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Abstract. In this paper, we study the concept of C-reticulation for the
category C whose objects are lattice-valued maps. The relation between the
free objects in C and the C-reticulation of rings and modules is discussed.
Also, a method to construct C-reticulation is presented, in the case where C
is equational. Some relations between the concepts reticulation and satisfying
equalities and inequalities are studied.

1 Introduction

In the theory of f -rings, K. Keimel (1968, 1971, [13], [14]) used L1(A) to
get the Keimel’s representation theory for f -rings, where A is an f -ring and
L1(A) is the distributive lattice generated by the symbols D1(a), a ∈ A,
subject to the relations

D1(1) = 1, D1(0) = 0
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D1(a ∧ b) = D1(a) ∧D1(b), D1(a ∨ b) = D1(a) ∨D1(b)

Subsequent to Keimel’s work, J.F. Kennison (1976, [15]) constructed
another representation by using D1 : A→ L1(A), a 7→ D1(a).

A. Joyal (1976, [17]) used L2(A) to study generally the Zariski spectrum
via the distributive lattice, where A is an arbitrary ring, and L2(A) is the
distributive lattice generated by the symbols D2(a), a ∈ A, subject to the
relations

D2(1A) = 1L2(A), D2(0A) = 0L2(A)

D2(ab) = D2(a) ∧D2(b), D2(a+ b) ≤ D2(a) ∨D2(b)

Also C.J. Mulvey (1979, [20], [21]), using D2 : A → L2(A), introduced the
notion of the Gelfand ring and proved a representation theorem for Gelfand
rings.

G.W. Brumfiel (1979, [6]) in the representation theory of partially or-
dered rings, used L3(A) with additional relation respect to the ring’s order
which is D3(a) ≤ D3(b) whenever 0 ≤ a ≤ b.

Finally, Simmons (1980, [22]) extensively studied the notation D : A→
L(A), and he called L(A) the reticulation of A.

On the other hand, B. Banaschewski (1997, [2]) utilized the cozero part
of the frame to study frames L and the f -rings C(L), the pointfree version
of C(X). Also, in looking at pointfree version of the Gelfand duality, coz-
ero elements play an important role [1]. Then, the other authors following
Banaschewski, applied this tool in pointfree topology [3–5, 11, 12, 19]. The
present author, A. Karimi (2006, [9]), generalized the concept of cozero ele-
ments to cozero maps, that is, mapsM → L satisfying some relations (2.6 of
this paper), where M is an `-module and L is a frame. He used the cozero
maps to introduce the concept of the cozero transformations, which is ap-
plied to obtain a general theorem containing both of Gelfand and Kakutani
pointfree dualities as particular cases.

On the basis of these historical trends, in this paper, we introduce semi-
cozero maps, and we extend it to the concept of lattice-valued maps. Also,
we introduce C-reticulation and discuss the relation between this concept
and the free objects in C, whose objects are lattice-valued maps.

The necessary background on lattices, ordered algebraic structures, uni-
versal algebra, and some category notations, are given in Section 2.
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In Section 3, we introduce the notion of semi-cozero maps as a simple
generalization of cozero maps, and we discuss some relations between semi-
cozero maps and submodules and ideals.

In Section 4, we give the model of lattice-valued maps satisfying a set of
equalities and inequalities, to generalize semi-cozero and cozero maps. Also,
we define the categories involved.

Finally, in the Section 5, we look at the concept of free lattice-valued
maps in the category C whose objects are lattice-valued maps. We introduce
a C-reticulation of B, and we show that C-reticulation is closely related to
the free objects in C. We construct a C-reticulation cB : B → L(B) of B, in
the cases where the objects of the category C satisfy

∑
, where

∑
is a set of

equalities and inequalities. Also, we deeply study the relations between the
concepts of reticulation and satisfying equalities and inequalities. Finally, we
introduce a concept which is a relation between equalities and inequalities,
denoted by |=B, and the logical relation between this notion and satisfying
equalities and inequalities is given (Corollary 5.16).

2 Background

Here we give the notions we need from the literature.
2.1 In this paper, all rings are commutative with identity and all modules

are unitary.
Let A be a ring. An ideal I of A is called prime if xy ∈ P implies x ∈ I

or y ∈ I. Also, I is called radical if xn ∈ I for some n ∈ N implies x ∈ I. It
is clear that every prime ideal is a radical ideal.

2.2 A poset L is called a lattice if for every a, b ∈ L, both sup{a, b} and
inf{a, b} exist. We denote sup{a, b} = a ∨ b and inf{a, b} = a ∧ b. The top
and the bottom elements are denoted by 1 and 0, respectively. We denote
the two element lattice {0, 1} by 2.

A prime element of L, is an element p ∈ L such that x ∧ y ≤ p implies
x ≤ p or y ≤ p.

A poset L is called a complete lattice if for every subset S of L, both
supS =

∨
S and inf S =

∧
S exist. A complete lattice L is called a frame

if for every subset S and element a of L, a ∧∨S =
∨{a ∧ s : s ∈ S}.

2.3 [10] An abelian group G with a partial order ≤ is called an abelian
`-group if (G,≤) is a lattice, and a ≤ b implies a+c ≤ b+c for all a, b, c ∈ G.
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For an abelian `-group G, and a, b ∈ G, defining a+ = a ∨ 0, a− =
(−a) ∨ 0, |a| = a ∨ (−a), we have a = a+ − a−, |a| = a+ + a−, a+ ∧ a− =
0, |a+ b| ≤ |a|+ |b|.

A partially ordered ring (po-ring) is a ring A with a partial order ≤ such
that a ≤ b and r ≥ 0 imply ra ≤ rb and a + c ≤ b + c for all c ∈ A. A is
called an `-ring if its order is a lattice order.

Let A be a commutative po-ring with an identity 1. A partially ordered
module M over A is an A-module with an order ≤ such that for every
a, b, c ∈ M and r ∈ A, a ≤ b and r ≥ 0 imply a + c ≤ b + c and ra ≤ rb.
Then M is called an `-module if it is also a lattice.

Suppose that A is an ordered ring and M is an `-module over A. A
submodule I of M is called an `-ideal if |x| ≤ |a| and a ∈ I imply x ∈ I.

2.4 [7] A type of algebras is a sequence τ of function symbols such that
a non-negative integer n is assigned to each member λ of τ . This integer is
called the arity (or rank) of λ and λ is said to be an n-ary function symbol.
The set of all n-ary function symbols is denoted by τn.

If τ is a language of algebras, then an algebra A of type τ is an ordered
pair (A,Λ), where A is a (nonempty) set and Λ is a family of n-ary operations
on A indexed by the type τ such that corresponding to each n-ary function
symbol λ in τ , there is an n-ary operation λA on A.

Let X be a set of (distinct) objects called variables. Let τ be a type of
algebras. The set T (X) of terms of type τ over X is the smallest set such
that

(i) X ∪ τ0 ⊂ T (X).
(ii) If p1, ..., pn ∈ T (X) and λ ∈ τn, then the “string” λ(p1, ..., pn) ∈

T (X).
For p ∈ T (X) we often write p as p(x1, · · · , xn) to indicate that the

variables occurring in p are among x1, · · · , xn ∈ A. A term p is n-ary if the
number of variables appearing explicitly in p is ≤ n.

2.5 The category of all rings (commutative with identity) and ring ho-
momorphisms between them is denoted by Rng. Let A be a fixed ring
(commutative with identity). The category of all (unitary) modules over
A with module homomorphisms is denoted by Mod(A). The category of
all bounded lattices with lattice homomorphisms preserving 0, 1 is denoted
by Latt10. The category of all `-rings and `-ring homomorphisms between
them is denoted by `Rng. Let A be a fixed ordered ring. The category of
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all (unitary) `-modules over A with `-module homomorphisms is denoted by
`Mod(A). Note that `Rng and `Mod(A) can be considered as subcate-
gories of Rng and Mod(A), respectively.

2.6 [9] Suppose that M is an `-module over a ring A, and L is a frame.
A map c : M → L is said to be a cozero map if for every x, y ∈ M and
a ∈ A,

c(0) = 0, c(x+ y) ≤ c(x) ∨ c(y), c(ax) ≤ c(x),

c(|x|) = c(x), and for every x, y ≥ 0, c(x ∧ y) = c(x) ∧ c(y), c(x + y) =
c(x) ∨ c(y).

3 Semi-Cozero Maps

In this section, we introduce the semi-cozero maps, and discuss some rela-
tions between semi-cozero maps and submodules. Also we show, under this
correspondence, the radical and strong semi-cozero maps are related to the
radical and prime ideals, respectively. Finally, using of the notion of strong
cozero maps, the Zariski topology is generalized to a weaker definition which
is called the F -Zariski topology, and some connections between the Zariski
topology and the F -Zariski topology are explained in Remark 3.5.

Definition 3.1. Let M be a module over a ring A, and L be a lattice. A
semi-cozero map from M to L is a map c : M → L such that

(1) c(0) = 0,
(2) for every x, y ∈M , c(x+ y) ≤ c(x) ∨ c(y),
(3) for every a ∈ A, c(ax) ≤ c(x).
In the case of M = A, c : A → L is called a strong semi-cozero map

if c(xy) = c(x) ∧ c(y), for all x, y ∈ A. And c : A → L is called a radical
semi-cozero map if there exists n ∈ N such that c(xn) = c(x) for all x ∈ A.

There is a close correspondence between semi-cozero maps on a module
M (ring A) and the submodules of M (ideals of A). Moreover, under this
correspondence, radicals and strong semi-cozero maps are related to radicals
and prime ideals, respectively. The next two propositions describe these
correspondences.

Definition 3.2. Let M be an A-module. Let c : M → L be a cozero map,
a ∈ L, and N be a submodule of M . Define I(c, a) = {x ∈ M : c(x) ≤ a}
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and c(N, a) : A→ L given by c(N, a)(x) = 0 if x ∈ N and c(N, a)(x) = a if
x 6∈ N . Define ker c = I(c, 0) and cN = c(N, 1).

Proposition 3.3. With the above notations, I(c, a) is a submodule of M
and c(N, a) is a semi-cozero map from M into L. In the particular case of
L = 2, ker cN = N and cker c = c.

Proof. First note that 0 ∈ I(c, a). Now, let x, y ∈ I(c, a) and r ∈ A. We have
c(x+y) ≤ c(x)∨c(y) ≤ a∨a = a, c(rx) ≤ c(x) ≤ a, and so x+y, rx ∈ I(c, a).
Hence I(c, a) is a submodule. To check that c(N, a) is a semi-cozero map,
first note that c(N, a)(0) = 0 because 0 ∈ N . Let x, y ∈ M . If x 6∈ N or
y 6∈ N , c(N, a)(x) ∨ c(N, a)(y) = a ≥ c(N, a)(x + y), otherwise, x, y ∈ N ,
so c(N, a)(x) ∨ c(N, a)(y) = 0 = c(N, a)(x+ y), and hence c(N, a)(x+ y) ≤
c(N, a)(x) ∨ c(N, a)(y). Finally, if x ∈ N , c(N, a)(xy) = 0 = c(N, a)(x),
and if x 6∈ N , c(N, a)(xy) ≤ a = c(N, a)(x). So c(N, a)(xy) ≤ c(N, a)(x).
Therefore, c(N, a) is a semi-cozero map. To check the second part in the
case L = 2, we have x ∈ ker cN ⇔ cN (x) = 0 ⇔ x ∈ N , so ker cN = N .
Also, cker c(x) = 0⇔ x ∈ ker c⇔ c(x) = 0, thus cker c = c.

Proposition 3.4. (1) If p ∈ L is a prime element and c : A→ L is a strong
semi-cozero map, then I(c, p) is a prime ideal.

(2) If c : A → L is a radical semi-cozero map, then I(c, p) is a radical
ideal.

(3) The semi-cozero map c(I, a) is strong if and only if I is a prime ideal
of A.

(4) The semi-cozero map c(I, a) is radical if and only if I is a radical
ideal of A.

(5) In the case L = 2, c is strong if and only if ker c is a prime ideal.
(6) In the case L = 2, c is radical if and only if ker c is a radical ideal.

Proof. (1) Suppose that xy ∈ I(c, p). So c(x) ∧ c(y) = c(xy) ≤ p. Since p is
prime, c(x) ≤ p or c(y) ≤ p, thus x ∈ I(c, p) or y ∈ I(c, p), and hence I(c, p)
is a prime ideal.

(2) Suppose that xn ∈ I(c, a), and so c(x) = c(xn) ≤ a, hence x ∈ I(c, a).
Therefore, I(c, a) is a radical ideal.

(3) Assume that c(I, a) is strong and xy ∈ I. So c(I, a)(x)∧ c(I, a)(y) =
c(I, a)(xy) = 0, and hence, by the definition of c(I, a), c(I, a)(x) = 0 or
c(I, a)(y) = 0. Therefore x ∈ I or y ∈ I, that is, I is a prime ideal.
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Conversely, suppose that I is a prime ideal. Let x, y ∈ A. If x 6∈ I and y 6∈ I,
then, since I is prime, xy 6∈ I, thus c(I, a)(xy) = a = c(I, a)(x) ∧ c(I, a)(y).
In other cases, c(I, a)(xy) = 0 = c(I, a)(x) ∧ c(I, a)(y), and hence c(I, a) is
strong.

(4) Assume that c(I, a) is radical, and xn ∈ I. So c(I, a)(x) = c(I, a)(xn) =
0, and hence x ∈ I. Therefore, I is a radical ideal. Conversely, suppose that
I is a radical ideal. Then,

c(I, a)(xn) = 0⇔ xn ∈ I ⇔ x ∈ I ⇔ c(I, a) = 0

So c(I, a)(xn) = c(I, a)(x) for all x ∈ A.
(5) If c is strong, by (1) we have ker c is prime. Conversely, if ker c is

prime, c(xy) = 0 ⇔ xy ∈ ker c ⇔ (x ∈ ker c or y ∈ ker c) ⇔ (c(x) =
0 or c(y) = 0)⇔ c(x) ∧ c(y) = 0. But L = 2, hence c(xy) = c(x) ∧ c(y).

(6) Assume that c is a radical semi-cozero map. By (2), ker c is a radical
ideal. Conversely, if ker c is a radical ideal, then

c(xn) = 0⇔ xn ∈ ker c⇔ x ∈ ker c⇔ c(x) = 0,

and since L = 2, we have c(xn) = c(x) for all x ∈ A.

Remark 3.5. There is a one-one correspondence between prime ideals and
strong semi-cozero maps. On the other hand, since prime ideals are used
to construct the Zariski topology, strong semi-cozero maps can be used to
make a more general Zariski topology which is called the F -Zariski topology
for a nontrivial filter F of L, as follows:

Let A be a ring, L be a lattice and F be a filter of L such that 0 6∈ F .
For every a ∈ A, define

UFa = {c : A→ L|c is a strong semi− cozero map with c(a) ∈ F}.

Define UFA = {UFa : a ∈ A} and ΥF
A = {c : A → L|c is a strong semi-cozero

map}. We have UFa ∩UFb = UFab and U
F
0 = ∅. So, UFA is a basis for a topology

on the set ΥF
A, which is called the F -Zariski topology over the ring A. Note

that the usual Zariski topology over A is equivalent to Υ1
A, where 1 = {1}

is the only filter of 2.
Now, suppose that φ : L→M is a lattice morphism such that φ[F ] = G,

where F and G are some fixed filters of L and M , respectively. Define
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φ : ΥF
A → ΥG

A by φ(c) = φ ◦ c. For every a ∈ A we have φ−1
(UGa ) = UFa , so

φ is a continuous function. On the other hand, for any two filters F1, F2 of
L such that F1 ⊆ F2, for all a ∈ A we have UF1

a ⊆ UF2
a , and hence we can

say that F2-Zariski topology is weaker than F1-Zariski topology over A, in
other words, id : ΥF1

A → ΥF2
A is a continuous map.

Now, consider the inclusion lattice morphism i : 2→ L, given by i(0) =
0, i(1) = 1L, where L is a bounded lattice. Since i[{1}] = {1L} ⊆ F ,
i : Υ1

A → Υ
{1L}
A is an embedding of the Zariski topology into the {1L}-

Zariski topology over the ring A. Since the F -Zariski topology is weaker
than the {1L}-Zariski topology, it is weaker than the Zariski topology over
A.

Moreover, for any lattice morphism p : L→ 2 (any point of L) such that
p[F ] = {1}, there is a continuous function p : ΥF

A → Υ1
A, from the F -Zariski

topology to the Zariski topology over A.

4 Lattice-valued maps satisfying equalities and inequalities

In this section, suppose that A is a ring, B is a subcategory of Rng or
Mod(A), A is a subcategory of Rng, and L is a subcategory of Latt10.
Suppose that B consists of objects which are of the same type τ as algebraic
structures. For example, if B = Rng, then every object B of B is of type
τ =< +, ·, 0, 1 >, and if B = `Rng then every object B of B is of type
τ =< +, ·,∨,∧, 0, 1 >. In this case, we say that B is a category of type τ .
We assume a similar perspective for the category L. Now, suppose that B
is a subcategory of Rng or Mod(A) of type τ and let L be a subcategory
of Latt10 of type τ ′. Let X be a set. The set of all term functions of type τ
is denoted by Tτ (X), and similarly define the notation Tτ ′(X).

Definition 4.1. Let p = p(x1, · · · , xn) and q = q(x1, · · · , xn) be two n-ary
term functions of type τ and τ ′, respectively. Let ν : Tτ (X) → Tτ ′(X) be
a map. An equality is a pair ν(p(x1, · · · , xn)) = q(ν(x1), · · · , ν(xn)) and is
denoted by ν(p) = q(ν). Also an inequality is a relation ν(p(x1, · · · , xn)) ≤
q(ν(x1), · · · , ν(xn)), and is denoted by ν(p) ≤ q(ν).

Definition 4.2. Let c : B → L be a map. We say that c satisfies the
equality ν(p) = q(ν), if c(p(b1, · · · , bn)) = q(c(b1), · · · , c(bn)) for all bi ∈ B.
And we say that c satisfies the inequality ν(p) ≤ q(ν), if c(p(b1, · · · , bn)) ≤
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q(c(b1), · · · , c(bn)) for all bi ∈ B. Let
∑

be a set of equalities and inequal-
ities. We say that c : B → L satisfies

∑
if c satisfies all the elements of∑

.

Notation 4.3. Let B be a subcategory of Rng or Mod(A), and L be a
subcategory of Latt10. Suppose that B1, B2 are two objects in B and L1, L2

are two objects in L. Let c1 : B1 → L1 and c2 : B2 → L2 be two maps.
A morphism from c1 to c2 is a pair (α, f), where α : B1 → B2 is a

morphism in B and f : L1 → L2 is a morphism in L such that

B1
α−−−−→ B2yc1

yc2

L1
f−−−−→ L2

commutes.
The resulting category is denoted by BmapL. Note that the composition

is defined by (α2, f2)(α1, f1) = (α2α1, f2f1), where (α1, f1) : c → c′ and
(α2, f2) : c′ → c′′ are two morphisms. For a given B, the full subcategories of
BmapL, consisting of all semi-cozero maps, all strong semi-cozero maps, all
radical semi-cozero maps, and all cozaro maps, are denoted by BSemCozL,
BStSemCozL, BRadSemCozL, and BCozL, respectively. Also, let∑ be
a set of equalities and inequalities. The full subcategory of all c ∈ BmapL
satisfying

∑
is denoted by B∑mapL.

Let A be a ring, B be a subcategory of Mod(A), and L be a subcat-
egory of Latt10. Consider the following equalities and inequalities of type
< +, 0, (a.−)a∈A >:

C1) ν(0) = 0,
C2) ν(x+ y) ≤ ν(x) ∨ ν(y),
For every a ∈ A,
C3a) ν(ax) ≤ ν(x).
And for the types < +, 0, (a.−)a∈A,∨,∧ > or < +, ., 0, 1,∨,∧ > (`-

modules over an ordered ring A, in particular `-rings)
C4) ν(|x|) = ν(x),
C5) ν(|x| ∧ |y|) = ν(|x|) ∧ ν(|y|),
C6) ν(|x|+ |y|) = ν(|x|) ∨ ν(|y|).
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Let A be a subcategory of Rng. Consider the following equalities and
inequalities of type < +, ., 0, 1 >:

C7) ν(xy) ≤ ν(x),
C8) ν(xy) = ν(x) ∧ ν(y),
For every n = 1, 2, · · · ,
C9n) ν(xn) = ν(x).
Define∑

1 = {C1, C2} ∪ {C3a : a ∈ A},∑
2 = {C1, C2, C7},∑
3 = {C1, C2, C8},∑
4 = {C1, C2} ∪ {C9n : n = 1, 2, · · · }, and∑
5 = {C1, C2, C4, C5, C6} ∪ {C3a : a ∈ A}.

By the above notations, we have
BSemCozL = B∑1 mapL,
ASemCozL = A∑2 mapL,
AStSemCozL = A∑3 mapL,
ARaSemCozL = A∑4 mapL, and
BCozL = B∑5 mapL
A subcategory C of BmapL is called equational if there is a

∑
such that

C = B∑mapL.

Definition 4.4. A subcategory C of BmapL is called B-closed if for every
morphism α : B1 → B in B and an object c : B → L of C, cα belongs to C.

Also, it is L-closed if for every morphism f : L→ L1 in L and an object
c : B → L of C, fc belongs to C.

Proposition 4.5. Let
∑

be a set of equalities and inequalities. Then
B∑mapL is both B-closed and L-closed.

Proof. Suppose that c : B → L satisfies
∑

. Let α : B1 → B and f : L→ L1

be morphisms in B and L, respectively. Let ν(p) = q(ν) be an equality of∑
. Let b1, · · · , bn ∈ B. Then

fcα(p(b1, · · · , bn)) = fc(p(α(b1), · · · , α(bn)))
= f(q(cα(b1), · · · , α(bn)))
= q(f(cα(b1)), · · · , f(α(bn))).
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So, fcα satisfies ν(p) = q(ν). Let ν(p) ≤ q(ν) be an inequality in
∑

. Then,

fcα(p(b1, · · · , bn)) ∨ q(f(cα(b1)), · · · , f(cα(bn)))
= f(c(p(α(b1), · · · , α(bn)))) ∨ f(q(cα(b1), · · · , cα(bn)))
= f(c(p(α(b1), · · · , α(bn))) ∨ q((cα(b1)), · · · , cα(bn)))
= f(q(cα(b1), · · · , cα(bn)))
= q((fcα(b1)), · · · , fcα(bn))).

Thus fcα satisfies ν(p) ≤ q(ν). Therefore fcα satisfies
∑

.

Theorem 4.6. Let c : A → L and c′ : A′ → L′ be two objects of BmapL.
Suppose that (α, f) : c→ c′ is a morphism in the category BmapL.

(1) If α is onto and c satisfies
∑

, then so does c′.
(2) If f is one-one and c′ satisfies

∑
, then so does c.

Proof. (1) Suppose that c satisfies
∑

. Let ν(p) = q(ν) be an equality of
∑

.
Let y1, · · · , yn ∈ B1. Since α is onto, there are x1, · · · , xn ∈ B such that
α(xi) = yi. We have

c′(p(y1, · · · , yn)) = c′(p(α(x1), · · · , α(xn)))
= c′α(p(x1, · · · , xn))
= fc(p(x1, · · · , xn))
= f(q(c(x1), · · · , c(xn)))
= q(fc(x1), · · · , fc(xn))
= q(c′α(x1), · · · , c′α(xn))
= q(c′(y1), · · · , c′(yn)).

Let ν(p) ≤ q(ν) be an inequality in
∑

. We have

c′(p(y1, · · · , yn)) = c′(p(α(x1), · · · , α(xn)))
= c′α(p(x1, · · · , xn))
= fc(p(x1, · · · , xn))
≤ f(q(c(x1), · · · , c(xn)))
= q(fc(x1), · · · , fc(xn))
= q(c′α(x1), · · · , c′α(xn))
= q(c′(y1), · · · , c′(yn)),

and so c′ satisfies
∑

.
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(2) Suppose that c′ satisfies
∑

. Let ν(p) = q(ν) be an equality in
∑

.
Then

fc(p(x1, · · · , xn)) = c′α(p(x1, · · · , xn))
= c′(p(α(x1), · · · , α(xn)))
= q(c′α(x1), · · · , c′α(xn)))
= q(fc(x1), · · · , fc(xn))
= f(q(c(x1), · · · , c(xn))).

Since f is one-one, c(p(x1, · · · , xn)) = q(c(x1), · · · , c(xn)).
Let ν(p) ≤ q(ν) be an inequality in

∑
. Then

f(c(p(x1, · · · , xn)) = c′α(p(x1, · · · , xn)))
= c′(p(α(x1), · · · , α(xn))
≤ q(c′α(x1), · · · , c′α(xn))
= q(fc(x1), · · · , fc(xn))
= f(q(c(x1), · · · , c(xn))).

Since f is one-one, c(p(x1, · · · , xn)) ≤ q(c(x1), · · · , c(xn)), and hence
c(p(x1, · · · , xn)) ≤ q(c(x1), · · · , c(xn)). Therefore, c satisfies

∑
.

5 C-reticulation and Free lattice-valued maps

In this section, we discuss free objects in a subcategory C of the category
BmapL. To do this, we introduce a concept named C-reticulation of an
object B of B. Then, we give some methods to construct the C-reticulation
for C = B∑mapL. Also, some relations between the concepts reticulation
and satisfying equalities are studied.

Definition 5.1. Suppose that B is a subcategory of Rng or Mod(A), and
suppose that L is a subcategory of Latt10. Let X be a set.

(1) Let c : B → L be a map. An arrow from X to c is a map i : X → B,
and is denoted by i : X → c. For a morphism (α, f) : c→ c′ in BmapL and
an arrow i : X → c, the composition of the morphism (α, f) and i is defined
by αi, that is, (α, f) ◦ i = αi.

(2) Let C be a subcategory of BmapL. We say that c : B → L is free
in C, with respect to the arrow i : X → c, if for every arrow j : X → c′,
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where c′ in C, there exists a unique morphism (α, f) : c→ c′ in C such that
(α, f) ◦ i = j (that is αi = j). In the other word,

X

j ��

i // c

(α,f)
��
c′

commutes. Also, we say that c is a free object on X in C.
Definition 5.2. Let C be a subcategory of BmapL. A map c : B → L is
called a C-reticulation of B if for every map c′ : B → L′ of C, there exists a
unique morphism f : L→ L′ in L such that

B

c′   

c // L

f
��
L′

commutes.

Theorem 5.3. Let C be a B-closed subcategory of BmapL. If B(X) is a free
object in the category B with respect to a map i : X → B and c : B(X)→ L
is a C-reticulation of B(X), then c : B(X) → L is a free object in C, with
respect to the arrow i : X → c.

Proof. Let c′ : B′ → L′ be an object in C. Assume that j : X → c′ is an
arrow. Since B(X) is free, there is a unique morphism α : B(X)→ B′ in B
such that αi = j. Consider the map c′α : B(X) → L′. Since C is B-closed,
c′α ∈ C and, since the map c : B(X)→ L is a C-reticulation of B(X), there
is a unique morphism f : L→ L′ in L such that fc = c′α. So (α, f) : c→ c′

is a morphism in C such that (α, f) ◦ i = αi = j. That is, c : B → L is a
free object in C with respect to i : X → c.

Definition 5.4. Let C be a subcategory of BmapL. We say that C has
enough objects if for every B′ ∈ B there is a map c′ : B′ → L′ such that
c′ ∈ C.
Theorem 5.5. Suppose that C is a subcategory of BmapL which has enough
objects. If c : B → L is free in C with respect to i : X → c, then B is free in
B with respect to i : X → B.
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Proof. Let j : X → B′. By hypothesis, there is a map c′ : B′ → L′ in C.
Since c is free in C with respect to i : X → c, there is a unique morphism
(α, f) : c → c′ such that (α, f)i = j. Since (α, f)i = αi, there is a unique
α : B → B′ such that αi = j. Therefore, B is free in B with respect to
i : X → B.

Let
∑

be a set of equalities and inequalities. Now, we construct a C-
reticulation of B, for C = B∑mapL and a given B ∈ B. Suppose that
free objects exist in the category L. The congruences of the objects in the
category of L are called L-congruence.

Let B be an object of B. Consider the set of symbols indexed by B,
X = {cx : x ∈ B}. Suppose that L(X) is the free object on X in L. Let
Θ be the L-congruence generated by the following subset of L(X)× L(X):
{(cp(b1,··· ,bn), q(cb1 , · · · , cbn)) : ν(p) = q(ν) is an equality in

∑
, b1, · · · , bn ∈

B} ∪ {(cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn), q(cb1 , · · · , cbn)) : ν(p) ≤ q(ν) is an in-
equality in

∑
, b1, · · · , bn ∈ B}

Let L(B) = L(X)
Θ and cB : B → L(B) be given by cB(x) = cx = cx/Θ.

Theorem 5.6. For C = B∑mapL, the map cB : B → L(B) is a C-
reticulation of B.

Proof. First we show that cB is a
∑

-map. Let ν(p) = q(ν) be an equality
in
∑

. For every b1, · · · , bn ∈ B,

cB(p(b1, · · · , bn)) = cp(b1,··· ,bn)

= q(cb1 , · · · , cbn)
= q(cb1 , · · · , cbn)
= q(cB(b1), · · · , cB(bn)).

So, cB satisfies the equality ν(p) = q(ν). Let ν(p) ≤ q(ν) be an inequality
in
∑

. For every b1, · · · , bn ∈ B,

cB(p(b1, · · · , bn)) ∨ q(cB(b1), · · · , cB(bn)) = cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn)

= cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn)

= cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn)

= q(cb1 , · · · , cbn)
= q(cb1 , · · · , cbn)
= q(cB(b1), · · · , cB(bn)).
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Hence, cB(p(b1, · · · , bn)) ≤ q(cB(b1), · · · , cB(bn)), and thus cB satisfies the
inequality ν(p) ≤ q(ν). Therefore, cB satisfies

∑
.

Now, let c′ : B → L′ be a
∑

-map. Consider the map j : X → L′ given
by j(cx) = c′(x) for all x ∈ B. Since L(X) is an L-free object on X, there
exists a unique morphism f : L(X) → L′ in L such that fi = j, where
i : X → L(X) is the inclusion map. Now, we show that Θ ⊆ ker f . Let
ν(p) = q(ν) be an equality in

∑
. For every b1, · · · , bn ∈ B,

f(cp(b1,··· ,bn)) = fi(cp(b1,··· ,bn))

= j(cp(b1,··· ,bn))

= c′(p(b1, · · · , bn))
= q(c′(b1), · · · , c′(bn))
= q(j(cb1), · · · , j(cbn))
= q(fi(cb1), · · · , fi(cbn))
= q(f(cb1), · · · , f(cbn))
= f(q(cb1 , · · · , cbn)).

So, we have (cp(b1,··· ,bn), q(cb1 , · · · , cbn)) ∈ ker f .
Now, let ν(p) ≤ q(ν) be an inequality in

∑
. For every b1, · · · , bn ∈ B,

f(cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn)) = f(cp(b1,··· ,bn)) ∨ q(f(cb1), · · · , f(cbn))

= j(cp(b1,··· ,bn)) ∨ q(j(cb1), · · · , j(cbn))

= c′(p(b1, · · · , bn)) ∨ q(c′(b1), · · · , c′(bn))
= q(c′(b1), · · · , c′(bn))
= q(f(cb1), · · · , f(cbn))
= f(q(cb1), · · · , cbn).

So we have (cp(b1,··· ,bn) ∨ q(cb1 , · · · , cbn), q(cb1 , · · · , cbn)) ∈ ker f . Therefore
Θ ⊆ ker f , by the definition of Θ. Define f : L

Θ = L(B) → L′ by f(a/Θ) =
f(a). Then, f is a well-defined L-morphism. But f(cx) = f(cx) for all
x ∈ B, so fcB = fcB = jcB = c′. To show the uniqueness of f , let g1, g2 :
L(B) → L′ be such that g1cB = c′ = g2cB. Consider the map j : X → L′.
For the bijection map δ : X → B given by δ(cx) = x, we have c′δ = j. Since
L(X) is L-free, there is a unique L-morphism h : L(X) → L′ such that
hi = j. Consider the natural quotient map γ : L(X) → L(B) = L(X)/Θ.
Thus g1γi = g1cBδ = c′δ = j. Similarly, g2γi = j. So, by the uniqueness of
h, g1γ = h = g2γ. Since γ is onto, g1 = g2. It proves that cB : B → L(B) is
a C-reticulation of B.
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Definition 5.7. Let C be a subcategory of BmapL and. B ∈ B. The
subcategory of C consisting of all maps B → L is denoted by CB, whose
morphisms are of the form (idB, f).

By the notation of CB, we have the following lemma the proof of which
is straightforward.

Lemma 5.8. A map B → L in C is a C-reticulation of B if and only if it
is an initial object of CB.

Corollary 5.9. Let C be a L-closed subcategory of BmapL. If c : B → L
is a C-reticulation of B and l : L → L1 is an isomorphism in L, then
lc : B → L1 is a C-reticulation of B. Conversely, if c′ : B → L1 is another
C-reticulation of B, then there is a unique isomorphism l : L→ L1 such that
lc = c′.

Proof. It is clear, using Lemma 5.8 and noting that in a category, isomor-
phisms preserves initial objects, and also two initial objects are isomor-
phic.

Lemma 5.10. Let c : B → L be a C-reticulation of B. Suppose that C is
B-closed. If α : B1 → B is an isomorphism in B, then cα : B1 → L is a
C-reticulation of B1.

Proof. Suppose that κ : B1 → L1 is an object in C. Consider the map
κα−1 : B → L1. Since C is B-closed, and c : B → L is a C-reticulation of
B, there exists a unique f : L→ L1 in L such that fc = κα−1, so fcα = κ.
Therefore cα : B1 → L is a C-reticulation of B1.

Proposition 5.11. Suppose that C = B∑mapL has enough objects. If
c : B → L is free in C then B is free and c is a C-reticulation of B.

Proof. By Theorem 5.5, B is free on a set X in B. By Theorem 5.6, cB :
B → L(B) is a C-reticulation of B. Also, by Proposition 4.5 and Theorem
5.3, cB : B → L(B) is free on X in the category C. Suppose that c and cB
are free over maps i : X → B and j : X → B, respectively. Hence there is
an isomorphism (α, f) : c → cB in C, such that αj = i. Thus cBα = fc, so
f−1cBα = c. By Corollary 5.9 and Lemma 5.10, c = f−1cBα : B → L is a
C-reticulation of B.
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Theorem 5.12. Let B be a subcategory of Rng or of Mod(A), L be a
subcategory of Latt10,

∑
be a set of equalities and inequalities, and C be a

subcategory of BmapL. If c : B → L is a C-reticulation of B satisfying
∑

,
then every map c′ : B → L′ ∈ C satisfies

∑
.

Proof. Let c : B → L be a C-reticulation of B, and c′ : B → L′ be an
arbitrary map in C. Since c is a C-reticulation of B, there is a unique
morphism f : L → L′ in L such that fc = c′, and so (idB, f) : c → c′ is
a morphism in C. By Theorem 4.6(1), since c satisfies

∑
, c′ satisfies

∑
,

too.

Remark 5.13. Theorem 5.12 has some beautiful consequences. For ex-
ample, consider C = ASemCozL and

∑
= {C8}. Let c : A → L be a

C-reticulation of A. Suppose that 2 ∈ L. If A in A has an ideal which
is not prime, then no C-reticulation of A is strong. Because, considering
cI : A→ 2 in C, where I is an ideal of A which is not prime, by Proposition
3.4(2), cI is not strong, so using Theorem 5.12, any C-reticulation of A does
not satisfies

∑
, hence it can not to be strong.

The following theorem describes generally the reason of Remark 5.13 in
the sense of reticulation.

Theorem 5.14. Let B be a subcategory of Rng or of Mod(A), L be a
subcategory of Latt10,

∑
be a set of equalities and inequalities. Suppose that

σ 6∈ ∑. Let C = B∑mapL. If c : B → L is a C-reticulation satisfying σ,
then it is a C1-reticulation, where C1 = B∑1 mapL and

∑
1 =

∑∪{σ}.

Proof. Using Theorem 5.6, let c1 : B → L be a C1-reticulation. Since c is
a C-reticulation, there exists a unique lattice map f : L → L1 such that
fc = c1. Since c satisfies σ, so, using C1-reticulation of c1, there exists
a unique map g : L1 → L such that gc1 = c. Therefore, fg = idL and
gf = idL1 . Hence, (idB, f) : c→ c1 is an isomorphism, which completes the
proof.

Theorem 5.14 is the main motivation of the following definition.

Definition 5.15. Let B be a subcategory of Rng or of Mod(A), L be a
subcategory of Latt10,

∑
be a set of equalities and inequalities. Suppose that

σ 6∈∑. Let C = B∑mapL. Let ∑1 =
∑∪{σ}, and C1 = B∑1 mapL.
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We say that
∑

generates σ over B, and we write
∑ |=B σ, if any C-

reticulation of B is also a C1-reticulation of B, for all B in B.

We finish the paper by the following corollary which is implied from
Theorem 5.12

Corollary 5.16. If c satisfies
∑

and
∑ |=B σ, then c satisfies σ.
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