗ ĥ)(⊥)) = ηB(⊥) = ⊥B = h(⊥).

Also, for (a, x) ∈ A⊗ C, we consider two cases:
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Case (1): ĥ(x) 6= f⊥, then

(ηB ◦ (id⊗ ĥ))((a, x)) = ηB((id⊗ ĥ))((a, x))

= ηB(a, ĥ(x)) = ĥ(x)(1, a) = h(a, x),

where the last equality is true because x1 = x 6= ⊥C .
Case (2): ĥ(x) = f⊥, then

(ηB ◦ (id⊗ ĥ))((a, x)) = ηB((id⊗ ĥ))((a, x)) = ηB(⊥) = ⊥B = h(a, x),

where the last equality is true because, we have x 6= ⊥C and ĥ(x)((1, a)) =
⊥B. This gives ĥ(x)((1, a)) = h(a, x1) = h(a, x) = ⊥B.

Finally, we prove the uniqueness of ĥ. To see this, let g : C → HomCpo((M×
(A\{⊥A}))⊥, B) be a cpo M -set map with ηB◦(id⊗g) = h. First notice that
g(⊥C) = ⊥ = ĥ(⊥C). We also show that g(x) = ĥ(x), for all x ∈ C \ {⊥C}.
We have g(x)(⊥) = ⊥B = ĥ(x)(⊥). Now for all (m, a) ∈ M × (A \ {⊥A})
we consider two cases:

Case (1): If xm 6= ⊥C , then we consider two subcases:
Subcase (1m): g(xm) 6= f⊥, then

g(x)((m, a)) = (g(x)m)((1, a)) = g(xm)((1, a)) = ηB(a, g(xm)) =

ηB((id⊗ g)(a, xm)) = (ηB ◦ (id⊗ g))(a, xm) = h(a, xm) = ĥ(x)((m, a)).

Subcase (1n): g(xm) = f⊥, then g(x)((m, a)) = (g(x)m)((1, a)) = f⊥(1, a) =
⊥B. Also we have (ηB ◦(id⊗g))((a, xm)) = ηB(id⊗g((a, xm))) = h(a, xm),
then ⊥B = ηB(⊥) = h(a, xm). This gives ĥ(x)((m, a)) = h(a, xm) = ⊥B

(notice that xm 6= ⊥C), as required.
Case (2): If xm = ⊥C , then

g(x)((m, a)) = g(x)m((1, a)) = g(xm)((1, a))

= f⊥((1, a)) = ⊥B = ĥ(x)((m, a)),

as required.

In the following, we see that, as one expects, for a cpo M -set A with the
trivial actions, the two right adjoints HomCpoAct-M

((M × (A \ {⊥A}))⊥, -)
and (-)A? to the functor A⊗ - are isomorphic.
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Lemma 3.5. Let A be a cpo M -set with the trivial action. Then

HomCpoAct-M
((M × (A \ {⊥A}))⊥, B) ∼= HomCpo(A,B).

Proof. Define the map

α : HomCpo((M × (A \ {⊥A}))⊥, B)→ HomCpo(A,B)

by α(f) = f1, where f1 : A → B is given by f1(a) = f(1, a) and f1(⊥A) =
⊥B, for all f ∈ HomCpo((M × (A \ {⊥A}))⊥, B) and a ∈ A \ {⊥A}. First
notice that, since f is a dcpo map from M×(A\{⊥A}) to B, it is continuous
in each variable (see [1]). This gives that f1 is continuous and strict by its
definition. Hence f1 ∈ HomCpo(A,B) and α is well-defined. Now, we
show that α is a cpo M -set map. To prove that it is action-preserving
take m ∈ M and f ∈ HomCpo((M × (A \ {⊥A}))⊥, B). Then we have
α(fm)(a) = (fm)1(a) = (fm)(1, a) = f(m, a) = f(m, am) = f(1, a)m =
(f1(a))m = (α(f)(a))m = (α(f)m)(a). This implies that α(fm) = α(f)m,
for all m ∈ M and f ∈ HomCpo((M × (A \ {⊥A}))⊥, B), as required.
Furthermore, α is continuous. To prove this, let F be a directed subset of
HomCpo((M × (A \ {⊥A}))⊥, B). Then

α(
d∨
F )(⊥A) = (

d∨
F )1(⊥A) = ⊥B =

d∨
f∈F

(f1(⊥A))

= (
d∨

f∈F
f1)(⊥A) = (

d∨
f∈F

α(f))(⊥A) =
d∨
α(F )(⊥A).

Also for all ⊥A 6= a ∈ A,

α(
d∨
F )(a) = (

d∨
F )1(a) = (

d∨
F )(1, a) =

d∨
f∈F

f(1, a) =
d∨

f∈F
(f1(a))

= (

d∨
f∈F

f1)(a) = (

d∨
f∈F

α(f))(a) =

d∨
α(F )(a).

This implies that α(
∨d F ) =

∨d α(F ), as required. Consequently, α is a
cpo M -set map.
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Now, define the map

β : HomCpo(A,B)→ HomCpo((M × (A \ {⊥A}))⊥, B)

by β(f) = f?, where f?(⊥) = ⊥B and f?(m, a) = f(a)m, for all m ∈M and
a ∈ A \ {⊥A}. We show that β is a cpo M -set map. First notice that it is
action-preserving. To see this, we show that β(fm) = β(f)m or equivalently
(fm)? = f?m. for all m ∈ M and f ∈ HomCpo(A,B). First notice that
(fm)?(⊥) = ⊥B = (f?m)(⊥), where the last equality is true by the defini-
tion of action on HomCpo((M × (A \ {⊥A}))⊥, B). Also, for all t ∈M and
a ∈ A \ {⊥A}, we have (fm)?(t, a) = ((fm)(a))t = (f(a)m)t = f(a)(mt) =
f?(mt, a) = (f?m)(t, a). So (fm)? = f?m, as required. Moreover, β is
trivially strict and also continuous. To see this, take the directed subset
F of HomCpo(A,B). We show that β(

∨d F ) =
∨d β(F ) or, equivalently,

(
∨d F )? =

∨d
f∈F f?. First notice that (

∨d F )?(⊥) = ⊥B =
∨d

f∈F f?(⊥).

Also, for all t ∈ M and ⊥A 6= a ∈ A \ {⊥A} we have (
∨d F )?(t, a) =

((
∨d F )(a))t = (

∨d
f∈F f(a))t =

∨d
f∈F (f(a)t) =

∨d
f∈F f?(t, a) = (

∨d
f∈F f?)(t,m).

Hence we obtain (
∨d F )? =

∨d
f∈F f?, as required.

Finally, we prove α ◦ β = Id and β ◦ α = Id. First notice that for
all f ∈ HomCpo(A,B) and a ∈ A \ {⊥A} we have (f?)1(a) = f?(1, a) =
f(a)1 = f(a). This gives (f?)1 = f or equivalently α(β(f)) = α(f?) =
(f?)1 = f = Id(f), for all f ∈ HomCpo(A,B), as required. Second, for
all f ∈ HomCpo((M × (A \ {⊥A}))⊥, B), we have (f1)?(⊥) = ⊥B = f(⊥).
Also, for all t ∈ M and ⊥A 6= a ∈ A, we have (f1)?(t, a) = (f1(a))t =
(f(1, a))m = f(m, am) = f(m, a). This gives (f1)? = f or equivalently
β(α(f)) = β(f1) = (f1)? = f = Id(f), as required.

Consequently, α is a cpo M -set isomorphism and so we get

HomCpo((M × (A \ {⊥A}))⊥, B) ∼= HomCpo(A,B),

where the action on A is the trivial action.

As a consequence of Theorems 2.4 and 3.4, we have

Theorem 3.6. The category CpoAct-M is a symmetric monoidal closed
category.
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