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Some aspects of cosheaves on diffeological
spaces

Alireza Ahmadi and Akbar Dehghan Nezhad∗

Abstract. We define a notion of cosheaves on diffeological spaces by
cosheaves on the site of plots. This provides a framework to describe dif-
feological objects such as internal tangent bundles, the Poincaré groupoids,
and furthermore, homology theories such as cubic homology in diffeology by
the language of cosheaves. We show that every cosheaf on a diffeological space
induces a cosheaf in terms of the D-topological structure. We also study quasi-
cosheaves, defined by pre-cosheaves which respect the colimit over covering
generating families, and prove that cosheaves are quasi-cosheaves. Finally, a
so-called quasi-Čech homology with values in pre-cosheaves is established for
diffeological spaces.

1 Introduction

Diffeology was introduced by J.M. Souriau [19] in the 1980’s, one of the set-
based generalizations of smooth manifolds (see [20]) by focusing on smooth
maps from open subsets of Euclidean spaces, so-called plots. Diffeology
systematizes geometric spaces such as orbifolds and even infinite-dimensional
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spaces. The category of diffeological spaces and smooth maps between them
is complete, cocomplete, and cartesian closed. As it is shown in [2], this
category forms a quasitopos. It is also closed under constructions such as
subspaces and quotient spaces. The main reference for this theory is the
book [13] by P. Iglesias-Zemmour.

Sheaves and cosheaves are robust tools to study local information on sites
(categories with Grothendieck topologies), given by functors that preserve
(co)limits over coverings. Sheaves and quasi-sheaves on diffeological spaces
were introduced by the authors [9] with respect to the site of plots and
covering generating families, respectively, to study relations between data
on spaces and those on plots. In this paper, we investigate cosheaves on
diffeological spaces, defined as cosheaves on the site of plots (Definition 3.2).
The purpose is to exhibit the applications of cosheaves in diffeology and
to show how naturally diffeological objects and structures appear in this
framework by the use of the cosections of cosheaves. For example, internal
tangent bundles and path-connected components are cosections of cosheaves
(see Examples 3.6 and 3.7). In addition, we describe the Poincaré groupoids
in the context of cosheaves (Proposition 4.1) in Section 4. This result may
be considered as the counterpart of the van Kampen’s Theorem in diffeology.

As another application, in Section 5 we explain the cubic homology by
a chain complex of pre-cosheaves (Proposition 5.2). In this manner, one
can suggest a version of other homology theories defined on manifolds for
diffeological spaces. These facts demonstrate that cosheaf tools unify and
simplify the nature of such contravariant objects in diffeology.

In Section 6, the relationship between cosheaves and the D-topological
structure of a diffeological space are studied. While a cosheaf on a diffe-
ological space, is in essence, nothing more than an assignment of ordinary
cosheaves to plots, we prove that every cosheaf on a diffeological space gives
rise to a cosheaf with respect to the D-topology of the space (Theorem 6.2).

Covering generating families play a central role in diffeology, families of
plots in a diffeological space that generate the whole diffeology, and data on a
diffeological space are given over its covering generating families. In Section
7, we define quasi-cosheaves on diffeological spaces, a dual notion to quasi-
sheaves, by pre-cosheaves respecting the colimit over covering generating
families (Definition 7.3). We prove that every cosheaf is a quasi-cosheaf
(Theorem 7.4). In other words, cosections of a cosheaf are recognizable by
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the data over covering generating families. However, not every quasi-cosheaf
is a cosheaf on diffeological spaces (see Example 7.6).

When we deal with pre-cosheaves of abelian groups, it is natural to
talk about homology. Čech homology in topology is an extension of the
(global) cosection functor. In the context of diffeology, a (pre)-cosheaf only
consider local data over each plot. We also need data about the whole
space. In Subsection 7.1, a so-called quasi-Čech homology is associated
with pre-cosheaves of abelian groups, which extends the cosection functor of
quasi-cosheaves (Proposition 7.15). Quasi-Čech homology can be regarded
as the diffeological counterpart of Čech homology. In fact, this provides a
combinatorial approach to determine further data on a diffeological space
form given data over covering generating families.

2 Preliminaries

In this section we give some definition we need in the sequel (see [13] for
more details).

Definition 2.1. An n-domain, for a nonnegative integer n, is an open subset
of Euclidean space Rn with the standard topology. All n-domains, n ranges
over nonnegative integers, together with smooth maps between them define
a category denoted by Domains. Objects in Domains are called domains.

Definition 2.2. Any map from a domain to a setX is said to be a parametriza-
tion in X. If the domain of definition of a parametrization P , denoted by
dom(P ), is an n-domain, P is an n-parametrization. The only 0-parametrization
with the value x ∈ X is denoted by the bold letter x. A family {Pi : Ui →
X}i∈J of n-parameterizations is compatible if Pi|Ui∩Uj = Pj |Ui∩Uj , for all
i, j ∈ J . Given such a family, the parametrization P :

⋃
i∈J Ui → X defined

by P (r) = Pi(r) for r ∈ Ui, is called the supremum of this family. By con-
vention, the supremum of the empty family is the empty parametrization
∅→ X.

Definition 2.3. A diffeology D on a set X is a set of parameterizations in
X with the following axioms:

D1. The union of the images of the elements of D covers X.
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D2. For every element P : U → X of D and every smooth map F : V → U
between domains, the parametrization P ◦ F belongs to D.

D3. The supremum of any compatible family of elements of D is also be-
longs to D.

Definition 2.4. A prediffeology on a set X is a set P of parameterizations
in X satisfying D1 and D2. A parametrized cover of X is a set C of param-
eterizations in X satisfying D1.

Definition 2.5. A diffeological space (X,D) is an underlying set X equip-
ped with a diffeology D, whose elements are called the plots in X. A diffe-
ological space is just denoted by the underlying set, when the diffeology is
understood.

The axioms of diffeology all together imply that in any diffeological space,
the locally constant parametrizations are plots.

Definition 2.6. LetX and Y be two diffeological spaces. A map f : X → Y
is smooth if for every plot P in X, the composition f ◦ P is a plot in the
space Y . The set of all smooth maps from X to Y is denoted by C∞(X,Y ).
We denote by Diff the category of diffeological spaces and smooth maps.
The isomorphisms in the category Diff are called diffeomorphisms.

Example 2.7. Any smooth manifold has a standard diffeology by thinking
of smooth parameterizations as plots. A map between manifolds is smooth
in the usual sense if and only if it is smooth in diffeological sense. In other
words, the category of smooth manifolds is a full subcategory of diffeological
spaces. In particular, Domains is a full subcategory of Diff.

Definition 2.8. Let X be a diffeological space. A diffeological subspace of
X is a subset X ′ ⊆ X equipped with the subspace diffeology, which is the
set of all plots in X with values in X ′. In this situation, the inclusion map
X ′ ↪→ X is smooth.

Definition 2.9. The functional diffeology on the set of all smooth maps from
X to Y , C∞(X,Y ), is given by the following condition: A parametrization
Q : V → C∞(X,Y ) is a plot for the functional diffeology if and only if
for every plot P : U → X, the parametrization Q.P : V × U → Y with
(Q.P )(r, s) = Q(r)

(
P (s)

)
is a plot in Y .
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Definition 2.10. A subset U of a diffeological space X is D-open if P−1(U)
is open for all plots P in X. D-open subsets of X constitute a topology,
which is called the D-topology on X. In this situation, every smooth map is
continuous.

3 Cosheaves on diffeological spaces

Cosheaves on Grothendieck sites are standard and well known (see, e.g. [18]).
In this section, we work with cosheaves on the site of plots and give some
examples.

Site of plots. ([9]) The category of the plots in a diffeological space
X, which we denote it by Plots(X), has the plots in X for objects and a
morphism Q

F−→ P between two plots P : U → X and Q : V → X is a
commutative triangle

X

V

Q
>>

F
// U

P

``

where F is a smooth map between domains (see [6]). If P ′ : U ′ → X is
a restriction of P : U → X, the inclusion ı : U ′ ↪→ U gives the inclusion
morphism P ′

ı
↪→ P . In particular, for a compatible family {Pi}i∈J of plots

with the supremum P , one has the inclusion morphisms Pi ↪→ P . For such
a family, let EJ = {Pi×P Pj}(i,j)∈J×J , which is a compatible family with the
supremum P . Note that every Pi = Pi ×P Pi belongs to EJ . Consider EJ
as a subcategory of Plots(X) with Pi ×P Pj for objects and the inclusions
Pi ←↩ Pi ×P Pj ↪→ Pj for morphisms, and let eJ : EJ → Plots(X) be the
canonical functor.

The category of the plots in a diffeological space X is endowed with a
Grothendieck pretopology in which a covering for a plot P is a compatible
family of plots with the supremum P . This site is called the site of plots in
X and denoted by XPlots.

Definition 3.1. A pre-cosheaf S on a diffeological space X with values in
a cocomplete category D is a functor S : Plots(X) → D. We denote the
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corresponding morphism to Q F−→ P by F∗ : S(Q) → S(P ) and call it the
pushforward by F . We denote by s � P the pushforward of s by an inclusion
P ′

ı
↪→ P , for s ∈ S(P ′).

Definition 3.2. A cosheaf S on a diffeological space X is a cosheaf on the
site XPlots, meaning that S is a pre-cosheaf on X such that the sequence

∐

(i,j)∈J×J
S(Pi ×P Pj) ////

∐

i∈J
S(Pi) // S(P )

is a coequalizer, for every plot P in X and every compatible family {Pi}i∈J
of plots with the supremum P , or equivalently, the canonical morphism
ηJ : lim−→S ◦ eJ → S(P ) is an isomorphism.

Remark 3.3. The definition implies that every cosheaf S on a diffeological
space X assigns to the empty plot ∅→ X the initial object.

Definition 3.4. Amorphism φ : S → S′ of (pre-)cosheaves on a diffeological
space X is a natural transformation of functors.

Denote the category of pre-cosheaves and cosheaves on a diffeological
space X by PreCoshv(X) and Coshv(X), respectively.

Definition 3.5. We denote the colimit of a pre-cosheaf S on a diffeological
space X by ΓS(X) and call it the cosections of S.

For every plot P in X, let P∗ : S(P ) → ΓS(X) denote the morphism
in the definition of the colimit of S. Hence we can write Q∗ = P∗ ◦ F∗, for
morphisms Q F−→ P of plots. By the universal property of pre-cosheaves φ :
S → S′ on a diffeological spaceX induces a unique morphism Γφ : ΓS(X)→
ΓS′(X) between cosections with the property that Γφ◦P∗ = P∗′ ◦φP , where
P∗′ : S′(P )→ ΓS′(X) is the morphism in the definition of the colimit of S′.

Example 3.6. Let DVS denote the category of diffeological vector spaces
over diffeological spaces [7, Definition 4.5] and let VSD denote the category
of vector spaces with diffeology over diffeological spaces. The category DVS
is a full subcategory VSD (see [7, Subsection 4.2]).

For a diffeological spaceX, one can see that the pre-cosheaf T : Plots(X)→
DVS defined by



Some aspects of cosheaves on diffeological spaces 129

X � // TV
TF //

πV
��

TU

πU
��

V

Q
>>

F
// U

P

``

V
F
// U

is a cosheaf on X. Moreover, by [7, Theorem 4.17], the cosections of T is
exactly the internal tangent bundle πX : T dvs(X)→ X.

If one considers the functor T into the category VSD, another example
of cosheaves is obtained and again by [7, Theorem 4.17], the cosections of T
is the Hector’s tangent bundle πX : TH(X)→ X.

Example 3.7. The assignment to each diffeological space X, the set π0(X)
of its components and to each smooth map f : X → X ′ the induced map
f∗ : π0(X)→ π0(X ′) with f∗◦compX = compX′ ◦f defines a functor π0 from
Diff to Set (see [13, art. 5.9]). The pre-cosheaf on a diffeological space X,
which associates to each plot P in X, the connected components of dom(P ),
π0(dom(P )) and to each Q

F−→ P , the induced map F∗ : π0(dom(Q)) →
π0(dom(P )) is a cosheaf, and the set of its cosections is the same as π0(X).

4 The Poincaré groupoids as cosheaves

We now intend to describe the Poincaré groupoids as an interesting example
of cosheaves on diffeological spaces. We begin with smooth paths.

A path in a diffeological space X is any smooth map from R to X. Let
Paths(X) denote the set of all paths in X equipped with the functional
diffeology.

The smashing function [13, art. 5.5] is given by an increasing smooth
function λ : R → R with λ|(−∞,ε) = 0 and λ|(1−ε,∞) = 1, where 0 < ε < 1
is a fixed real number. One can construct a concrete example of such a
function (see [10, p. 31]): Consider the bump function

f(t) =

{
e
−1
t , t > 0

0, t ≤ 0

and let

g(t) =
f(t)

f(t) + f(1− t) , t ∈ R.
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For some 0 < ε < 1
2 , let

µ(t) =
1

1− 2ε
(t− ε), t ∈ R.

Now λ = g ◦ µ is a smashing function.
λ is fixed-ends homotopic to the identity 1R : R → R. For every path

γ in X, γ? = γ ◦ λ is a stationary path fixed-ends homotopic to γ. If γ
and γ′ are juxtaposable paths in X, the smashed concatenation is defined
by γ ? γ′ = γ? ∨ γ′?, where ∨ denotes the usual concatenation of paths.

Recall from [13, art. 5.15] that the Poincaré groupoid X of a diffeological
spaceX has points ofX for objects and fixed-ends homotopy classes of paths
for morphisms. The composition in the Poincaré groupoids is the projection
of the smashed concatenation of paths, and the inverse of a class of paths
is the class of the reverse of one of paths. This gives rise to a functor from
Diff to Gpd taking any diffeological space X to its corresponding Poincaré
groupoid X and any smooth map f : X → Y to the functor f∗ : X → Y
with f∗(x) = f(x) on objects and f∗(class(γ)) = class(f ◦ γ) on morphisms.

With a similar argument to the van Kampen’s Theorem for fundamen-
tal groupoids of topological spaces (see, e.g., [17]), the pre-cosheaf

∏
1 :

Plots(X)→ Gpd assigning to each plot P , the Poincaré groupoid
∏

1(P ) of
dom(P ) and to each Q F−→ P the functor F∗ :

∏
1(Q)→∏

1(P ) is a cosheaf
on X.

Proposition 4.1. The groupoid of cosections of the cosheaf
∏

1 is the Poincaré
groupoid X of a diffeological space X.

Proof. First of all,
X

∏
1(Q)

Q∗
;;

F∗
//
∏

1(P )

P∗
cc

is a cocone. To verify the universal property, let ϕ :
∏

1 ⇒ Y be another
cocone. Define the functor u : X → Y with u(x) = ϕx(0) on objects, x is
the 0-plot corresponding to x. Note that u(x) = ϕP (r) for any plot P with
P (r) = x, for some r ∈ dom(P ), by the naturality of ϕ. On morphisms,
define u

(
class(γ)

)
= ϕγ

(
class(λ)

)
, where λ is the smashing function. To see
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that the definition is independent of the choice of paths, assume that γ′ is
fixed-ends homotopic to γ, γ(0) = x = γ′(0) and γ(1) = x′ = γ′(1), through
a path H : R → Paths(X), equivalently, a smooth map H : R2 → X. Let
a, b, c, d : R → R2 be the paths defined by a(t) = (0, t), b(t) = (1, t), c(t) =
(t, 0), d(t) = (1− t, 1), respectively, so that H ◦ a = γ, H ◦ b = γ′, H ◦ c = x̃
and H ◦ d = x̃′, where x̃ and x̃′ denote the paths with the constant values
x and x′. Let α := c ? b ? d, the smashed concatenation of c, b, d. Then α is
fixed-ends homotopic to a and we can write

ϕγ(class(λ)) = ϕH◦a(class(1R))

= ϕH(class(a))

= ϕH(class(α))

= ϕH(class(c ? b ? d))

= ϕH(class(c)) ◦ ϕH(class(b)) ◦ ϕH(class(d))

= ϕH◦c(class(1R)) ◦ ϕH◦b(class(1R)) ◦ ϕH◦d(class(1R))

= ϕx̃(class(1R)) ◦ ϕγ′(class(1R)) ◦ ϕx̃′(class(1R))

= ϕγ′(class(λ)).

In the last equality, we used the fact that

u(1x) = u(class(x̃)) = ϕx̃(class(1R)) = ϕx(class(0̃)) = 1u(x),

by the naturality of ϕ for the morphism x̃→ x, where 0̃ is the only path in
R0. We now prove that u preserves the compositions. Consider the functions
v(t) = 1

2 t and w(t) = 1
2(t + 1) on R. Then v ? w is equal to λ. One can

observe that (γ ? γ′) ◦ v and (γ ? γ′) ◦ w are fixed-ends homotopic to γ and
γ′, respectively. So we have

u(class(γ) ◦ class(γ′)) = u(class(γ ? γ′)

= ϕγ?γ′(class(λ))

= ϕγ?γ′(class(v ? w))

= ϕγ?γ′(class(v)) ◦ ϕγ?γ′(class(w))

= ϕ(γ?γ′)◦v(class(1R)) ◦ ϕ(γ?γ′)◦w(class(1R))

= ϕγ(class(λ)) ◦ ϕγ′(class(λ))

= u(class(γ)) ◦ u(class(γ′)).
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It is easy to check that u ◦ P∗ = ϕP for every plot P in X and that u is
unique with this property.

5 Homology theories in (pre-)cosheaf framework

In this section, some classical homology theories are exhibited in the context
of cosheaves of abelian groups.

By Definition 3.2, a cosheaf of abelian groups on a diffeological space X
is a pre-cosheaf A for which the sequence

⊕

(i,j)∈J×J
A(Pi ×P Pj) g−→

⊕

i∈J
A(Pi)

f−→ A(P ) −→ 0

is exact, for any plot P and any compatible family {Pi}i∈J of plots with the
supremum P , where

g
( ∑

(i,j)∈J×J
sij
)

=
∑

(i,j)∈J×J
sij � Pi − sij � Pj , and

f
(∑

i∈J
si
)

=
∑

i∈J
si � P .

A description of the group ΓA(X) of cosections of a pre-cosheaf A of abelian
groups on X is as the quotient group

⊕
P∈D A(P )/ΛX , where ΛX is the

subgroup generated by the elements in the form F∗(s)−G∗(s), for morphisms
R

G←− Q F−→ P of plots in X and for s ∈ A(Q).

Definition 5.1. Let X be a diffeological space. A chain complex (A•, ∂)
of pre-cosheaves of abelian groups on X is a sequence of pre-cosheaves and
morphisms

· · · −→ Ak+1
∂−→ Ak

∂−→ Ak−1 −→ · · ·,

with ∂ ◦ ∂ = 0.

In this situation, we have chain complexes (A•(P ), ∂p) for all plots P
in X. The morphism ∂k : Ak → Ak−1 is called the kth boundary operator.
Because the boundary operators are natural transformation, the assignment

Hk(A•) : P 7−→ Hk(A•(P )),
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is a pre-cosheaf, which we call it the kth homology pre-cosheaf of the chain
complex (A•, ∂). Moreover, a chain complex (A•, ∂) induces an associated
chain complex (ΓA•,Γ∂) of groups of cosections

· · · −→ ΓAk+1(X)
Γ∂−→ ΓAk(X)

Γ∂−→ ΓAk−1(X) −→ · · ·,

where Γ∂(sP + Λk) = ∂P
(
sP
)

+ Λk−1 and Λk is described as above, for
sP ∈ Ak(P ). Let Hk(ΓA•) denote the kth homology group of the chain
complex (ΓA•,Γ∂). Since the homomorphisms P# : Hk(A•(P ))→ Hk(ΓA•)
induced by the chain maps P∗ : Ak(P ) → ΓAk(X) construct a cocone,
universal property gives us a unique homomorphism

Θ : ΓHk(A•)(X)→ Hk(ΓA•)

such that Θ ◦ ϕP = P# for every plot P in X, where ϕP : Hk(A•)(P ) →
ΓHk(A•)(X) is the morphism given by the colimit of Hk(A•).

5.1 The cubic homology Now, we describe the cubic homology in
this framework. Let us first review the cubic homology of diffeological spaces
from [13].

Let X be a diffeological space. A (smooth) k-cube in X is any smooth
map from Rk toX, denoted by Cubk(X). Denoted byCk(X) the free abelian
group generated by Cubk(X) and call the elements of Ck(X) cubic k-chains
in X with coefficients in Z. A reduction from Rk to Rl is any projection Pr :
Rk → Rl with Pr(r1, . . . , tk) = (ri1 , . . . , ril), where {i1, . . . , il} ⊆ {1, . . . , k}
is a subset of indices, i1 < · · · < il. A k-cube σ is degenerate if σ = σ′ ◦ Pr,
for some l-cube σ′ and a reduction Pr from Rk to Rl, for some integer l.
The set of degenerate k-cubes in X is denoted by Cub•k(X) and the free
abelian group generated by Cub•k(X) is denoted by C•k(X). The quotient
Ck(X) = Ck(X)/C•k(X) of the group of cubic k-chains of X by the subgroup
of degenerate k- chains is called the reduced group of cubic k-chains of X.

Any smooth map f : X → Y induces a homomorphism

f# : Ck(X) −→ Ck(Y ) with
f#(
∑

σ nσσ) =
∑

σ nσf ◦ σ

between groups of cubic k-chains. Since f# preserves degenerate cubic k-
chains, a homomorphism f∗ : Ck(X) −→ Ck(Y ) between reduced groups of
cubic k-chains is obtained. This defines a functor from Diff to the category
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Ab of abelian groups. There exists also a boundary operator ∂X : Ck(X) −→
Ck−1(X) satisfying the homological condition ∂X ◦ ∂X = 0 (see [13, art.
6.60]) and that ∂Y ◦ f∗ = f∗ ◦ ∂X . This gives rise to a chain complex and
consequently, the cubic homology H•(X) of the space X.

Now for every nonnegative integer k, consider the pre-cosheaf
Ck : Plots(X)→ Ab assigning to every plot P , Ck(P ) := Ck(dom(P )) the re-
duced group of cubic k-chains on the domain of P , and to every Q F−→ P , the
homomorphism F∗ : Ck(dom(Q)) → Ck(dom(P )) between reduced groups
of cubic k-chains. Let ∂ : Ck → Ck−1 be the morphism of pre-cosheaves
consists of the boundary operators ∂P : Ck(P ) → Ck−1(P ) on domains of
plots. Then (C•, ∂) is a chain complex of pre-cosheaves.

Proposition 5.2. The associated chain complex (ΓC•,Γ∂) of groups of co-
sections is the same as the chain complex (C•(X), ∂X) of cubics on X, and
hence the associated homology of (ΓC•,Γ∂) coincides with the cubic homology
of diffeological space X.

Proof. Let us show that Ck(X) is the colimit of the functor Ck, for every
nonnegative integer k. It is clear that

Ck(X)

Ck(Q)

Q∗
::

F∗
// Ck(P )

P∗
dd

is a cocone. Suppose that ϕ : Ck ⇒ C is another cocone. Define

h : Ck(X)→ C by
h
(
coset(

∑
σ nσσ)

)
=
∑

σ nσϕσ
(
coset(1Rk)

)
.

Notice that 1Rk is a k-cube in dom(σ). If σ is a degenerate k-cube, σ = σ′◦Pr
as above, then

ϕσ
(
coset(1Rk)

)
= ϕσ′ ◦ Pr∗

(
coset(1Rk)

)
= ϕσ′

(
coset(Pr)

)
= 0.

So h is well-defined. It is easy to see that h is a unique homomorphism with
h ◦ P∗ = ϕp for plots P in X. Thus, Ck(X) is the colimit of Ck.

This gives another description of Ck(X). That is, Ck(X) is isomorphic
to ΓCk(X) =

⊕
P∈D Ck(P )/Λk by the isomorphism h : Ck(X) → ΓCk(X),
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given by h
(
coset(

∑
σ nσσ)

)
=
∑

σ nσ
(
coset(1Rk)

)
+ Λk according to the

discussion above, where Λk is the subgroup generated by the elements in
the form F∗(c) − G∗(c), for morphisms R G←− Q

F−→ P of plots in X and
c ∈ Ck(Q). The following diagram is commutative.

Ck(X)
h //

∂X
��

ΓCk(X)

Γ∂
��

Ck−1(X)
h
// ΓCk−1(X)

Therefore, the chain complexes (C•(X), ∂X) and (ΓC•,Γ∂) are the same.

5.2 Čech homology One approach toward Čech homology on diffeo-
logical spaces can be considering them as D-topological spaces and the use
of open coverings. However, here we intend to see this homology theory by
pre-cosheaves. Let X be a diffeological space, A be a pre-cosheaf on X, and
U be a D-open covering of X. Then A induces an ordinary pre-cosheaf AP
on dom(P ) and UP = P−1U is an open covering of the domain of definition
of any plot P in X. Then the assignment P 7→ Čk(UP ;AP ) to every plot
P is a pre-cosheaf on diffeological space X, where Čk(UP ;AP ) is the Čech
chain complex subordinate to UP on dom(P ). If A is a cosheaf, then Čk is
a cosheaf also by [4, Lemma VI.4.3].

Let δ : Čk → Čk−1 be the morphism of pre-cosheaves consists of the Čech
boundary operators δP : Čk(P ) → Čk−1(P ) on domains of plots. Then
(Č•, δ) is a chain complex of pre-cosheaves. In this manner, one obtains
the homology groups ΓHk(Č•)(X) and Hk(ΓČ•), where Hk(Č•) is the pre-
cosheaf assigning to each plot P , the Čech homology subordinate to UP on
dom(P ). There is a natural transformation φ : H0(Č•)→ A (see [4, VI.4.]).
As a result, if A is a cosheaf then φ is a natural isomorphism.

6 Cosheaves and D-topology

Here we show how a cosheaf on diffeological spaces induces an ordinary
cosheaf.

Definition 6.1. Let f : X → Y be a smooth map and S be a pre-cosheaf
on diffeological space Y . The pullback f∗S of the pre-cosheaf S by f on X
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is given by the assignment

f∗S (P ) := S(f ◦ P ),

f∗S(Q
F−→ P ) := F∗ : S(f ◦Q) −→ S(f ◦ P ),

for plots P in X and morphisms Q F−→ P .

If S is a cosheaf on Y , then the pullback f∗S is a cosheaf on X.
By universal property, there is a unique morphism Γf : Γf∗S(X) →

ΓS(Y ) with (Γf)◦P∗ = (f ◦P )∗ for every plot P in X, where P∗ : f∗S(P )→
Γf∗S(X) and (f ◦ P )∗ : S(f ◦ P ) → ΓS(Y ) are the morphisms in the
definition of Γf∗S(X) and ΓS(Y ), respectively. If g : Y → Z is another
smooth map and S is a pre-cosheaf on Z, then

(g ◦ f)∗S = f∗(g∗S), but Γ(g ◦ f) = (Γg) ◦ (Γf).

When f is an inclusion X ↪→ Y , we denote by S|X the pullback of a pre-
cosheaf S on Y , we also denote by ΓSX,Y the induced morphism between
cosections and call it the extension of cosections of X to Y .

Theorem 6.2. Any cosheaf S on a diffeological space X induces a cosheaf
ΓS on the D-topological space X by assigning ΓS(U) := ΓS|U (U) to every
D-open subspace U of X, and the extensions ΓSU,V : ΓS(U) → ΓS(V ) to
inclusions U ↪→ V of D-open subspaces of X.

Proof. From the discussion above, it is clear that ΓS is a pre-cosheaf on
the D-topological space X. Let U be any D-open subspace of X. Assume
that U = {Ui}i∈J is any D-open cover of U and let Uij = Ui ∩ Uj , for
every i, j ∈ J . Consider the D-open cover UJ = {Uij}(i,j)∈J×J as a full
subcategory of Open(X) and the canonical functor εJ : UJ → Open(X).
Notice that Ui = Ui ∩ Ui = Uii, so UJ contains U . Obviously,

ΓS(U)

ΓS(Uij)

ΓSUij,U
99

ΓSUij,Ui

// ΓS(Ui)

ΓSUi,U
dd

is a cocone on ΓS ◦ εJ . To show that ΓS is a cosheaf, we must prove that
the canonical morphism lim−→ΓS ◦ εJ → ΓS(U) is an isomorphism.



Some aspects of cosheaves on diffeological spaces 137

Let ϕ : ΓS ◦ εJ ⇒ C be an arbitrary cocone. Every plot P in U can be
written as the supremum of a compatible family {Pi}i∈J of plots such that
Pi is a plot in Ui. This induces a cocone

C

S(Pij)

ψPij
<<

(ıPij ,Pi )∗
// S(Pi)

ψPi

bb

on S ◦ eJ , where ψPij = ϕUij ◦ (Pij)∗, Pij denotes Pi ×P Pj and ıPij ,Pi is the
inclusion morphism from Pij to Pi. Since S is a cosheaf on diffeological space
X, there exists a unique morphism ψP : S(P )→ C with ψP ◦(ıPij ,P )∗ = ψPij

for every plot P in U . To show that ψ is a cocone on S|U , let Q F−→ P be
a morphism of plots in U and let Qij = Q×P Pij . We can write

ψP ◦ F∗ ◦ (ıQij ,Q)∗ = ψP ◦ (ıPij ,P )∗ ◦ (Fij)∗

= ϕij ◦ (Pij)∗ ◦ (Fij)∗
= ϕij ◦ (Qij)∗ = ψQij ,

where Qij
Fij−→ Pij is the restriction of F to Qij , and by uniqueness, we

obtain ψP ◦ F∗ = ψQ. Hence, there is a unique morphism u : ΓS(U) → C
such that u ◦ P∗ = ψP for plots P in U .

Now we have

u ◦ ΓSUij ,U ◦ (Pij)∗ = u ◦ (ι ◦ Pij)∗ = ψPij = ϕUij ◦ (Pij)∗,

for every plot Pij in Uij considered as a plot in U by the inclusion ι : Uij → U .
Therefore u ◦ΓSUij ,U = ϕUij , by the universal property of the colimit of the
functor S|Uij . This completes the proof.

7 Quasi-cosheaves and quasi-Čech homology

We shall define and study quasi-cosheaves, a notion associated with covering
generating families. Followed by that, quasi-Čech homology for diffeological
spaces is established. First, we recall covering generating families from [13].
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Definition 7.1. Let C be a parametrized cover of X. The prediffeology
generated by C denoted by bCc, consists of parametrizations P ◦F , where P
is an element of C and F is a smooth map between domains. The diffeology
generated by C, denoted by 〈C〉, is the set of parametrizations P which are
as the supremum of a compatible family {Pi}i∈J of parametrizations in X
with Pi ∈ bCc. A covering generating family of a diffeological space (X,D)
is a parametrized cover C of X generating the diffeology of the space, that
is 〈C〉 = D. Let CGF(X) denote the collection of all covering generating
families of the space X. Note that the diffeology D of the space X is itself
a covering generating family.

Example 7.2. For any diffeological space X, the collection of plots whose
domains are open balls, the collection of global plots Rn → X (n ranges over
nonnegative integers), the collection of centered plots, i.e., plots U → X
with 0 ∈ U , are all covering generating families. For smooth manifolds or
orbifolds, any atlas is a covering generating family. If U is a domain, the
singleton {1U : U → U} is a covering generating family of U .

Let X be a diffeological space and C ∈ CGF(X). Consider the prediffe-
ology bCc as a full subcategory of Plots(X). Denote by ΓS(C) the colimit
of the restriction of a pre-cosheaf S to bCc. By universal property, there is
a canonical morphism ρ : ΓS(C) → ΓS(X) with ρ ◦ ϕP = P∗ for every plot
P ∈ bCc, where ϕp : S(P )→ ΓS(C) is the morphism in the definition of the
colimit of the restriction of S to bCc.

Definition 7.3. A pre-cosheaf S on a diffeological spaceX is a quasi-cosheaf
if the canonical morphism ρ : ΓS(C) → ΓS(X) is an isomorphism, for ev-
ery C ∈ CGF(X). We denote the category of quasi-cosheaves on X by
QuasiCoshv(X) as a full subcategory of PreCoshv(X).

Obviously, if S is a quasi-cosheaf, ΓS(C) and ΓS(C′) are isomorphic for
every C, C′ ∈ CGF(X).

Theorem 7.4. Every cosheaf S on a diffeological spaceX is a quasi-cosheaf.

Proof. Let C ∈ CGF(X) and P be an arbitrary plot in X. Then P is as
the supremum of a compatible family {Pi}i∈J with Pi ∈ bCc. Since EJ =
{Pi ×P Pj}(i,j)∈J×J is a subcategory of bCc, there is a unique morphism
αJ : lim−→S ◦ eJ → ΓS(C). On the other hand, because S is a cosheaf, the
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morphism ηJ : lim−→S ◦ eJ → S(P ) is an isomorphism. The composition of
αJ with the inverse morphism η−1

J : S(P )→ lim−→S ◦ eJ gives us a morphism
ϕJ = αJ ◦ η−1

J : S(P ) → ΓS(C). Let P be the supremum of another
compatible family {P ′i′}i′∈J ′ with P ′i′ ∈ bCc. Let JJ ′ denote the disjoint
union J q J ′. By universal property, the inner triangles in the following
diagram are commutative:

lim−→S ◦ eJ
αJ

&&��
S(P )

η−1
JJ′//

η−1
J

99

η−1
J′ %%

lim−→S ◦ eJJ ′
αJJ′ // ΓS(C)

lim−→S ◦ eJ ′
αJ′

99OO

Thus, the entire diagram is commutative and ϕJ = ϕJ ′ . So we obtain a
well-defined morphism ϕP : S(P ) → ΓS(C). By definition, ρ ◦ ϕP = P∗ for
all P ∈ bCc. But we have ρ ◦αJ = P∗ ◦ ηJ , which implies ρ ◦ϕP = P∗ for all
plots P in X.

Now suppose R F−→ P is a morphism of plots in X and P is the supre-
mum of a compatible family {Pi}i∈J with Pi ∈ bCc. Then R is the supremum
of the compatible family {Ri = R ×P Pi}i∈J and we have the restriction
Ri

Fi−→ Pi of F to Ri. Again by universal property, the diagram

S(P )
η−1
J // lim−→S ◦ eJ

αJ

%%
S(R)

F∗

OO

η′−1
J

// lim−→S ◦ e′J

lim−→FJ

OO

α′J

// ΓS(C)

is commutative and ϕP ◦ F∗ = ϕR, where the lower morphisms are corre-
sponding to R and {Ri}i∈J . In other words, ϕ : S ⇒ ΓS(C) is a cocone. So
there exists a unique morphism ξ : ΓS(X) → ΓS(C) with ξ ◦ P∗ = ϕP for
every plot P in X. We have ξ ◦ ρ ◦ ϕP = ξ ◦ P∗ = ϕP for P ∈ bCc, and
ρ ◦ ξ ◦ P∗ = ρ ◦ ϕP = P∗ for all plots P in X. By uniqueness, we conclude
that ξ ◦ ρ = 1ΓS(C) and ρ ◦ ξ = 1ΓS(X). Therefore, ρ is an isomorphism and
S is a quasi-cosheaf on X.



140 A. Ahmadi and A. Dehghan Nezhad

Example 7.5. Let X be a diffeological space. The domain functor dom :
Plots(X)→ Diff given by

(Q
F−→ P ) 7−→

(
F : dom(Q) −→ dom(P )

)
,

is a cosheaf and the space of its cosections is X by [6, Proposition 2.7]. As a
result, the domain functor is a quasi-cosheaf (compare with [13, art. 1.76]).

Example 7.6. Let X be a diffeological space and D be an non-initial object
in a category D. The constant pre-cosheaf D assigning to any plot P the
object D, and to any morphism Q

F−→ P the identity morphism 1D on D
is not a cosheaf by Remark 3.3. However, it is not hard to see that D is a
quasi-cosheaf. This example shows that the converse to Theorem 7.4 does
not hold. Also, Theorem 6.2 is not true for quasi-cosheaves.

To reach a characterization of quasi-cosheaves we need the notion of
simplices on covering generating families.

Definition 7.7. Let X be a diffeological space and C ∈ CGF(X). We define
n-simplices on C inductively:

(i) A 0-simplex is just an element P0 of C. The nerve plot of a 0-simplex
P0 is the plot P0 itself by convention.

(ii) A 1-simplex is any diagram

P0
F1←− Q F0−→ P1

with P0, P1 ∈ C and a nonempty plot Q. In this situation, Q is called
the nerve plot. Notice that Q is the nerve plot of the diagram not that
of P0, P1.

(iii) For integers n > 2, an n-simplex (P0, . . . , Pn) consists of n + 1 plots
P0, . . . , Pn belonging to C and a nonempty nerve plot Q in X such that
any n plots P0, . . . , P̂i, . . . , Pn (the hat indicates the omission of Pi)
form an (n− 1)-simplex with the nerve plot Qi. In addition, for each
i = 0, . . . , n, there exist a morphism Q

Fi−→ Qi commuting with the

morphisms Qi
Fi,j−→ Qi,j , for (n−2)-simplices P0, . . . , P̂i, . . . , P̂j , . . . , Pn

with the nerve plots Qi,j ; that is, Fi,j ◦ Fi = Fj,i ◦ Fj .
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For instance, a 2-simplex is as the following commutative diagram.

P0

Q2

F2,1

EE

F2,0

��

Q1

F1,0

��

F1,2

YY

Q

F2

``

F0

��

F1

>>

P1 Q0
F0,2

oo
F0,1

// P2

Denote by n − simplex(C) the set of n-simplices on C. Let S be a pre-
cosheaf on X. For an n-simplex (P0, . . . , Pn) with the nerve plot Q, let
S(P0, . . . , Pn) := S(Q). Note that the nerve plots are elements of bCc.
Proposition 7.8. A pre-cosheaf S on a diffeological space X is a quasi-
cosheaf if and only if for every C ∈ CGF(X), the sequence

∐

1−simplex(C)
S(P0

F1←− Q F0−→ P1)
β1
//

β0 //
∐

P∈C
S(P )

α // ΓS(X)

is a coequalizer, where the arrows β0 and β1 are induced by F0∗ and F1∗.

Proof. There exists a morphism γ :
∐
P∈C S(P )→ ΓS(C) with γ◦β0 = γ◦β1,

which is in fact the coequalizer of β0 and β1. Moreover, ρ : ΓS(C)→ ΓS(X)
is commutative with α and γ. Therefore, the above diagram is a coequalizer
if and only if S is a quasi-cosheaf.

7.1 Quasi-Čech homology In the sequel, let A be a pre-cosheaf of
abelian groups on a diffeological space X and C ∈ CGF(X). We define the
group of n-chains with coefficients in the cosheaf A subordinated to the
covering generating family C to be

Cn(X, C, A) =
⊕

n−simplex(C)
A(P0, . . . , Pn),
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that is, finite formal sums
∑

σ cσσ, where the sum ranges over all n-simplices
σ = (P0, . . . , Pn). The operators

δn : Cn(X, C, A) −→ Cn−1(X, C, A)

for integers n ≥ 1, are defined Z-linearity by

δn(cσ(P0, . . . , Pn)) =

n∑

i=0

(−1)i(Fi)∗cσ(P0, . . . , P̂i, . . . , Pn).

Proposition 7.9. The sequence

· · · −→ Cn(X, C, A)
δn−→ Cn−1(X, C, A) −→ · · ·

−→ C1(X, C, A)
δ1−→ C0(X, C, A) −→ 0

is a chain complex.

Proof. We must show that δn−1 ◦ δn = 0, for every integer n ≥ 1.

δn−1 ◦ δn(cσ(P0, . . . , Pn)) = δn−1

( n∑

i=0

(−1)i(Fi)∗cσ(P0, . . . , P̂i, . . . , Pn)
)

=
n∑

i=0

(−1)iδn−1

(
(Fi)∗cσ(P0, . . . , P̂i, . . . , Pn)

)

=

n∑

i=1

i−1∑

j=0

(−1)i+j(Fi,j ◦ Fi)∗cσ(P0, . . . , P̂j , . . . , P̂i, . . . , Pn)

+
n−1∑

i=0

n∑

j=i+1

(−1)i+j−1(Fi,j ◦ Fi)∗cσ(P0, . . . , P̂i, . . . , P̂j , . . . , Pn)

=

n∑

i=1

i−1∑

j=0

(−1)i+j(Fi,j ◦ Fi)∗cσ(P0, . . . , P̂j , . . . , P̂i, . . . , Pn)

−
n−1∑

j=0

n∑

i=j+1

(−1)i+j(Fj,i ◦ Fj)∗cσ(P0, . . . , P̂j , . . . , P̂i, . . . , Pn)

= 0,

where σ = (P0, . . . , Pn) is an n-simplex.
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Denote the nth homology group of the chain complex C•(X, C, A) by
Hn(X, C;A).

Proposition 7.10. If A is a quasi-cosheaf, the groups H0(X, C;A) and
ΓA(X) are isomorphic.

Proof. H0(X, C;A) is the same as coker(δ0), which is exactly ΓA(C). Since A
is a quasi-cosheaf, we deduce that H0(X, C;A) is isomorphic to ΓA(X).

Given a morphism φ : A′ → A of pre-cosheaves on X, define homomor-
phisms φ∗ : Cn(X, C, A)→ Cn(X, C, A′) Z-linearity by

φ∗(cσσ) = φQ(cσ)σ.

where σ is an n-simplex with the nerve plot Q.

Proposition 7.11. If 0 −→ A′
φ−→ A

ψ−→ A′′ −→ 0 is a short exact
sequence of pre-cosheaves on a diffeological space X, then the sequence

0 −→ Cn(X, C, A′) φ∗−→ Cn(X, C, A)
ψ∗−→ Cn(X, C, A′′) −→ 0

is exact, for every integer n.

Proof. The proof is straightforward.

Now by zigzag lemma, for such a short exact sequence there exist the
connecting homomorphisms

∂ : Hn(X, C;A′′) −→ Hn−1(X, C;A′)

such that the long sequence

· · · −→ Hn(X, C;A′) −→ Hn(X, C;A) −→ Hn(X, C;A′′) ∂−→
Hn−1(X, C;A′) −→ · · ·

is exact. Furthermore, for any morphism of short exact sequences

0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ // B // B′′ // 0
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the following diagram commutes:

Hn(X, C;A′′) //

��

Hn−1(X, C;A′)

��
Hn(X, C;B′′) // Hn−1(X, C;B′)

Proposition 7.12. For a morphism φ : A′ → A of pre-cosheaves, δn ◦ φ∗ =
φ∗ ◦ δn.

Proof. For any cσ(P0, . . . , Pn) ∈ Cn(X, C, A′), we can write

δn ◦ φ∗
(
cσ(P0, . . . , Pn)

)
=

n∑

i=0

(−1)i(Fi)∗ ◦ φQ(cσ)(P0, . . . , P̂i, . . . , Pn)

=

n∑

i=0

(−1)iφQi ◦ (Fi)∗(cσ)(P0, . . . , P̂i, . . . , Pn)

= φ∗
( n∑

i=0

(−1)i(Fi)∗(cσ)(P0, . . . , P̂i, . . . , Pn)
)

= φ∗ ◦ δn
(
cσ(P0, . . . , Pn)

)
,

where σ = (P0, . . . , Pn) is an n-simplex with the nerve plot Q.

Thus, φ induces a homomorphism φ# : Hn(X, C;A′) → Hn(X, C;A)
between homology groups, for every nonnegative integer n, such that id# =
id for the identity morphism id : A → A, and (ψ ◦ φ)# = ψ# ◦ φ# for
morphisms φ : A′ → A and ψ : A → A′′ of pre-cosheaves on X. Hence for
each n ≥ 0, we obtain an exact ∂-functor Hn(X, C;−) : Ab(PreCoshv)(X)→
Ab.

Definition 7.13. Let X be a diffeological space and C = {Pα}α∈I be a
covering generating family of X. A refinement of C is a covering generating
family C′ = {P ′β}β∈J together with a map λ : J → I and a family {fβ}β∈J
of morphisms P ′β

fβ−→ Pλ(β). Denote such a refining by λ : C′ → C. In this
situation, we have C′ ⊆ bCc.

Refinements of covering generating families of X turn CGF(X) into a
category. If λ : C′ → C is a refinement and σ′ = (P ′β0 , . . . , P

′
βn

) is an



Some aspects of cosheaves on diffeological spaces 145

n-simplex of plots belonging to C′ with the nerve plot Q, then λ(σ′) =
(Pλ(β)0 , . . . , Pλ(β)n) constitutes an n-simplex of plots belonging to C with
the nerve plot Q. For example, we have

P ′β0
fβ0
��

Q
F1oo

�� ��

F0 // P ′β1
fβ1
��

Pβ0 Pβ1

for a 2-simplex. Thus, a refinement λ : C′ → C defines a chain homomor-
phism λ∗ : C•(X, C′, A)→ C•(X, C, A), Z-linearity by

λ0
∗(cP ′βP

′
β) = (fβ∗cP ′β )Pλ(β) and

λn∗ (cσ′σ
′) = cσ′λ(σ′), for n ≥ 1.

A not so hard calculation shows that λ∗ ◦ δ = δ ◦ λ∗ and hence a homomor-
phism λ# : H•(X, C′;A) → H•(X, C;A) is achieved. One can easily check
that id# = id for the identity refinement id : C → C, and λ# ◦µ# = (λ◦µ)#

for refinements λ : C′ → C and µ : C′′ → C′. Therefore, we obtain a functor
Hn(X,−;A) : CGF(X) → Ab. Now we define the quasi-Čech homology of
diffeological spaces as below:

Definition 7.14. The n-th quasi-Čech homology group Ȟn(X;A) of a dif-
feological space X with coefficients in a pre-cosheaf A on X is

Ȟn(X;A) = lim←−C Hn(X, C;A).

As a consequence of Proposition 7.10, one can state the following:

Proposition 7.15. Ȟ0(X;A) is isomorphic to ΓA(X) if A is a quasi-
cosheaf.
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