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The category of generalized crossed
modules

Mahdieh Yavari∗ and Alireza Salemkar

Abstract. In the definition of a crossed module (T,G, ρ), the actions of
the group T and G on themselves are given by conjugation. In this paper,
we consider these actions to be arbitrary and thus generalize the concept
of ordinary crossed module. Therefore, we get the category GCM, of all
generalized crossed modules and generalized crossed module morphisms be-
tween them, and investigate some of its categorical properties. In particular,
we study the relations between epimorphisms and the surjective morphisms,
and thus generalize the corresponding results of the category of (ordinary)
crossed modules. By generalizing the conjugation action, we can find out
what is the superiority of the conjugation to other actions. Also, we can find
out that a generalized crossed module with which other actions (other than
the conjugation) has the properties similar to a crossed module.

1 Introduction

In the late 1940s, crossed modules were introduced by J.H.C. Whitehead as a
means of representing homotopy 2-types. Then S. Mac Lane and Whitehead
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subsequently used crossed modules to represent H3 in group cohomology [5].
They have therefore been used in homotopy theory, homological algebra,
non-abelian cohomology, combinatorial group theory, and applications of
the related algebra, algebraic K-theory, ring theory, etc.

The study of crossed modules as algebraic objects in their own right is a
subject of interest. Recently, a body of research has appeared with this aim,
starting with the Ph.D. thesis of Norrie [7]. She shows that the category
CM, of all crossed modules and crossed module morphisms between them,
has many formal properties analogous to those of the category of groups
and establishes how much of the group theoretical concepts and results have
suitable counterparts for crossed modules.

Loday in [4] showed that the category of crossed modules is equiva-
lent to that of cat1-groups. Also, many mathematicians investigated the
categorical properties of the category CM and its important subcategory,
the category of crossed P -modules, and characterized important objects
of these categories such as products, equalizers, pullbacks, coproducts etc
(see [2, 3, 6, 8, 9]). Let us recall the following.

A crossed module (T,G, ρ) consists of a group homomorphism ρ : T → G,
together with a group action of G on T satisfying

(i) ρ(gt) = gρ(t)g−1,
(ii) ρ(t)t′ = tt′t−1,

for every t, t′ ∈ T and g ∈ G.
A crossed module morphism f = (f1, f2) : (T1, G1, ρ1) → (T2, G2, ρ2) is

a pair of group homomorphisms f1 : T1 → T2 and f2 : G1 → G2 such that
ρ2f1 = f2ρ1 and f1(gt) = f2(g)f1(t), for every g ∈ G1 and t ∈ T1.

Notice that in the definition of crossed module, the action of T on T
and that of G on G are the conjugation actions. In this paper, we consider
the action of T on T and that of G on G to be arbitrary and generalize the
concept of crossed module. So, we get the category GCM, of all generalized
crossed modules and generalized crossed module morphisms between them,
and investigate some important categorical constructions in this category.
Also, we study epimorphisms in GCM and investigate the relation between
epimorphisms and surjective morphisms.

The study of the category of generalized crossed modules helps us to bet-
ter understand the category of ordinary crossed modules. By generalizing
the conjugation action, we can find out what is the superiority of the conju-
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gation to other actions. Also, we can find out a generalized crossed module
with which other actions (other than the conjugation) has the properties
same as a crossed module. Studying the categorical properties of general-
ized crossed modules will make it simpler to study within this category and
make the research in this category smoother.

2 Preliminary

In this section, we introduce the concept of a generalized crossed module
and construct the category GCM. Also, we give some definitions which
are needed in the sequel. Thence, we discuss some of the general category
theoretic ingredients of this category, such as product, equalizer, coequalizer,
etc. First, we introduce the concept of a generalized crossed module.

Definition 2.1. A generalized crossed module (A,G, ρ) consists of
(i) a group homomorphism ρ : A→ G,
(ii) an action of A on A, denoted by a.a′, for every a, a′ ∈ A,
(iii) an action of G on G, denoted by g.g′, for every g, g′ ∈ G,
(iv) an action of G on A, denoted by ga, for every g ∈ G and a ∈ A,

satisfying the conditions:
(1) ρ(ga) = g.ρ(a), for every g ∈ G and a ∈ A,
(2) ρ(a)a′ = a.a′, for every a, a′ ∈ A.
A generalized crossed module morphism f = (f1, f2) : (A1, G1, ρ1)

→ (A2, G2, ρ2) is a pair of group homomorphisms f1 : A1 → A2 and
f2 : G1 → G2 such that ρ2f1 = f2ρ1 and f1(ga) = f2(g)f1(a), for every
g ∈ G1 and a ∈ A1:

A1
f1−−−−→ A2yρ1

yρ2

G1
f2−−−−→ G2

We denote the category of all generalized crossed modules and general-
ized crossed module morphisms between them by GCM. Note that every
crossed module is a generalized crossed module. For another example, con-
sider an arbitrary group G with an arbitrary action of G on itself. Obviously,
(G,G, idG) is a generalized crossed module. If we consider all actions to be
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trivial then for any group homomorphism ρ : A → G we have (A,G, ρ) is
a generalized crossed module. Also, if A and G are arbitrary groups, the
action of A on A is trivial and the actions of G on G and G on A are ar-
bitrary then (A,G, 1), where 1 : A → G is the trivial homomorphism, is a
generalized crossed module.

Definition 2.2. A generalized crossed module (A1, G1, ρ1) is a generalized
crossed submodule of a generalized crossed module (A2, G2, ρ2) if

(i) A1 is a subgroup of A2 and G1 is a subgroup of G2,
(ii) ρ1 = ρ2|A1 ,
(iii) The actions of A1 on A1, G1 on G1, and G1 on A1 are induced by

those of A2 on A2, G2 on G2, and G2 on A2, respectively.

Definition 2.3. A generalized crossed submodule (A1, G1, ρ1) of a general-
ized crossed module (A2, G2, ρ2) is a normal generalized crossed submodule,
denoted by (A1, G1, ρ1) � (A2, G2, ρ2), if

(i) A1 �A2 and G1 �G2,
(ii) ga ∈ A1, for g ∈ G2, a ∈ A1,
(iii) a−1(ga) ∈ A1, for g ∈ G1, a ∈ A2.

Let (A1, G1, ρ1) be a normal generalized crossed submodule of a gen-
eralized crossed module (A2, G2, ρ2). Then the generalized crossed module
morphism i = (i1, i2) : (A1, G1, ρ1) → (A2, G2, ρ2), where i1 and i2 are
the inclusion maps, is a normal monomorphism. So, a normal generalized
crossed submodule is a normal subobject in the category GCM.

In the following results, we discuss some standard limits and colimits
([1]) in the category GCM.

Theorem 2.4. The category GCM is complete. In fact, it is closed under
products, pullbacks, equalizers, and has terminal and also initial objects.

Proof. Easily proved. Consider the family {(Ai, Gi, ρi)}i∈I of generalized
crossed modules. Then the generalized crossed module
(
∏
i∈I Ai,

∏
i∈I Gi, α) where the action of

∏
i∈I Gi on

∏
i∈I Ai (

∏
i∈I Gi on∏

i∈I Gi,
∏
i∈I Ai on

∏
i∈I Ai) is componentwise and α :

∏
i∈I Ai →

∏
i∈I Gi

is defined by α((ai)i∈I) = (ρi(ai))i∈I is the product of them.
Let (f1, f2) : (A1, G1, ρ1) → (A3, G3, ρ3) and (f ′1, f

′
2) : (A2, G2, ρ2) →

(A3, G3, ρ3) be two morphisms. Then (PA, PG, α
′ = α|PA), where α intro-

duced in the case of products and PA = {(a1, a2) : f1(a1) = f ′1(a2)} and
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PG = {(g1, g2) : f2(g1) = f ′2(g2)} are, respectively, the pullbacks of f1, f
′
1

and f2, f
′
2 in the category Grp of groups, is the pullback of (f1, f2) and

(f ′1, f
′
2) in GCM.

Let f = (f1, f2), g = (g1, g2) : (A1, G1, ρ1) → (A2, G2, ρ2) be two mor-
phisms. Then (EA, EG, ρ

′ = ρ1|EA), where EA = {a ∈ A1 : f1(a) = g1(a)}
and EG = {g ∈ G1 : f2(g) = g2(g)} are, respectively, the equalizers of f1, g1

and f2, g2 in Grp, is the equalizer of f and g in GCM.
Finally, ({e}, {e}, id) is the initial as well as the terminal object.

Definition 2.5. Let f = (f1, f2) be a morphism in the category GCM.
The morphism f is called injective if f1 and f2 are monomorphisms in the
category Grp.

Proposition 2.6. In the category GCM, monomorphisms are exactly in-
jective morphisms.

Proof. Let f = (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) be a monomorphism,
K1 = kerf1 and K2 = kerf2. Evidently, ρ′ = ρ1|K1 : K1 → K2 is a
group homomorphism and (K1,K2, ρ

′) is a generalized crossed submodule
of (A1, G1, ρ1). Now, consider the morphisms i = (i1, i2), 1 = (11, 12) :
(K1,K2, ρ

′) → (A1, G1, ρ1), where i1 and i2 are the inclusion maps and 11

and 12 are the trivial group maps. It is clear that fi = f1. Since f is a
monomorphism, we get i = 1 which implies that K1 = {eA1} and K2 =
{eG1}. Hence, f is injective. The converse is true because if f = (f1, f2) is
injective then the morphisms f1 and f2 are monomorphisms in the category
Grp. Then it is straightforward to see that f is a monomorphism in the
category GCM.

Remark 2.7. Let (A,G, ρ) be a generalized crossed module. Also, let N
be a normal subgroup of A and N ′ be a normal subgroup of G satisfying

(i) (N,N ′, ρ′ = ρ|N ) � (A,G, ρ),
(ii) (N,N, idN ) � (A,A, idA),
(iii) (N ′, N ′, idN ′) � (G,G, idG).
We show that (A/N,G/N ′, ρ̄), where ρ̄ : A/N → G/N ′ is defined by

ρ̄(xN) = ρ(x)N ′, with the following actions is a generalized crossed module.
Notice that
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(I) The action of A/N on A/N is defined by xN.x′N = (x.x′)N , for
every x, x′ ∈ A. To prove that this action is well defined, let x1N = x2N
and x3N = x4N , where xi ∈ A for i = 1, · · · , 4. We show that (x1.x3)N =
(x2.x4)N . Since x1N = x2N and x3N = x4N , there exist n1, n2 ∈ N
such that x1 = x2n1 and x3 = x4n2. Therefore, (x1.x3)N = x1.(x4n2)N =
(x1.x4)(x1.n2)N = (x1.x4)N = ((x2n1).x4)N = x2.(n1.x4)N , where the
second equality is because the action of A on A is a group homomorphism.
Also, the third equality is because (x1.n2) ∈ N . Now, since (N,N, idN ) �
(A,A, idA) and (x2.x4)−1(x2.(n1.x4)) = x2.(x

−1
4 (n1.x4)) ∈ N , we get the

result.
(II) The action of G/N ′ on A/N is defined by gN ′xN = (gx)N , for every

g ∈ G and x ∈ A. Since (N,N ′, ρ′ = ρ|N ) � (A,G, ρ), by similar proof of
(I), we can show that this action is well defined.

(III) The action of G/N ′ on G/N ′ is defined by gN ′.g′N ′ = (g.g′)N ′, for
every g, g′ ∈ G. Since (N ′, N ′, idN ′) � (G,G, idG), by similar proof of (I),
we can show that this action is well defined.

(IV) ρ̄ is a group homomorphism.
• ρ̄ is well defined: Let x1N = x2N , for x1, x2 ∈ A. Then x−1

2 x1 ∈ N .
Hence, ρ(x2)−1ρ(x1) = ρ′(x−1

2 x1) ∈ N ′ and ρ(x1)N ′ = ρ(x2)N ′.
• ρ̄(xNx′N) = ρ(xx′)N ′ = ρ(x)N ′ρ(x′)N ′ = ρ̄(xN)ρ̄(x′N).

(V) We have
• ρ̄(gN ′xN) = ρ̄(gxN) = ρ(gx)N ′ = (g.ρ(x))N ′ = gN ′.ρ(x)N ′ = gN ′.ρ̄(xN).
• ρ̄(x1N)x2N = ρ(x1)N ′x2N = ρ(x1)x2N = (x1.x2)N = x1N.x2N .

By (I-V), we have (A/N,G/N ′, ρ̄) is a generalized crossed module. We
call (A/N,G/N ′, ρ̄) a qoutient generalized crossed module.

Proposition 2.8. Coequalizers exist in the category GCM.

Proof. Let f = (f1, f2), g = (g1, g2) : (A1, G1, ρ1) → (A2, G2, ρ2) be two
morphisms. Also, let N be the normal subgroup of A2 generated by all the
elements of the form f1(a)−1g1(a) and N ′ be the normal subgroup of G2

generated by all the elements of the form f2(g)−1g2(g) satisfying
(i) (N,N ′, ρ′ = ρ2|N ) � (A2, G2, ρ2),
(ii) (N,N, idN ) � (A2, A2, idA2),
(iii) (N ′, N ′, idN ′) � (G2, G2, idG2).
Now, consider the qoutient generalized crossed module

(A2/N,G2/N
′, ρ̄2) (introduced in Remark 2.7) and the natural epimorphism
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h = (h1, h2) : (A2, G2, ρ2) → (A2/N,G2/N
′, ρ̄2). It is clear that hf =

hg. Suppose that there exists a morphism k = (k1, k2) : (A2, G2, ρ2) →
(A3, G3, ρ3) such that kf = kg. Since N ⊆ kerk1 and N ′ ⊆ kerk2, there
exist unique group homomorphisms α1 : A2/N → A3 and α2 : G2/N

′ → G3

such that α1h1 = k1 and α2h2 = k2. Finally, we prove (α1, α2) is a mor-
phism in the category GCM and the proof is complete.
• ρ3α1(xN) = ρ3α1(h1(x)) = ρ3k1(x) = k2ρ2(x) = α2(h2(ρ2(x)))
= α2(ρ2(x)N ′) = α2ρ̄2(xN), for xN ∈ A2/N .
• α1(gN ′xN) = α1(gxN) = α1h1(gx) = k1(gx) = k2(g)k1(x) =
α2(h2(g))α1(h1(x)) = α2(gN ′)α1(xN), for gN ′ ∈ G2/N

′, xN ∈ A2/N .

3 Epimorphisms in the category GCM

It is evident that every surjective map in a concrete category is an epimor-
phism. But the converse is not true in general. For example, in [8], it is
shown that in the category CM an epimorphism need not be surjective.
Since CM is a full subcategory of GCM, we get that in GCM epimor-
phisms and surjectives are not the same. In this section, we investigate
epimorphisms in GCM and give some conditions under which we can rec-
ognize that a morphism is an epimorphism or not. Finally, we show that in
some cases every epimorphism is in fact surjective.

Investigating epimorphisms of a category will help us to characterize
projective and quotient objects which are the useful objects of a category.

Proposition 3.1. Let (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) be an epimor-
phism in the category GCM. Then f2 is surjective if and only if Imf2 =
J ′ �G2 and ρ2(A2) ⊆ J ′.

Proof. Suppose that (f1, f2) : (A1, G1, ρ1)→ (A2, G2, ρ2) is an epimorphism,
J ′ �G2 and ρ2(A2) ⊆ J ′. Let, on the contrary, J ′ 6= G2. Then consider the
two morphisms (1, ε), (1, 1) : (A2, G2, ρ2) → ({e}, G2/J

′, 1), where 1 is the
trivial homomorphism and ε is the natural homomorphism. We show that
(1, ε) and (1, 1) are morphisms in the category GCM.
• 11(b) = 1(e) = J ′ = ρ2(b)J ′ = ερ2(b), for every b ∈ A2. The last equality
is because, by the assumption, ρ2(A2) ⊆ J ′.
• 1(gb) = e = ε(g)1(b).



164 M. Yavari and A.R. Salemkar

• 11(b) = 1(e) = J ′ = 1ρ2(b), for every b ∈ A2.
• 1(gb) = e = 1(g)1(b).

It is clear that (1, ε)(f1, f2) = (1, 1)(f1, f2). Now, since (f1, f2) is an
epimorphism, we have (1, ε) = (1, 1), which is a contradiction.

For the converse, let (f1, f2) be an epimorphism such that f2 is surjective.
Then J ′ = G2 �G2 and ρ2(A2) ⊆ J ′ = G2.

In the proof of Lemma 3.3, we construct special subgroups of the group
of permutations on an arbitrary group G (PG) which are useful in this paper.
First, in the next remark, we recall the properties of some special elements
of PG.

Remark 3.2. Let G be a group and g ∈ G. Then the left translation map
λg : G → G, defined by λg(x) = gx, for every x ∈ G, is clearly an element
of PG.

Now, suppose J is a subgroup of G which is not normal. So,
|G : J | ≥ 3. Therefore, we can choose three different cosets J , Jh1 and
Jh2. Consider the map σ : G→ G defined by

σ(y) =





x1h2 if y = x1h1

x1h1 if y = x1h2

y otherwise.

Note that
• we fixed these cosets and elements h1, h2, that is, σ is well defined and
evidently, σ ∈ PG.
• σ2 = idG which implies σ = σ−1.
• there does not exist g ∈ J such that λg = σ. This is because, if λg = σ for
some g ∈ J then λg(eG) = σ(eG). Hence, g = eG and σ = λg = λeG = idG,
a contradiction.

Let (f1, f2) be an epimorphism in the category GCM. Then, by Propo-
sition 3.1, it is important to know that when Imf2 � G2. In the following
lemma, we see conditions under which Imf2 �G2.

Lemma 3.3. Suppose that (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) is an epi-
morphism in the category GCM such that the action of G2 on A2 is trivial
and ρ2(A2) ⊆ J ′ = Imf2. Then J ′ �G2.



The category of generalized crossed modules 165

Proof. Let (f1, f2) : (A1, G1, ρ1)→ (A2, G2, ρ2) be an epimorphism with the
property mentioned in the assumption. Since (A2, G2, ρ2) is a generalized
crossed module and the action of G2 on A2 is trivial, for every a, a′ ∈ A2

we have a.a′ = ρ2(a)a′ = a′. So, the action of A2 on A2 is trivial too. Now
assume, on the contrary, that J ′ is not a normal subgroup of G2. Consider
the subgroup H of PG2 generated by the set {λg : g ∈ G2} ∪ {σ}, where,
for g ∈ G2, λg and σ are as in Remark 3.2. Define the map γ : A2 → H by
γ(b) = λρ2(b), for b ∈ A2. By the definition of γ, it is clear that γ is a group
homomorphism. We claim that if all the actions are trivial then (A2, H, γ)
is a generalized crossed module. This is because
• γ(xb) = γ(b) = x.γ(b), for every x ∈ H and b ∈ A2.
• γ(b)b′ = b′ = b.b′, for every b, b′ ∈ A2.

Now, define the morphisms

α = (idA2 , α2), β = (idA2 , β2) : (A2, G2, ρ2)→ (A2, H, γ)

by α2(g) = λg and β2(g) = σ−1λgσ, for every g ∈ G2. It is clear that α2

and β2 are group homomorphisms. We show that α and β are morphisms
in the category GCM.
• γidA2(b) = γ(b) = λρ2(b) = α2(ρ2(b)), for every b ∈ A2.
• idA2(gb) = b = α2(g)idA2(b) and idA2(gb) = b = β2(g)idA2(b), for every
g ∈ G2 and b ∈ A2.
• β2(ρ2(b)) = σ−1λρ2(b)σ = λρ2(b) = γidA2(b), for every b ∈ A2. To see this,
take y ∈ G2. Three cases may occur:

Case (i) If y = xh1, x ∈ J ′ then λρ2(b)(xh1) = ρ2(b)xh1. On the other
hand, σ−1λρ2(b)σ(xh1) = σ−1λρ2(b)(xh2) = σ(ρ2(b)xh2) = ρ2(b)xh1. The
last equality is because, by the assumption, ρ2(b) ∈ J ′ and so ρ2(b)x ∈ J ′.

Case (ii) If y = xh2, x ∈ J ′ then, by similar proof of Case (i), we get
the result.

Case (iii) If y 6= xh1, xh2, for every x ∈ J ′ then ρ2(b)y 6= xh1, xh2,
for every x ∈ J ′. This is because, on the contrary, if there exists x ∈ J ′

such that ρ2(b)y = xh1 then y = ρ2(b)−1xh1. Since ρ2(b) ∈ J ′, we have
ρ2(b)−1 ∈ J ′ and so ρ2(b)−1x ∈ J ′. It contradicts y 6= xh1, for every
x ∈ J ′. By similar argument, ρ2(b)y 6= xh2, for every x ∈ J ′. Hence,
λρ2(b)(y) = ρ2(b)(y) = σ−1λρ2(b)σ(y).

Finally, it is clear that αf = βf . Since f is an epimorphism, we get
α = β, which is a contradiction. This is because, if α = β then α2 = β2.
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Therefore for every g ∈ G2, we have λg = σ−1λgσ and so σλg = λgσ. Now,
let g = xh1, x ∈ J ′. Then σλxh1(eG2) = σ(xh1) = xh2 but λxh1σ(eG2) =
λxh1(eG2) = xh1. Hence, for g = xh1, we have σλg 6= λgσ. So, J ′ �G2.

Using Proposition 3.1 and Lemma 3.3 we have the following corollary.

Corollary 3.4. Suppose that (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) is an
epimorphism in the category GCM such that the action of G2 on A2 is
trivial and ρ2(A2) ⊆ J ′ = Imf2. Then f2 is surjective.

In the following theorem, we give simpler condition under which we can
recognize when a morphism is an epimorphism.

Theorem 3.5. Suppose (f1, f2) : (A1, G1, ρ1)→ (A2, G2, ρ2) is a morphism
in the category GCM where f2 is surjective and for g, g′ ∈ G1, if f2(g) =
f2(g′) we have ga = g′a for every a ∈ A1. Then (f1, f2) is an epimorphism
if and only if

(f1, idG2) : (A1, G2, f2ρ1)→ (A2, G2, ρ2)

is an epimorphism in GCM.

Proof. Suppose f = (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) is a morphism
with the properties mentioned in the assumption. First, we show that
(A1, G2, f2ρ1) with the following actions is a generalized crossed module:

act (i) The action of A1 on itself is the same as the action of A1 on itself
in (A1, G1, ρ1).

act (ii) The action of G2 on itself is the same as the action of G2 on
itself in (A2, G2, ρ2).

act (iii) The action of G2 on A1 is defined by g2a1 = g1a1, where g2 =
f2(g1) ∈ G2 and a1 ∈ A1. By the assumption, it is straightforward to see
that this action is well defined.

Notice that:
(I) If g2 = f2(g1) ∈ G2 and a1 ∈ A1 then g2.f2ρ1(a1) = g2.ρ2f1(a1)

= ρ2(g2f1(a1)) = ρ2(f2(g1)f1(a1)) = ρ2(f1(g1a1)) = f2ρ1(g1a1) = f2ρ1(g2a1).
(II) f2ρ1(a)a′ = ρ1(a)a′ = a.a′, for a, a′ ∈ A1.

Hence, (A1, G2, f2ρ1) is a generalized crossed module. Now, we prove that
(f1, idG2) : (A1, G2, f2ρ1) → (A2, G2, ρ2) is a morphism in the category
GCM.
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• ρ2f1 = f2ρ1 = idG2f2ρ1.
• Let g2 = f2(g1) ∈ G2 and a1 ∈ A1. Then f1(g2a1) = f1(g1a1) =
f2(g1)f1(a1) = g2f1(a1) = idG2(g2)f1(a).

Now, let (f1, idG2) be an epimorphism. Then consider the morphisms
h = (h1, h2), g = (g1, g2) : (A2, G2, ρ2) → (A3, G3, ρ3) where hf = gf .
Hence h2f2 = g2f2 and since f2 is surjective, we have h2 = g2. Also,
h1f1 = g1f1 and so (h1, h2)(f1, idG2) = (g1, g2)(f1, idG2). Since (f1, idG2) is
an epimorphism, we get (h1, h2) = (g1, g2) and h1 = g1. Therefore, (f1, f2)
is an epimorphism.

For the converse, assume that (f1, f2) is an epimorphism with the proper-
ties mentioned in the hypothesis. To prove that (f1, idG2) is an epimorphism,
consider the morphisms (h1, h2), (g1, g2) : (A2, G2, ρ2) → (A3, G3, ρ3) such
that

(h1, h2)(f1, idG2) = (g1, g2)(f1, idG2).

Therefore, h1f1 = g1f1 and h2 = h2idG2 = g2idG2 = g2. Hence h2f2 = g2f2,
and so

(h1, h2)(f1, f2) = (g1, g2)(f1, f2).

Now, since (f1, f2) is an epimorphism, we get (h1, h2) = (g1, g2), and the
proof is complete.

By Theorem 3.5, we get

Corollary 3.6. Suppose (f1, f2) : (A1, G1, ρ1)→ (A2, G2, ρ2) is a morphism
in the category GCM where f2 is surjective and f1 is injective. Then (f1, f2)
is an epimorphism if and only if (f1, idG2) : (A1, G2, f2ρ1)→ (A2, G2, ρ2) is
an epimorphism in GCM.

Proof. Let (f1, f2) be a morphism with the properties mentioned in the
hypothesis. Also, let f2(g) = f2(g′), for g, g′ ∈ G1. Then for a ∈ A1 we have
f1(ga) = f2(g)f1(a) = f2(g′)f1(a) = f1(g′a). Since f1 is injective, we have
ga = ga′. So, by Theorem 3.5, we get the result.

By Theorem 3.5, it is important to know that when (f1, idG2), introduced
in Theorem 3.5, is an epimorphism.

Theorem 3.7. The morphism (f1, idG2) : (A1, G2, f2ρ1) → (A2, G2, ρ2),
introduced in Theorem 3.5, is an epimorphism in GCM if and only if
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for any two morphisms (α1, β), (α2, β) : (A2, G2, ρ2) → (A3, G3, ρ3), with
α1(f1(A1)) = α2(f1(A1)), we have α1 = α2.

Proof. Let (f1, idG2) : (A1, G2, f2ρ1) → (A2, G2, ρ2) be an epimorphism
and (α1, β), (α2, β) : (A2, G2, ρ2) → (A3, G3, ρ3) be such that α1(f1(A1)) =
α2(f1(A1)). Then

(α1, β)(f1, idG2) = (α2, β)(f1, idG2).

Since (f1, idG2) is an epimorphism, we have α1 = α2. For the converse, con-
sider two morphisms (α1, β1), (α2, β2) : (A2, G2, ρ2)→ (A3, G3, ρ3), where

(α1, β1)(f1, idG2) = (α2, β2)(f1, idG2).

Hence β1 = β2 and α1(f1(A1)) = α2(f1(A1)). By the assumption, α1 = α2

and we get the result.

Obviously, Theorems 3.5 and 3.7 are true for every full subcategory of
the category GCM. In the following, suppose that C is the full subcate-
gory of GCM where every object (X,G, λ) ∈ C has the property that for
every x, x′ ∈ X, (x.x′)(x′)−1 = x(x′.x−1). Now, as a consequence of Theo-
rems 3.5 and 3.7, we express conditions under which a morphism in C is an
epimorphism.

Corollary 3.8. If the morphism (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) in C
has the properties that

f2 is surjective,
the kernel of f2 is contained in the kernel of action of G1 on A1,
Imf1 �A2, and
A2 = f1(A)M , where M is the normal subgroup of A2 generated by
{(b.b′)(b′)−1 : b, b′ ∈ A2},

then (f1, f2) is an epimorphism.

Proof. By Theorem 3.5, we must show that the morphism

(f1, idG2) : (A1, G2, f2ρ1)→ (A2, G2, ρ2)

is an epimorphism in C. Using Theorem 3.7, it is enough to show that for
morphisms (α1, β), (α2, β) : (A2, G2, ρ2)→ (A3, G3, ρ3) where α1(f1(A1)) =
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α2(f1(A1)) we have α1 = α2. To see this, by the assumption, we only prove
that α1(m) = α2(m), for every m ∈ {(b.b′)(b′)−1 : b, b′ ∈ B}. We have
ρ3α1 = βρ2 = ρ3α2. Hence

α1((b.b′)b′−1) = α1(ρ2(b)b′)α1(b′)−1

= (βρ2(b)α1(b′))α1(b′)−1

= (ρ3α1(b)α1(b′))α1(b′)−1

= (ρ3α2(b)α1(b′))α1(b′)−1

= (α2(b).α1(b′))α1(b′)−1.

On the other hand,

α2((b.b′)b′−1) = α2(b(b′.b−1))

= α2(b)α2(ρ2(b′)b−1)

= α2(b)(βρ2(b′)α2(b−1))

= α2(b)(ρ3α2(b′)α2(b−1))

= α2(b)(ρ3α1(b′)α2(b−1))

= α2(b)(α1(b′).α2(b)−1).

By the property of the objects of C, we have

α1((b.b′)b′−1) = α2((b.b′)b′−1),

and so the result.

Using Corollaries 3.6 and 3.8 we have

Corollary 3.9. If the morphism (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) in C
has the properties that

f2 is surjective,
f1 is injective,
Imf1 �A2, and A2 = f1(A)M , where M is the normal subgroup of
A2 generated by {(b.b′)(b′)−1 : b, b′ ∈ A2},

then (f1, f2) is an epimorphism.

Definition 3.10. A morphism in the category D is called a regular epimor-
phism provided it is a coequalizer of some pair of morphisms.
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By Proposition 2.8, coequalizers exist in the category GCM and so
we can investigate regular epimorphisms in this category. We show that,
a special kind of regular epimorphisms are exactly surjectives. For this
purpose, we use the following lemma.

Lemma 3.11. Let (f1, f2) : (A1, G1, ρ1)→ (A2, G2, ρ2) be a regular epimor-
phism in the category GCM. Then

(fm, idG2) : (f1(A1), G2, ρ
′ = ρ2|f1(A1))→ (A2, G2, ρ2)

is a regular epimorphism.

Proof. Let (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) be a regular epimorphism.
Since f1 is a group homomorphism and f1(A1) is a subgroup of A2, we have
f1 = fmfe, where fe : A1 → f1(A1), and fm : f1(A1) → A2 is the inclusion
map. It is clear that (f1(A1), G2, ρ

′ = ρ2|f1(A1)) is a generalized crossed
submodule of (A2, G2, ρ2) and (fe, f2) : (A1, G1, ρ1) → (f1(A1), G2, ρ

′),
(fm, idG2) : (f1(A1), G2, ρ

′)→ (A2, G2, ρ2) are morphisms in GCM, where

(f1, f2) = (fm, idG2)(fe, f2).

Now, suppose (f1, f2) is a regular epimorphism. So, there exist mor-
phisms (h1, h2), (g1, g2) : (A3, G3, ρ3) → (A1, G1, ρ1) such that (f1, f2) is
the coequalizer of them. It is straightforward to see that (fm, idG2) is the
coequalizer of (fe, f2)(h1, h2) and (fe, f2)(g1, g2).

Theorem 3.12. In the category GCM,
(i) every surjective morphism is a regular epimorphism.
(ii) if (f1, f2) is a regular epimorphism, where f2 is surjective, then

(f1, f2) is surjective.

Proof. (i) Let (f1, f2) : (A1, G1, ρ1) → (A2, G2, ρ2) be a surjective map. It
is straightforward to show that (f1, f2) is the coequalizer of (i, i), (1, 1) :
(kerf1, kerf2, ρ

′ = ρ1|kerf1)→ (A1, G1, ρ1).
(ii) Suppose that (f1, f2) is a regular epimorphism and f2 is surjective.

By Lemma 3.11, we have (f1, f2) = (fm, idG2)(fe, f2), where (fm, idG2) is
a regular epimorphism and also a monomorphism. Therefore, (fm, idG2) is
an isomorphism. By the assumption, (fe, f2) is surjective and so (f1, f2) is
surjective.
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