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On exact category of (m,n)-ary
hypermodules

Najmeh Jafarzadeh and Reza Ameri∗

Abstract. We introduce and study category of (m,n)-ary hypermodules
as a generalization of the category of (m,n)-modules as well as the category
of classical modules. Also, we study various kinds of morphisms. Especially,
we characterize monomorphisms and epimorphisms in this category. We will
proceed to study the fundamental relation on (m,n)-hypermodules, as an
important tool in the study of algebraic hyperstructures and prove that this
relation is really functorial, that is, we introduce the fundamental functor
from the category of (m,n)-hypermodules to the category (m,n)-modules and
prove that it preserves monomorphisms. Finally, we prove that the category
of (m,n)-hypermodules is an exact category, and, hence, it generalizes the
classical case.

1 Introduction and preliminaries

The concept of a hypergroup was introduced by Marty in [19]. Afterwards,
because of many applications of this theory in both pure and applied sci-
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ences, many authors have been doing research in this field. Some review of
the hyperstructure theory can be found in [1, 6, 7, 10, 28].

In 1928, Dörnte introduced the concept of n-ary groups [12] and since
then, n-ary system has been studied in different contexts (for instance see
[8, 9]).

The research about n-ary hyperstructure was initiated by Davvaz and
Vougiouklis who introduced these structures in [11]. The notation of (m,n)-
ary hyperring was defined by Mirvakili et al. in [20]. After that, Anvariyeh et
al. in [4] introduced the notion of (m,n)-hypermodules over (m,n)-ary hy-
perrings. Ameri and Norouzi introduced [2] the concept of n-ary prime and
n-ary primary hyperideales in Krasner (m,n)-hyperring and proved some
results in this respect. Some review of (m,n)-ary hyperstructures can be
found in [3, 5, 17, 23].

Also, Ameri introduced and studied categories of hypergroups and hyper-
modules [1]; Madanshekaf in [18] proved that the category of hypermodules
is an exact category. Recently, in numerous papers, categories of hyperstruc-
tures have been studied (for instance, see [1, 2, 13, 14, 18, 22, 24–27]).

In this paper, the authors follow [1, 14, 18] to study the category of
(m,n)-hypermodules and prove that this category is exact. This paper has
been written in 5 sections. In Section 1, we give some basic preliminar-
ies about (m,n)-rings and (m,n)-hypermodules. In Section 2, we say about
monomorphisms and epimorphisms in this category. In Section 3, monomor-
phisms and epimorphisms in the category of derived (m,n)-hypermodules
via the fundamental relation are discussed. In Section 4, some properties of
the category R(m,n) −Khmod are given and it is proved that this category
is an exact category. Finally in Section 5, conclusion of this paper is briefly
describe.

In this section we recall some notions and results from [11] and other
references for the sake of completeness.

A mapping f : H × · · · ×H︸ ︷︷ ︸
n

→ P ∗(H) is called an n-ary hyperoperation,

where P ∗(H) is the set of all nonempty subsets of H. An algebraic system
(H, f), where f is an n-ary hyperoperation defined on H, is called an n-ary
hypergroupoid. We should use the following abbreviated notation:

The sequence xi, xi+1, . . . , xj will be denoted by xji . For j < i, xji is the
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empty set. Using this notation,

f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn)

will be written as f(xi1, y
j
i+1, z

n
j+1). In the case when yi+1 = · · · = yj = y,

the last expression will be written f(xi1, y(j−i), znj+1).
If f is an n-ary hyperoperation and t = l(n−1) + 1, for some l ≥ 0, then

t-ary hyperoperation fl is given by

fl(x
l(n−1)+1
1 ) = f(f(. . . , f(f︸ ︷︷ ︸

l

(xn1 ), x2n−1
n+1 ), . . . , ), x

l(n−1)+1
(l−1)(n−1)+1).

For nonempty subsets A1, A2, . . . , An of H we define

f(An1 ) = f(A1, A2, . . . , An) =
⋃
{f(xn1 )|xi ∈ Ai, i = 1, 2, . . . , n}.

An n-ary hyperoperation f is called associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

hold for every 1 ≤ i < j ≤ n and all x1, . . . , xn−1 ∈ H. An n-ary hy-
pergroupoid with the associative n-ary hyperoperation is called an n-ary
semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−1
1 , xi, a

n
i+1)

has a solution, xi ∈ H for every ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called

an n-ary quasihypergroup. If (H, f) is an n-ary semihypergroup and n-ary
quasihypergroup, then (H, f) is called an n-ary hypergroup. An n-ary hy-
pergroupoid (H, f) is commutative if for all σ ∈ Sn and for every an1 ∈ H
we have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an1 ∈ H; then we denote
(aσ(1), . . . , aσ(n)) by aσ(n)

σ(1) .

Definition 1.1. Let (H, f) be an n-ary hypergroup and B be a non-empty
subset of H. B is called an n-ary subhypergroup of (H, f), if f(xn1 ) ⊆ B for
all xn1 ∈ B, and the equation b ∈ f(bi−1

1 , xi, b
n
i+1) has a solution, xi ∈ B for

every bi−1
1 , bni+1, b ∈ B and 1 ≤ i ≤ n.

Definition 1.2. [15] Let (H, f) be a commutative n-ary hypergroup. (H, f)
is called a canonical n-ary hypergroup if
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(1) there exists unique e ∈ H, such that for every x ∈ H,

f(x, e, . . . , e︸ ︷︷ ︸
(n−1)

) = x;

(2) for all x ∈ H there exists unique x−1 ∈ H, such that

e ∈ f(x, x−1 e, . . . , e︸ ︷︷ ︸
(n−2)

);

(3) if x ∈ f(xn1 ), then for all i, we have

xi ∈ f(x, x−1, . . . , x−1
i−1, x

−1
i+1, . . . , x

−1
n ),

we say that e is the scaler identity of (H, f) and x−1 is the inverse of x. Note
that the inverse of e is e.

Definition 1.3. [21] A Krasner (m,n)-hyperring is an algebraic hyper-
structure (R, h, k) which satisfies the following axioms:

(1) (R, h) is a canonical m-ary hypergroup;
(2) (R, k) is an n-ary semigroup;
(3) the n-ary operation k is distributive to the m-array hyperoperation

h, that is, for all ai−1
1 , ani+1, x

m
1 ∈ R, and 1 ≤ i ≤ n,

k(ai−1
1 , h(xm1 ), ani+1) = h(k(ai−1

1 , x1, a
n
i+1), . . . , k(ai−1

1 , xm, a
n
i+1));

(4) 0 is a zero element (absorbing element), of the n-ary operation k,
that is, for xn2 ∈ R we have

k(0, xn2 ) = k(x2, 0, x
n
3 ) = · · · = k(xn2 , 0).

A nonempty subset S of R is called a subhyperring of R if (R, h, k) is a
Krasner (m,n)-hyperring. Let I be a non-empty subset of R. We say that
I is a hyperideal of (R, h, k) if (I, h) is a canonical m-array hypergroup of
(R, h) and k(xi−1

1 , I, xni+1) ⊆ I, for every xn1 ∈ R, and 1 ≤ i ≤ n.
Definition 1.4. [4] LetM be a nonempty set. Then (M,f, g) is an (m,n)-
hypermodule over an (m,n)-hyperring (R, h, k), if (M,f) is an m-ary hyper-
group and the map

g : R× · · · ×R︸ ︷︷ ︸
n−1

×M → P ∗(M)
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satisfies the following conditions:
(i) g(rn−1

1 , f(xm1 )) = f(g(rn−1
1 , x1), . . . , g(rn−1

1 , xm));

(ii) g(ri−1
1 , h(sm1 ), rn−1

i+1 , x) = f(g(ri−1
1 , s1, r

n−1
i+1 , x), . . . , g(ri−1

1 , sm, r
n−1
i+1 , x);

(iii) g(ri−1
1 , k(ri+n−1

i ), rn+m−2
i+m , x) = g(rn−1

1 , g(rn+m−2
m , x));

(iv) 0 ∈ g(ri−1
1 , 0, rn−1

i+1 , x).

If g is an n-ary hyperoperation, S1, . . . , Sn−1 are subsets of R and M1 ⊆
M, we set

g(Sn−1
1 ,M1) =

⋃
{g(rn−1

1 , x)|ri ∈ Si, i = 1, . . . , n− 1, x ∈M1}.

If n = m = 2, then an (m,n)-ary hypermodule M is a hypermodule.
Let (M,f, g) be an (m,n)-hypermodule over an (m,n)-hyperring (R, h, k).

A non-empty subset N of M is called an (m,n)-ary subhypermodule of M
if (N, f) is an m-ary subhypergroup of (M,f) and g(R(n−1), N) ∈ P ∗(N).

Definition 1.5. [4] A canonical (m,n)-hypermodule (M,f, g) is an (m,n)-
hypermodule with a canonical m-ary hypergroup (M,f) over a Krasner
(m,n)-hyperring (R, h, k).

A Krasner (m,n)-hyperring (R, h, k) is commutative if (R, k) is a commu-
tative n-ary semigroup. Also, we say that (R, h, k) is with a scaler identity
if there exists an element 1R such that x = k(x, 1

(n−1)
R ) for all x ∈ R. Let

(R, h, k) be a commutative Krasner (m,n)-hyperring with a scaler identity
1R. For all rn−1

1 ∈ R and x ∈M we have

g(rn−1
1 , 0M ) = {0M}, g(0n−1

R , x) = {0M} and g(1n−1
R , x) = {x}.

Moreover, let g(ri−1
1 ,−ri, rn−1

i+1 , x) = −g(r1, . . . , rn−1, x) = g(rn−1
1 ,−x).

Definition 1.6. [4] Let (M1, f1, g1) and (M2, f2, g2) be two (m,n)-hyperm
-odules over an (m,n)-hyperring (R, h, k). We say that φ : M1 → M2 is a
homomorphism of (m,n)-hypermodules if for all xm1 , x of M1 and rn−1

1 ∈ R :

φ(f1(x1, . . . , xm)) = f2(φ(x1), . . . , φ(xm));

φ(g1(rn−1
1 , x)) = g2(rn−1

1 , φ(x)).

In the above definition, if we consider a map φ : M1 → P ∗(M2), then we
obtain a multivalued homomorphism, shortly we write m-homomorphism.
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Definition 1.7. [16] Let (H, f) be an n-ary hypergroup. The relation β∗ is
the smallest equivalence relation such that the quotient (H/β∗, f/β∗) is an
n-ary group. where H/β∗ is the set of equivalence classes. The β∗ is called
fundamental equivalence relation.

Definition 1.8. [21] Let (R, h, k) be (m,n)-hyperring. The relation Γ∗ is
the smallest equivalence relation such that the quotient (R/Γ∗, h/Γ∗, k/Γ∗)
is an (m,n)-ring, where R/Γ∗ is the set of equivalence classes. The Γ∗ is
called fundamental equivalence relation.

Definition 1.9. [4] Let (M,f, g) be an (m,n)-ary hypermodule over an
(m,n)-ary hyperring (R, h, k). Then ε̂ denotes the transitive closure of the
relation ε =

⋃
α≥0

εα, where ε0 is the diagonal, that is, ε0 = {(x, x)|x ∈ M}
and for every integer α ≥ 1, εα is the relation defined as follows:

xεαy if and only if {x, y} ⊆ f(α),

for some α ∈ N. If xε0y (that is, x = y) then we write {x, y} ⊆ u(0).
We define ε∗ as the smallest equivalence relation such that the quotient
(M/ε∗, f/ε∗, g/ε∗) is an (m,n)-ary module over an (m,n)-ary hyperring R,
where M/ε∗ is the set of equivalence classes. The ε∗ is called fundamental
equivalence relation.

Theorem 1.10. [4] The fundamental relation ε∗ is the transitive closure of
the relation ε, that is, (ε∗ = ε̂).

Theorem 1.11. [4] Let (M,f, g) be an (m,n)-ary hypermodule over an
(m,n)-ary hyperring (R, h, k). Then, (M/ε∗, f/ε∗) is an (m,n)-ary module
over on (m,n)-ary ring (R/Γ∗, h/Γ∗, k/Γ∗).

Recall that, in the fundamental R/Γ∗-module (M/ε∗, f/ε∗, g/ε∗), the
hyperoperations f/ε∗, g/ε∗ are defined as follows:

f/ε∗(ε∗(a1), . . . , ε∗(am)) := {ε∗(a)|a ∈ f(a1, . . . , am)} = ε∗(f(am1 )),
g/ε∗(Γ∗(r1), . . . ,Γ∗(rn−1), ε∗(x)) := g(Γ∗(r1), . . . ,Γ∗(rn−1), ε∗(x)).

2 Monomorphisms and epimorphisms in the categories of
R(m,n) −KHmod

In this section, we recall the definition of the categories of (m,n)-ary hyper-
modules. Then we study the relationship between monomorphisms, epimor-
phisms, isomorphisms, monics, epics, and iso arrows in these categories.
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Definition 2.1. [14] The category R(m,n)−Hmod of (m,n)-ary hypermod-
ules is defined by

(i) the objects of R(m,n) −Hmod are (m,n)- hypermodules,
(ii) for the objects M and K, the set of all morphisms from M to K is

defined as

HomR(M,K) = {f |f : M → P ∗(K) is an m-homomorphism},

(iii) the composition gf of morphisms f : M → P ∗(K) and g : K →
P ∗(L) is defined by

gf : H → P ∗(K), gf(x) =
⋃

t∈f(x)

g(t),

(iv) for any object H, the morphism 1H : H → P ∗(H), defined by
1H(x) = {x}, is the identity morphism.

Remark 2.2. [14] Consider the category whose objects are all (m,n)-
hypermodules and whose morphisms are all R-homomorphisms denoted by
R(m,n)−hmod. The class of all R-homomorphisms from A into B is denoted
by homR(A,B). In addition, Rs(m,n) − hmod, is the category of all (m,n)-
hypermodules whose morphisms are all strong R-homomorphisms. The class
of all strong R-homomorphisms from A into B is denoted by homRS (A,B).
It is easy to observe that Rs(m,n)−hmod is a subcategory of R(m,n)−hmod.

Remark 2.3. [14] Later in this paper, we consider the category of all
(m,n)-hypermodules over a (m,n)-hyperring R, in the sense of canonical
(m,n)-hypermodules over Krasner (m,n)-hyperring R with a scaler iden-
tity. We denote this category by R(m,n) − KHmod. Hence the objects
of R(m,n) − KHmod are the canonical (m,n)-hypermodules over Krasner
(m,n)-hyperring and all morphisms are multivalued homomorphisms.

Theorem 2.4. F : Rs(m,n)−hmod→ R(m,n)/Γ
∗−mod, defined by F(M) =

M/ε∗ and F(φ : M1 → M2) = φ∗ : M1/ε
∗ → M2/ε

∗, is a functor, where
R(m,n)/Γ

∗ −mod is the category of all (m,n)-modules over R/Γ∗.

The next results characterize monomorphisms and epimorphisms in the
category R(m,n) −KHmod. First
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Definition 2.5. Let φ : A→ B is a morphism of (m,n)-hypermodules. We
say that φ is weakly injective if

∀a, b ∈ A, φ(a) ∩ φ(b) 6= φ⇒ a = b.

We say that φ is strongly injective if

∀a, b ∈ A, φ(a) = φ(b)⇒ a = b.

Remark 2.6. Clearly, every weakly injective morphisms is also strongly
injective.

Proposition 2.7. In the category R(m,n) − KHmod, if φ : B → C is a
monomorphism, then it is strongly injective.

Proof. Suppose that φ : B → C is a monomorphism. For b1, b2 ∈ B,
let φ(b1) = φ(b2). Define the mappings b̂1, b̂2 : R× · · · ×R︸ ︷︷ ︸

n−1

→ P ∗(B) by

b̂1(rn−1
1 ) = {g1(rn−1

1 , b1)} and b̂2(rn−1
1 ) = {g1(rn−1

1 , b2)} (here R is viewed
as a (m,n)-hypermodule). By 2.1(ii), b̂1, b̂2 are well-defined morphisms of
(m,n)-hypermodules. Moreover,
φ ◦ (b̂1(rn−1

1 )) = φ(g1(rn−1
1 , b1)) = g2(rn−1

1 , φ(b1)) = g2(rn−1
1 , φ(b2)) =

φ(g1(rn−1
1 , b2)) = φ ◦ (b̂2(rn−1

1 )), and thus b̂1 = b̂2. In particular b̂1(1n−1
1 ) =

b̂2(1n−1
1 ), that is, b1 = b2.

Proposition 2.8. In the category R(m,n)−KHmod, if φ : B → C is weakly
injective then it is a monomorphism.

Proof. It easily follows from Proposition 4 of [13].

Definition 2.9. Let φ : A → B be a morphism of (m,n)-hypermodules.
We say that φ is weakly surjective if

∀b ∈ B, ∃a ∈ A, b ∈ φ(a).

We say that φ is strongly surjective if

∀B́ ∈ P ∗(B),∃a ∈ A, B́ = φ(a).

Remark 2.10. Clearly, strongly surjective morphisms are also weakly sur-
jective.
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+ 0 1
0 0 1
1 1 {0, 1}

Table 1: (A,+)

+′ 0 1 -1
0 0 1 -1
1 1 1 {0, 1,−1}
-1 -1 {0, 1,−1} -1

Table 2: (B,+′)

Example 2.11. We shall provide an example of a weakly surjective mor-
phism which is not strongly surjective. Let A and B be two canonical
hypergroup as Tabels 1 and 2:

Define 0 ∗ x = 0 and 1 ∗ x = x for all x ∈ A,B. Then, it is easy to check
that (A,+, ∗) is a Krasner hyperring, and A and B are also A-hypermodule
with the external multiplication ∗. Let ϕ : B → A with ϕ(1) = ϕ(−1) = 0
and ϕ(0) = 0. Clearly, ϕ is weakly surjective, but not strongly surjective
(for example ϕ(1), ϕ(−1), ϕ(0) 6= {0, 1}).

Proposition 2.12. In the category R(m,n) −KHmod, if φ : B → C is an
epimorphism then it is weakly surjective.

Proof. It easily follows from Proposition 5 of [13].

Proposition 2.13. In the category R(m,n) − KHmod, if φ : B → C is
strongly surjective, then it is an epimorphism.

Proof. It easily follows from Proposition 5 of [13].

Remark 2.14. Clearly, an isomorphism of (m,n)-hypermodules is strongly
injective and weakly surjective.

Proposition 2.15. In the category R(m,n)−KHmod, a morphism φ : A→
B is an isomorphism if and only if it is a single-valued bijective morphism.
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Proof. Firstly, assume that φ : A→ B is an isomorphism. By a similar way
to Proposition 6 of [13], φ is single-valued bijective morphism.

Next, suppose that φ : A → B is a single-valued bijective morphism.
Define the map ψ : B → A by

ψ(b) = {a} if and only if φ(a) = {b}.

Clearly, φ ◦ψ = idB and ψ ◦φ = idA, and to check that ψ is a morphism fix
bm1 ∈ B and am1 ∈ A satisfy for all i ∈ 1, 2, . . . ,m, φ(ai) = bi. Observe that

a ∈ ψ(f2(bm1 ))⇔ a = ψ(b) ∧ b ∈ f2(bm1 )⇔ b = ϕ(a) ∧ b ∈ f2(bm1 )

⇔ ϕ(a) ∈ f2(ϕ(a1, . . . , am)) = ϕ(f1(am1 ))⇔ a ∈ f1(am1 )

⇔ a ∈ f1(ψ(b1), . . . , ψ(bm)).

Thus ψ(f2(bm1 )) = f1(ψ(b1), . . . , ψ(bm)), and

a ∈ ψ(g2(rn−1
1 , b1))⇔ a = ψ(b) ∧ b ∈ g2(rn−1

1 , b1)

⇔ b = ϕ(a) ∧ b ∈ g2(rn−1
1 , b1)

⇔ ϕ(a) ∈ ϕ(g1(rn−1
1 , a1)) = g2(rn−1

1 , ϕ(a1))

⇔ a ∈ g1(rn−1
1 , a1)

⇔ a ∈ g1(rn−1
1 , ψ(b1)).

3 Monomorphisms and epimorphisms in categories
of R(m,n)/Γ∗ −mod

In this section, we characterize monomorphisms and epimorphisms in the
category of R(m,n)/Γ

∗ −mod.

Definition 3.1. [4] Let B be a sub-hypermodule of an (m,n)- hypermodule
over an (m,n)-hyperring (R, h, k). Then the set

A/B = {f(xi−1
1 , B, xmi+1)|xi−1

1 , xmi+1 ∈ A}
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endowed with the m-array hyperoperation F is defined as follows: for all
x1m

11 , . . . , x
mm
m1 ∈ A

F (f(x
1(i−1)
11 , B, x1m

1(i+1)), . . . , f(x
m(i−1)
m1 , B, xmmm(i+1)))

= {f(ti−1
1 , B, tmi+1)|t1 ∈ f(xm1

11 ), . . . , tm ∈ f(xmm1m )}

and with the n-ary hyperoperation G : R× · · · ×R︸ ︷︷ ︸
n−1

×A/B → P ∗(A/B)

defined by: for all xi−1
1 , xmi+1 ∈ A and rn−1

1 ∈ R,

G(rn−1
1 , f(xi−1

1 , B, xmi+1))

= {f(zi−1
1 , B, zmi+1)|z1 ∈ g(rn−1

1 , x), . . . , zm ∈ g(rn−1
1 , xm)}

is an (m,n)- hypermodule over an (m,n)-hyperring (R, h, k), and (A/B,F,G)
is called the quotient (m,n)-ary hypermodule of A by B.

Definition 3.2. [4] Let (A, f, g) is a canonical (m,n)-hypermodule over R
and B be a subhypermodule of A. The mapping π : A → A/B defined by
x→ f(x,B, 0(m−2)) is called the projection map of A by B.

Theorem 3.3. [4] The projection map π is a homomorphism of (m,n)-
hypermodules.

Proposition 3.4. Let (A/ε∗, f1/ε
∗, g1)/ε∗, (B/ε∗, f2/ε

∗, g2/ε
∗) be

(m,n)-modules over the R(m,n)/Γ
∗-ring R. For any homomorphism ϕ∗ :

A/ε∗ → B/ε∗ the following are equivalent:
(1) ϕ∗ is injective;
(2) for any module C/ε∗ and for homomorphisms ψ∗, γ∗ : C/ε∗ → A/ε∗

if ϕ∗ ◦ ψ∗ = ϕ∗ ◦ γ∗, then ψ∗ = γ∗.

Proof. (1) ⇒ (2) If ϕ∗ is injective and and ψ∗, γ∗ : C/ε∗ → A/ε∗ are ho-
momorphisms such that ψ∗ 6= γ∗ then, for some ε∗(c) ∈ C/ε∗, ψ∗(ε∗(c)) 6=
γ∗(ε∗(c)). Since ϕ∗ is injective, it follows that ϕ∗(ψ∗(ε∗(c))) 6= ϕ∗(γ∗(ε∗(c))),
whence ϕ∗ψ∗ 6= ϕ∗γ∗.

(2) ⇒ (1) Suppose ϕ∗ : A/ε∗ → B/ε∗. Let ε∗(a), ε∗(á) ∈ A/ε∗, and let
{ε∗(x)} be any given one-element class. Consider the homomorphism

ā, ¯́a : {ε∗(x)} → A/ε∗
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where
ā(ε∗(x)) = ε∗(a), ¯́a(ε∗(x)) = ε∗(á).

Since ā 6= ¯́a, it follows, since ϕ∗ is monomorphism, that ϕ∗ā 6= ϕ∗¯́a. Thus,
ϕ∗(ε∗(a)) = (ϕ∗ā)(ε∗(x)) 6= (ϕ∗¯́a)(ε∗(x)) = ϕ∗(ε∗(á)). Whence ϕ∗ is injec-
tive.

Proposition 3.5. Let (A/ε∗, f1/ε
∗, g1/ε

∗), (B/ε∗, f2/ε
∗, g2/ε

∗) be
(m,n)-modules over the (m,n)-ring R. For any homomorphisms ϕ∗ : A/ε∗ →
B/ε∗ the following are equivalent:

(1) ϕ∗ is surjective;
(2) for any module C/ε∗ and for any homomorphisms ψ∗, γ∗ : B/ε∗ →

C/ε∗ if ψ∗ ◦ ϕ∗ = γ∗ ◦ ϕ∗, then ψ∗ = γ∗.

Proof. (1) ⇒ (2) Assume that ϕ∗ : A/ε∗ → B/ε∗ is surjective and ψ∗, γ∗ :
B/ε∗ → C/ε∗ are morphisms such that ψ∗ ◦ϕ∗ = γ∗ ◦ϕ∗. For a fixed ε∗(b) ∈
B/ε∗ let ε∗(a) ∈ A/ε∗ be such that ϕ∗(ε∗(a)) = ε∗(b). Then ψ∗(ε∗(b)) =
ψ∗(ϕ∗(ε∗(a))) = ψ∗ ◦ϕ∗(ε∗(a)) = γ∗ ◦ϕ∗(ε∗(a)) = γ∗(ϕ∗(ε∗(a))) = γ∗(ε∗(b)).
So ϕ∗ is an epimorphism.

(2) ⇒ (1) Will be proved by showing that the negation of (1) leads
us to the negation of (2). Indeed, if Imϕ∗ 6= B/ε∗, then B/ε∗/Imϕ∗ is a
module with zero Imϕ∗ and |B/ε∗/Imϕ∗| ≥ 2. Consider the homomorphism
ψ∗ = πImϕ∗ : B/ε∗ → B/ε∗/Imϕ∗ and γ∗ : B/ε∗ → B∗/Imϕ∗ given by
γ∗(ε∗(b)) = Imϕ∗ for any ε∗(b) ∈ B/ε∗. They are obviously different, but we
have for any ε∗(a) ∈ A/ε∗,

ψ∗ ◦ ϕ∗(ε∗(a)) = ψ∗(ϕ∗(ε∗((a)) = f2/ε
∗(ϕ∗(ε∗(a)), Imϕ∗, o(m−2)) = Imϕ∗,

γ∗ ◦ ϕ∗(ε∗(a)) = γ∗(ϕ∗(ε∗(a))) = Imϕ∗.

Thus ψ∗ ◦ ϕ∗ = γ∗ ◦ ϕ∗.

The following theorem is an immediate consequence of Propositions 3.1
and 3.2.

Theorem 3.6. (1) In the category R(m,n)/Γ
∗−mod all monomorphisms are

the homomorphisms which are injective.
(2) In the category R(m,n)/Γ

∗ − mod the epimorphisms are all homomor-
phisms which are projective.
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Corollary 3.7. The category R(m,n)/Γ
∗ −mod is a balanced category.

Theorem 3.8. The fundamental functor F preserves monomorphisms.

Proof. Let (A, f1, g1), (B, f2, g2) be (m,n)-hypermodules over the (m,n)-
hyperring R and ϕ : A → B be a monomorphism, we prove ϕ∗ : A/ε∗ →
B/ε∗ is monic. For a, b ∈ A, let ϕ∗(ε∗(a)) = ϕ∗(ε∗(b)) since, ϕ(a)ε∗ϕ(b), then
there exists f2i ∈ F2 such that {ϕ(a), ϕ(b)} ⊆ f2i. Since φ is a monomor-
phism, we have

{a, b} ⊆ {ϕ−1(ϕ(a))ϕ−1(ϕ(b))} = ϕ−1{ϕ(a), ϕ(b)} ⊆ ϕ−1(f2i) ∈ F1.

Thus ϕ∗ is monic.

4 Categorical properties of R(m,n) −Khmod

In this section, we give some properties of the category R(m,n) − Khmod.
First of all,we characterize subobjects and quotient objects in this category.

Theorem 4.1. Let (A, f1, g1), (B, f2, g2), (C, f3, g3) be (m,n)-hypermodules
over the (m,n)-hyperring R and ϕ : A→ B,ψ : A→ C homomorphisms. If
ψ is onto, then

(1) kerψ ⊆ kerϕ implies the existence of a homomorphism γ : C → B
and ϕ = γ ◦ ψ;

(2) ϕ is onto implies that γ is onto;
(3) kerϕ = kerψ implies that γ is one to one;
(4) ϕ is onto and kerϕ = kerψ implies that γ is an isomorphism.

Proof. (1) Since ψ is onto for any c ∈ C there exists a ∈ A such that
ψ(a) = c. Define γ(c) := ϕ(a). Then ϕ is well defined, because if there exist
a1, a2 ∈ A such that ψ(a1) = ψ(a2), then 0 ∈ f3(ψ(a1),−ψ(a2), om−2) =
ψ(f1(a1,−a2, o

m−2)) and so there exists a ∈ f1(a1,−a2, o
m−2) such that

0 = ψ(a). That is a ∈ kerψ so, a ∈ kerϕ, that is, 0 ∈ ϕ(f1(a1,−a2, o
m−2)) =

f2(ϕ(a1),−ϕ(a2), om−2). Hence ϕ(a1) = ϕ(a2).
(2) It follows easily from definition of γ. Statements (3) and (4) are direct
applications of (1) and (2).

Corollary 4.2. Let A,B be (m,n)-hypermodules over the (m,n)-hyperring
R and ϕ : A→ B be a homomorphism, and C a subhypermodule of A. Then,
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(1) C ⊆ kerϕ, then there is a unique homomorphism ϕ̄ : A/C → B such
that ϕ̄(f(a,C, 0(m−2))) = ϕ(a); for all a ∈ A, that is, the diagram

A
π // //

!!

A/C

ϕ̄

��
B

commutes,
(2) ϕ is onto then ϕ̄ is onto,
(3) C = kerϕ, then ϕ̄ is one to one,
(4) ϕ is onto and C = kerϕ, then ϕ̄ is an isomorphism.

Theorem 4.3. Let A be an (m,n)-hypermodule over the (m,n)-hyperring
R. Then

(1) there exists a bijection between the subhypermodules of A and the
subobjects of A in R(m,n) −Khmod;

(2) there exists a bijection between the quotient hypermodules of A over
subhypermodules and the quotient objects of A in R(m,n) −Khmod.

Proof. Let S0 be the class of subhypermodules of A and S the class of
subobjects of A in R(m,n)−Khmod and let us consider the function ϕ : S0 →
S, ϕ(B) = [B, iB].(iB : B → A, ib(b) = b, is the inclusion homomorphism).

First we prove that ϕ is one to one. To do so, considering B1, B2 ∈
S0, ϕ(B1) = ϕ(B2) implies that [B1, iB1 ] = [B2, iB2 ], that is, [B1, iB1 ] ∼
[B2, iB2 ]. Thus there exists an isomorphism φ : B1 → B2 such that iB1 =
iB2 ◦ φ for any b ∈ B1, b = φ(b) ∈ B2. Hence, B1 ⊆ B2.
But we also have iB1 ◦ φ−1 = iB2 , which follows that B2 ⊆ B1 and that is
why B1 = B2.

The function ϕ is also onto. In fact, for any [B, γ] ∈ S knowing that γ
is a homomorphism it follows that γ(B) ∈ S0. We will show that ϕ(γ(B)) =
[B, γ], that is (γ(B), iγ(B)) ∼ (B, γ).
The mapping φ : B → γ(B), φ(b) = γ(b) is a bijection and it is a homomor-
phism. Thus φ is an isomorphism and we have γ = iγ(B) ◦ φ which means
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that (γ(B), iγ(B)) ∼ (B, γ) :

B
γ //

φ
��

A

γ(B)

iγ(B)

==

The first part of the theorem is proved now.
(2) LetQ0 be the class of quotient hypermodules of A over the subhypermod-
ules and Q the class of quotient objects of A in h(m,n)−Rmod and let us con-
sider the function η : Q0 → Q, η(A/B) = [πB, A/B], where πB : A → A/B
is the canonical projection.

First we prove that η is one to one. To do so, considering A/B1, A/B2 ∈
Q0, η(A/B1) = η(A/B2) then [πB1 , A/B1] = [πB2 , A/B2], that is,
(πB1 , A/B1) ∼ (πB2 , A/B2). Thus there exists an isomorphism ψ : A/B1 →
A/B2 such that πB1 = ψ ◦ πB2 , that is the diagram

A
πB2 //

πB1 !!

A/B2

ψ
��

A/B1

commutes. We have
B1 = {a ∈ A|πB1(a) = B1} = {a ∈ A|ψ(πB1(a)) = B1} = {a ∈ A|πB2(a) =
B2} = B2, which leads to A/B1 = A/B2. The function η is also onto. In
fact, for any [γ,C] ∈ Q] knowing that γ is a homomorphism which is onto
(that is, an epimorphism in h(m,n) −Rmod; by Theorem 2.3), if we set B =
kerγ, in view of Theorem 4.1, there exists an isomorphism α : A/B → C
such that α ◦ πB = γ (indeed α is an isomorphism because α is onto and
kerγ = B = kerπB). This means that [γ,C] = [πB, A/B] = η(A/B), which
completes the bijective of η.

In the next theorem we show that the category R(m,n) − Khmod has
images and coimages, too.

Theorem 4.4. (1) The category R(m,n)−Khmod is a category with images.
(2) The category R(m,n) −Khmod is a category with coimages.
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Proof. (1) For any ϕ : A → B among (m,n)-hypermodules, [ϕ(A), iϕ(A)] ∈
S(B), where S(B) is the class of subobjects of B and iϕ(A) : ϕ(A) → B is
the inclusion mapping.

We will prove that Imϕ = [ϕ(A), iϕ(A)]. If we consider θ : A→ ϕ(A), θ(a) =
ϕ(a) for every a ∈ A, then θ is a homomorphism and we have ϕ = iϕ(A) ◦ θ.
Next, let [K,u] ∈ S(B) and there exist homomorphism θ′ : A→ K in such a
way that ϕ = u◦θ′. Then u is clearly a monomorphism, and ϕ(a) = u(θ′(a)),
for any a ∈ A, implies that ϕ(A) ⊆ u(K). But the mapping u1 : K →
u(K), u1(a) = u(a), is an isomorphism, so u−1

1 : u(K) → K is also an iso-
morphism. Therefore, γ = u1|ϕ(A) is a homomorphism and iϕ(A) = u ◦ γ.
Thus, [ϕ(A), iϕ(A)] ≤ [K,u] and this means that Imϕ = [ϕ(A), iϕ(A)] :

ϕ(A)
iϕ(A) //

γ

��

B

idB
��

K
u // B

(2) For any ϕ : A → B let C = kerϕ. Then [πC , A/C] ∈ Q(A) where
Q(A) denotes the class of quotient objects of A in the sense of previous
theorem. We claim that coim (ϕ) = [πC , A/C]. To prove the claim, let
θ : A/C → B be defined by θ(f(a,C, 0(m−2))) = ϕ(a), for any a ∈ A. Then
θ is a homomorphism and θ ◦ πC = ϕ. Next, let [ν,D] ∈ Q(A). Also there
exists a homomorphism θ : D → B such that ϕ = θ ◦ ν. Then, according
to the fact that ν is a homomorphism which is onto and kerν ⊆ kerϕ = C,
we can see that there exists a homomorphism γ : D → A/C such that the
following diagram is commutative:

A
ν //

πC !!

D

γ

��

θ // B

A/C

θ

==

Thus [πC , A/C] ≤ [ν,D] which leads us to the equality coim(ϕ) = [πC , A/C].

Now we come to the concepts of kernel and cokernel.

Theorem 4.5. (1) The category R(m,n)−Khmod has kernels and cokernels.
(2) The category R(m,n) −Khmod is a normal and conormal category.
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Proof. R(m,n) − Khmod is a category with kernels. Let ϕ : A → B be a
morphism in R(m,n)−Khmod and let C = kerϕ. We know that iC : C → A
is a monomorphism in R(m,n) −Khmod. We will prove that kerϕ = [C, iC .]

(1) Let 0CB be the zero morphism from C intoB, 0CB : C → B, 0CB(c) =
0 for any c ∈ C we have ϕ ◦ iC = ϕ(c) = 0 = 0CB(c), thus ϕ ◦ iC = 0CB.
If D ∈ Obj R(m,n) − Khmod and µ ∈ hom(D,A) such that ϕ ◦ µ = 0DB
then ϕ(µ(d)) = 0, for all d ∈ D, and hence µ(D) ⊆ C. It follows that the
mapping γ : D → C, γ(d) = µ(d), is a monomorphism and it verifies the
equality µ = iC ◦ γ :

D

��

µ

  
C �
�

iC
// A

f
// B

Now, let ϕ : A→ B be a morphism in R(m,n)−Khmod and let π : B →
B/ϕ(A) be the projection. We will show that Cokerϕ = [π,B/ϕ(A)]. We
have πϕ(a) = π(ϕ(a)) = f(ϕ(a), ϕ(A), 0(m−2)) = ϕ(A) = oA,B/ϕ(A). For any
C ∈ Obj R(m,n) −Khmod and µ ∈ hom(B,C) such that µ ◦ ϕ = 0AC . We
have (µ ◦ ϕ)(a) = µ(ϕ(a)) = 0, for all a ∈ A. Therefore, ϕ(A) ⊆ kerµ. So,
there exists a unique homomorphism γ : B/ϕ(A)→ C, such that γ◦π = µ :

A
ϕ // B

µ
##

π// // B/ϕ(A)

γ

��
C

(2) Kh(m,n)−Rmod is a normal category. Let A be an Obj R(m,n)−mod
and [B,ϕ] a subobject of A. Then we have [B,ϕ] = [ϕ(B), iϕ(B)] and if
πϕ(B) : A→ Aϕ(B) is the canonical projection, then, according to (i) of part
1, kerπϕ(B) = [ϕ(B), iϕ(B)] = [B,ϕ].

Also, Kh(m,n)−Rmod is a conormal category. Let A be an Obj R(m,n)−
Khmod and [ψ,B] a quotient object of A. then [ψ,B] = [πC , A/C], where
C = kerψ, πC is the canonical projection. According to (ii) of part 1 we
have cokeriC = [πC , A/C] = [ψ,B].

Recall from [18] that normal and conormal categories with kernels and
cokernels are exact if every morphism α : A → B can be written as a com-
position A→ I → B where q is an epimorphism and ν is a monomorphism.
Now we can easily prove the following theorem from the above theorem.
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Theorem 4.6. The category R(m,n) −Khmod is an exact category.

5 Conclusions and future works

In this paper, some aspects of (m,n)-hypermodules, denoted by R(m,n) −
Khmod, were studied. We constructed the category of (m,n)−hypermodules
and proved that it is an exact category in the sense that it is normal and
conormal with kernels and cokernels in which every morphism α has a fac-
torization α = νq, where q is an epimorphism and ν is a monomorphism.
Two of the most used results of the paper were those which state that the
monomorphisms of R(m,n) −Khmod (in the categorical sense) are the one-
one-homomorphisms and the epimorphisms of R(m,n)−Khmod are the onto
homomorphisms. Also, we proved that the fundamental relation on (m,n)-
hypermodules induces a functor from category R(m,n)−Khmod into category
(m,n)-hypermodules and this functor preserves monomorphisms. Therefore,
this paper leads to a better study of algebraic hyperstructures theory in view
of category theory and investigates the relationship between this category
and its related classical category.
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