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Abstract. In this paper, we show that injectivity with respect to the class
D of dense monomorphisms of an idempotent and weakly hereditary closure
operator of an arbitrary category well-behaves. Indeed, if M is a subclass
of monomorphisms, M∩ D-injectivity well-behaves. We also introduce the
notion of (r, t)-injectivity in the category S-Act, where r and t are Hoehnke
radicals, and discuss whether this kind of injectivity well-behaves.

1 Introduction and preliminaries

Various generalizations of injectivity have been studied in various cate-
gories for their own and also tightly related notions such as purity, com-
plete Boolean algebras (in the category of distributive lattices), essential
monomorphisms, exponentiability, etc, see [2, 3, 12, 13, 18, 19, 21]. M-
injectivity, for which M is a subclass of morphisms, is one of these gen-
eralizations which has been captured the interest of many mathematicians
in different fields, [3, 11, 12, 21]. Here we concentrate on another gener-
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alization of injectivity, that is, (M, E)-injectivity, which is also studied in
different branches of mathematics, see for example [20]. Indeed, given two
arbitrary classes of morphisms M and E in a category C, we say that an
object Q is (M, E)-injective if any E-morphism f : A→ Q can be extended
through every M-morphism m : A → B. More explicitly, Q is (M, E)-
injective if for every f : A → Q in E and every m : A → B in M, there
exists a morphism f̄ : B → Q such that f̄m = f . When E is the class of all
morphisms the notions ofM-injectivity and (M, E)-injectivity coincide.

Here, we focus on a special kind of (M, E)-injectivity, that is, (r, t)-
injectivity, in the category S-Act, where r and t are Hoehnke radicals.
Specially, we show that for some Hoehnke radicals r and t, the notion of
(r, t)-injectivity well-behaves.

Recall from [3] that the notion of M-injectivity well-behaves if every
object has anM-injective hull EM(A) which is both maximalM-essential
extension and minimal M-injective extension of A, and every M-injective
object isM-absolute retract and has no properM-essential extension.

In this paper, we first show that the notion of M∩ D-injectivity well-
behaves in a category C whenM is a subclass of monomorphisms and D is
the class of dense monomorphisms of an idempotent and weakly hereditary
closure operator of the category C. Then, in Sections 3 and 4, we investigate
a special type of (M, E)-injectivity in the category S-Act which is related to
Hoehnke radicals r and t, that is, (r, t)-injectivity. In fact (r, t)-injectivity in
S-Act is the counterpart of the notion of (ρ, σ)-injectivity in which ρ and σ
are radicals, in the category R-Mod of R-modules [4, 5, 16, 19]. Eventually,
in Section 5, using the given criterion in Section 2 and employing t-subacts
defined in Section 4, we show that for some Hoehnke radicals r and t, (r, t)-
injectivity well-behaves.

Now let us briefly recall some necessary notions needed in this paper.
An S-act A over a monoid S is a set A together with an action (s, a) 7→

sa, for a ∈ A, s ∈ S, subject to the rules s(ta) = (st)a and 1a = a, where 1
is the identity element of the monoid S, a ∈ A and s, t ∈ S. We will work
in the category of all S-acts and all homomorphisms f : A→ B, defined by
f(sa) = sf(a), for all a ∈ A and s ∈ S. An element z of an S-act A is said
to be a zero if sz = z, for all s ∈ S. Also, we say that an S-act A is trivial
if |A| ≤ 1.

An equivalence relation χ on an S-act A is called a congruence on A if
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aχa′ implies (sa)χ(sa′), for all s ∈ S. We denote the set of all congruences
on A by Con(A), which forms a lattice, see [6]. In the lattice Con(A) there
is the smallest congruence, the diagonal relation ∆A = {(a, a)|a ∈ A}, and
the largest congruence, the total relation ∇A = {(a, b)| a, b ∈ A}.

Every congruence χ ∈ Con(A) determines a partition of A into χ-classes
and a set Σχ of those χ-classes each of which is a nontrivial subact of A.
Of course, Σχ may be empty. Throughout this paper, we use the general
Rees congruence introduced in [22]; that is, in a general Rees congruence
the classes are either subacts or consist of one element. Also, every set
Σ of disjoint nontrivial subacts of an S-act A determines a general Rees
congruence ρΣ given by

(a, b) ∈ ρΣ ⇐⇒
{
a, b ∈ B for some B ∈ Σ

a = b otherwise.

We call ρΣ the general Rees congruence generated by Σ on A and A/ρΣ

the general Rees factor of A over ρΣ (or for short, the general Rees factor).
It is worth noting that in the case Σ = {B} the general Rees congruence and
Rees congruence coincide. In this case, we use the notations ρB and A/B
instead of ρΣ and A/ρΣ, respectively. For every Congruence χ ∈ Con(A) and
a homomorphism f : A→ B, we define f(χ) := {(f(a), f(a′)) | (a, a′) ∈ χ}.

Note 1.1. A congruence χB on a subact B of an S-act A can be extended
to a congruence on A. There is always the smallest extension χA of χB on
A given by

(a, b) ∈ χA ⇐⇒
{

(a, b) ∈ χB
a = b, otherwise.

Therefore we may consider each congruence χB ∈ Con(B) as a congruence
in Con(A) by identifying χB and χA. In particular, ∇B can be considered
as the generated Rees congruence by B, ρB ∈ Con(A) .

In this paper whenever talking about a subclass C of S-acts, we assume
that C is closed under taking isomorphic copies and C contains all trivial
subacts. In the sequel we frequently use the notion of closedness of a subclass
C of S-acts under a special property, such as homomorphic images, congru-
ence extensions, general Rees extensions, subacts, products, coproducts, and
inductive property defined in [22].
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Although the radical notion for S-acts was introduced and investigated
by R. Wiegandt [22], but, in order to employ this notion in S-Act, it seems
necessary to define the radical in a more general manner. Here we reform the
definition of Hoehnke radical given in [22] by the category theoretical view of
radicals given in [7] and recall from [14] the following definition of Hoehnke
radical in S-Act, which may also be called a normal Hoehnke radical.

Definition 1.2. A normal Hoehnke radical (or simply a Hoehnke radical)
is an assignment r : A 7→ r(A), assigning to each S-act A a congruence
r(A) ∈ Con(A) in such a way that

(i) r is functorial, that is, every homomorphism f : A → B induces the
natural homomorphism f̃ : A/r(A) → B/r(B) or equivantly f induces the
homomorphism f(r) : r(A) → r(B) assigning each pair (a, a′) ∈ r(A) to
(f(a), f(a′)) ∈ r(B). Note that r(A) and r(B) are, respectively, subacts of
A×A and B ×B, since r(A) ∈ Con(A), r(B) ∈ Con(B), and

(ii) r(A/r(A)) = ∆A/r(A).

With every Hoehnke radical r, one can associate two classes of S-acts,
namely radical class Rr and semisimple class Sr, as follows:

Rr = {A | r(A) = ∇A},
Sr = {A | r(A) = ∆A}.

The class Rr is called the radical class of r (or r-radical class) and its
members are called r-radical S-acts, and the class Sr is called the semisimple
class of r (or r-semisimple class) and its members are called r-semisimple
S-acts.

Definition 1.3. A Hoehnke radical r of S-acts is called a Kurosh-Amitsur
radical if

(i) r(A) is a general Rees congruence, for all S-acts A, and
(ii) for every subact-r(A)-class B, r(B) = ∇B.

We recall, from [22], that a subclass S of S-acts is a semisimple class of
a Kurosh-Amitsur radical r if and only if

1. S is closed under taking subacts,

2. S is closed under taking products,
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3. S is closed under taking congruence extensions.

Also, a subclass R of S-acts is a Kurosh-Amitsur radical class of a radical
r if and only if

1. R is homomorphically closed,

2. R has the inductive property,

3. R is closed under general Rees extensions.

Let us now define some radicals endowed with a certain property which
is used in the sequel.

Definition 1.4. A radical r is said to be
(i) hereditary if for every S-act A and every subact B of A, r(B) =

r(A) ∧∇B,
(ii) pre-hereditary if for every S-act A and Y ≤ X ∈ Σr(A), Y ∈ Rr,
(iii) weakly-hereditary if, for every S-act A with a zero element θ and

X ∈ Σr(A) with θ ∈ X, X ∈ Rr,
(iv) zero-hereditary if, for every S-act A with a zero element θ and Y ≤

X ∈ Σr(A) with θ ∈ Y , Y ∈ Rr,
(v) pre-Kurosh if, for every S-act A and X ∈ Σr(A), X ∈ Rr.

Also, we recall from [9] that a closure operator C of the category C with
respect to the classM of subobjects is a family C = (CX)X∈C of maps

CX : M/X → M/X
(m : M → X)  (CX(m) : CX(M)→ X),

for every m ∈M, such that for every X ∈ C

(Extension) m ≤ CX(m), for all m ∈M/X,

(Monotonicity) if m ≤ m′ inM/X , then CX(m) ≤ CX(m′),

(Continuity) f(CX(m)) ≤ CY (f(m)), for all f : X → Y in C and m ∈
M/X.
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For everyM-subobject m : M → X we have the following commutative
diagram.

M
jm //

m
  

CX(M)

CX(m)zz
X

A closure operator C is called weakly hereditary if CX(m) = CCX(M)(m),
for every M-subobject m : M → X. Also, a closure operator C is called
idempotent if CX(m) = CX(CX(m)) for everyM-subobject m : M → X.

An M-subobject m : A → X of an object X is said to be C-closed
if CX(m) = m and it is said to be C-dense if CX(m) is an isomorphism.
An M-morphism m : B → A is said C-dense monomorphism if m(B) is
C-dense in A.

The readers may consult [1, 6, 17] for general facts about category theory
and universal algebra used in this paper. Here we also follow the notations
and terminologies used there.

2 Injectivity relative to dense monomorphisms of a closure
operator

Consider a subclassM of monomorphisms in a category C such that every
object A in C has theM-injective hull (mA;EM(A)). Also let C = (CX)X∈C
be a weakly hereditary and idempotent closure operator with respect to the
class of monomorphisms and D be the class of C-dense monomorphisms. In
this section, a monomorphism inM∩D is calledMD-monomorphism and
it is shown that injectivity with respect to theMD-monomorphisms, the so
calledMD-injectivity, well-behaves. To do so, we begin with the following
definition.

Definition 2.1. An object Q in the category C is said to beMD-injective
if for everyMD-monomorphism m : B → A and any morphism f : B → Q
there exists a morphism f̄ : A → Q extending f , that is f̄ completes the
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following commutative triangle.

B
m //

f
��

A

f̄~~
Q

Lemma 2.2. Let A be an object in the category C and m : X → Y be an
MD-monomorphism. Then, for any morphism f : X → A, there exists
a morphism f̄ : Y → CEM(A)(A) which commutes the following square, in
which EM(A) is theM-injective hull.

X
m //

f

��

Y

f̄
��

A
jA

// C
EM(A)(A)

Proof. Given a morphism f : X → A and an MD-monomorphism m :
X → Y , the following commutative square follows from the M-injectivity
of EM(A), in which f ′ : Y → EM(A) extends mA ◦ f through m.

X
m //

f
��

Y

f ′
��

A mA
// EM(A)

But, by Diagonalization Lemma (see 2.4 in [9]) and the C-density of m,
there is a uniquely determined morphism f̄ : Y → CEM(A)(A) rendering the
following diagram and we are done.

X
m //

f

��

Y
f̄

xx
f ′

��

CEM(A)(A)

CEM(A)(mA)

&&
A mA

//

jA
::

EM(A)
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Recall the following types of essential extensions usually used in the
literature.

Definition 2.3. Given a subclass M of monomorphisms, an
M-monomorphism m : M → X will be called:

(i)Me1-essential if f ◦m ∈M implies f ∈M, for every morphism f .
(ii) Me2-essential if f ◦ m being monomorphism implies that f is a

monomorphism.
(iii)Me3-essential if f ◦m ∈ M implies that f is a monomorphism, for

every morphism f .

Notation 2.4. We denote the class of Mei-essential monomorphisms by
M∗ei , for i ∈ {1, 2, 3}.

Definition 2.5. An (MD)ei-injective hull of an objectA, i = 1, 2, 3, is a pair
(mA, E(MD)ei

(A)) consisting of anMD-injective object E(MD)ei
(A) and an

(MD)ei-essential monomorphism mA : A→ E(MD)ei
(A), for i = 1, 2, 3.

Proposition 2.6. Let A be an object in the category C and i ∈ {1, 2, 3}.
Then (jmA , CEM(A)(A)) is the (MD)ei-injective hull of A, if M∗ei is left
cancelable for monomorphisms, that is nm ∈ M∗ei implies m ∈ M∗ei , when
n and m are monomorphisms.

Proof. Since C is an idempotent closure operator, CEM(A)(A) is an MD-
injective object, by Lemma 2.2. So to prove, we show that jmA : A →
CEM(A)(A) is an (MD)ei-essential monomorphism where mA is an Mei-
essential monomorphism.

A
jmA //

mA ""

CEM(A)(A)

CEM(A)(mA)xx
EM(A)

Indeed, by the weakly heredity of the closure operator C, jmA is a C-dense
monomorphism and if jmA◦f is a C-dense monomorphism, then f is C-dense
monomorphism, for every morphism f , see Section 2.3 of [9]. Also, sinceM∗ei
is left cancelable for monomorphisms, theMei-essentially ofmA implies that
jmA is an Mei-essential monomorphism. So, jmA : A → CEM(A)(A) is an
(MD)ei-essential monomorphism.
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Corollary 2.7. If the class M∗ei is left cancellable for monomorphisms,
then (jmA , CEM(A)(A)) is the minimal MD-injective extension of A and
the maximal (MD)ei-essential extension of A, for every object A ∈ C and
i ∈ {1, 2, 3}.

Proof. The result easily follows from the following commutative triangles in
which (q,Q) is anMD-injective extension of A and (m,M) is an (MD)ei-
essential extension of A.

A
m //

jmA
��

M

jmAzz

A
jmA //

q

��

CEM(A)(A)

q̄
zz

CEM(A)(A) Q

With Lemma 2.7 of [11] in mind, we also have the following corollary.

Corollary 2.8. Let the class M∗ei be left cancellable for monomorphisms.
Then the following conditions are equivalent, for any object A and i ∈
{1, 2, 3}.

(1) A isMD-injective.
(2) A isMD-absolute retract.
(3) A has no proper (MD)ei-essential extension.

Proof. (1)⇔ (2), immediately, follows from Lemma 2.7 of [11] and (1)⇔ (3)
follows from Proposition 2.6 and Corollary 2.7.

Based on the results and discussions presented in this section, we have
the following conclusions.

Corollary 2.9. LetM be a subclass of monomorphisms in a category C such
that the category C has enough M-injective hull and M∗ei is left cancellable
for monomorphisms, where i ∈ {1, 2, 3}. Also, let C be an idempotent and
weakly hereditary closure operator with respect to the class of monomor-
phisms. Then the notion ofMD-injectivity well-behaves.

Moreover, if the category C has enough injective hull and M can be ex-
tended to the class of dense monomorphisms of an idempotent and weakly
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hereditary closure operator with respect to the class of monomorphisms, then
the notion ofM-injectivity well-behaves.

Proof. The result, immediately, follows from Proposition 2.6 and corollar-
ies 2.7 and 2.8. Moreover, If M can be extended to the class of dense
monomorphisms of an idempotent and weakly hereditary closure operator
C, then M = M∩D in which D is the class of C-dense monomorphisms.
That is,M coincides with the classMD-monomorphisms.

Example 2.10. In the categories R-mod and S-Act, the class of essential
monomorphisms is left cancellable for monomorphisms. So, by the above
corollary, we have the following examples.

(1) Given an idempotent radical r over the category R-mod, the closure
operator cr defined by crM (N) = π−1(r(M/N), for every N ≤M ∈ R-mod
and the canonical epimorphism π : M → M/N , is both weakly hereditary
and idempotent, see Chapter 3 of [9]. So r-injectivity in the category R-
mod well-behaves and cr(E(M))(M) is the r-injective hull of an R-module M
when E(M) is the injective hull of M , see [8].

(2) Given a weakly hereditary Hoehnke radical r over the category S-
Act, the closure operator cr defined by crA(B) = π−1(r([B]r(A/B)), for every
B ≤ A ∈ S-Act and the canonical epimorphism π : A → A/B, is both
weakly hereditary and idempotent, see [15]. So, r-injectivity is well-behavior
and cr(E(A))(A) is the r-injective hull of an S-act A when E(A) is the injective
hull of A.

(3) Take Cp to be the closure operator defined by

Cp(A) = {b ∈ B | ∃a ∈ A, ρb = ρa}

in which ρx : S → A is defined by ρx(s) = sx, for each s ∈ S. In [10], it is
shown that Cp is both idempotent and weakly hereditary. So, for an S-act
A, Cp(E(A))(A) is the Cp-injective hull of A.

We end this section with giving a criterion for the left cancellability of
M∗ei for monomorphisms, for i ∈ {1, 2, 3}.

Definition 2.11. Let M be a subclass of monomorphisms of a category
C which has pushouts. We say that pushouts transfer M-monomorphisms
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whenever, for the pushout diagram

X
f //

g

��

Y

h
��

Z
k //W

with f ∈M, we have k ∈M.

Theorem 2.12. Let a category C have pushouts and M be a subclass of
monomorphisms. Then M∗ei is left cancellable for monomorphisms, for
i ∈ {1, 2, 3}, if M is right cancellable for monomorphisms, closed under
composition and pushouts transferM-monomorphisms.

Proof. Let f and g be monomorphisms with m = gf ∈M∗e1 . We show that
f isMe1-essential monomorphism. To do so, let h be a morphism such that
hf isM-monomorphism. Taking the pushout of g, h we get morphisms p, q
with pg = qh.

A
f // X

h //

g

��

Y

q

��
Z

p //W

But since m = gf is an M-monomorphism, the right cancellability of M
implies g and consequently q are M-monomorphisms. So qhf is an M-
monomorphism, by the closedness ofM under composition. Thus pgf = pm
is anM-monomorphism. Now, we can infer from theMe1-essentially of m
that p is anM-monomorphism. Hence the closedness ofM under composi-
tion implies that pg = qh is anM-monomorphism. So h is a monomorphism.
Therefore, sinceM is right cancellable for monomorphisms, h ∈ M follows
from hf ∈M. The left cancellability ofM∗e2 andM∗e3 are proved completely
analogues.

3 (r, t)-injectivity

In this section, we introduce the notion of (r, t)-injectivity, with respect to
two Hoehnke radicals r and t over the category S-Act, similar to what
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Beachy defined for R-modules in [4]. We also give some characterization of
the notion of (r, t)-injectivity.

Given a Hoehnke radical r, a subact B of an S-act A is said to be r-
dense if A/B ∈ Rr. Similarly, a congruence χ on A is said to be r-dense if
A/χ ∈ Rr. A monomorphism ι : B −→ A is said r-monomorphism if ι(B)
is r-dense in A.

Definition 3.1. Let r and t be two Hoehnke radicals over S-Act.
(i) A pair (m : B → A, e : B → C) of homomorphisms is said to

be (r, t)-pair if m is an r-monomorphism with the non-empty domain and
m(ker(e)) ∪∆A is a t-dense congruence on A.

(ii) An S-act Q is said to be (r, t)-injective if every (r, t)-pair
(m : B → A, f : B → Q) can be completed to the following commuta-
tive triangle.

B
m //

f
��

A

f̄��
Q

Theorem 3.2. Let r and t be two Hoehnke radicals. Then a subact P of an
(r, t)-injective S-act Q is (r, t)-injective if Q/P ∈ Sr.

Proof. Suppose Q/P ∈ Sr and consider the commutative diagram

B
m //

f
��

A

f̄
��

P �
� // Q

in which (m, f) is an (r, t)-pair. Then the homomorphism f ′ : A/m(B) →
Q/P defined by a/m(B) 7→ f̄(a)/P arises. Now since A/m(B) ∈ Rr and
Rr is closed under homomorphic images, f ′(A/m(B)) ∈ Rr. Also, we have
Q/P ∈ Sr. So the closedness of Sr under subacts implies that f ′(A/m(B)) ∈
Sr and therefore f ′(A/m(B)) ∈ Sr ∩ Rr. But Sr ∩ Rr consists of the trivial
S-acts, so f ′ is a zero homomorphism. The commutativity of the above
square ensures that f̄(A) ⊆ P . That is, f̄ is an extension of f from A to P ,
and we are done.
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It is worth noting that injectivity of Q relative to the (r, t)-pairs of the
form (A0 ↪→ A, f : A0 → Q), implies injectivity of Q relative to all (r, t)-
pairs. Indeed, for every (r, t)-pair (m : B → A, f : B → Q), considering
the following commutative diagram, one can define f ′ : m(B) → Q, by
f ′(m(b)) = f(b), for every b ∈ B, and extend f ′ to f̄ through the inclusion
map. Hence f is extended to f̄ through m.

B
m //

f
""

m(B) �
� //

f ′

��

A

f̄}}
Q

In the following theorem, we use the above fact and give an analogous
Skornjakov criterion for (r, t)-injective S-acts when r is zero-hereditary.

Theorem 3.3 (Skornjakov). Let r be a zero-hereditary Hoehnke radical and
t be a hereditary Hoehnke radical over S-Act. Also, let Q be an S-act with a
zero element θ. Then Q is (r, t)-injective if and only if, for every (r, t)-pair
(A0 ↪→ A, f : A0 → Q) in which A is a cyclic S-act, there exists f̄ : A→ Q
in such a way that f̄ |A0 = f .

Proof. For the nontrivial way, we follow the standard proof of Skornjakov
theorem and show that, for every (r, t)-pair (B ↪→ A, f : B → Q), f can be
extended to A. So we take the poset

T = {h : C → Q | B ≤ C ≤ A, and h|B = f}

together with the partial order

h1 ≤ h2 ⇔ Dom(h1) ≤ Dom(h2) and h2|Dom(h1) = h1.

We should note that, for every h : C → Q in T , since B ≤ C ≤ A and
B is r-dense in A, C is so. Also ker(h) ∪ ∆A is a t-dense congruence on
A, for every h ∈ T , because A/(ker(h) ∪∆A) is the homomorphic image of
A/(ker(f)∪∆A) and Rt is homomorphically closed. Also one can easily see
that every ascending chain {hi : Ci → Q}i∈I of (T,≤) has the upper bound
h :
⋃
i∈I Ci → Q in which h(x) = hi(x); where x ∈ Dom(hi). Hence T has a

maximal element such as h : A1 → Q, by Zorn’s Lemma. Now we show that
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A = A1. To do so, suppose on the contrary that A1 � A. Then there exists
a ∈ A \A1 for which we define D = A1 ∩ Sa. If D = ∅, then

f̄ : A −→ Q

a 7→
{
h(a) a ∈ A1

θ a ∈ A \A1

is an extension of f which commutes the following diagram which is a con-
tradiction:

B

f
��

� � // A

f̄��
Q

If D 6= ∅, then D is an r-dense subact of Sa because the kernel of a ho-
momorphism k : Sa → A/A1 defined by k(sa) = sa/A1 is ρD. So, by
Homomorphism Theorem for S-acts, Sa/D is isomorphic to a subact H of
A/A1. Now, since r is a zero-hereditary Hoehnke radical and H is a subact
with a zero element of the r-radical S-act A/A1, we have r(H) = ∇H . That
is r(Sa/D) = ∇Sa/D. Also, by taking g = h|D : D → Q, ker(g) ∪∆Sa is a
t-dense congruence on Sa. Indeed, ker(g) = ker(h)∩∇D = ker(h)∩∇Sa and
Sa/(ker(g) ∪∆Sa) is isomorphic to a subact H ′ of A/(ker(h) ∪∆A). Now,
since ker(h) ∩ ∆A is t-dense on A, A/(ker(h) ∪ ∆A) is t-radical and hence
the heredity of t implies that Sa/(ker(g) ∪ ∆Sa) is t-radical which proves
that ker(g) ∪∆Sa is t-dense on Sa. Therefore, our assumption implies the
existence of an extension ḡ : Sa→ Q of g. Thus this means that

h̄ : A1 ∪ Sa −→ Q

x 7→
{
h(x) x ∈ A1

sḡ(a) x = sa ∈ Sa

is an extension of h and it contradicts the maximality of h. So A1 = A and
we are done.

Definition 3.4. Let r be a Hoehnke radical and A ∈ S-Act. Then an S-act
Q is said to be A-injective if each homomorphism f : B → Q, in which B is
a non-empty subact of A, can be extended to A. Also, an S-act Q is said
to be (r,A)-injective if each homomorphism f : B → Q, in which B is a
non-empty r-dense subact of A, can be extended to A.
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Lemma 3.5. Let r be a Hoehnke radical and A be an r-radical S-act. Then
an S-act Q is (r,A)-injective if and only if Q is an A-injective S-act.

Proof. The result follows from the fact that every subact of an r-radical
S-act A is r-dense in A.

Theorem 3.6. Let r be a Hoehnke radical and A ∈ S-Act. Then the
following conditions are equivalent:

(1) An S-act Q is (r,A)-injective.
(2) If f−1(Q) = {a ∈ A | f(a) ∈ Q} is r-dense in A, for a homomor-

phism f : A → Er(Q), then there exists a homomorphism f̄ : A → Q such
that

(f−1(Q), ↪→) = Eq(f : A→ Er(Q), f̄ : A→ Q ↪→ Er(Q)).

Proof. (1)⇒ (2) Let f : A→ Er(Q) be a homomorphism such that f−1(Q)
is an r-dense subact of A. Then f |f−1(Q) can be extended to f̄ : A→ Q. So
Proposition 2.2.10 of [17] implies that i : f−1(Q) → A is an equalizer of f
and f̄ .

(2) ⇒ (1) Let B be an r-dense subact of A and f : B → Q be a
homomorphism. Then there exists an extension f ′ : A → Er(Q) of f . So,
since B is an r-dense subact of A and B ≤ f ′−1(Q), f ′−1(Q) is an r-dense
subact of A. Hence, by hypothesis, there exists f̄ : A → Q such that the
inclusion map f ′−1(Q) ↪→ A is an equalizer of f ′ and f̄ . Therefore f̄ |B = f
and we are done.

Theorem 3.7. Given a hereditary Hoehnke radical r, if f : A → Er(Q) is
a homomorphism with ker(f) ≤ ρf−1(Q), then f−1(Q) is an r-dense subact
of A.

Proof. Let f : A→ Er(Q) be a homomorphism with ker(f) ≤ ρf−1(Q). Then
the map m : A/f−1(Q) → Er(Q)/Q defined by m(a/f−1(Q)) = f(a)/Q is
a monomorphism. So, the heredity of r implies that A/f−1(Q) ∈ Rr and we
are done.

Theorem 3.8. Let r and t be two Hoehnke radicals over S-Act. An S-act
Q is (r, t)-injective if and only if Q is (r,A)-injective, for every A ∈ Rt.

Proof. The necessity, immediately follows from the fact that every congru-
ence on a t-radical S-act is t-dense. To prove the sufficiency, suppose Q is



184 M. Haddadi and S.M.N. Sheykholislami

(r,A)-injective S-act for every A ∈ Rt. Also, assume (B0 ↪→ B, g : B0 → Q)
is an (r, t)-pair. Then the t-density of ker(g) ∪ ∆B on B implies that
B/(ker(g) ∪ ∆B) ∈ Rt and so the homomorphism g′ : B0/ ker(g) −→ Q
defined by g′(b/ ker(g)) = g(b), for every b ∈ B0, can be extended to a ho-
momorphism ḡ′ : B/(ker(g) ∪ ∆B) −→ Q, by hypothesis. Now, One can
easily cheek the map ḡ : B → Q defined by ḡ(b) = ḡ′(b/(ker(g)∪∆B)) is an
extension of g. Therefore Q is (r, t)-injective.

4 (r, t)-injectivity and t-subacts

In this section, we introduce a class of subacts which play a considerable
role in (r, t)-injectivity.

Definition 4.1. Given an S-act A, the union of all r-radical subacts of A
is said to be r-subact of A and is denoted by RrA.

Theorem 4.2. Let r and t be two Hoehnke radicals and Q be an (r, t)-
injective S-act. Then, for every (r, t)-pair (m : B → A, f : B → Q), the
image of every extension of f through m is a subact of RtQ. Moreover, RtQ
is an (r, t)-injective S-act.

Proof. Let f̄ : A→ Q be an extension of f through m, for a given (r, t)-pair
(m : B → A, f : A→ Q), ((r, t)-injectivity of Q ensures the existence of f̄).

B
m //

f
��

A

f̄~~
Q

Since m(ker(f)) ⊆ ker(f̄), A/ ker(f̄) is the homomorphic image of
A/(m(ker(f) ∪ ∆A) ∈ Rt. Now the closedness of Rt under homomorphic
images implies A/ ker(f̄) ∈ Rt. Thus f̄(A) ∼= A/ ker(f̄) ≤ RtQ.

Moreover, since every (r, t)-pair (m : B → A, f : A → RtQ) can be
considered as an (r, t)-pair (m : B → A, f : A → Q), RtQ is (r, t)-injective
and we are done.

Theorem 4.3. Given two Hoehnke radicals r and t over S-Act, a t-
semisimple S-act A is (r, t)-injective if Er(A) is a t-semisimple S-act.
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Proof. To prove, we show that, for every (r, t)-pair (m : X → Y, f : X →
A), f is a zero homomorphism. Indeed, the r-injectivity of Er(A) implies
that the following commutative diagram is completed by a homomorphism
f ′ : Y → Er(A):

X
m //

f
��

Y

f ′
��

A �
� // Er(A)

Also, by Theorem 4.2, the homomorphic image of Y under f ′ is a subact
of RtEr(A) and, by hypothesis, RtEr(A) is a trivial S-act. So f ′ is a zero
homomorphism. Hence f is a zero homomorphism and we are done.

We recall, from Theorem 7.4 of [15], that a Kurosh-Amitsur radical r is
hereditary if and only if Rr is closed under r-injective hulls. So, Theorem
4.3 implies the following corollary.

Corollary 4.4. Given two Hoehnke radicals r and t, if t is a hereditary
Kurosh-Amitsur radical, then every t-semisimple S-act is (r, t)-injective.

Theorem 4.5. Let r be a hereditary Hoehnke radical and t be a pre-Kurosh
radical. Then the following conditions are equivalent, for an S-act Q:

(1) The S-act Q is (r, t)-injective.
(2) For every A ∈ Σt(Er(Q)), we have A ≤ Q.
(3) Σt(Q) = Σt(Er(Q)).
(4) RtEr(Q) = RtQ.
(5) Each homomorphism f : B → Q can be extended to a homomorphism

f̄ : A→ Q, for every S-act A with A = B ∪ (A ∩RtEr(A)).

Proof. (1) ⇒ (2) First we note that, since Q is large in Er(Q), by Lemma
1.15 of [17], ρQ ∩ ρA 6= ∆Er(Q) and hence A ∩ Q is nonempty, for every
A ∈ Σt(Er(Q)). Also, since every congruence χ on A can be extended to a
congruence χ̄ on Er(Q), see Note 1.1, the largeness of Q in Er(Q) implies
ρQ ∩ χ̄ 6= ∆Er(Q). Hence there exist a 6= b ∈ A such that (a, b) ∈ ρQ ∩ χ̄.
Therefore, by definition of χ̄, (a, b) ∈ χ ∩ ρA∩Q. That is, by Lemma 1.15
of [17], Q ∩ A is large in A. Now the heredity of r and the r-density of
Q in Er(Q) implies that A/(Q ∩ A) ∈ Rr. So, the pair of inclusion maps
(ι1 : Q ∩ A→ A, ι2 : Q ∩ A→ Q) is an (r, t)-pair. Hence the existence of a
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homomorphism i : A → Q with i ◦ ι1 = ι2 follows from the (r, t)-injectivity
of Q. But, since Q ∩ A is large in A and ι2 is a monomorphism, i is a
monomorphism. So there exists a subact A′ of Q such that A′ ∼= A and
Q∩A ≤ A′. Hence the closedness of Rt under homomorphic images implies
that there is B ∈ Σt(Er(Q)) with A′ ≤ B. But Σt(Er(Q)) is a set of disjoint
subacts of Er(Q). Therefore A′ = B = A. That is A ≤ Q.

(2) ⇒ (3) First we show that Σt(Er(Q)) ⊆ Σt(Q). To do so, let A ∈
Σt(Er(Q)). Then A ≤ Q, by hypothesis. Also since t is a pre-Kurosh radical,
we have A ∈ Rt. So, there exists A′ ∈ Σt(Q) such that A ≤ A′. Thus
A′ is a t-radical S-act. Hence A′ ≤ Q ≤ Er(Q) implies that there exists
A′′ ∈ Σt(Q) such that A′ ≤ A′′. But Σt(Er(Q)) is a set of disjoint subacts of
Er(Q), so we have A′ = A′′ = A. By an analogous argument, one can prove
Σt(Q) ⊆ Σt(Er(Q)).

(3) ⇒ (4) Since t is a pre-Kurosh radical, Σt(Q) = Σt(Er(Q)) immediately
implies that RtEr(Q) = RtQ.

(4)⇒ (5) Let A = B∪(A∩RtEr(A)) and f : B → Q be a homomorphism.
Then there exists a homomorphism f ′ : Er(A) → Er(Q) which commutes
the following square:

A

f

��

� � // Er(A)

f ′
��

Q �
� // Er(Q)

So, we have

f ′(A) = f ′(B ∪ (A ∩RtEr(A)))

≤ f ′(B) ∪ f ′(RtEr(A))

≤ f(B) ∪Rtf ′(Er(A))

≤ f(B) ∪RtEr(Q)

= f(B) ∪RtQ (∗)
≤ Q

in which the equation (∗) follows from the hypothesis. Hence f ′|A : A→ Q
is an extension of f and we are done.

(5) ⇒ (1) Let f : B → Q be a homomorphism and m : B → A be an
r-monomorphism with A ∈ Rt. Then A = m(B)∪ (A∩RtEr(A)) follows from
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m(B) ≤ A ≤ RtEr(A). Now using the hypothesis, one can get an extension
f̄ : A→ Q of f with f̄m = f and we are done.

The converse of Theorem 4.3, for hereditary Hoehnke radical r and
Kurosh-Amitsur radical t, follows from of the above theorem.

Theorem 4.6. Let r be a hereditary Hoehnke radical and t be a Kurosh-
Amitsur radical. Then a t-semisimple S-act A is (r, t)-injective if and only
if Er(A) is a t-semisimple S-act.

Proof. One way is Theorem 4.3. For the converse, let A be (r, t)-injective.
Then, by Theorem 4.5, Σt(A) = Σt(Er(A)). But A is t-semisimple and so it
does not contain any nontrivial t-radical subact. Hence Σt(Er(A)) = Σt(A) =
∅, which means, Er(A) is a t-semisimple S-act.

Theorem 4.7. Let r be a Hoehnke radical and t be a Kurosh-Amitsur radical
over S-Act. Then the following conditions are equivalent.

(1) The Hoehnke radical t is hereditary.
(2) The r-injective hull Er(A) is t-semisimple if and only if A is a t-

semisimple S-act.
(3) Every A ∈ St is (r, t)-injective.
(4) The Hoehnke radical t is pre-hereditary.

Proof. (1) ⇒ (2), In Theorem 7.4 from [15] we have shown that a Kurosh-
Amitsur radical t is hereditary if and only if St is closed under injective hulls.
Here, since St is closed under subacts and, for every S-act A, Er(A) ≤ E(A),
St is closed under r-injective hulls.

(2)⇒ (3) follows from Theorem 4.3.
(3) ⇒ (4) Given an S-act B and Y ≤ X ∈ Σt(B), we prove that Y is a

t-radical S-act. Indeed, Y/t(Y ) is an (r, t)-injective S-act, by hypothesis. So
there exists a homomorphism π̄ : X → Y/t(Y ) which commutes the following
triangle, in which π : Y → Y/t(Y ) is the canonical homomorphism.

Y �
� //

π
��

X

π̄
{{

Y/t(Y )
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But, since t is a Kurosh-Amitsur radical, X ∈ Rt. So Y/t(Y ) ∈ St implies
that π̄ is a zero homomorphism and hence π is a zero homomorphism. That
is, Y/t(Y ) is a trivial S-act, or equivalently Y ∈ Rt and we are done.

(4)⇒ (1) It is straightforward to check, see Figure 1 of [15].

5 Well-behavedness of (r, t)-injectivity

We begin this section with the following criterion for (r, t)-injectivity. Then,
we investigate product and coproduct of (r, t)-injective S-acts. Finally, we
prove that for a hereditary Hoehnke radical r and a pre-Kurosh radical t,
(r, t)-injectivity is well-behavior.

Theorem 5.1. Let r be a zero-hereditary Hoehnke radical and t be a heredi-
tary Hoehnke radical over S-Act. Also, let Q be an S-act with a zero element
θ. Then Q is (r, t)-injective if and only if, every inclusion map i : Q0 −→ Q
can be extended through every r-essential cyclic t-radical extension. More
explicitly, Q is (r, t)-injective if and only if every diagram

Q0
m //

_�

i

��

A

Q

for which i is an inclusion map and m is an r-essential monomorphism and
A is a cyclic t-radical S-act can be completed by a homomorphism g : A→ Q.

Proof. One way is clear. For the converse, using Theorem 3.3, let X be an
r-dense subact of a cyclic S-act Y and f : X → Q be a homomorphism
such that Y/(ker(f)∪∆Y ) ∈ Rt. Then, by Theorem 3.9 of [15], there exists
κ ∈ Con(Y ) such that X/ ker(f) ∼= X/κ|X is r-large in Y/κ. So, since
ker(f) ≤ κ, the closedness of Rt under homomorphic images implies that
Y/κ ∈ Rt. Thus we take the subact Q0 of Q to be Q0

∼= X/ ker(f) and a
cyclic t-radical extension A of Q0 to be A ∼= Y/κ. Now, by hypothesis, there
is a homomorphism f̄ which commutes the diagram
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X �
� //

πX

��

f

��

Y
πY

��
X/ker(f) �

� //
OO

ψ
��

Y/κ
OO

ϕ
��

Q0
� � //
� r

i
$$

A

f̄}}
Q

So, f̄ ◦ ϕ ◦ πY is an extension of f .

Theorem 5.2. Given an (r, t)-injective S-act Q, every T ∈ Σt(Q) is (r, t)-
injective.

Proof. By Theorem 3.8, let B be an r-dense subact of A ∈ Rt and f : B → T
be a homomorphism. Then, for the inclusion map ι : T → Q, ι ◦ f can be
extended through m to a homomorphism f̄ : A→ Q. Hence the closedness
of Rt under homomorphic images implies that the homomorphic image of
A under f̄ is a t-radical subact of Q containing T . So f̄(A) is contained
in a member X of Σt(Q). But, since Σt(Q) is a set of disjoint subacts of
Q and X,T ∈ Σt(Q) have nonempty intersection, f(B) ≤ X ∩ T 6= ∅, we
have T = X. Hence the homomorphic image of A under f̄ is a subact of T .
Therefore T is (r, t)-injective.

Theorem 5.3. Given two Hoehnke radicals r and t,
(1) If Rr∩Rt consists of trivial S-acts, then all S-acts are (r, t)-injective.
(2) If Rr = St or Rt = Sr, then all S-acts are (r, t)-injective.
(3) If Rr = Rt, then an S-act Q is (r, t)-injective if and only if Q is

A-injective, for every A ∈ Rr.

Proof. To prove (1), we should note that if Rr ∩ Rt consists of trivial S-
acts, then the only r-dense subact of a t-radical S-act A is A. Indeed, the
closedness of Rt under homomorphic images implies that, for every r-dense
subact B of A, A/B ∈ Rr ∩ Rt. So A/B is a trivial S-act, by hypothesis.
Therefore we have A = B and the result follows from Theorem 3.8. Part (2)
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immediately follows from part (1). Also, part (3) is a corollary of Theorem
3.8.

Remark 5.4. Given a Hoehnke radical r and a Kurosh-Amitsur radical t,
if the radical classes Rr and Rt are closed under coproducts, then, for every
A ∈ Rt and trivial S-act Θ, A

∐
Θ ∈ Rt and (A

∐
Θ)/A ∈ Rr. So one can

easily prove that
(1) every (r, t)-injective non-t-semisimple S-act contains a zero element.
(2) given a family {Qi}i∈I of S-acts which are non-t-semisimple,

∏
i∈I Qi,

is (r, t)-injective if and only if each Qi is (r, t)-injective.

Remark 5.5. Given two Hoehnke radicals r and t, if the coproduct of a
family {Qi}i∈I of S-acts,

∐
i∈I Qi is (r, t)-injective then every Qj with a zero

element is (r, t)-injective.

Proof. Given an (r, t)-pair (m : B → A, f : B → Qj) in which Qj has a zero
element θ, f can be extended to

f̄ : A −→ Qj

a 7→
{
f̂(a) f̂(a) ∈ Qj
θ Other waise.

through m, in which f̂ : A→ ∐
i∈I Qi is the extention of ιj ◦ f through m,

where ιj : Qj →
∐
i∈I Qi is the injection map.

Theorem 5.6. Given two Hoehnke radicals r and t, if St is closed under
coproducts, then the following statements are equivalent:

(1) The coproduct of (r, t)-injective S-acts is (r, t)-injective.
(2) Θ

∐
Θ is (r, t)-injective, where Θ is a trivial S-act.

Proof. (1)⇒ (2) is clearly true.
(2)⇒ (1) To prove, we show that, for every r-monomorphismm : B → A

with A ∈ Rt, each homomorphism f : B → ∐
i∈I Xi, in which each Xi is

an (r, t)-injective S-act, can be extended to a homomorphism f̄ : A →∐
i∈I Xi such that f̄m = f . To do so, we choose a fixed element j of I with

f(B) ∩Xj 6= ∅ and define the homomorphism f ′ : B → {θ1} q {θ2} by

f ′(b) =

{
θ1 f(b) ∈ Xj

θ2 otherwise.
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where {θi}, i = 1, 2, is the trivial S-act. So, using part (2), there exists
a homomorphism f̄ ′ : A → {θ1} q {θ2} such that f̄ ′m = f . But A ∈ Rt
and {θ1} q {θ2} ∈ St. Hence f̄ ′(A) = {θ1}. Thus f ′(B) = {θ1}. That
is f(B) ⊆ Xj . So, the (r, t)-injectivity of Xj implies that there exists a
homomorphism f̄ : A→∐

i∈I Xi such that f̄m = f .

Definition 5.7. By an (r, t)-injective hull of an S-act A, denoted by
E(r,t)(A), we mean a minimal (r, t)-injective S-act containing A.

Theorem 5.8. Let r be a hereditary Hoehnke radical and t be a pre-Kurosh
radical. Then (r, t)-injective hull E(r,t)(A), for every S-act A, exists and it
is determined uniquely up to isomorphism.

Proof. First, we note that RtEr(A) ∪A is an (r, t)-injective hull of A. Indeed,
RtEr(A) ∪ A is an (r, t)-injective S-act, by Theorem 4.2. Also, if A ≤ P ≤
RtEr(A) ∪A is an (r, t)-injective S-act, then Theorem 4.5 implies that RtP =

RtEr(A). So, R
t
Er(A) ∪A ≤ P . Therefore P = RtEr(A) ∪A.

Definition 5.9. Given a radical r over S-Act and an S-act A, we define a
closure operator cr of the category of S-Act by cAr (B) := B ∪ RrA for any
subact B of A.

Lemma 5.10. Given a Hoehnke radical r, the closure operator cr is both
idempotent and weakly hereditary.

Proof. The closure operator cr is idempotent, because for each subact B of
an S-act A, we have

cAr (cAr (B)) = cAr (B) ∪RrA = B ∪RrA ∪RrA = B ∪RrA = cAr (B).

Also the closure operator cr is weakly hereditary, because for each subact B
of an S-act A, we have

cc
A
r (B)
r (B) = B ∪RrcAr (B) = B ∪RrB∪RrA = B ∪RrB ∪RrA = B ∪RrA = cAr (B).

Definition 5.11. A subact B of an S-act A is said to be cr-large if B is
both large and cr-dense in A. In this case, we call A to be a cr-essential
extension of B. Also, a cr-monomorphism ι : B → A is called cr-essential
monomorphism if ι(B) is cr-large in A.
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Definition 5.12. Let r and t be two Hoehnke radicals.
(i) An S-act Q is said to be cr-injective if every homomorphism f : B −→

Q with nonempty domain can be extended to a homomorphism f̄ : A −→ Q
through every cr-monomorphism i : B → A, that is, f = f̄ i. Also an S-act,
denoted by Ecr(A), is called cr-injective hull of an S-act A whenever it is
cr-injective and a cr-essential extension of A.

(ii) An S-act Q is called (r, ct)-injective if every homomorphism f :
B −→ Q with nonempty domain can be extended to a homomorphism
f̄ : A −→ Q through every homomorphism i : B −→ A which is
both r-monomorphism and ct-monomorphism. Also an S-act, denoted by
Ec(r,ct)(A), is called (r, ct)-injective hull of an S-act A whenever it is (r, ct)-
injective and an (r, ct)-essential extension of A.

Proposition 5.13. Let r be a hereditary Hoehnke radical and t be a Hoehnke
radical. Then, for each S-act A, Ecr(A) = A ∪ RrE(A) and E(r,ct)(A) =

A ∪RtEr(A).

Proof. Obviously, the class of essential monomorphisms is left cancellable
for monomorphisms. Also since r is hereditary, the class of r-essential
monomorphisms is left cancellable for monomorphisms, and, by Lemma
5.10, cr is idempotent and weakly-hereditary. So, by Proposition 2.6, we
have Ecr(A) = c

E(A)
r (A) = A ∪ RrE(A) and E(r,ct)(A) = c

Er(A)
t (A) =

A ∪RrEr(A).

Remark 5.14. Given a Hoehnke radical t and a hereditary Hoehnke radical
r, the fact that the notion of (r, ct)-injectivity is well-behavior follows from
Proposition 5.13 and Corollaries 2.7 and 2.8.

Definition 5.15. Given two Hoehnke radicals r and t, and an S-act A,
(i) we say that an S-act X is an (r, t)-essential extension of A whenever

X is an essential extension of A with X ≤ RtEr(A) ∪A.
(ii) We say that A is (r, t)-absolute retract if every r-monomorphism

m : X → B with B ∈ Rt and X ∈ Σt(A) is a retraction.

Proposition 5.16. Let r be a hereditary Hoehnke radical and t be a pre-
Kurosh radical. Then the following conditions are equivalent, for an S-act
Q:

(1) Q is (r, t)-injective.
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(2) Q has no proper (r, t)-essential extension.
(3) Q is (r, t)-absolute retract.
(4) Q is (r, ct)-injective.
(5) Q has no proper (r, ct)-essential extension.
(6) Q is (r, ct)-absolute retract.

Proof. (1) ⇒ (2) For a given (r, t)-essential extension A of Q, we have
Q ≤ A ≤ RtEr(Q) ∪ Q. But, since Q is (r, t)-injective, Theorem 4.5 implies
RtEr(Q) ∪Q = RtQ ∪Q ⊆ Q, and hence RtEr(Q) ∪Q = Q. Therefore Q = A.

(2) ⇒ (1) By Definition 5.15, RtEr(Q) ∪Q is an (r, t)-essential extension
of Q. So, by hypothesis, Q = RtEr(Q) ∪ Q. But, since, by Theorem 5.8,
RtEr(Q) ∪Q is (r, t)-injective hull of Q, Q is (r, t)-injective.

(1) ⇒ (3) By Theorem 5.2, every X ∈ Σt(Q) is (r, t)-injective. So, for
every r-monomorphism m : X → B with B ∈ Rt and X ∈ Σt(Q), idX can
be extended to idX : B → X through m. That is m is a retraction.

(3) ⇒ (1) First we note that for every X ∈ Σt(Q), there exists X̄ ∈
Σt(Er(Q)) such that X ≤ X̄. Also, heredity of r indicates that X is r-dense
in X̄ ∈ Rt. So, the inclusion map X ↪→ X̄ is both monomorphism and
retraction. Hence X = X̄. Therefore, by Theorem 4.5, Q is (r, t)-injective.

The implications (4)⇔ (5)⇔ (6) follow from Corollary 2.8 and Lemma
5.10 and the implications (1) ⇔ (4) follows from the fact that E(r,ct)(Q) =
E(r,t)(Q), for every Q ∈ S-Act, see Proposition 5.13 and Theorem 5.8.

Acknowledgement

We thank the anonymous referee for his/her careful reading of our
manuscript and appreciate his/her insightful comments and suggestions
which improve the quality of this paper.

References

[1] Adamek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete Categories”,
John Wiley and Sons, 1990.

[2] Balbes, R., Projective and injective distributive lattices, Pacific. J. Math. 21(3)
(1967), 405-420.



194 M. Haddadi and S.M.N. Sheykholislami

[3] Banaschewski, B., Injectivity and essential extensions in equational classes of alge-
bras, Queen’s Papers in Pure and Applied Mathematics 25 (1970), 131-147.

[4] Beachy, J., A generalization of injectivity, Pacific J. Math. 41(2) (1972), 313-327.

[5] Bican, L., Preradicals and injectivity, Pacific J. Math. 56(2) (1975), 367-372.

[6] Burris, S. and Sankapanavar, H.P., “A Course in Universal Algebra”, Springer-
Verlag, 1981.

[7] Clementino, M., Dikranjan, D., and Tholen, W., Torsion theories and radicals in
normal categories, J. Algebra 305(1) (2006), 98-129.

[8] Crivei, S., “Injective Modules Relative to Torsion Theories” Editura Fundaţiei pentru
Studii Europene, 2004.

[9] Dikranjan, D., and Tholen, W., “Categorical Structure of Closure Operators: with
Applications to Topology, Algebra and Discrete Mathematics”, Kluwer Academic
Publishers, 1995.

[10] Ebrahimi, M.M. and Barzegar, H., Sequentially pure monomorphisms of acts over
semigroups, Eur. J. Pure Appl. Math. 1(4) (2008), 41-55.

[11] Ebrahimi, M.M., Haddadi, M., and Mahmoudi, M., Injectivity in a category: an
overview on well behavior theorems, Algebras Groups and Geometries 26(4) (2009),
451-472.

[12] Ebrahimi, M.M., Haddadi, M., and Mahmoudi, M., Injectivity in a category: an
overview on smallness conditions, Categ. Gen. Algebr. Struct. Appl. 2(1) (2015),
83-112.

[13] Gould, V., The characterisation of monoids by properties of their S-systems, Semi-
group forum 32 (1985), 251-265.

[14] Haddadi, M. and Ebrahimi, M.M., A radical extension of the category of S-sets,
Bull. Iranian Math. Soc. 43(5) (2017), 1153-1163.

[15] Haddadi, M. and Sheykholislami, S.M.N., Radical-injectivy in the category S-act,
arXiv:1806.07077v1, 2018.

[16] Jirásko, J., Generalized injectivity, Comment. Math. Univ. Carolin. 16(4) (1975),
621-636.

[17] Kilp, M., Knauer, U., and Mikhalev, A.V., “Monoids, Acts and Categories”, Walter
de Gruyter, 2000.

[18] Maranda, J.M., Injective structures, Trans. Amer. Math. Soc. 110(1) (1964), 98-135.



(r, t)-injectivity in the category S-Act 195

[19] Mehdi, A.R., On l-injective modules, arXiv:1501.02491v2, 2017.
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