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Applications of the Kleisli and
Eilenberg-Moore 2-adjunctions

J.L. López Hernández, L.J. Turcio Cuevas, and A. Vazquez-Marquez

Abstract. In 2010, J. Climent Vidal and J. Soliveres Tur developed, among
other things, a pair of 2-adjunctions between the 2-category of adjunctions
and the 2-category of monads. One is related to the Kleisli adjunction and
the other to the Eilenberg-Moore adjunction for a given monad.

Since any 2-adjunction induces certain natural isomorphisms of cate-
gories, these can be used to classify bijections and isomorphisms for certain
structures in monad theory. In particular, one important example of a struc-
ture, lying in the 2-category of adjunctions, where this procedure can be
applied to is that of a lifting. Therefore, a lifting can be characterized by the
associated monad structure, lying in the 2-category of monads, through the
respective 2-adjunction. The same can be said for Kleisli extensions.

Several authors have been discovered this type of bijections and isomor-
phisms but these pair of 2-adjunctions can collect them all at once with an
extra property, that of naturality.
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1 Introduction and preliminaries

Motivated by [2] and [3], the authors apply 2-adjunctions of Kleisli and
Eilenberg-Moore in order to get some classical isomorphisms of categories
and bijections of structures related to monads.

Among the examples given in this article, there is one of high importance.
In [7], I. Moerdijk gave an equivalence between the lifting of a monoidal
structure, over a category C, to a monoidal structure on the category of
Eilenberg-Moore algebras CF , for a monad with endofunctor F on the cate-
gory C, and the colax monad structures on F for the monoidal category C.
This equivalence of structures lacks of naturality but using the 2-adjunction
of Eilenberg-Moore it can be incorporated.

Analogously, the following case is analysed. The equivalence between
extensions of monoidal structure over a category C to a monoidal structure
on the Kleisli category CF , for a monad with endofunctor F on the category
C, and the lax monad structures on F for the monoidal category C, cf. [7]
and [10].

The 2-adjunctions of Kleisli and Eilenberg-Moore are generalized to the
context of 2-categories that accept the constructions of algebras.

We give the structure of the article.
In Section 2, we give the formal 2-adjunction corresponding to the Kleisli

situation.
In Section 3, we give the formal 2-adjunction corresponding to the Eilenberg-

Moore case.
In Section 4, we apply the 2-adjunction of EM to the case where the

2-category is 2Cat.
In Section 5, we prove the theorem of I. Moerdijk on the equivalence of

lifted monoidal structures and colax monads.
In Section 6, we use the Kleisli 2-adjunction for the 2Cat case.
In Section 7, we apply this 2-adjunction to extensions of a monoidal

structure on the Kleisli category and relate it with lax monads.
In Section 8, we apply the 2-adjunction of Eilenberg-Moore to the well

known case of liftings of functors and commutative diagrams for the forgetful
functor, check [1] and [9].

In Section 9, we relate actions of the category C over its Kleisli category
CF with strong monads.



Applications of the Kleisli and Eilenberg-Moore 2-adjunctions 119

In Section 10, we finalize with left and right functor algebras for a monad
and relate this to certain liftings and extensions, respectively, for the under-
lying functors, cf. [4].

We give some remarks on notation. Suppose that we had an adjunction
of the form L a R, then the unit and counit for this adjunction will be
denoted as ηRL and εLR, respectively. This notation is complicated but
it is clear and prevents the proliferation of several greek letters to denote
new units and counits. As the article develops, the reader might see the
advantage in the usage of this notation.

We will be working with monoidal categories denoted as (C,⊗, I, a, l, r)
and also as (C,⊗, I), as a contraction, that leaves understood the natural
constraint transformations. We will be working with the constant functor
δI : 1 −→ C, at I, where 1 is the category with only one object 0 and only
one arrow 10. That is to say, δI(0) = I.

On the other hand, it is known that a category with binary products
and a terminal object has a canonical (cartesian) monoidal structure. This
is the case for the category Cat, of small categories. The natural constraint
transformations, taken on components, are functors, for example, for C,D, E ,
aC,D,E : (C × D) × E −→ C × (D × E) is the obvious functor. In order to
compact the notation, we will agree that in the case that the component be
the object C, C, C, the asociativity functor will be denoted simply as aC. In
turn, the respective constraint functors will be denoted as lC and rC.

Finally, the horizontal composition in a general 2-category A will be
denoted as · or by juxtaposition, this notation will be used indistinctively.
The vertical composition on 2-cells will be given the symbol ◦.

2 Formal Kleisli 2-adjunction

In order to construct the Kleisli 2-adjunction, the involved 2-category Aop
has to admit the construction of algebras, [8].

Definition 2.1. Consider a 2-category A and its corresponding 2-functor
IncA : A −→ Mnd(A) which maps a 0-cell A in A to the trivial monad
(A, 1A). It is said that the 2-category A admits the construction of algebras
iff the 2-functor IncA admits a right adjoint.

If the 2-category Aop admits the construction of algebras then an addi-
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tional 2-adjunction of the form

Mnd(Aop)
ΨK

// AdjR(Aop)
ΦKoo (2.1)

can be defined.
If we describe the 2-adjunction over A rather than on the opposite one

then the 2-category Mnd(Aop) will be isomorphic to Mnd•(A) and the 2-
category AdjR(Aop) will be isomorphic to AdjL(A). Note that in [8] the
category Aop is denoted as A∗.

The description of the 2-category Mnd•(A) is given as follows:

1. The 0-cells are monads in A, that is, (A, f, µf , ηf). The short notation
(A, f) will be used for such a monad.

2. The 1-cells, which we call indistinctively as morphisms of monads, are
pairs of the form (m,π) : (A, f) −→ (B, h); where m : A −→ B is a
1-cell in A and π : mf −→ hm is a 2-cell in A such that the following
diagrams commute:

mff
πf //

mµf

��

hmf
hπ // hhm

µhm

��
mf π

// hm ,

m
mηf

{{

ηhm

##
mf π

// hm.

3. The 2-cells, which we call indistinctively as transformations of monads,
have the form ϑ : (m,π) −→ (n, τ) : (A, f) −→ (B, h), such that
ϑ : m −→ n : A −→ B is a 2-cell in A and the following diagram
commutes:

mf hm

nf hn.

π //

τ
//

ϑf

��

hϑ

��
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This 2-cell is displayed as follows

(A, f) (B, h)ϑ

(m, π)

&&

(n, τ)

88��
.

The structure of the 2-category AdjL(A) is given as follows:

1. The 0-cells are made of adjunctions

A
l

// B
roo

.

2. The 1-cells are of the form (j, k, ρ) such that the second diagram is the
2-cell mate of the first one that commutes

A A

B B

j //

l

��

l

��

k
// ,

A A

B B.

j //

r

OO

r

OO

k
//

ρ --

The mate ρ is described, since the left one commutes, by

ρ = rkε ◦ ηjr. (2.2)

This morphism can be represented as

A A

B B

j //

l

��

r

OO

l

��

r

OO

k
//

ρ ++

and denoted as (j, k, ρ) : l a r −→ l a r. Since the diagram corre-
sponding to the left adjoints commutes, the 2-category of adjunctions
has the subindex L.
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3. The 2-cells are made of a pair of 2-cells in A, (α, β) as in

A A

B B

α

β

j

%%

j′

99

l

��

r

OO

l

��

r

OO

k

%%

k′

99

��

��

such that they fulfill one of the following equivalent conditions:

(i) lα = βl,

(ii) ρ′ ◦ αr = rβ ◦ ρ.

Remark 2.2. Note that the previous conditions can be seen as commutative
surface diagrams.

This 2-cell can be displayed as

l a r lar.(α,β)

(j, k, ρ)

&&

(j′, k′, ρ′)

88��

The cell structure described arrange itself to form a 2-category, that is to
say, inherits the 2-category structure of A.

Before going into the details on the construction of the 2-functor ΨK , we
develop some calculations. These calculations are dual to those made in [8].
Note that we are going to be switching between the 2-categories Aop and
Mnd(Aop) to A and Mnd•(A), respectively.

Since the 2-category Aop admits the construction of algebras, the functor
IncAop : Aop −→ Mnd(Aop) admits a right adjoint, denoted as AlgAop :
Mnd(Aop) −→ Aop. These 2-functors are going to be short denoted as I•

and A•, respectively.
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The corresponding counit, on the component (A, fop), is εIA•(A, fop) :
IncAopAlgAop(A, f

op) −→ (A, fop). If we define AlgAop(A, f
op) = Af , the

Kleisli object, then εIA•(A, fop) = (gf , ιf) : (A, f) −→ (Af , 1Af ). This last
1-cell belongs to Mnd•(A), where gf : A −→ Af and ιf : gff −→ gf .

Following [8], for any monad (A, fop) in Mnd(Aop), there exists an ad-
junction in A,

A
gf

// Af

vfoo

such that it generates the monad (A, f), with unit ηf and counit εgvf . It can
be checked that ιf = εgvf gf . This adjunction is called the Kleisli adjunction.

Suppose that there is a morphism of monads (mop, π) : (B, hop) −→
(A, fop) in Mnd(Aop), i.e. (m,π) : (A, f) −→ (B, h) in Mnd•(A). Take the
following composition of morphisms of monads (gh, ιh) ·(m,π) = (ghm, ιhm◦
ghπ) : (A, f) −→ (Bh, 1Bh).

Since the counit is universal from IncAop to (A, fop), there exists a 1-cell
mπ : Af −→ Bh, in A, such that the following diagram commute:

(A, f)

(Af , 1Af ) (Bh, 1Bh).

(gf ,ιf )

yy

(ghm,ιhm◦ghπ)

%%

(mπ ,1mπ )
//

In particular, ghm = mπgf and ιhm ◦ ghπ = mπιf . Note that the associated
mate to the first equality is ρπ = vhmπε

gvh ◦ ηhmvf and that ρπgf = π.
Consider a 2-cell of monads ϑ : (m,π) −→ (n, τ) : (A, f) −→ (B, h) in

Mnd•(A). Due to the construction of algebras for Aop, the 2-adjunction
AlgAop a IncAop provides an isomorphism of categories, for (A, fop) in
Mnd(Aop) and B in Aop, of the form

HomMnd(Aop)

(
(A, fop), IncAop(B)

) ∼= HomAop
(
AlgAop(A, f

op), B
)
,

which translates, in the non-opposite case, into the following assignment:

Af B

a

$$

b

::α
��

7−→ (A, f) (B, 1B).αgf

(agf ,aιf )

%%

(bgf , b ιf )

99��
(2.3)
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On the other hand, we have an equality of 2-cells

(A, f) (Bh, 1Bh)ghϑ

(ghm,ιhm◦ghπ)

%%

(ghn,ιhn◦ghτ)

99��
= (A, f) (Bh, 1Bh).ghϑ

(mπgf ,mπιf )

%%

(nτgf ,nτ ιf )

99��

Therefore, to the 2-cell ghϑ there corresponds, through the asignment
(2.3), a 2-cell βϑ = AlgAop(ghϑ) · ηIA•(Bh), such that ghϑ = βϑgf , where
βϑ : mπ → nτ . We change, at this point, the notation as βϑ = ϑ̃.

Without any further ado, we provide the description of the 2-functor ΨK .

1. For the monad (A, f, µf , ηf) in Mnd•(A), ΨK(A, f) = gf a vf , that
is, the Kleisli adjunction.

2. For the morphism (m,π) : (A, f) −→ (B, h), ΨK(m,π) = (m,mπ, ρπ).

3. For the transformation ϑ : (m,π) −→ (n, τ) : (A, f) −→ (B, g),
ΨK(ϑ) = (ϑ, ϑ̃), where ϑ̃ is given as above.

The description of the 2-functor ΦK is given as follows.

1. For the adjunction l a r, ΦK(l a r) = (A, rl).

2. For the morphism of adjunctions (j, k, ρ) : (l a r) −→ (l a r),
ΦK(j, k, ρ) = (j, πρ). Where πρ = ρl.

3. For the transformation of adjunctions (α, β) : (j, k, ρ) −→ (j′, k′, ρ′) :
l a r −→ l a r, ΦK(α, β) = ϑ(α,β) = α.

Yet again, following [8], it can be shown that for the adjunction l a r,
there exists a dual comparison 1-cell krl : Arl −→ B, such that l = krlgrl,
vrl = rkrl and εrll = krlιrl.

The unit of the 2-adjunction in (2.1), ηΦΨK : 1Mnd•(A) −→ ΦKΨK is
defined, in the component (A, f), as

ηΦΨK (A, f) := (1A, 1f) : (A, f) −→ (A, f) in Mnd•(A).
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In turn, the counit εΨΦK : ΨKΦK −→ 1Adjl(A) is defined, in the component
l a r, as

εΨΦK (l a r) := (1A, krl, 1vrl) : grl a vrl −→ l a r in AdjL(A).

Theorem 2.3. There exists a 2-adjunction ΨK a ΦK.

Proof. We prove only one of the triangular identities, that is, ΦK ε
ΨΦK ◦

ηΦΨKΦK = 1ΦK ,
(
ΦK ε

ΨΦK ◦ ηΦΨKΦK

)
(l a r) = ΦK ε

ΨΦK (l a r) · ηΦΨKΦK(l a r)
= ΦK(1A, krl, 1vrl) · ηΦΨK (A, rl)

= (1A, 1vrlgrl) · (1A, 1rl) = (1A, 1rl) = 1(A,rl)

= 1ΦK(lar) = 1ΦK (l a r).

Since the left 2-adjoint ΨK assigns the Kleisli adjunction to a monad,
the 2-adjunction is called Kleisli 2-adjunction.

3 Formal Eilenberg-Moore 2-adjunction

Consider a 2-category A which admits the construction of algebras. With
this property of A, we will construct a 2-adjunction of the form

AdjR(A)
ΦE

//Mnd(A).
ΨEoo

The 2-category AdjR(A) is described as follows.

1. The 0-cells are made of adjunctions

A
l

// B.
roo

2. The 1-cells are pairs, of 1-cells in A, (j, k) such that the first diagram
is the 2-cell mate to the second commutative one
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A A

B B

j //

l

��

l

��

k
//

λ


,

A A

B B.

j //

r

OO

r

OO

k
//

The mate is described by

λ = εkl ◦ ljη. (3.1)

This morphism can be represented as

A A

B B

j //

l

��

r

OO

l

��

r

OO

k
//

λ





and denoted as (j, k, λ) : l a r −→ l a r.

3. The 2-cells are made of a pair of 2-cells in A, (α, β) as in

A A

B B

α

β

j

%%

j′

99

l

��

r

OO

l

��

r

OO

k

%%

k′

99

��

��

such that they fulfill one of the following equivalent conditions:

(i) λ′ ◦ lα = βl ◦ λ,
(ii) αr = rβ.
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Remark 3.1. Note that the previous conditions can be seen as commutative
surface diagrams.

This 2-cell can be displayed as follows

l a r lar.(α,β)

(j,k,λ)

&&

(j′,k′,λ′)

88��

The described cell structure arrange itself to form a 2-category.
The 2-category Mnd(A) is formed as follows.

1. The 0-cells are monads in A, (A, f, µf , ηf). The short notation (A, f)
will be used for such a monad.

2. The 1-cells are morphisms of monads (p, ϕ) : (A, f) −→ (B, h), which
consist of a 1-cell p : A −→ B and a 2-cell ϕ : hp −→ pf , both in A,
such that the following diagrams commutes:

hhp
hϕ //

µhp

��

hpf
ϕf // pff

pµf

��
hp ϕ

// pf ,

p
ηhp

}}

pηf

""
hp ϕ

// pf.

3. The 2-cells, or transformations of monads, θ : (p, ϕ) −→ (q, ψ) :
(A, f) −→ (B, h) consist of a 2-cell θ : p −→ q in A and fulfills
the commutativity of the diagram

hp pf

hq qf.

ϕ //

ψ
//

hθ

��

θf

��
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This 2-cell is displayed as

(A, f) (B, h).θ

(p, ϕ)

&&

(q, ψ)

88��

The description of the 2-functor ΦE is given as follows.

1. On 0-cells, ΦE(l a r) = (A, rl, rεl, η), that is, the induced monad by
an adjunction.

2. On 1-cells, (j, k, λ) : (A, rl) −→ (A, rl), ΦE(j, k, λ) = (j, rλ) : (A, rl) −→
(A, rl).

3. On 2-cells, (α, β) : (j, k, λ) −→ (j′, k′, λ′), ΦE(α, β) = α : (j, rλ) −→
(j′, rλ′).

Before the description of the 2-functor ΨE, we realize some calculations.
Since the 2-category A admits the construction of algebras, the 2-functor

IncA : A −→Mnd(A) admits a right adjoint, denoted as AlgA : Mnd(A) −→
A.

The corresponding counit, on the component (A, f), is

εIA(A, f) : IncAAlgA(A, f) −→ (A, f).

If we define AlgA(A, f) = Af , the Eilenberg-Moore object for (A, f), then
εIA(A, f) := (uf , χf) : (Af , 1Af ) −→ (A, f), where uf : Af −→ A and
χf : ufdfuf −→ uf .

In Theorem 2, at [8], the author proved that if A admits the construction
of algebras then for any monad (A, f) inMnd(A), there exists an adjunction
in A

A
df

// Af ,
ufoo

such that it generates the monad (A, f), with unit ηf and counit εduf . It can
be checked that χf = ufεdu

f . This adjunction is called the The Eilenberg-
Moore adjunction.
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Suppose there is a morphism of monads (p, ϕ) : (A, f) −→ (B, h). Take
the composition of morphisms of monads (p, ϕ) · (uf , χf) = (puf , pχf ◦ϕuf) :
IncA(Af) = (Af , 1Af ) −→ (B, h).

The previous counit, εIA, is universal from the functor IncA, in particular,
for the 1-cell (puf , pχf ◦ ϕuf) : IncA(Af) −→ (A, f) exists a unique 1-cell in
A of the form pϕ : Af −→ AlgA(B, h) = Bh such that the following diagram
commutes:

IncA(Af) IncA(Bh)

(A, f).

IncA(pϕ) //

(puf,pχf◦ϕuf ) %% (uh,χh)yy

In particular, puf = uhpϕ and pχf◦ϕuf = χhpϕ. Observe that the associated
mate, to the first equality, is λ = εhpϕdf ◦ dhpηf and that uhλ = ϕ.

Consider a 2-cell of monads, θ : (p, ϕ) −→ (q, ψ) : (A, f) −→ (B, h).
Because of the construction of algebras for A, the 2-adjunction provides an
isomorphism of categories, for A in A and (X, f) in Mnd(A),

HomA(A,AlgA(X, f)) ∼= HomMnd(A)(IncA(A), (X, f))

given by the following assignment

A Xf

a

$$

b

::α
��

7−→ (A, 1A) (X, f)ufα

(ufa,χfa)

%%

(uf b,χf b)

99��
(3.2)

cf. [8]. On the other hand, we have an equality of 2-cells

(Af , 1Af ) (B, h)θuf

(puf ,pχf◦ϕuf )

%%

(quf , qχf◦ψuf )

99��
= (Af , 1Af ) (B, h).θuf

(uhpϕ,χhpϕ)

%%

(uhqψ ,χhqψ)

99��

Therefore, to the 2-cell θuf there corresponds, through the assignment
(3.2), a 2-cell AlgA(θuf)ηAI(Af) := βθ, where βθ : pϕ −→ qψ and such that
uhβθ = θuf . We change the notation as follows βθ = θ̂.

With these calculations at hand, we define the 2-functor ΨE.
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1. On 0-cells, (A, f) , ΨE(A, f) = df a uf , that is, the Eilenberg-Moore
adjunction.

2. On 1-cells, (p, ϕ) : (A, f) −→ (B, h), ΨE(p, ϕ) = (p, pϕ) : df a uf −→
dh a uh.

3. On 2-cells, θ : (p, ϕ) −→ (q, ψ) : (A, f) −→ (B, h), ΨE(θ) = (θ, θ̂) :
(p, pϕ) −→ (q, qψ) : df a uf −→ dh a uh.

The unit and the counit for this 2-adjunction are given as follows. The
component of the unit, at l a r, is ηΨΦE (l a r) : l a r −→ ΨEΦE(l a r),
where ΨEΦE(l a r) = drl a url.

In [8], Theorem 3, the author proved the existence of a comparison 1-cell
krl : B −→ Arl, such that urlkrl = r and drl = krll. Therefore, we can make
the definition ηΨΦE (l a r) = (1A, k

rl, 1drl) : l a r −→ drl a url.
In turn, the component of the counit, at (A, f), is

εΦΨE (A, f) : ΦEΨE(A, f) −→ (A, f),

where ΦEΨE(A, f) = (A, f). In this case, the counit is defined as εΦΨE (A, f) =
(1A, 1f) : (A, f) −→ (A, f).

Theorem 3.2. There exists a 2-adjunction ΦE a ΨE.

Proof. We prove only one of the triangular identities and the other one is
left to the reader. Using the definition of the unit and counit for this 2-
adjunction, the triangular identity εΦΨEΦE ◦ ΦEη

ΨΦE = 1ΦE is proved as

(εΦΨEΦE ◦ ΦEη
ΨΦE )(l a r) = εΦΨEΦE(l a r) · ΦEηΨΦE (l a r)

= εΦΨE (A, rl) · ΦE(1A, k
rl, 1drl)

= (1A, 1rl) · (1A, url1drl)
= (1A, 1rl) = 1(A,rl) = 1ΦE(lar)
= 1ΦE (l a r).

Since the right 2-adjoint assigns the Eilenberg-Moore adjunction to a
monad (A, f), this 2-adjunction is called the Eilenberg-Moore 2-adjunction.
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4 Eilenberg-Moore 2-adjunction

In this section, we apply the results of Section 3 to the 2-category 2Cat,
the 2-category of small categories and functors, due to the fact that this
2-category admits the construction of algebras. Therefore, we have a 2-
adjunction

AdjR(2Cat)
ΦE

//Mnd(2Cat).
ΨEoo

Since the complete description, for a general A, has been given above,
we only give some remarks on the derived properties for this particular 2-
category.

The description of the 2-functor ΨE, for this particular 2-category, is
given by the entries

1. On 0-cells, ΨE(C, F ) = DF a UF , that is, the Eilenberg-Moore adjunc-
tion.

2. On 1-cells, (P,ϕ) : (C, F ) −→ (D, H), ΨE(P,ϕ) = (P, P ϕ, λϕ). The
action of the functor P ϕ : CF −→ DH is the following

(i) On objects, (M,χM) in CF , P ϕ(M,χM) = (PM,PχM · ϕM ).
(ii) On morphisms, p, P ϕ(p) = Pp.
(iii) The natural transformation λϕ is the mate of the identity UHPϕ =

PUF . Using (3.1), we get the component of λϕ at A, in C,

λϕA =
(
εDU

H
PϕDF ◦DHPηUD

F )
(A)

= PµFA · ϕFA ·HPηFA
= ϕA.

3. On 2-cells, θ : (P,ϕ) −→ (Q,ψ), we have

ΨE(θ) = (αθ, βθ) = (θ, θ̂).

The induced natural tranformation θ̂ : Pϕ −→ Qψ : CF −→ DH is
defined through its components, using the condition θUF = UH θ̂, as

θ̂(M,χM) = θM.
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Since we have a 2-adjunction, the following isomorphism of categories
takes place, natural for L a R in AdjR(2Cat) and (X , H) in Mnd(2Cat):

HomAdjR(2Cat)(L a R,ΨE(X , H)) ∼= HomMnd(2Cat)(ΦE(L a R), (X , H)).
(4.1)

5 Monoidal liftings (Eilenberg-Moore type)

In this section, we relate monoidal liftings to colax monad structures. In
order to do so, we give the definition for this last concept.

Definition 5.1. A colax monad
(
(F, ξ, γ), µF , ηF

)
over the monoidal cate-

gory (C,⊗, I) consists of the following

1. (F, µF , ηF ) is a monad on C.
2. (F, ξ, γ) : (C,⊗, I) −→ (C,⊗, I) is a colax monoidal functor. That is

to say, the natural transformations ξ : F · ⊗ −→ ⊗ · (F × F ) and
γ : F · δI −→ δI fulfills the commutativity of the following diagrams:

F ((A⊗B)⊗ C)
ξA⊗B,C //

FaA,B,C

��

F (A⊗B)⊗ FC ξA,B⊗ FC// (FA⊗ FB)⊗ FC

aFA,FB,FC

��
F (A⊗ (B ⊗ C))

ξA,B⊗C
// FA⊗ F (B ⊗ C)

FA⊗ ξB,C
// FA⊗ (FB ⊗ FC)

(5.1)

F (I ⊗A)
ξI,A //

FlA ++

FI ⊗ FA γ⊗FA // I ⊗ FA

lFAttFA

(5.2)

FA⊗ I

rFA
**

FA⊗ FIFA⊗γoo F (A⊗ I)
ξA,Ioo

FrAtt
FA.

(5.3)
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3. µF : (F, ξ, γ) · (F, ξ, γ) −→ (F, ξ, γ) and ηF : (1C , 1⊗, 1δI ) −→ (F, ξ, γ)
are colax natural transformations, that is, apart from the fact that
they are natural transformations, they have to fulfill the following
commutative diagrams:

FF⊗ Fξ //

µF⊗

��

F ⊗ (F × F )
ξ(F×F ) // ⊗(FF × FF )

⊗(µF×µF )

��
F⊗

ξ
// ⊗(F × F )

(5.4)

FFδI

µF δI

��

Fγ // FδI
γ // δI

FδI

γ

?? (5.5)

⊗ ⊗

F⊗ ⊗(F × F )

1⊗ //

⊗(ηF×ηF )

��

ηF⊗

��

ξ
// ,

δI

ηF δI
��

1δI // δI

FδI .
γ

EE

(5.6)

Since the natural transformation γ has only one component, at 0 in 1,
then this natural transformation and its component will be denoted indis-
tinctly as γ.

Using the isomorphism (4.1), the following bijection can be obtained,
cf. [7]

Theorem 5.2. There is a bijective correspondance between the following
structures

(1) Colax monads
(
(F, ξ, γ), µF , ηF

)
, for the monoidal structure

(C,⊗, I, a, l, r).
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(2) Morphisms and natural transformations of monads of the form

(⊗, ξ) : (C × C, F × F ) −→ (C, F ),

(δI , γ) : (1 , 11 ) −→ (C, F )

a : (⊗ · (⊗× C),⊗(ξ × F ) ◦ ξ(⊗× C)) −→
(⊗ · (C × ⊗) · aC ,⊗(F × ξ)aC ◦ ξ(C × ⊗)aC) :

((C × C)× C, (F × F )× F ) −→ (C, F ),

l : (⊗ · (δI × C) · l−1
C ,⊗(γ × F ) l−1

C ◦ ξ(δI × C) l−1
C ) −→ (1C , 1F ) :

(C, F ) −→ (C, F ),

r : (⊗ · (C × δI) · r−1
C ,⊗(F × γ)r−1

C ◦ ξ(C × δI)r−1
C ) −→ (1C , 1F ) :

(C, F ) −→ (C, F ).

(3) Monoidal structures for the Eilenberg-Moore category, (CF , ⊗̂, Î, â, l̂, r̂)
such that the following diagram of arrows and surfaces commutes:

(a)

C × C C

CF × CF CF

⊗ //

UF×UF

OO

UF

OO

⊗̂
//

(b)

1 C

CF111

δI //

U11

OO

UF

OO

δÎ

//

(5.7)

C3 C

(CF )3 CF

⊗·(⊗×C)

##

⊗·(C×⊗)·aC

;;a
��

⊗̂·(⊗̂×CF )

$$

⊗̂·(CF×⊗̂)·aCF

::â
��

(UF )3

OO

UF

OO C C

CF CF

⊗·(δI×C)·l−1
C

##

1C

;;l
��

⊗̂·(δÎ×CF )·l−1

CF

$$

1CF

::l̂
��

UF

OO

UF

OO C C

CF CF .

⊗·(C×δI)·r−1
C

##

1C

;;r
��

⊗̂·(CF×δÎ)·r−1

CF

$$

1CF

::r̂
��

UF

OO

UF

OO
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Proof. (1)⇒(2) Consider a colax monad
(
(F, ξ, γ), µF , ηF

)
, for the monoidal

structure (C,⊗, I). In particular, the multiplication and the unit of the
monad are colax natural transformations then (5.4) and the first diagram in
(5.6) commute. Therefore, we have a monad morphism (⊗, ξ) : (C × C, F ×
F ) −→ (C, F ).

Likewise, the commutativity of (5.5) and the second diagram in (5.6)
implies that (δI , γ) : (1 , 11 ) −→ (C, F ) is a morphism of monads. Note that
the requirement (δI , γ) is a monad morphism is equivalent to the statement
(I, γ) is an Eilenberg-Moore algebra.

Since (⊗, ξ) is a morphism of monads, the following are also morphisms
of monads

(
⊗ ·(⊗× C),⊗(ξ × F ) ◦ ξ(⊗× C)

)
and (⊗ · (C × ⊗) · aC ,⊗(F ×

ξ)aC ◦ ξ(C ×⊗)aC) from ((C × C)× C, (F × F )× F ) to (C, F ). Furthermore,
due to the commutativity of the diagram (5.1), the following is a 2-cell in
Mnd(2Cat)

((C × C)× C, (F × F )× F ) (C, F ).

(⊗·(⊗×C),⊗(ξ×F )◦ξ(⊗×C))

%%

(⊗·(C×⊗)·aC ,⊗(F×ξ)aC◦ξ(C×⊗)aC)

99
a

��

Likewise, because (⊗, ξ) and (δI , γ) are monad morphisms, (⊗ · (δI ×
C) · l−1

C ,⊗(γ × F ) l−1
C ◦ ξ(δI × C) l−1

C ) is also a monad morphism. Using the
commutativity of the diagram (5.2), we can consider the monad 2-cell

(C, F ) (C, F ).

(⊗·(δI×C) l−1
C ,⊗(γ×F ) l−1

C ◦ξ(δI×C)l
−1
C )

''

(1C ,1F )

77
l

��

In a similar way, the following is a monad transformation, r : (⊗ · (C ×
δI) · r−1

C ,⊗(F × γ)r−1
C ◦ ξ(C × δI)r−1

C ) −→ (1C , 1F ) : (C, F ) −→ (C, F ).
(2)⇒(1) Note that the aforementioned claims can be reverted.
(2)⇒(3) Take the monad morphism (⊗, ξ) : (C×C, F ×F ) −→ (C, F ). In

order to use the isomorphism (4.1), we make L a R = DF ×DF a UF × UF

and (X , H, µH , ηH) = (C, F, µF , ηF ). Therefore, to this monad morphism
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corresponds a morphism of adjunctions of the form (⊗,⊗ξ) : DF × DF a
UF×UF −→ DF a UF such that a diagram like (5.7a) commutes. According
to the definition of ΨE, the functor ⊗ξ acts, on objects, as

⊗ξ
(
(M,χM), (N,χN)

)
=
(
⊗(M,N),⊗(χM , χN) · ξM,N

)
.

The previous action is defined at the beginning of the proof of Theorem
7.1, [7]. On morphisms, we have

⊗ξ(p, q) = ⊗(p, q).

We change the notation from ⊗ξ to ⊗̂.
If in the isomorphism (4.1), we make L a R = 11 a 11 and (X , H, µH , ηH)

= (C, F, µF , ηF ), the monad morphism (δI , γ) has an associated morphism
of adjunctions of the form (δI , δ

γ
I ) : (11 a 11) −→ DF a UF such that a

diagram like (5.7b) commutes. According to the definition of ΨE, the functor
δ γ
I acts as

δ γ
I (0, 10) = (δI(0), δI(10) · γ) = (I, γ).

On morphisms,

δ γ
I (10) = δI(10) = 1I = 1(I,γ).

If we make the definition Î = (I, γ), then δ γ
I := δÎ . The algebra (I, γ) is

the unit of the monoidal structure on CF .
Suppose that we have a natural transformation of the form a : (⊗ · (⊗×

C),⊗(ξ × F ) ◦ ξ(⊗ × C)) −→ (⊗ · (C × ⊗) · aC ,⊗(F × ξ)aC ◦ ξ(C × ⊗)aC) :
((C × C) × C, (F × F ) × F ) −→ (C, F ) then we can make L a R = (DF ×
DF )×DF a (UF ×UF )×UF and (X , H, µH , ηH) = (C, F, µF , ηF ). Therefore,
to the previous 2-cell of monads, we can associate a 2-cell of adjunctions of
the form
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C3 C

(CF )3 CF .

⊗·(⊗×C)

%%

⊗·(C×⊗)·aC

99a
��

[⊗·(⊗×C)] ·ξ2

&&

[⊗·(C×⊗)·aC ]·ξ
2

88βa

��

(DF )3

��

(UF )3

OO

DF

��

UF

OO

In order to reduce expressions, we used and will be using the notation

·ξ2 := ⊗(ξ × F ) ◦ ξ(⊗× C),
·ξ2 := ⊗(F × ξ)aC ◦ ξ(C × ⊗)aC ,

(·)3 := (· × ·)× ·.

Since ΨE is a 2-functor, we have

[⊗ · (⊗× C)] ·ξ2 = ΨE(⊗ · (⊗× C),⊗(ξ × F ) ◦ ξ(⊗× C))
= ΨE

(
(⊗, ξ) · (⊗× C, ξ × F )

)

= ΨE(⊗, ξ) ·ΨE(⊗× C, ξ × F )

= ⊗ξ · (⊗× C)ξ×F = ⊗̂ · (⊗̂ × CF ).

In the same way, we can check that [⊗·(C×⊗) ·aC ]·ξ
2

= ⊗̂·(CF×⊗̂) ·aCF .
We change the notation βa for â and we get a natural transformation

â : ⊗̂(⊗̂ × CF ) −→ ⊗̂(CF × ⊗̂) · aCF : (CF × CF )× CF −→ CF .

Using the definition of the functor ΨE on the 2-cell a, we get the com-
ponents as

â
((

(M,χM), (N,χN)
)
, (M ′, χM′)

)
= a(M,N,M ′).
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Suppose we have a 2-cell inMnd(2Cat) of the form l : (⊗·(δI×C)·l−1
C ,⊗(γ×

F ) l−1
C ◦ ξ(δI×C) l−1

C ) −→ (1C , 1F ) : (C, F ) −→ (C, F ). If in the isomorphism
(4.1), we make L a R = DF a UF and (X , H, µH , ηH) = (C, F, µF , ηF ), it
can be obtained a 2-cell in the 2-category AdjR(2Cat) of the form (l, βl) :
(⊗·(δI×C)·l−1

C , 1C) −→ ([⊗·(δI×C)·l−1
C ]γ◦ξ, [1C ]1F ) : DF a UF −→ DF a UF ,

where we used the notation γ ◦ ξ = ⊗(γ ×F ) l−1
C ◦ ξ(δI ×C) l−1

C . We change
the notation from βl to l̂.

In the same way as before, it can be proved that [⊗ · (δI × C) · l−1
C ]γ◦ξ =

⊗̂(δÎ × CF ) l−1
CF and [1C ]1F = 1CF . Therefore, we obtain a natural transfor-

mation l̂ : ⊗̂(δÎ × CF ) l−1
CF −→ 1CF : CF −→ CF . Using the definition of the

2-functor ΨE on the 2-cell l, the component of the natural transformation l̂
on (M,χM) is

l̂(M,χM) = lM .

Similarly to the 2-cell r : (⊗· (C×δI) ·r−1
C , ⊗(F ×γ)r−1

C ◦ξ (C ×δI)r−1
C ) −→

(1C , 1F ) : (C, F ) −→ (C, F ) there corresponds a natural transformation
r̂ : ⊗̂(CF × δÎ)r−1

CF −→ 1CF : CF −→ CF . The component of this natural
transformation, at (M,χM), is

r̂(M,χM) = rM . (5.8)

Since the natural transformations a, l and r fulfill the coherence conditions
for a monoidal struture and UF is faithful then â, l̂ and r̂ fulfill the pen-
tagon and the triangle coherence conditions. Therefore, (CF , ⊗̂, Î, â, l̂, r̂) is
a monoidal structure over CF .

(3)⇒(2) Note that the aforementioned statements can be reverted. For
example, take the morphism of adjunctions (a, â) : (⊗ · (⊗ × C), ⊗̂ · (⊗̂ ×
CF )) −→ (⊗ · (C × ⊗) · aC , ⊗̂ · (CF × ⊗̂) · aCF ) : (UF × UF ) × UF a (DF ×
DF )×DF −→ UF a DF . The image of this 2-cell, under ΦE, is a : (⊗, ϕ⊗) ·
(⊗×C, ϕ⊗×F ) −→ (⊗, ϕ⊗) · (C ×⊗, F ×ϕ⊗) · (aC , 1F×(F×F )·aC) : ((C ×C)×
C, (F × F )× F ) −→ (C, F ), that is,

(C3, F 3) (C, F )

(⊗·(⊗×C),⊗(ϕ⊗×F )◦ϕ⊗(⊗×C))

''

(⊗·(C×⊗)·aC ,⊗(F×ϕ⊗)·aC◦ϕ⊗·(C×⊗)·aC)

77
a

��
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is a 2-cell in Mnd(2Cat).
Everytime we used the isomorphism (4.1), the monad (C, F, µF , ηF ) was

always taken fixed, therefore the implication (2⇒ 3) is natural in the monad
(C, F, µF , ηF ).

6 Kleisli 2-adjunction

Based on either [2] or [3], the following 2-adjunction takes place

Mnd•(2Cat)
ΨK

// AdjL(2Cat)
ΦKoo

which can also be deduced from the general 2-adjunction given by (2.1). In
this sense, we provide only a few remarks on the structure for the several
objects that build this 2-adjunction.

The description of 2-functor, ΨK , is given completely in order to provide
the necessary notation. The structure of such 2-functor goes as

1. On 0-cells, ΨK(C, F ) = GF a VF , that is, the Kleisli adjunction.

2. On 1-cells, (P, π) : (C, F ) −→ (D, H), ΨK(P, π) = (P, Pπ, ρπ). In the
definition of the functor Pπ : CF −→ DH , we use the notation (·)] given
for a morphism in CF and (·)[ for a morphism in DH . This notation is
used in [5] and [9].

(i) On objects, X in CF , PπX = PX.

(ii) On morphisms, x] : X −→ Y in CF , Pπx] = (πCx] · Px)[, where
Cx] is the notation for the codomain of the morphism x] as in
CF , which in this case is Y .

(iii) In order to define ρπ we have to prove that the following equality
of functors takes place, GHP = PπGF . On objects and morphisms
f : A −→ B in C,

GHPA = PA = PπA = PπGFA,

GHPf = (HPf · ηHPA)[ = (HPf · πA · PηFA)[

= (πB · PFf · PηFA)[ = Pπ(Ff · ηFA)] = PπGFf,
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where the second equality takes place because of the unitality
condition on π and the third one is due to the naturality on π.
Using (2.2), we get the mate for this identity

ρπ = VHPπε
DUF ◦ ηHPVF ,

whose component, atX in CF , is ρπX = µHPX ·HπX ·ηHPFX =
πX.

3. On 2-cells, ϑ : (P, π) −→ (Q, τ), we have

ΨK(ϑ) = (αϑ, βϑ)

where αϑ := ϑ and we rename βϑ as ϑ̃. The induced natural tranfor-
mation ϑ̃ : Pπ −→ Qτ : CF −→ DH is defined through its component
on X, using the condition GH ϑ = ϑ̃GF , as

ϑ̃X = (ηHQX · ϑX)[. (6.1)

Since we have a 2-adjunction, the following isomorphism of categories
takes place, natural in (X , H) and L a R

HomMnd•(2Cat)
(
(X , H),ΦK(L a R)

) ∼= HomAdjL(2Cat)

(
ΨK(X , H), L a R

)
.

(6.2)

7 Monoidal extensions (Kleisli type)

In this section, we give the dual version of the monoidal liftings, therefore
the definition of a lax monad is provided.

Theorem 7.1. A lax monad ((F, ζ, ω), µF , ηF ) over a monoidal category
(C,⊗, I, a, l, r) consists of

(1) (F, µF , ηF ) is a monad on C.
(2) (F, ζ, ω) : (C,⊗, I) −→ (C,⊗, I) is a lax monoidal functor. This

means that the natural transformations ζ : ⊗ · (F × F ) −→ F · ⊗ and
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ω : δI −→ F · δI , fulfills the commutativity on the diagrams

(FA⊗ FB)⊗ FC ζA,B⊗FC //

aFA,FB,FC

��

F (A⊗B)⊗ FC ζA⊗B,C // F ((A⊗B)⊗ C)

FaA,B,C

��
FA⊗ (FB ⊗ FC)

FA⊗ζB,C
// FA⊗ F (B ⊗ C)

ζA,B⊗C
// F (A⊗ (B ⊗ C))

(7.1)

I ⊗ FA ω⊗FA //

lFA ++

FI ⊗ FA ζI,A // F (I ⊗A)

FlAssFA

(7.2)

F (A⊗ I)

FrA ++

FA⊗ FIζA,Ioo FA⊗ IFA⊗ωoo

rFA
ss

FA.

(7.3)

µF : (F, ζ, ω) · (F, ζ, ω) −→ (F, ζ, ω) and ηF : (1C , 1⊗, 1δI ) −→ (F, ζ, ω)
are lax natural transformations, the adjective lax adds, to the naturality, the
commutative diagrams

⊗(FF × FF )
ζ(F×F ) //

⊗(µF×µF )

��

F ⊗ (F × F )
Fζ // FF⊗

µF⊗

��
⊗(F × F )

ζ
// F⊗

(7.4)

δI
ω //

ω

,,

FδI
Fω // FFδI

µF δI

��
FδI

(7.5)
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⊗ ⊗

F⊗⊗(F × F )

1⊗ //

ηF⊗

��

⊗(ηF×ηF )

��

ζ
//

δI

ω ))

1δI // δI

ηF δI
��

FδI .

(7.6)

Note 7.2. Necessarily ω(0) = ηFI.

The natural transformation ω has only one component at 0 in 1, then
both are going to be denoted by ω, that is, ω = ω(0) = ηFI.

We are going to make use of the isomorphism (6.2). The result we want
to obtain using this isomorphism is the following.

Theorem 7.3. There is a bijective correspondence between the following
structures:

(1) Lax monads ((F, ζ, ω), µF , ηF ), for the monoidal structure (C,⊗, I, a, l, r).
(2) Morphims and transformations of monads of the form

(⊗, ζ) : (C × C, F × F ) −→ (C, F ),

(δI , ω) : (1 , 11 ) −→ (C, F )

a : (⊗ · (⊗× C), ζ(⊗× C) ◦ ⊗(ζ × F )) −→
(⊗ · (C × ⊗) · aC , ζ(C × ⊗)aC ◦ ⊗(F × ζ)aC) :

((C × C)× C, (F × F )× F ) −→ (C, F ),

l : (⊗ · (δI × C) · l−1
C , ζ (δI × C) l−1

C ◦ ⊗(ω × F ) l−1
C ) −→ (1C , 1F ) :

(C, F ) −→ (C, F ),

r : (⊗ · (C × δI) · r−1
C , ζ (C × δI)r−1

C ◦ ⊗(F × ω)r−1
C ) −→ (1C , 1F ) :

(C, F ) −→ (C, F ).

Monoidal structures for the Kleisli category (CF , ⊗̃, Ĩ) such that the following
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diagrams of arrows and surfaces commute:

(a)

C × C C

CF × CF CF

⊗ //

GF×GF

��

GF

��

⊗̃
//

(b)

1 C

CF111

δI //

G11

��

GF

��

δĨ

//

(7.7)

C3 C

(CF )3 CF

⊗·(⊗×C)

""

⊗·(C×⊗)·aC

<<a
��

⊗̃·(⊗̃×CF )

##

⊗̃·(CF×⊗̃)·aCF

;;ã
��

(GF )3

��

GF

��

C C

CF CF

⊗·(δI×C)·l−1
C

""

1C

<<l
��

⊗̃·(δĨ×CF )·l−1
CF

##

1CF

;;l̃
��

GF

��

GF

��

C C

CF CF .

⊗·(C×δI)·r−1
C

""

1C

<<r
��

⊗̃·(CF×δĨ)·r−1
CF

##

1CF

;;r̃
��

GF

��

GF

��

Proof. (1)⇒(2) Consider a lax monad ((F, ζ, ω), µF , ηF ) for the monoidal
category (C,⊗, I). In particular, µF and ηF are natural lax monoidal trans-
formations. Therefore, the commutativity of (7.4) and the first diagram in
(7.6) is equivalent to the condition that (⊗, ζ) : (C × C, F × F ) −→ (C, F )
be a monad morphism.

The commutativity conditions in (7.5) and the second on (7.6) is equiv-
alent to the condition for the following to be a monad morphism (δI , ω) :
(1 , 11 ) −→ (C, F ).

Since (⊗, ζ) is a morphism of monads so are (⊗ · (⊗ × C), ζ(⊗ × C) ◦
⊗(ζ ×F )) and (⊗ · (C ×⊗) · aC , ζ(C ×⊗)aC ◦⊗(F × ζ)aC). Yet again, since
((F, ζ), µF , ηF ) is a lax monad over the monoidal category (C,⊗, I, a, l, r),
then a commutative diagram like (7.1) takes place. Therefore the following
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is a 2-cell in Mnd•(2Cat).

((C × C)× C, (F × F )× F ) (C, F ).

(⊗·(⊗×C), ζ(⊗×C)◦⊗(ζ×F ))

%%

(⊗·(C×⊗)·aC , ζ(C×⊗)aC◦⊗(F×ζ)aC)

99
a

��

Since (⊗, ζ) and (δI , ω) are monad morphisms so is (⊗·(δI×C)·l−1
C , ζ (δI×

C) l−1
C ◦ ⊗(ω × F ) l−1

C ) and taking into account the commutativity of the
diagram (7.2a), we can state that the following is a 2-cell in Mnd•(2Cat)

(C, F ) (C, F ).

(⊗·(δI×C)·l−1
C , ζ (δI×C) l−1

C ◦⊗(ω×F ) l−1
C )

((

(1C ,1F )

66
l

��

In the very same way, r : (⊗ · (C × δI) · r−1
C , ζ(C × δI)r−1

C ◦⊗(F ×ω)r−1
C )

is a 2-cell of monads.
(2)⇒(1) The previous assertions can be reverted.
(2)⇒(3) Suppose we have a monad morphism (⊗, ζ). Use the isomor-

phism (6.2), with (D, H, µH , ηH) = (C × C, F × F, µF × µF , ηF × ηF ) and
L a R = GF a VF to get an associated morphism of adjunctions (⊗,⊗ζ) :
GF × GF a VF × VF −→ GF a VF , such that a diagram like (7.7a) com-
mutes. According to the definition of ΨK , the functor ⊗ζ acts as follows.
On objects,

⊗ζ(X,Y ) = ⊗(X,Y ) = X ⊗ Y,
and on morphisms,

⊗ζ(x], y]) = (ζC
x]
,C
y]
· (x⊗ y))],

where Cx] is codomain of the morphism x] for example. We rename ⊗ζ as
⊗̃.

For the monad morphism, (δI , ω) : (1, 11) −→ (C, F ), use the men-
tioned isomorphism with (D, H, µH , ηH) = (1 , 11, 111 , 111), that is, the triv-
ial monad on the category 1, and L a R = GF a VF . Therefore, there exists
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an adjunction morphism (δI , [δI ]ω) : G11 a V11 −→ GF a VF . According to
the 2-functor ΨK , the functor [δI ]ω : 1 −→ CF , acts as

[δI ]ω(0) = δI(0) = I,

[δI ]ω(10) = (ω(0) · δI(10))] = (ηF I)].

That is to say [δI ]ω = δĨ : 111 −→ CF , where Ĩ = I.
Suppose that we have the following 2-cell in Mnd•(2Cat),

((C × C)× C, (F × F )× F ) (C, F ).

(⊗·(⊗×C), ζ(⊗×C)◦⊗(ζ×F ))

%%

(⊗·(C×⊗)·aC , ζ(C×⊗)aC◦⊗(F×ζ)aC)

99
a

��

In order to continue with the calculations, we use the following notation,
for the sake of simplification

·ζ2 := ζ(⊗× C) ◦ ⊗(ζ × F ),

·ζ2 := ζ(C × ⊗)aC ◦ ⊗(F × ζ)aC ,

(·)3 := (· × ·)× · .
According to the isomorphism of categories given by (6.2), to the previous

2-cell in Mnd•(2Cat) corresponds a 2-cell, (αa, βa) in AdjL(2Cat), where
αa = a and we rename βa = ã and such that

C3 C

(CF )3 CF .

⊗·(⊗×C)

%%

⊗·(C×⊗)·aC

99a
��

[⊗·(⊗×C)]·ζ2

%%

[⊗·(C×⊗)·aC ]·ζ2

99ã
��

(GF )3

��

(VF )3

OO

GF

��

VF

OO
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It can be show that

[⊗ · (⊗× C)]·ζ2 = ⊗̃ · (⊗̃ × CF )

[⊗ · (C × ⊗) · aC ]·ζ2 = ⊗̃ · (CF × ⊗̃) · aCF .
Therefore, we have a natural transformation ã : ⊗̃ · (⊗̃ × CF ) −→ ⊗̃ · (CF ×
⊗̃) · aCF that will be part of a monoidal structure on CF . According to the
2-functor ΨK , the component of ã at ((X,Y ), Z) is

ãX,Y,Z = (ηF (X ⊗ (Y ⊗ Z)) · aX,Y,Z)].

Suppose that we have a 2-cell in Mnd•(2Cat) of the form l :
(
⊗·(δI×C)·

l−1
C , ζ(δI ×C) l−1

C ◦⊗(ω×F ) l−1
C
)
−→ (1C , 1F ) : (C, F ) −→ (C, F ). Therefore,

we obtain a natural transformation l̃ : ⊗̃ · (δĨ × CF ) · l−1
CF −→ 1CF . Using

the definition of the functor ΨK on the 2-cell l, the component of l̃, on the
object X in CF , is

l̃X = (ηFX · lX)]. (7.8)

Similarly, for the monad morphism r : (⊗·(C×δI) ·r−1
C , ζ(C×δI)r−1

C ◦⊗(F ×
ω)r−1
C ) −→ (1C , 1F ) : (C, F ) −→ (C, F ), we obtain a natural transformation

r̃ : ⊗ζ · (CF × δĨ) · r−1
CF −→ 1CF : CF −→ CF .

The proof of the coherence conditions are left to the reader.
In summary, (CF , ⊗̃, Ĩ, ã, l̃, r̃) has a monoidal structure on CF .
(3)⇒(2) Using the isomorphism, given by (6.2), we get the return of

the proof. For example, the image, under ΦK , for the 2-cell of adjunctions
(a, ã) : (⊗ · (⊗× C),⊗ · (C × ⊗) · aC) −→ (⊗̃ · (⊗̃ × CF ), ⊗̃ · (CF × ⊗̃) · aCF ) :
(GF ×GF )×GF a (VF × VF )× VF is

ΦK((a, ã))

= a : (⊗, π⊗)(⊗× C, π⊗×C) −→ (⊗, π⊗)(C × ⊗, πC×⊗)(aC , πaC)

: (C3, F 3) −→ (C, F )

= a : (⊗, π⊗)(⊗× C, π⊗ × F ) −→
(⊗, π⊗)(C × ⊗, F × π⊗)(aC , 1F×(F×F )·aC)

: (C3, F 3) −→ (C, F )

= a :
(
⊗ ·(⊗× C), π⊗(⊗× C) ◦ ⊗(π⊗ × F )

)
−→(

⊗ ·(C × C) · aC , π⊗(C × ⊗)aC ◦ ⊗(F × π⊗)aC
)

: (C3, F 3) −→ (C, F ).
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We used the fact that aC is a morphism of adjunctions.

8 Liftings to the Eilenberg-Moore algebras & Extensions to
the Kleisli categories

This is probably the most explored section in this article, a few examples of
the detailed proofs for the following statements are found in [1] and [9]. In
this section, we treated these statements only as direct consequences of the
isomorphisms of the categories given by (4.1) and (6.2).

Theorem 8.1. There is a bijective correspondence, natural in (C, F, µF , ηF )
and (D, H, µH , ηH), between the structures

(1) Liftings to the Eilenberg-Moore algebras, for the functor P : C −→ D.
That is to say, the following diagram commutes:

C D.

CF DH
Q //

P
//

UF

��

UH

��

(2) Morphisms of monads (P,ϕ) : (C, F ) −→ (D, H). That is to say, a
natural transformation ϕ : HP −→ PF , such that the following diagrams
commute:

HHP HPF PFF

HP PF

Hϕ // ϕF //

ϕ
//

µHP

��

PµF

��

P

HP PF.

ηHP

{{

PηF

##
ϕ

//

Theorem 8.2. There exists a bijective correspondence, natural in (C, F, µF , ηF )
and (D, H, µH , ηH), between the structures
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(1) Extensions to the Kleisli categories, for the functor P : C −→ D.
That is to say, the following diagram commutes

CF DH .

C DP //

Q
//

GF

��

GH

��

(2) Morphisms of monads (P,ϕ) : (C, F ) −→ (D, H). That is to say,
a natural transformation ϕ : PF −→ HP such that the following diagrams
commute

PFF HPF HHP

PF HP

ϕF // Hϕ //

ϕ
//

PµF

��

µHP

��

P

PF HP.

PηF

{{

ηHP

##
ϕ

//

9 Actions on the Kleisli category

In this section, we relate actions on the Kleisli category and strong monads
through the isomorphism given by the corresponding 2-adjunction. In order
to do so, the following definitions have to be stated.

Definition 9.1. Let (C,⊗, I) be a monoidal category. A left C-action on the
category B is a functor� : C×B −→ B together with natural transformations
ν : �(⊗×B) −→ �(C ×⊗), a∗ : (C ×C)×B −→ B and j : �(δI ×B)l−1

C −→
1B : B −→ B such that they fulfill the following commutative diagrams, for
objects C,C ′, C ′′ in C and B in B,
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[(C ⊗ C ′)⊗ C ′′] �B (C ⊗ C ′) � (C ′′ �B)

[C ⊗ (C ′ ⊗ C ′′)] �B

C � [(C ′ ⊗ C ′′) �B] C � [C ′ � (C ′′ �B)]

νC⊗C′,C′′,B //

νC,C′,C′′�B

��

aC,C′,C′′�B

��

νC,C′⊗C′′,B

��

C�νC′,C′′,B
//

and

(C ⊗ I) �B C � (I �B)

C �B

νC,I,B //

C�jB
��

rC�B
��

(I ⊗ C) �B I � (C �B)

C �B.

νI,C,B //

jC�B
��

lC�B
��

Definition 9.2. A right strong monad ((F, σr), µF , ηF ), on the monoidal
category (C,⊗, I), is a usual monad (F, µF , ηF ), on C, with a natural trans-
formation σr : A ⊗ FB −→ F (A ⊗ B) such that the following diagrams
commute:

A⊗ FFB F (A⊗ FB) FF (A⊗B)

A⊗ FB F (A⊗B)

(a)
σrA,FB //

FσrA,B //

µF (A⊗B)

��

A⊗µFB

��

σr
// (9.1)

A⊗B

A⊗ FB F (A⊗B)

(b)

ηF (A⊗B)

��

A⊗ηFB

��

σr
//
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and

(A⊗B)⊗ FC F ((A⊗B)⊗ C)

A⊗ (B ⊗ FC) A⊗ F (B ⊗ C) F (A⊗ (B ⊗ C))

(a)
σrA⊗B,C //

FaA,B,C

��

aA,B,FC

��

A⊗σrB,C
//

σrA,B⊗C
//

(9.2)

I ⊗ FA F (I ⊗A)

FA.

(b)
σrI,A //

FlA

��
lFA

��

Definition 9.3. A left strong monad ((F, σl), µF , ηF ) on a monoidal cate-
gory (C,⊗, I), is a usual monad (F, µF , ηF ) on C, together with a natural
transformation σlA,B : FA⊗ B −→ F (A⊗ B) such that fulfills the commu-
tativity of dual diagrams like (9.1) and (9.2).

The following theorem can be stated, note that the proof is just an
adaptation for the corresponding lax monoidal case.

Theorem 9.4. There exists a bijection between the following structures
(1) Right strong monads ((F, σr), µF , ηF ) on the monoidal category

(C,⊗, I, a, r, l).
(2) Morphisms and transformations of monads of the form

(⊗, σr) : (C × C, C × F ) −→ (C, F )

a : (⊗ · (⊗× C), σr(⊗× C)) −→
(⊗ · (C × ⊗) · aC , σr(C × ⊗)aC ◦ ⊗(C × σr)aC)

: ((C × C)× C, (C × C)× F ) −→ (C, F )

l : (⊗ · (δI × C) · l−1
C , σr(δI × C) l−1

C ) −→ (1C , 1F ) : (C, F ) −→ (C, F ).
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(3) Left actions on the Kleisli category, CF , � : C × CF −→ CF such that
the following diagrams of morphisms and surfaces commute:

C × C C

C × CF CF

⊗ //

GF

��

C×GF

��

�
// (9.3)

(a)

C2 × C C

C2 × CF CF

⊗·(⊗×C)

##

⊗·(C×⊗)·aC

;;a
��

�·(⊗×CF )

$$

�·(C×�)·aC∗

::ã
��

C2×GF

��

GF

��

(b)

C C

CF CF .

⊗·(δI×C)·l−1
C

##

1C

;;l
��

�·(δI×CF )·l−1
CF

%%

1CF

99l̃
��

GF

��

GF

��

(9.4)

We state the dual theorem as follows.

Theorem 9.5. There exists a bijection between the following structures
(1) Left strong monads ((F, σl), µF , ηF ) on the monoidal category

(C,⊗, I, a, r, l).
(2) Morphisms and transformations of monads of the form

(⊗, ϕ) : (C × C, F × C) −→ (C, F )
a : (⊗ · (⊗× C), ϕ(⊗× C) ◦ ⊗(ϕ× C)) −→

(⊗ · (C × ⊗) · aC , ϕ(C × ⊗)aC)
: ((C × C)× C, (F × C)× C) −→ (C, F )

r : (⊗ · (C × δI) · r−1
C , ϕ(C × δI)r−1

C ) −→ (1C , 1F ) : (C, F ) −→ (C, F ).
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Right actions on the Kleisli category, CF , � : CF × C −→ CF such that the
following diagrams of morphisms and surfaces commute:

C × C C

CF × C CF

⊗ //

GF

��

GF×C

��

�
//

(a)

C2 × C C

(CF × C)× C CF

⊗·(⊗×C)

##

⊗·(C×⊗)·aC

;;a
��

�·(�×C)

$$

�·(CF×⊗)·aC∗

::ã
��

(GF×C)×C

��

GF

��

(b)

C C

CF CF .

⊗·(C×δI)·r−1
C

##

1C

;;r
��

�·(CF×δI)·r−1
CF

%%

1CF

99r̃
��

GF

��

GF

��

We left to the reader the writing of dual statements, that is, the ones
that corresponds to the Eilenberg-Moore category, where the direction of
the natural transformations are inverted, for example σ̂rA,B : F (A⊗B) −→
A⊗ FB.

10 Functor algebras

Check Proposition II.1.1 in [4] and [6] for this section. We define the category
of H-left functor algebras for a given monad (D, H, µH , ηH).

Definition 10.1. The category of left H-functor algebras, for the pair
(C,D), denoted as HF or HM, is defined as follows. The objects are given
by (J, λJ), where J : C −→ D is a functor and λJ : HJ −→ J is a natural
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transformation such that the following diagrams commute:

HHJ HJ

HJ J

µHJ //

λJ

��

HλJ

��

λJ
//

J HJ

J.

ηHJ //

λJ

��
1J

��

(10.1)

A morphism of functor algebras, θ : (J, λJ) −→ (K,λK), is a natural
transformation θ : J −→ K such that the following diagram commute:

HJ HK

J K.

Hθ //

λK

��

λJ

��

θ
// (10.2)

We realize that the diagrams given by (10.1), for a leftH-functor algebra,
account for a monad morphism of the form (J, λJ) : (C, 1C) −→ (D, H). In
the same way, the commutative diagram for a morphism of left H-functor
algebras, as in (10.2), account for a monad transformation θ : (J, λJ) −→
(K,λK) : (C, 1C) −→ (D, H).

Using the isomorphism for the Eilenberg-Moore 2-adjunction, given by
(4.1), the category HF is isomorphic to the following category, named pos-
sibly as category of liftings to DH , for the pair (C,D). The objects of such
category are functor pairs (J, Ĵ ) such that they complete to an adjunction
morphism, in AdjR(2Cat), of the form (J, Ĵ ) : 1C a 1C −→ DH a UH . That
is to say, the following diagram commutes:

C D

C1C DH

J //

11C

OO

UH

OO

Ĵ

//
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that is,

C D

DH .

J //

UH

OO

Ĵ
!!

The morphisms of such category are the usual morphisms of adjunctions
(α, β) : (J, Ĵ ) −→ (K, K̂) : 1C a 1C −→ DH a UH . We then proved the
following theorem.

Theorem 10.2. There exists an isomorphism, natural on C and (D, H),
between the categories

(1) The category of left H-functor algebras HF .
(2) The category of liftings to DH, for the pair (C,D).

Dually, we have the category of right H-functor algebras, for the monad
(D, H, µH , ηH), denoted as FH orMH . The objects are pairs (J, ρJ), where
the natural transformation ρJ : JH −→ J is such that it fulfills diagrams
dual to those in (10.1). In the same (dual) way as before, this category is
the same as the category HomMnd•(2Cat)((D, H), (C, 1C)). Therefore, using
the isomorphism (6.2), the previous category is isomorphic to the category
named as extensions from DH , for the pair (D, C). The objects of this
category are pairs of functors (J, J̃ ) such that they complete to an adjunction
morphism (J, J̃ ) : GH a VH −→ 1C a 1C in AdjL(2Cat). In particular, the
following diagram commutes:

D C

DH .

J //

J̃

==

GH

��

We also proved the following theorem

Theorem 10.3. There exists an isomorphism, natural on (D, H) and C,
between the categories

(1) The category of right H-functor algebras FH.
(2) The category of extensions from DH, for the pair (D, C).
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11 Conclusions and future work

This survey has the objective to show how several situations for the theory
of monads are connected in a very simple way, through a 2-adjunction. Any
person who has taught a course on monads would agree that this structure,
of a 2-adjunction, can be used as an educational purpose in the sense that a
simple structure can account for several situations and which can spare the,
otherwise cumbersome, details of the proofs.

For future work, we have a few recommendations. The reader may
find interesting to extent the part of strong monads and actions over the
Kleisli categories to strong symmetrical monads and use the actions for the
Eilenberg-Moore case. It would be interesting also to contextualize the case
of the monoidal liftings and monoidal extensions according to the formal
theory of monoidal monads, and the standard objects, given in [10].

The reader may want to find more situations in the monad theory that
can use the isomorphism provided by this pair of 2-adjunctions, the authors
will certainly pursue this issue.
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