Czédli, G., Kurusa, &. (2019). A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications, (), -.

Gábor Czédli; Árpád Kurusa. "A convex combinatorial property of compact sets in the plane and its roots in lattice theory". Categories and General Algebraic Structures with Applications, , , 2019, -.

Czédli, G., Kurusa, &. (2019). 'A convex combinatorial property of compact sets in the plane and its roots in lattice theory', Categories and General Algebraic Structures with Applications, (), pp. -.

Czédli, G., Kurusa, &. A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications, 2019; (): -.

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

^{1}Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, H6720 Hungary

^{2}Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, Hungary H6720

Abstract

K. Adaricheva and M. Bolat have recently proved that if $\,\mathcal U_0$ and $\,\mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $j\in \{0,1,2\}$ and $k\in\{0,1\}$ such that $\,\mathcal U_{1-k}$ is included in the convex hull of $\,\mathcal U_k\cup(\{A_0,A_1, A_2\}\setminus\{A_j\})$. One could say disks instead of circles. Here we prove the existence of such a $j$ and $k$ for the more general case where $\,\mathcal U_0$ and $\,\mathcal U_1$ are compact sets in the plane such that $\,\mathcal U_1$ is obtained from $\,\mathcal U_0$ by a positive homothety or by a translation. Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G.\ Gr\"atzer and E.\ Knapp, lead to our result.

[1] Adaricheva, K., Representing finite convex geometries by relatively convex sets, EuropeanD J. Combin. 37 (2014), 68-78.D [2] Adaricheva, K. and Bolat, M., Representation of convex geometries by circles on theD plane, https://arxiv.org/pdf/1609.00092.D [3] Adaricheva, K. and Czédli, G., Note on the description of join-distributive latticesD by permutations, Algebra Universalis 72(2) (2014), 155-162.D [4] Adaricheva, K.V., Gorbunov, V.A., and Tumanov, V.I., Join semidistributive latticesD and convex geometries, Adv. Math. 173(1) (2003), 1-49.D [5] Adaricheva, K. and Nation, J.B., Convex geometries, in "Lattice Theory: SpecialD Topics and Applications" 2, G. Grätzer and F. Wehrung, eds., Birkhäuser, 2015.D [6] Bogart, K.P., Freese, R., and Kung, J.P.S., "The Dilworth Theorems. Selected papersD of Robert P. Dilworth", Birkhäuser, 1990.D [7] Bonnesen, T. and Fenchel, W., "Theory of convex bodies", Translated from theD German and edited by L. Boron, C. Christenson, and B. Smith, BCS Associates,D Moscow, ID, 1987.D [8] Czédli, G., The matrix of a slim semimodular lattice, Order 29(1) (2012), 85-103.D [9] Czédli, G., Representing homomorphisms of distributive lattices as restrictions ofD congruences of rectangular lattices, Algebra Universalis 67(4) (2012), 313-345.D [10] Czédli, G., Coordinatization of join-distributive lattices, Algebra Universalis 71(4)D (2014), 385-404.D [11] Czédli, G., Finite convex geometries of circles, Discrete Math. 330 (2014), 61-75.D [12] Czédli, G., Patch extensions and trajectory colorings of slim rectangular lattices,D Algebra Universalis 72(2) (2014), 125-154.D [13] Czédli, G., A note on congruence lattices of slim semimodular lattices, AlgebraD Universalis 72(3) (2014), 225-230.D [14] Czédli, G., Characterizing circles by a convex combinatorial property, Acta Sci.D Math. (Szeged) 83(3-4) (2017), 683-701.D [15] Czédli, G., An easy way to a theorem of Kira Adaricheva and Madina Bolat onD convexity and circles, Acta Sci. Math. (Szeged) 83(3-4) (2017), 703-712.D [16] Czédli, G., Celebrating professor George A. Grätzer, CategoriesD and General Algebraic Structures with Applications,D http://cgasa.sbu.ac.ir/data/cgasa/news/Gratzer.pdf.D [17] Czédli, G., An interview with George A. Grätzer, Categories and General AlgebraicD Structures with Applications,D http://cgasa.sbu.ac.ir/data/cgasa/news/czedli-gratzer_interview-D 2018june1.pdf.D [18] Czédli, G., Circles and crossing planar compact convex sets, submitted to Acta Sci.D Math. (Szeged), https://arxiv.org/pdf/1802.06457.D [19] Czédli, G. and Grätzer, G., Notes on planar semimodular lattices VII, Resections ofD planar semimodular lattices, Order 30(3) (2013), 847-858.D [20] Czédli, G. and Grätzer, G., Planar semimodular lattices: structure and diagrams,D in "Lattice Theory: Special Topics and Applications" 1, Birkhäuser/Springer, 2014,D 91-130.D [21] Czédli, G., Grätzer, G., and Lakser, H., Congruence structure of planar semimodularD lattices: the General Swing Lemma, Algebra Universalis (2018, online),D https://doi.org/10.1007/s00012-018-0483-2.D [22] Czédli, G. and Kincses, J., Representing convex geometries by almost-circles, ActaD Sci. Math. (Szeged) 83(3-4) (2017), 393-414.D [23] Czédli, G. and Makay, G.: Swing lattice game and a short proof of the swing lemmaD for planar semimodular lattices, Acta Sci. Math. (Szeged) 83(1-2) (2017), 13-29.D [24] Czédli, G., Ozsvárt, L., and Udvari, B., How many ways can two composition seriesD intersect?, Discrete Math. 312(24) (2012), 3523-3536.D [25] Czédli, G. and Schmidt, E.T., The Jordan-Hölder theorem with uniqueness forD groups and semimodular lattices, Algebra Universalis 66(1-2) (2011), 69-79.D [26] Czédli, G. and Schmidt, E.T., Slim semimodular lattices I, A visual approach, OrderD 29(3) (2012), 481-497.D [27] Czédli, G. and Schmidt, E.T., Slim semimodular lattices II, A description by patchworkD systems, Order 30(2) (2013), 689-721.D [28] Czédli, G. and Stachó, L.L., A note and a short survey on supporting lines of compactD convex sets in the plane, Acta Univ. M. Belii Ser. Math. 24 (2016), 3-14.D [29] Dilworth, R.P., Lattices with unique irreducible decompositions, Ann. of Math. 41(4)D (1940), 771-777.D [30] Edelman, P.H., Meet-distributive lattices and the anti-exchange closure, Algebra UniversalisD 10(3) (1980), 290-299.D [31] Edelman, P.H. and Jamison, R.E., The theory of convex geometries, Geom. DedicataD 19(3) (1985), 247-271.D [32] Erdos, P. and Straus, E.G., Über eine geometrische Frage von Fejes-Tóth, Elem.D Math. 23 (1968), 11-14.D [33] Fejes-Tóth, L., Eine Kennzeichnung des Kreises, Elem. Math. 22 (1967), 25-27.D [34] Freese, R., Ježek, J., and Nation, J.B., "Free lattices", Mathematical Surveys andD Monographs 42, American Mathematical Society, 1995.D [35] Funayama, N., Nakayama, T., On the distributivity of a lattice of lattice-congruences,D Proc. Imp. Acad. Tokyo 18 (1942), 553-554.D [36] Grätzer, G., "The Congruences of a Finite Lattice. A Proof-by-picture Approach",D Birkhäuser, 2006.D [37] Grätzer, G., Planar semimodular lattices: congruences, in "Lattice Theory: SpecialD Topics and Applications" 1, Birkhäuser/Springer, 2014, 131-165.D [38] Grätzer, G., Congruences in slim, planar, semimodular lattices: the swing lemma,D Acta Sci. Math. (Szeged) 81(3-4) (2015), 381-397.D [39] Grätzer, G., On a result of Gábor Czédli concerning congruence lattices of planarD semimodular lattices, Acta Sci. Math. (Szeged) 81(1-2) (2015), 25-32.D [40] Grätzer, G., "The Congruences of a Finite Lattice. A Proof-by-picture Approach",D Birkhäuser/Springer, 2016.D [41] Grätzer, G. and Knapp, E., Notes on planar semimodular lattices I, Construction,D Acta Sci. Math. (Szeged) 73(3-4) (2007), 445-462.D [42] Grätzer, G. and Knapp, E., Notes on planar semimodular lattices II, Congruences,D Acta Sci. Math. (Szeged) 74(1-2) (2008), 37-47.D [43] Grätzer, G. and Knapp, E., A note on planar semimodular lattices, Algebra UniversalisD 58(4) (2008), 497-499.D [44] Grätzer, G. and Knapp, E., Notes on planar semimodular lattices III, CongruencesD of rectangular lattices, Acta Sci. Math. (Szeged) 75(1-2) (2009), 29-48.D [45] Grätzer, G. and Knapp, E., Notes on planar semimodular lattices IV, The size of aD minimal congruence lattice representation with rectangular lattices, Acta Sci. Math.D (Szeged) 76(1-2) (2010), 3-26.D [46] Grätzer, G. and Nation, J.B., A new look at the Jordan-Hölder theorem for semimodularD lattices, Algebra Universalis 64(3-4) (2010), 309-311.D [47] Grätzer, G. and Schmidt, E.T., On congruence lattices of lattices, Acta Math. Acad.D Sci. Hungar. 13(1-2) (1962), 179-185.D [48] Grätzer, G. and Schmidt, E.T., An extension theorem for planar semimodular lattices,D Period. Math. Hungar. 69(1) (2014), 32-40.D [49] Grätzer, G. and Schmidt, E.T., A short proof of the congruence representation theoremD of rectangular lattices, Algebra Universalis 71(1) (2014), 65-68.D [50] Hüsseinov, F., A note on the closedness of the convex hull and its applications,D Journal of Convex Analysis 6(2) (1999), 387-393.D [51] Jónsson, B. and Nation, J.B., A report on sublattices of a free lattice, in "ContributionsD to Universal Algebra", Colloq. Math. Soc. János Bolyai 17, North-Holland,D 1977, 223-257.D [52] Kashiwabara, K., Nakamura, M., and Okamoto, Y., The affine representation theoremD for abstract convex geometries, Comput. Geom. 30(2) (2005), 129-144.D [53] Kincses, J.: On the representation of finite convex geometries with convex sets, ActaD Sci. Math. (Szeged) 83(1-2) (2017), 301-312.D [54] Latecki, L., Rosenfeld., A., and Silverman, R., Generalized convexity: CP3 andD boundaries of convex sets, Pattern Recognition 28 (1995), 1191-1199.D [55] Monjardet, B., A use for frequently rediscovering a concept, Order 1(4) (1985), 415-D 417.D [56] Richter, M. and Rogers, L.G., Embedding convex geometries and a bound on convexD dimension, Discrete Math. 340(5) (2017), 1059-1063.D [57] Schneider, R., "Convex Bodies: The Brunn-Minkowski Theory", Encyclopedia ofD mathematics and its applications 44, Cambridge University Press, 1993.D [58] Toponogov, V.A., "Differential Geometry of Curves and Surfaces, A Concise Guide",D Birkhäuser, 2006.D [59] Wehrung, F., A solution to Dilworth’s congruence lattice problem, Adv. Math. 216(2)D (2007), 610-625.D [60] Yaglom, I.M. and Boltyanskiˇı, V.G., "Convex Figures", English translation, Holt,D Rinehart and Winston Inc., 1961.