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Mappings to Realcompactifications
Mehdi Parsinia

This article is dedicated to Professor A.R. Aliabad

Abstract. In this paper, we introduce and study a mapping from the col-
lection of all intermediate rings of C(X) to the collection of all realcompact-
ifications of X contained in βX. By establishing the relations between this
mapping and its converse, we give a different approach to the main state-
ments of De et. al. Using these, we provide different answers to the four
basic questions raised in Acharyya et.al. Finally, we give some notes on the
realcompactifications generated by ideals.

1 Introduction and Preliminaries

Throughout this article all topological spaces are assumed to be Tychonoff.
For a given topological space X, C(X) denotes the algebra of all real-
valued continuous functions on X and C∗(X) denotes the subalgebra of
C(X) consisting of all bounded elements. The reader is referred to [11]
for undefined terms and notations concerning C(X). A subring A(X) of
C(X) is called an intermediate ring, if C∗(X) ⊆ A(X). A subring of
C(X) is called a C-ring, if it is isomorphic with C(Y ) for some Tychonoff
space Y . Those C-rings which are also intermediate rings of C(X) are
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called intermediate C-rings. It is well-known that every f ∈ C(X) has
a continuous extension f∗ from βX to R∗ (the one-point compactifica-
tion of R). For each element f of an intermediate ring A(X), we set
SA(f) = {p ∈ βX : (fg)∗(p) = 0, ∀g ∈ A(X)}. We can easily observe
that clβXZ(f) ⊆ SA(f) ⊆ Z(f∗) and thus SA(f) ∩ X = Z(f) for each
f ∈ A(X). We use Mp

A to denote the set {f ∈ A(X) : p ∈ SA(f)} for each
p ∈ βX. Evidently, Mp

C = Mp and Mp
C∗ = M∗p. From [15, Theeorem 2.8

and Theorem 2.9] it follows that the collection of all the maximal ideals of
an intermediate ring A(X) is {Mp

A : p ∈ βX}. An ideal I of a commutative
ring R is called a z-ideal, if whenever f ∈ I, then Mf (R) ⊆ I in which
Mf (R) denotes the intersection of all the maximal ideals of R containing f .
We use Mf instead of Mf (C(X)) for each f ∈ C(X). It is well-known that
Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)} for each f ∈ C(X). Also, from [12, Propo-
sition 2.7], it follows that Mf (A(X)) = {g ∈ A(X) : SA(f) ⊆ SA(g)} for
each element f of an intermediate ring A(X). We denote by υfX the set
{p ∈ βX : f∗(p) <∞} for each f ∈ C(X). Also, we use υAX to denote the
set
⋂
f∈A υfX for each A ⊆ C(X). Evidently, υCX = υX and υC∗X = βX.

Also, υX ⊆ υAX for each subset A of C(X). By a realcompactification of
X we mean a realcompact space containing X as a dense subspace. It is
easy to see that υAX is a realcompactification of X for each subset A of
C(X). Moreover, each realcomapctification of X which is contained in βX
is of the form υAX for some A ⊆ C(X), see [11, 8B,3]. The aim of this paper
is to investigate a new approach to the results of [8] concerning character-
ization of intermediate C-rings of C(X) and to answer the four questions
raised in [1] by a different way. It should be noted that these questions
have previously been answered in [4] and [9]. To these aims, we consider “υ”
as a mapping from the collection of all intermediate rings of C(X) to the
collection of all realcompactifications of X contained in βX which is called
the mapping of realcompactification. Using this, we give new short proofs
to the main results of [8]. This paper consists of three sections. Section
1, which is already noticed, is the introduction and preliminaries in which
some necessary notations and terminologies are introduced. In Section 2,
we define the mapping “υ” which assigns to each intermediate ring A(X)
the realcompactification υAX of X. The converse of this mapping, namely,
“υ−1”, is also defined. By stating the relations between these two mappings,
we offer a different approach to the main results of [8]. Moreover, we answer
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four questions raised in [1]. In Section 3, we give some notes on the realcom-
pact spaces which ideals of C(X) and of intermediate rings generate. These
notes extend some results in [6] concerning the realcompactifications which
ideals generate.

2 Mappings of realcompactification

Let Σ(X) denote the collection of all intermediate rings of C(X) and R(βX)
denote the collection of all realcompactifications of X contained in βX.
We consider the relation ∼ on Σ(X) as follows, for A(X), B(X) ∈ Σ(X),
A(X) ∼ B(X), if υAX = υBX. Clearly, ∼ is an equivalence relation on
Σ(X). The equivalence class of A(X) ∈ Σ(X) is denoted by [A(X)]. Also,
the collection of all the largest members of the equivalence classes [A(X)]
for A(X) ∈ Σ(X) is denoted by Σ1(X). For more details about the col-
lections Σ(X) and Σ1(X) refer to [1]. Let υ : Σ(X) −→ R(βX) and
υ−1 : R(βX) −→ Σ(X) be defined by υ(A(X)) = υAX and υ−1(T ) = {f ∈
C(X) : f∗(p) < ∞, ∀p ∈ T} for each A(X) ∈ Σ(X) and each T ∈ R(βX),
respectively. The next statement shows that the mappings υ and υ−1 are
Galois conjugate (in the sense of lattice theory) which has a straightforward
proof.

Lemma 2.1. For each A(X) ∈ Σ(X) and each T ∈ R(X), we have

υυ−1υ(A(X)) = υ(A(X)), υ−1υυ−1(T ) = υ−1(T )

It follows from [1, Theorem 2.2] that the equivalence class [A(X)] has
the largest member for each A(X) ∈ Σ(X). The next statement gives a
different approach to this fact.

Theorem 2.2. For each A(X) ∈ Σ(X), the largest member of the equiva-
lence class [A(X)] exists and is equal to υ−1υ(A(X)).

Proof. It is evident that

[A(X)] = {B(X) ∈ Σ(X) : υ−1υ(A(X)) = υ−1υ(B(X))}.

It follows that B(X) ⊆ υ−1υ(B(X)) = υ−1υ(A(X)) for each B(X) ∈ Σ(X).
Also, clearly, υ−1υ(A(X)) ∈ [A(X)]. Thus, υ−1υ(A(X)) is the largest mem-
ber of [A(X)].
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The next statement follows from Theorem 2.2 and Lemma 2.1 which
provides an alternative method to [8, Theorem 1.2].

Corollary 2.3. [8, Theorem 1.2] B(X) is the largest member of [A(X)] if
and only if B(X) = υ−1(T ) for some T ∈ R(X).

Proof. (⇒) This is clear by Theorem 2.2.
(⇐) Let B(X) ∈ [A(X)] and B(X) = υ−1(T ) for some T ∈ R(X).

By Theorem 2.2, we have B(X) ⊆ υ−1υ(A(X)). As B(X) ∈ [A(X)],
we have υ(A(X)) = υ(B(X)). Therefore, by Lemma 2.1, υ−1υ(A(X)) =
υ−1υ(B(X)) = υ−1υυ−1(T ) = υ−1(T ) = B(X) which completes the proof.

Theorem 2.4. [8, Theorem 1.1] For each A(X) ∈ Σ(X), υ−1υ(A(X)) =
{g|X : g ∈ C(υAX)}.
Proof. If f ∈ υ−1υ(A(X)), then f∗(p) < ∞ for each p ∈ υAX. This means
that f could be extended to υAX. Therefore, fυA ∈ C(υAX) and fυA |X =
f ∈ A(X). Conversely, if f ∈ {g|X : g ∈ C(υAX)}, then f ∈ C(X) and
f∗(p) <∞ for each p ∈ υAX. This clearly implies that f ∈ υ−1υ(A(X)).

The next statement easily follows from Theorem 2.4.

Corollary 2.5. The extension mapping f 7−→ fυA is an isomorphism from
υ−1υ(A(X)) onto C(υAX) for each A(X) ∈ Σ(X).

We need the following lemma which is first stated in [16, Theorem 4.5]
and is proved in [13, Lemma 2.1] by a different way.

Lemma 2.6. Let A(X) and B(Y ) be two isomorphic intermediate rings of
C(X) and C(Y ), respectively. Then υAX is homeomorphic with υBY .

Theorem 2.7. [8, Theorem 1.4] An intermediate ring A(X) of C(X) is a
C-ring if and only if A(X) is the largest member of [A(X)].

Proof. (⇒) Let A(X) ∼= C(Y ) for some Tychonoff space Y . By Lemma 2.6,
we have υAX ' υY and thus A(X) ∼= C(Y ) ∼= C(υY ) ∼= C(υAX). Using
this and by a routine reasoning, we can prove that the extension mapping is
an isomorphism from A(X) to C(υAX). Also, by Corollary 2.5, υ−1υ(A(X))
is isomorphic with C(υAX) under the extension mapping. It easily inferred
that A(X) = υ−1υ(A(X)).

(⇐) An easy consequence of Corollary 2.5.
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In the final part of this section we consider four basic questions raised
in [1] concerning relations between Σ(X) and Σ1(X). We answer these
questions using the notion of singly generated intermediate rings over a
given intermediate ring. Following [10], for an intermediate ring A(X)
and f ∈ C(X), we use A(X)[f ] to denote the singly generated interme-
diate ring of C(X) over A(X) generated by f , which is the smallest in-
termediate ring of C(X) containing both A(X) and f . It is easy to see
that A(X)[f ] = {∑n

i=0 f
igi : gi ∈ A(X), n ∈ N ∪ {0}} Also, as stated

in [9], whenever f ∈ C(X) such that Z(f) = ∅ and 1
f ∈ C∗(X), then

A(X)[f ] = {gfn : g ∈ A(X), n ∈ N ∪ {0}}.

The following questions raised in [1].

Question 1. Does there exist at all any Tychonoff space X for which
Σ1(X) = Σ(X)?

Question 2. For any σ-compact locally compact space X, does there
exist an H(X) ∈ Σ(X) \ Σ1(X)?

Question 3. If for any X, there are two different A,B ∈ Σ(X) with
υAX = υBX, does there necessarily exist an infinite family {Aα : α ∈ Λ}
for which υAαX = υAβX for all α, β ∈ Λ?

Question 4. Is C∗(X) the only lone equivalence class of Σ(X) gener-
ated by the equvalence relation ∼ of Σ(X), for any realcompact non-compact
space X?

We answer the first two questions by the following statement.

Theorem 2.8. A topoogical space X is pseudocompact if and only if Σ1(X) =
Σ(X).

Proof. (⇒) Evident.
(⇐) Let X be non-pseudocompact, thus there exists some f ∈ C(X) \

C∗(X). Clearly, we could choose f to be a positive function. Let p ∈
βX \ υfX. Set A(X) = Mp + C∗(X) and B(X) = A(X)[lnf ]. From [13,
Proposition 2.3] it follows that υAX = υX ∪{p}. It is clear that B(X) is an
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intermediate ring of C(X). Also, B(X) is not a C-ring (see [9, Lemma 2.3]).
Therefore, υBX = υAX ∩ υlnfX = (υX ∪{p})∩ υfX = υX. It follows that
the largest member of [B(X)] which is C(X) does not equals to B(X). This
means that B(X) ∈ Σ(X), however, B(X) 6∈ Σ1(X).

Answer of Question 1. By Theorem 2.8, the only topological spaces X
for which Σ(X) = Σ1(X) are pseudocompact spaces.

Answer of Question 2. By Theorem 2.8, for any σ-compact locally
comapct and non-pseudocompact space X, Σ(X) 6= Σ1(X) and thus there
exists some H(X) ∈ Σ(X) \ Σ1(X).

It is stated in [11, 9D.2] that whenever X is a non-pseudocompact space,
then βX\υX contains at least 2c points. We generalize this fact to βX\υfX
for each unbounded element f ∈ C(X) by the next statement.

Lemma 2.9. Let X be a non-pseudocompact topological space and f ∈
C(X) \ C∗(X). Then βX \ υfX has at least 2c points.

Proof. Since f is unbounded on X, we get that υfX ⊂ βX. Also the fact
that υfX is realcompact ensures that υ(υfX) = υfX. On writing Y = υfX,
the set βX \ υfX reduces to βY \ υY = βY \ Y which is nonempty and
therefore contains at least 2c elements.

It follows from Lemma 2.9 that βX \υAX has at least 2c points for each
non-pseudocompact space X and each intermediate ring A(X) of C(X) dif-
ferent from C∗(X). By using Lemma 2.9, we provide an answer to the third
question.

Answer of Question 3. Since C∗(X) is the only member of its equivalence
class modulo the relation ∼ defined on Σ(X), the hypothesis implies that X
can not be pseudocompact. Let X be a non-pseudocompact space. Thus,
there exists f ∈ C(X) \ C∗(X). Clearly, g = 1 + |f | ∈ C(X) \ C∗(X). For
each p ∈ βX \ υgX, let Ap = Mp + C∗(X) and Bp = Ap[lng]. As Z(g) = ∅
and 1

g ∈ C∗(X), we have Bp = {h(lng)n : h ∈ Ap, n ∈ N ∪ {0}}. As noted
earlier, υApX = υX ∪ {p} and Bp is an intermediate ring of C(X) which
is not a C-ring. It follows that υBpX = (υX ∪ {p}) ∩ υgX = υX. Now,
we show that Bp 6= Bq for every two distinct points p, q ∈ βX \ υgX. Let
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p 6= q ∈ βX\υgX. Thus, there exists h ∈ C∗(X) such that p ∈ clβXZ(h) and
q 6∈ Z(hβ). Hence, h ∈ Mp ⊆ Bp and thus gh ∈ Mp ⊆ Bp. We claim that
gh 6∈ Bq. Assume on the contrary that gh ∈ Bq. Thus, there exist l ∈ Aq
and n ∈ N such that gh = l(lng)n. It follows that l = gh

(lng)n and hence

l∗(q) = (gh)∗(q)
((lng)n)∗(q)

= g∗(q)
(lng)∗(q)

= ∞ which is a contradiction, since, l ∈ Aq
which implies that l∗(q) < ∞. Moreover, By Lemma 2.9, βX \ υgX has at
least 2c points. Therefore, {Bp : p ∈ βX \ υfX} is an uncountable family
of different intermediate rings of C(X) such that υBpX = υBqX = υX for
each p, q ∈ βX \ υfX. �

Answer of Question 4. Let X be a realcompact non-compact space. Also,
let C∗(X) 6= A(X) ∈ Σ(X) be given. We show that [A(X)] has a memeber
other than A(X). As A(X) 6= C∗(X), we can choose some non-negative
element f ∈ A(X) \ C∗(X). Thus, there exists some p ∈ βX \ υfX. Let
B(X) = Mp +C∗(X) and D(X) = A(X)∩B(X). Since, υBX = υX ∪ {p}.
We claim that υDX = υAX ∪ {p}. Evidently, υAX ∪ {p} ⊆ υDX. Let q 6∈
υAX ∪ {p}. As p 6= q, there exists some g ∈ C∗(X) such that p ∈ clβXZ(g)
and q 6∈ Z(gβ). Also, as q 6∈ υAX, there exists some h ∈ A(X) such that
h∗(q) = ∞. It follows that g ∈ Mp and thus hg ∈ Mp ⊆ B(X). Moreover,
hg ∈ A(X). Therefore, hg ∈ D(X) and (hg)∗(q) = ∞; that is, q 6∈ υDX.
This completes the proof of our claim. Now, set E(X) = D(X)[lnf ]. As
noted earlier, E(X) is an intermediate ring of C(X) which is not a C-ring.
Also, using [9, Lemma 2.3], f = elnf 6∈ E(X) and υEX = υDX ∩ υfX =
υAX. It follows that E(X) 6= A(X) and E(X) ∈ [A(X)]. �

3 Notes on realcompactifications induced by ideals

It is stated in [6] that for each ideal I in C(X), we have υIX = υIzX = υX∪
θ(I) in which Iz denotes the smallest z-ideal in C(X) containing I. Also the
largest z-ideal in C(X) contained in I is denoted by Iz. For an intermediate
ring A(X) of C(X), we use Iz(A) (respectively, Iz(A)) the smallest z-ideal
in A(X) contained in I (respectively, the largest z-ideal in A(X) containing
in I). In [7, Proposition 1.2], it is proved that Iz = {f ∈ C(X) : Mf ⊆
I} =

∑
Mf⊆IMf and Iz = {g ∈ C(X) : ∃f ∈ I; g ∈ Mf} =

∑
f∈IMf .

Using the following lemma, we show that for each ideal I in C(X), the
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realcompactifications induced by I and Iz coincide.

Lemma 3.1. (a) For each ideal I of C(X), θ(I) =
⋂
Mf⊆I clβXZ(f).

(b) For each family {Iλ}λ∈Λ of ideals of C(X), we have θ(
∑

λ∈Λ Iλ) =⋂
λ∈Λ θ(Iλ).

Proof. (a) It is clear that whenever f ∈ C(X) and Mf ⊆ I, then θ(I) ⊆
θ(Mf ) = clβXZ(f). Thus, θ(I) ⊆ ⋂

Mf⊆I clβXZ(f). Now, let p 6∈ θ(I).
Hence, there exists f ∈ I such that p 6∈ clβXZ(f). Therefore, there exists
g ∈ C(X) such that p 6∈ clβXZ(g) and clβXZ(f) ⊆ intβXclβXZ(g). We claim
thatMg ⊆ I. Let h ∈Mg. It follows that Z(g) ⊆ Z(h) and thus clβXZ(f) ⊆
intβXclβXZ(g) ⊆ clβXZ(h). This implies that Z(f) ⊆ intXZ(h), and hence
by [11, 1D], there exists k ∈ C(X) such that h = kf . Therefore, h ∈ I which
means that Mg ⊆ I and the claim is proved. Hence, p 6∈ ⋂Mf⊆I clβXZ(f)
and the required equality follows.

(b) It is evident that θ(
∑

λ∈Λ Iλ) ⊆ ⋂λ∈Λ θ(Iλ). Now, let p 6∈ θ(∑λ∈Λ Iλ).
Thus, there exists some f ∈ ∑λ∈Λ Iλ such that p 6∈ clβXZ(f). As f ∈∑

λ∈Λ Iλ, there exist λ1, ..., λn ∈ Λ such that f = fλ1 + ...+ fλn . It follows
that

⋂n
i=1 clβXZ(fλi) ⊆ clβXZ(f) which implies p 6∈ clβXZ(fλk) for some

k ∈ {1, ..., n}. Therefore, fλk ∈ Iλk and p 6∈ clβXZ(fλk). Hence, p 6∈ θ(Iλk).
Thus,

⋂
λ∈Λ θ(Iλ) ⊆ θ(∑λ∈Λ Iλ) and the equality follows.

Proposition 3.2. For each ideal I of C(X), υIX = υIzX = υIzX = υX ∪
θ(I).

Proof. By Lemma 3.1, we have θ(Iz) = θ(
∑

Mf⊆IMf ) =
⋂
Mf⊆I θ(Mf ) =⋂

f∈I clβXZ(f) = θ(I). Thus, using [6, Proposition 2.3], the proof is com-
plete.

As mentioned in the introduction, Mf (A) = {g ∈ A(X) : SA(f) ⊆
SA(g)} for each element f of an intermediate ring A(X). It follows that,
for an ideal I in A(X), the intersection of all the maximal ideals of A(X)

containing I is M θA(I)
A = {f ∈ A(X) : θA(I) ⊆ SA(f)}. The next lemma

easily follows from Corollary 2.5 and Lemma 3.1.

Lemma 3.3. (a) For each ideal I of an intermediate C-ring C(X), θA(I) =⋂
Mf (A)⊆I SA(f).
(b) For each family {Iλ}λ∈Λ of ideals of an intermediate ring A(X),

θA(
∑

λ∈Λ Iλ) =
⋂
λ∈Λ θA(Iλ).
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Proposition 3.4. Let I be an ideal of an intermediate ring A(X), then
υIX = υIz(A)X = υAX ∪ θA(I). Moreover, if A(X) is an intermediate
C-ring, then υIX = υIz(A)X = υIz(A)X.

Proof. For the proof of the first series of equalities see [6, Proposition 2.3].
The proof of the second series of equalities follows from Lemma 3.3 and [6,
Proposition 2.3].
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