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Abstract. In this paper, we study the concept of C-reticulation for the
category C whose objects are lattice-valued maps. The relation between the
free objects in C and the C-reticulation of rings and modules is discussed.
Also, a method to construct C-reticulation is presented, in the case where C
is equational. Some relations between the concepts reticulation and satisfying
equalities and inequalities are studied.

1 Introduction

In the theory of f-rings, K. Keimel (1968, 1971, [13], [14]) used L;(A) to
get the Keimel’s representation theory for f-rings, where A is an f-ring and
Li(A) is the distributive lattice generated by the symbols Di(a), a € A,
subject to the relations

Di(1) =1,D:(0) =0
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Dl(a/\ b) = Dl(a) VAN Dl(b),Dl(a\/ b) = Dl(a) \/Dl(b)

Subsequent to Keimel’s work, J.F. Kennison (1976, [15]) constructed
another representation by using Dy : A — Li(A),a +— Di(a).

A. Joyal (1976, [17]) used L2(A) to study generally the Zariski spectrum
via the distributive lattice, where A is an arbitrary ring, and Ly(A) is the
distributive lattice generated by the symbols Ds(a), a € A, subject to the
relations

Da(14) = 11,(a), D2(04) = 0, (4)
Dg(ab) = Dg(a) N DQ(b), Dg(a + b) < DQ((I) V Dg(b)

Also C.J. Mulvey (1979, [20], [21]), using D : A — L2(A), introduced the
notion of the Gelfand ring and proved a representation theorem for Gelfand
rings.

G.W. Brumfiel (1979, [6]) in the representation theory of partially or-
dered rings, used L3(A) with additional relation respect to the ring’s order
which is D3(a) < D3(b) whenever 0 < a < b.

Finally, Simmons (1980, [22]) extensively studied the notation D : A —
L(A), and he called L(A) the reticulation of A.

On the other hand, B. Banaschewski (1997, |2]) utilized the cozero part
of the frame to study frames L and the f-rings C(L), the pointfree version
of C'(X). Also, in looking at pointfree version of the Gelfand duality, coz-
ero elements play an important role [1]. Then, the other authors following
Banaschewski, applied this tool in pointfree topology [3-5, 11, 12, 19]. The
present author, A. Karimi (2006, [9]), generalized the concept of cozero ele-
ments to cozero maps, that is, maps M — L satisfying some relations (2.6 of
this paper), where M is an ¢-module and L is a frame. He used the cozero
maps to introduce the concept of the cozero transformations, which is ap-
plied to obtain a general theorem containing both of Gelfand and Kakutani
pointfree dualities as particular cases.

On the basis of these historical trends, in this paper, we introduce semi-
cozero maps, and we extend it to the concept of lattice-valued maps. Also,
we introduce C-reticulation and discuss the relation between this concept
and the free objects in C, whose objects are lattice-valued maps.

The necessary background on lattices, ordered algebraic structures, uni-
versal algebra, and some category notations, are given in Section 2.
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In Section 3, we introduce the notion of semi-cozero maps as a simple
generalization of cozero maps, and we discuss some relations between semi-
cozero maps and submodules and ideals.

In Section 4, we give the model of lattice-valued maps satisfying a set of
equalities and inequalities, to generalize semi-cozero and cozero maps. Also,
we define the categories involved.

Finally, in the Section 5, we look at the concept of free lattice-valued
maps in the category C whose objects are lattice-valued maps. We introduce
a C-reticulation of B, and we show that C-reticulation is closely related to
the free objects in C. We construct a C-reticulation c¢p : B — L(B) of B, in
the cases where the objects of the category C satisfy >, where » is a set of
equalities and inequalities. Also, we deeply study the relations between the
concepts of reticulation and satisfying equalities and inequalities. Finally, we
introduce a concept which is a relation between equalities and inequalities,
denoted by =5, and the logical relation between this notion and satisfying
equalities and inequalities is given (Corollary 5.16).

2 Background

Here we give the notions we need from the literature.

2.1 In this paper, all rings are commutative with identity and all modules
are unitary.

Let A be a ring. An ideal I of A is called prime if xy € P implies x €
or y € I. Also, [ is called radical if ™ € I for some n € N implies x € I. Tt
is clear that every prime ideal is a radical ideal.

2.2 A poset L is called a lattice if for every a,b € L, both sup{a, b} and
inf{a, b} exist. We denote sup{a,b} = a Vb and inf{a,b} = a A b. The top
and the bottom elements are denoted by 1 and 0, respectively. We denote
the two element lattice {0, 1} by 2.

A prime element of L, is an element p € L such that x A y < p implies
rT<pory=<p.

A poset L is called a complete lattice if for every subset S of L, both
supS = \/ S and inf S = A S exist. A complete lattice L is called a frame
if for every subset S and element a of L, a A\/ S =\/{aAs:se S}

2.3 [10] An abelian group G with a partial order < is called an abelian
C-group if (G, <) is a lattice, and @ < b implies a+c¢ < b+c for all a,b,c € G.
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For an abelian /-group G, and a,b € G, defining a* = aV 0, a =
(—a) VO, la|=aV(—a),wehavea=at —a", la|=at +a", at Aa™ =
0, |a+ b <la| + |b|.

A partially ordered ring (po-ring) is a ring A with a partial order < such
that a < band r > 0imply ra <rbanda+c<b+cforallce A. Ais
called an f-ring if its order is a lattice order.

Let A be a commutative po-ring with an identity 1. A partially ordered
module M over A is an A-module with an order < such that for every
a,bce Mandr € A,a <bandr >0imply a4+c < b+ cand ra < rb.
Then M is called an ¢-module if it is also a lattice.

Suppose that A is an ordered ring and M is an f-module over A. A
submodule I of M is called an (-ideal if |x| < |a| and a € I imply = € I.

2.4 7] A type of algebras is a sequence 7 of function symbols such that
a non-negative integer n is assigned to each member A of 7. This integer is
called the arity (or rank) of A and A is said to be an n-ary function symbol.
The set of all n-ary function symbols is denoted by 7,.

If 7 is a language of algebras, then an algebra A of type 7 is an ordered
pair (A, A), where A is a (nonempty) set and A is a family of n-ary operations
on A indexed by the type 7 such that corresponding to each n-ary function
symbol X in 7, there is an n-ary operation A4 on A.

Let X be a set of (distinct) objects called variables. Let T be a type of
algebras. The set T'(X) of terms of type 7 over X is the smallest set such
that

(i) XUmy C T(X).

(i) If p1,...,pn € T(X) and A € 7,, then the “string” A(pi,...,pn) €
T(X).

For p € T(X) we often write p as p(z1,---,zy) to indicate that the
variables occurring in p are among x1, -+ ,x, € A. A term p is n-ary if the
number of variables appearing explicitly in p is < n.

2.5 The category of all rings (commutative with identity) and ring ho-
momorphisms between them is denoted by Rng. Let A be a fixed ring
(commutative with identity). The category of all (unitary) modules over
A with module homomorphisms is denoted by Mod(A). The category of
all bounded lattices with lattice homomorphisms preserving 0, 1 is denoted
by Latt. The category of all f-rings and f-ring homomorphisms between
them is denoted by /Rng. Let A be a fixed ordered ring. The category of
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all (unitary) ¢-modules over A with /-module homomorphisms is denoted by
¢/Mod(A). Note that /Rng and /Mod(A) can be considered as subcate-
gories of Rng and Mod(A), respectively.
2.6 9] Suppose that M is an f-module over a ring A, and L is a frame.
A map ¢ : M — L is said to be a cozero map if for every z,y € M and
a€ A,
c(0) =0,c(z+y) <c(z)Vc(y),clar) < c(z),

= ¢(x), and for every z,y > 0, c(x Ay) = c(z) A c(y), c(x +y) =

3 Semi-Cozero Maps

In this section, we introduce the semi-cozero maps, and discuss some rela-
tions between semi-cozero maps and submodules. Also we show, under this
correspondence, the radical and strong semi-cozero maps are related to the
radical and prime ideals, respectively. Finally, using of the notion of strong
cozero maps, the Zariski topology is generalized to a weaker definition which
is called the F-Zariski topology, and some connections between the Zariski
topology and the F-Zariski topology are explained in Remark 3.5.

Definition 3.1. Let M be a module over a ring A, and L be a lattice. A
semi-cozero map from M to L is a map ¢ : M — L such that

(1) ¢(0) =0,

(2) for every z,y € M, c(z +y) < c(x) V c(y),

(3) for every a € A, c(az) < c(z).

In the case of M = A, ¢ : A — L is called a strong semi-cozero map
if c(zy) = c(z) A c(y), for all z,y € A. And ¢: A — L is called a radical
semi-cozero map if there exists n € N such that ¢(z") = ¢(z) for all x € A.

There is a close correspondence between semi-cozero maps on a module
M (ring A) and the submodules of M (ideals of A). Moreover, under this
correspondence, radicals and strong semi-cozero maps are related to radicals
and prime ideals, respectively. The next two propositions describe these
correspondences.

Definition 3.2. Let M be an A-module. Let ¢ : M — L be a cozero map,
a € L, and N be a submodule of M. Define I(c,a) = {x € M : ¢(z) < a}
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and ¢(N,a) : A — L given by ¢(N,a)(x) =0if x € N and ¢(V,a)(z) = a if
x ¢ N. Define kerc = I(c,0) and ey = ¢(N, 1).

Proposition 3.3. With the above notations, I(c,a) is a submodule of M
and ¢(N,a) is a semi-cozero map from M into L. In the particular case of
L=2 kercy =N and cyere = C.

Proof. First note that 0 € I(c,a). Now, let z,y € I(c,a) and r € A. We have
clx+y) < c(x)Ve(y) < aVa = a, c(rz) < c(z) < a,and so z+y,rz € I(c, a).
Hence I(c,a) is a submodule. To check that ¢(NN,a) is a semi-cozero map,
first note that ¢(N,a)(0) = 0 because 0 € N. Let z,y € M. If x ¢ N or
y & N, ¢(N,a)(x)Ve(N,a)(y) = a > ¢(N,a)(x + y), otherwise, z,y € N,
so ¢(N,a)(x) Ve(N,a)(y) =0=c(N,a)(x +y), and hence ¢(N,a)(x +y) <

¢(N,a)(z) V ¢(N,a)(y). Finally, if x € N, ¢(N,a)(zy) = 0 = ¢(N,a)(x),
and if z € N, ¢(N,a)(zy) < a = ¢(N,a)(z). So ¢(N,a)(zxy) < c¢(N,a)(x).
Therefore, ¢(N,a) is a semi-cozero map. To check the second part in the
case L = 2, we have = € kercy < cny(x) =0 z € N, so kerey = N.
Also, ckere(2) =0 2 € kerc < ¢(x) = 0, thus ckere = ¢ d

Proposition 3.4. (1) Ifp € L is a prime element and ¢ : A — L is a strong
semi-cozero map, then I(c,p) is a prime ideal.

(2) If ¢ : A — L is a radical semi-cozero map, then I(c,p) is a radical
tdeal.

(3) The semi-cozero map c(I,a) is strong if and only if I is a prime ideal
of A.

(4) The semi-cozero map c(I,a) is radical if and only if I is a radical
ideal of A.

(5) In the case L = 2, ¢ is strong if and only if ker ¢ is a prime ideal.

(6) In the case L = 2, c is radical if and only if ker ¢ is a radical ideal.

Proof. (1) Suppose that zy € I(c,p). So ¢(x) A c(y) = c(zy) < p. Since p is
prime, c(z) < p or c¢(y) < p, thus x € I(c,p) or y € I(c,p), and hence I(c,p)
is a prime ideal.
(2) Suppose that 2™ € I(c,a), and so ¢(z) = ¢(2") < a, hence x € I(c, a).
Therefore, I(c,a) is a radical ideal.
(3) Assume that ¢(I, a) is strong and xy € I. So ¢(I,a)(z) Ac(I,a)(y) =
¢(I,a)(xy) = 0, and hence, by the definition of ¢(I,a), c¢(I,a)(z) = 0 or
c(I,a)(y) = 0. Therefore x € I or y € I, that is, I is a prime ideal.
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Conversely, suppose that [ is a prime ideal. Let x,y € A. If x ¢ [ andy & I,
then, since [ is prime, xy ¢ I, thus ¢(I,a)(zy) = a = c(I,a)(x) A c(I,a)(y).
In other cases, ¢(I,a)(xy) =0 = c(I,a)(z) A c(I,a)(y), and hence ¢(,a) is
strong.

(4) Assume that ¢(1, a) isradical, and 2™ € I. Soc(I,a)(x) = ¢(I,a)(z"™) =
0, and hence x € I. Therefore, I is a radical ideal. Conversely, suppose that
I is a radical ideal. Then,

c(la)(a")=0sa2"eclorelscl,a)=0

So ¢(I,a)(z™) = c(I,a)(x) for all x € A.

(5) If ¢ is strong, by (1) we have kerc is prime. Conversely, if kerc is
prime, c(zy) = 0 & zy € kerc & (z € kerc or y € kerc) & (c(x) =
0 or ¢(y) =0) < c(x) Ac(y) =0. But L = 2, hence c(zy) = c(z) A c(y).

(6) Assume that c is a radical semi-cozero map. By (2), ker ¢ is a radical
ideal. Conversely, if ker ¢ is a radical ideal, then

c(z") =0 2" €ekerc & x € kerc < ¢(z) =0,
and since L = 2, we have ¢(z") = ¢(x) for all z € A. O

Remark 3.5. There is a one-one correspondence between prime ideals and
strong semi-cozero maps. On the other hand, since prime ideals are used
to construct the Zariski topology, strong semi-cozero maps can be used to
make a more general Zariski topology which is called the F'-Zariski topology
for a nontrivial filter F' of L, as follows:

Let A be a ring, L be a lattice and F' be a filter of L such that 0 ¢ F'.
For every a € A, define

UF ={c: A— Llcis a strong semi — cozero map with c(a) € F}.

Define U4 = {UF : a € A} and Y] = {¢: A — L|c is a strong semi-cozero
map}. We have UfﬂU,f = Uf;) and U{ = (. So, Uf is a basis for a topology
on the set T, which is called the F-Zariski topology over the ring A. Note
that the usual Zariski topology over A is equivalent to Y%, where 1 = {1}
is the only filter of 2.

Now, suppose that ¢ : L — M is a lattice morphism such that ¢[F] = G,
where F' and G are some fixed filters of L and M, respectively. Define
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¢ :TH = TG by ¢(c) = poc. For every a € A we have a_l(Uf) =UF so
¢ is a continuous function. On the other hand, for any two filters Fy, Fy of
L such that Fy C Fy, for all a € A we have Ut C U2, and hence we can
say that Fh-Zariski topology is weaker than F}-Zariski topology over A, in
other words, id : Til — T% is a continuous map.

Now, consider the inclusion lattice morphism i : 2 — L, given by i(0) =
0,i(1) = 1r, where L is a bounded lattice. Since i[{1}] = {1} C F,
A R TEL} is an embedding of the Zariski topology into the {1 }-
Zariski topology over the ring A. Since the F-Zariski topology is weaker
than the {1 }-Zariski topology, it is weaker than the Zariski topology over
A.

Moreover, for any lattice morphism p : L — 2 (any point of L) such that
p[F] = {1}, there is a continuous function p : Y — T, from the F-Zariski
topology to the Zariski topology over A.

4 Lattice-valued maps satisfying equalities and inequalities

In this section, suppose that A is a ring, B is a subcategory of Rng or
Mod(A), A is a subcategory of Rng, and £ is a subcategory of Latty.
Suppose that B consists of objects which are of the same type 7 as algebraic
structures. For example, if B = Rng, then every object B of B is of type
T =< 4,-,0,1 >, and if B = /Rng then every object B of B is of type
T =<+4,-,V,A,0,1 >. In this case, we say that B is a category of type 7.
We assume a similar perspective for the category £. Now, suppose that B
is a subcategory of Rng or Mod(A) of type 7 and let £ be a subcategory
of Latt} of type 7. Let X be a set. The set of all term functions of type 7
is denoted by T (X), and similarly define the notation 7%/ (X).

Definition 4.1. Let p = p(x1,--- ,2,) and ¢ = q(z1,- - ,x,) be two n-ary
term functions of type 7 and 7/, respectively. Let v : T, (X) — T (X) be
a map. An equality is a pair v(p(z1, - ,xn)) = q(v(z1), - ,v(z,)) and is
denoted by v(p) = q(v). Also an inequality is a relation v(p(z1, -+ ,xy,)) <
q(v(z1),--- ,v(xy)), and is denoted by v(p) < ¢(v).

Definition 4.2. Let ¢ : B — L be a map. We say that ¢ satisfies the
equality v(p) = q(v), if ¢(p(b1, -+ ,bn)) = q(e(b1),- -+ ,c(by)) for all b; € B.
And we say that ¢ satisfies the inequality v(p) < q(v), if e(p(b1, - ,by)) <
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q(c(br), - ,c(by)) for all b; € B. Let Y be a set of equalities and inequal-
ities. We say that ¢ : B — L satisfies ) if ¢ satisfies all the elements of

>

Notation 4.3. Let B be a subcategory of Rng or Mod(A), and £ be a
subcategory of Latt(l). Suppose that By, By are two objects in B and Ly, Lo
are two objects in £. Let ¢1 : B; — Ly and ¢ : Bo — Lo be two maps.

A morphism from c¢; to ¢ is a pair (o, f), where o : By — By is a
morphism in B and f: L; — Ls is a morphism in £ such that

BlL>BQ

o le
f
L1 —_— L2

comimutes.

The resulting category is denoted by BmapZL. Note that the composition
is defined by (ag, f2)(a1, f1) = (agaq, faf1), where (a1, f1) : ¢ = ¢ and
(g, f2) : ¢ — " are two morphisms. For a given B, the full subcategories of
Bmap/L, consisting of all semi-cozero maps, all strong semi-cozero maps, all
radical semi-cozero maps, and all cozaro maps, are denoted by BSemCoz/L,
BStSemCoz,L, BRadSemCoz.L, and BCozL, respectively. Also, let > be
a set of equalities and inequalities. The full subcategory of all ¢ € Bmap/L
satisfying >_ is denoted by B> mapC..

Let A be a ring, B be a subcategory of Mod(A), and £ be a subcat-
egory of Latty. Consider the following equalities and inequalities of type
< 4,0, (a.—)gea >:

C1) v(0) =0,

C2) v(z +y) < v(z) Vr(y),

For every a € A,

C3a) v(az) < v(zx).

And for the types < +,0,(a.—)gea,V,A > or < +,.,0,1,V,A > ({-
modules over an ordered ring A, in particular ¢-rings)

C4) v(ja]) = v(a),

C5) v(|z| A lyl) = v(lx]) Av(lyl),

C6) vlz] + yl) = v(al) v v (lyl).
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Let A be a subcategory of Rng. Consider the following equalities and
inequalities of type < +,.,0,1 >:

C7) viay) < vla),

C8) v(zy) =v(x) Av(y),

For every n=1,2,---,

Con) v(z") = v(x).

Define

>, =1{C1,C2} U{C3a:ac A},

>0 ={C1,02,C7},

>3 ={C1,02,C8},

> ={C1,C2} U{CIn:n=1,2,---}, and

> 5 =1{C1,02,C4,C5,C6} U{C3a:ac A}.

By the above notations, we have

BSemCozL = B) , mapL,

ASemCozl = A) , mapL,

AStSemCozL = A) s mapL,

ARaSemCozL = A}, mapL, and

BCozL = B) , mapL

A subcategory C of BmapZ is called equational if there is a > such that
C = B> mapCL.

Definition 4.4. A subcategory C of Bmap/ is called B-closed if for every
morphism « : By — B in B and an object ¢: B — L of C, ca belongs to C.

Also, it is L-closed if for every morphism f : L — L in £ and an object
c¢: B — L of C, fc belongs to C.

Proposition 4.5. Let Y  be a set of equalities and inequalities. Then
B> map/, is both B-closed and L-closed.

Proof. Suppose that ¢ : B — L satisfies Y. Let «: By —» Band f: L — I3

be morphisms in B and L, respectively. Let v(p) = ¢(v) be an equality of
> . Let by, ,b, € B. Then

fea(p(by,---,bn)) = fe(pla(bi),--- o
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So, fea satisfies v(p) = q(v). Let v(p) < ¢(v) be an inequality in > . Then,

fea(p(by, -+, bn)) V q(f(ca(br)), - -, f(ca(bn)))
= fle(p(a(br), -+, a(bn)))) V flg(ca(br),- -, ca(bn)))
= f(c(p(a(b1>v o ,Oz(bn)>) \ Q((Ca(bl))v T ,ca(bn ))
= f(qca(br), -, ca(bn)))
= q((fealbr)), -, fea(bn)))
Thus fca satisfies v(p) < ¢(v). Therefore fea satisfies > . O

Theorem 4.6. Let c: A — L and ¢ : A" — L' be two objects of BmapL.
Suppose that (c, f) : ¢ — ¢ is a morphism in the category BmapL.

(1) If « is onto and c satisfies >, then so does ¢.

(2) If f is one-one and ¢’ satisfies Y, then so does c.

Proof. (1) Suppose that ¢ satisfies Y . Let v(p) = ¢(v) be an equality of > .
Let y1, - ,yn € Bi1. Since « is onto, there are x1,--- ,x, € B such that
a(z;) = y;. We have

d(pla(zr), -+ a(xn)))

=da(p(z1,--- )

= fe(p(xr, -+, xn))

= f(g(c(x1), -+ c(zn)))

=q(fe(z1),- -, fe(zn))
(da(ry), -, da(zy))

((y1), - (yn)).

Let v(p) < q(v) be an inequality in ) . We have

C,(p(yh T 7yn))

q
q(c

C/(p(yl) e 7yn)> = c/(p(oz(xl), e ,a(xn)))
= C,a(p(l’l, Tt 7xn))
fC(p($1, e 7xn))
fla(e(z), -+ s c(zn)))
q(fe(wr), -, fe(zn))
q(dal(zy), -, dalxy,))
=q(d(y1), -+, (Yn)),

Al

and so ¢ satisfies > _.
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(2) Suppose that ¢ satisfies Y. Let v(p) = ¢(v) be an equality in ).
Then
felp(ay, - wn)) = dalp(zy,--- zn))
= d(p(a(zr), -+, a(zn)))
= q(da(z), -+ dalzn)))
q( c($1)7 R fC(JIn))
flale(zn), -+ e(n))).

Since f is one-one, c(p(z1, - @n)) = ae(1),- - »c(en)).
Let v(p) < q(v) be an inequality in > . Then

f(C(p(xl,-" 75671)) = ’a(p(x1,~- 73:71)))

Since f is one-one, c(p(z1,---,zn)) < q(c(z1), -+ ,c(xy)), and hence
c(p(zr, - ,zn)) < qlc(x1), -+ ,c(xy)). Therefore, ¢ satisfies > . O

5 C-reticulation and Free lattice-valued maps

In this section, we discuss free objects in a subcategory C of the category
Bmap/L. To do this, we introduce a concept named C-reticulation of an
object B of B. Then, we give some methods to construct the C-reticulation
for C = BY map/L. Also, some relations between the concepts reticulation
and satisfying equalities are studied.

Definition 5.1. Suppose that B is a subcategory of Rng or Mod(A), and
suppose that £ is a subcategory of Latty. Let X be a set.

(1) Let ¢: B — L be a map. An arrow from X tocisamapi: X — B,
and is denoted by i : X — ¢. For a morphism (a, f) : ¢ — ¢ in Bmap/L and
an arrow ¢ : X — ¢, the composition of the morphism («, f) and i is defined
by «i, that is, (a, f) 01 = «i.

(2) Let C be a subcategory of BmapL. We say that ¢ : B — L is free
in C, with respect to the arrow 7 : X — ¢, if for every arrow j : X — ¢,
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where ¢’ in C, there exists a unique morphism («, f) : ¢ = ¢ in C such that
(a, f) oi =7 (that is @i = j). In the other word,

X—tse¢

\ (e, f)
3N

cl

commutes. Also, we say that c is a free object on X in C.

Definition 5.2. Let C be a subcategory of BmapL. A map c: B — L is
called a C-reticulation of B if for every map ¢ : B — L' of C, there exists a
unique morphism f : L — L’ in £ such that

B—S>1T

\ ;
c v

L/
commutes.

Theorem 5.3. Let C be a B-closed subcategory of Bmap/L. If B(X) is a free
object in the category B with respect to a map i : X — B and c: B(X) — L
is a C-reticulation of B(X), then ¢ : B(X) — L is a free object in C, with
respect to the arrow i : X — c.

Proof. Let ¢ : B® — L' be an object in C. Assume that 7 : X — ¢ is an
arrow. Since B(X) is free, there is a unique morphism « : B(X) — B’ in B
such that ai = j. Consider the map ’a : B(X) — L’. Since C is B-closed,
da € C and, since the map ¢ : B(X) — L is a C-reticulation of B(X), there
is a unique morphism f : L — L’ in £ such that fc = cda. So (o, f) : ¢ — ¢
is a morphism in C such that («, f) oi = ai = j. Thatis, ¢: B — L is a
free object in C with respect to i : X — c. O

Definition 5.4. Let C be a subcategory of BmapL. We say that C has
enough objects if for every B’ € B there is a map ¢ : B’ — L’ such that
decC.

Theorem 5.5. Suppose that C is a subcategory of BmapL which has enough
objects. If ¢ : B — L is free in C with respect to i : X — ¢, then B is free in
B with respect to i : X — B.
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Proof. Let j : X — B’. By hypothesis, there is a map ¢ : B’ — L’ in C.
Since ¢ is free in C with respect to ¢ : X — ¢, there is a unique morphism
(a, f) : ¢ = ¢ such that («, f)i = j. Since (a, f)i = ai, there is a unique
a : B — B’ such that ai = j. Therefore, B is free in B with respect to
1: X = B. O

Let > be a set of equalities and inequalities. Now, we construct a C-
reticulation of B, for C = B) mapL and a given B € B. Suppose that
free objects exist in the category L£. The congruences of the objects in the
category of L are called L-congruence.

Let B be an object of B. Consider the set of symbols indexed by B,
X = {c; : * € B}. Suppose that L(X) is the free object on X in L. Let
O be the L-congruence generated by the following subset of L(X) x L(X):
{(epy, e pn)r @(Coys - 5 cp,)) - v(p) = q(v) is an equality in D7, b1, , by €
B} U {(Cp(bl,-~~,bn) v Q(Cbl, T acbn)aQ(CbN e 7Cbn)) : V(p) < q(z}) Is an in-
equality in >, by, ,b, € B}

Let L(B) = % and cp : B — L(B) be given by cp(x) = ¢; = ¢;/0O.

Theorem 5.6. For C = BY map.L, the map cg : B — L(B) is a C-
reticulation of B.

Proof. First we show that cp is a Y -map. Let v(p) = ¢(v) be an equality
in > . For every by,--- ,b, € B,

cp(p(bi, -+ ,bn)) = Cp(by,+,bn)

Q(Cbp"' 7cbn>
Q(Cbp o @)
=q(cp(br), -+, c(bn))-

So, cp satisfies the equality v(p) = q(v). Let v(p) < q(v) be an inequality
in . For every by, --- ,b, € B,

c(p(br, -+ ,bn)) Valen(br), -+ s e(bn)) =Gy by V 4@ )
= Cp(br, o) VY 4(Cois 5 Cb,)
= Cpbu, ) VA€o C,)
ZQ(Cbl,"' 7Cbn)
= q(Coy 1 Cby,)

= q(ep(br), -+ cB(bn)).
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Hence, cp(p(b1,--- ,bn)) < q(cp(b1), -+ ,cp(bn)), and thus cp satisfies the
inequality v(p) < q(v). Therefore, cp satisfies ) .

Now, let ¢ : B — L' be a Y -map. Consider the map j : X — L’ given
by j(ez) = ¢ (z) for all z € B. Since L(X) is an L-free object on X, there
exists a unique morphism f : L(X) — L' in £ such that fi = j, where
i X — L(X) is the inclusion map. Now, we show that © C ker f. Let
v(p) = q(v) be an equality in » . For every by, -+ ,b, € B,

F(Cprm pn)) = fi<cp(b1,'“,bn )

— q( .. Is
= Q(j(Cbl), T 7j(cbn))
= q( Z(Cb1)7 e fi Cbn))
= Q(f<Cb1), T 7f(cbn )
= f(a(cbys - b))
So, we have (¢p(p, ... bu)» q(Cys " 5 b, )) € ker f.
Now, let v(p) < q(v) be an inequality in >_. For every by, - ,b, € B,
f(cp(ln,“- ,bn) \% (](Cbl, T 7cbn>) = f(cp(b1,~-~ ,bn)) v Q(f(Cbl) ( bn))
J Cp(by,- ,bn)) \ q(](cbl) o 7J(Cbn))
= (p(b1, -+ ,bn)) V q(c(br), -+, (bn))
=q(c(b1),- -+, (bn))
= Q(f(cm)?' ' 7f(cbn))
= f(Q(Cb1)7' : 7Cbn)
So we have (cp(p, ... b)) V ¢(Coys - ,cbn),q(cbl, ,)) € ker f. Therefore
© C ker f, by the definition of ©. Define f : & (B) — L' by f(a/0) =

f(a). Then, f is a well-defined £- morphlsm But f(¢:) = f(c;) for all
x € B, so fcg = fep = jep = /. To show the uniqueness of f, let g1, ¢go :
L(B) — L' be such that gicp = ¢ = gocp. Consider the map j : X — L'
For the bijection map ¢ : X — B given by §(¢;) = z, we have ¢/d = j. Since
L(X) is L-free, there is a unique L-morphism h : L(X) — L’ such that
hi = j. Consider the natural quotient map ~ : L(X) — L(B) = L(X)/0O.
Thus g1vi = g1cgd = § = j. Similarly, govi = j. So, by the uniqueness of
h, g1y = h = ga27y. Since =y is onto, g1 = go2. It proves that cg : B — L(B) is
a C-reticulation of B. O
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Definition 5.7. Let C be a subcategory of BmapL and. B € B. The
subcategory of C consisting of all maps B — L is denoted by CB, whose
morphisms are of the form (idp, f).

By the notation of CB, we have the following lemma the proof of which
is straightforward.

Lemma 5.8. A map B — L in C is a C-reticulation of B if and only if it
is an initial object of CP.

Corollary 5.9. Let C be a L-closed subcategory of BmapL. Ifc: B — L
is a C-reticulation of B and l : L — Ly is an isomorphism in L, then
lc: B — Ly is a C-reticulation of B. Conversely, if ¢ : B — Ly is another
C-reticulation of B, then there is a unique isomorphism l : L — L1 such that
le=C.

Proof. Tt is clear, using Lemma 5.8 and noting that in a category, isomor-
phisms preserves initial objects, and also two initial objects are isomor-
phic. O

Lemma 5.10. Let ¢ : B — L be a C-reticulation of B. Suppose that C is
B-closed. If o : By — B is an isomorphism in B, then ca : By — L is a
C-reticulation of Bj.

Proof. Suppose that x : By — Lj is an object in C. Consider the map
kol : B — L;. Since C is B-closed, and ¢ : B — L is a C-reticulation of
B, there exists a unique f: L — Ly in £ such that fc = ka™!, so feca = k.
Therefore co : By — L is a C-reticulation of Bj. ]

Proposition 5.11. Suppose that C = BY_ mapL has enough objects. If
c: B — L is free in C then B is free and c is a C-reticulation of B.

Proof. By Theorem 5.5, B is free on a set X in B. By Theorem 5.6, cp :
B — L(B) is a C-reticulation of B. Also, by Proposition 4.5 and Theorem
5.3, cp : B — L(B) is free on X in the category C. Suppose that ¢ and cp
are free over maps i : X — B and j : X — B, respectively. Hence there is
an isomorphism (o, f) : ¢ — ¢p in C, such that aj = i. Thus cpa = fe, so
f~tepa = c¢. By Corollary 5.9 and Lemma 5.10, c = f~'cga: B — Lis a
C-reticulation of B. O
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Theorem 5.12. Let B be a subcategory of Rng or of Mod(A), L be a
subcategory of Lattd, > be a set of equalities and inequalities, and C be a
subcategory of BmapL. If c: B — L is a C-reticulation of B satisfying >,
then every map ¢ : B — L' € C satisfies Y ..

Proof. Let ¢ : B — L be a C-reticulation of B, and ¢ : B — L’ be an
arbitrary map in C. Since ¢ is a C-reticulation of B, there is a unique
morphism f : L — L' in £ such that fe = ¢, and so (idg, f) : ¢ = ¢ is
a morphism in C. By Theorem 4.6(1), since ¢ satisfies >, ¢ satisfies Y,
too. ]

Remark 5.13. Theorem 5.12 has some beautiful consequences. For ex-
ample, consider C = ASemCozL and >, = {C8}. Let ¢ : A — L be a
C-reticulation of A. Suppose that 2 € £. If A in A has an ideal which
is not prime, then no C-reticulation of A is strong. Because, considering
cr: A — 2in C, where [ is an ideal of A which is not prime, by Proposition
3.4(2), ¢y is not strong, so using Theorem 5.12, any C-reticulation of A does
not satisfies » , hence it can not to be strong.

The following theorem describes generally the reason of Remark 5.13 in
the sense of reticulation.

Theorem 5.14. Let B be a subcategory of Rng or of Mod(A), L be a
subcategory of Latt(l], > be a set of equalities and inequalities. Suppose that
od&> . Let C = BY mapL. If ¢c: B — L is a C-reticulation satisfying o,
then it is a Cy-reticulation, where C; = B) .y mapL and ), = > U{c}.

Proof. Using Theorem 5.6, let ¢; : B — L be a Cj-reticulation. Since c¢ is
a C-reticulation, there exists a unique lattice map f : L — Lj such that
fc = ¢1. Since c satisfies o, so, using Ci-reticulation of ¢, there exists
a unique map g : L1 — L such that gcy = ¢. Therefore, fg = id; and
gf =idr,. Hence, (idp, f) : ¢ — ¢; is an isomorphism, which completes the
proof. O

Theorem 5.14 is the main motivation of the following definition.

Definition 5.15. Let B be a subcategory of Rng or of Mod(A), £ be a
subcategory of Lattg, 3" be a set of equalities and inequalities. Suppose that
o> . Let C=BY mapL. Let ) ; =) U{o}, and C; = B) ; mapL.



110

A. Karimi Feizabadi

We say that > generates o over B, and we write > =P o, if any C-

reticulation of B is also a Ci-reticulation of B, for all B in B.

We finish the paper by the following corollary which is implied from

Theorem 5.12

Corollary 5.16. If c satisfies S and 3. =P o, then c satisfies o.

Acknowledgment. The author thanks the referee for his/her very nice
comments to make the paper better readable and with less mistakes.
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