The categories of lattice-valued maps, equalities, free objects, and $\mathcal C$-reticulation

Document Type: Research Paper

Author

Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan, Iran.

Abstract

In this paper, we study the concept of $\mathcal C$-reticulation for the category $\mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $\mathcal C$ and the $\mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $\mathcal C$-reticulation is presented, in the case where $\mathcal C$ is equational. Some relations between the concepts reticulation and satisfying equalities and inequalities are studied.

Keywords


[1] Banaschewski, B., Pointfree topology and the spectra of f-rings, Ordered algebraic structures (Curacoa, 1995), Kluwer Acad. Publ. (1997), 123-148.
[2] Banaschewski, B., "The real numbers in pointfree topology", Texts in Mathematics (Series B) 12, University of Coimbra, 1997.
[3] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentat. Math. Univ. Carol. 37(3) (1996), 577-587.
[4] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9(4) (2001), 395-417.
[5] Banaschewski, B. and Gilmour,C., Cozero bases of frames, J. Pure Appl. Algebra 157(1) (2001), 1-22.
[6] Brumfiel, G.W., "Partially Ordered Rings and Semi-Algebraic Geometry", London Math. Soc. Lecture Note Ser. 37, Cambridge University Press, 1979.
[7] Burris, S. and Sankappanavar, H.P., "A Course in Universal Algebra", Springer-Verlag, 1981.
[8] Gillman, L. and Jerison, M., "Rings of Continuous Functions", Springer-Verlag, 1979.
[9] Karimi Feizabadi, A., Representation of slim algebraic regular Cozero maps, Quaest. Math. 29 (2006), 383-394.
[10] Karimi Feizabadi, A. and Ebrahimi, M.M., Spectra of `-Modules, J. Pure Appl. Algebra 208 (2007), 53-60.
[11] Karimi Feizabadi, A. and Ebrahimi, M.M., Pointfree prime representation of real Riesz maps, Algebra Universalis 54 (2005), 291-299.
[12] Karimi Feizabadi, A. and Ebrahimi M.M., Pointfree version of Kakutani duality, Order 22 (2005), 241-256.
[13] Keimel, K., Représentation d'anneaux reticulés dans les faisceaux, C. R. Acad. Sci. Paris 266, 1968.
[14] Keimel K., The representation of lattice-ordered groups and rings by sections in sheaves, Lectures on the Applications of Sheaves to Ring Theory, Lecture Notes in Math. 248 (1971), 1-98.
[15] Kennison, J.F., Integral domain type representations in sheaves and other topoi, Math. Z. 151 (1976), 35-56.
[16] Johnstone, P.T., "Stone Spaces", Cambridge University Press, 1982.
[17] Joyal, A., Les théoremes de Chevally-Tarski et remarques sur l'algebre constructive, Cah. Topol. Géom. Différ. Catég. 16, 256-258.
[18] MacLane, S., "Categories for the Working Mathematicians", Graduate Texts in Mathematics 5, Springer-Verlag, 1971.
[19] Matutu P., The cozero part of a biframe, Kyungpook Math. J. 42(2) (2002), 285-295.
[20] Mulvey, C.J., Representations of rings and modules, Applications of sheaves, Lecture Notes in Math. 753 (1979), 542-585.
[21] Mulvey, C.J., A generalization of Gelfand duality, J. Algebra 56 (1979), 499-505.
[22] Simmons, H., Reticulated rings, J. Algebra 66 (1980), 169-192.