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and (suitably defined) codirected completeness of the underlying quantale
enriched category.
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1 Introduction

1.1 Motivation This paper continuous a line of research initiated in
[72] which combines Nachbin’s theory of “topology and order” [59] with the
setting of monad-quantale enriched categories [40]. Over the past century,
combining order with compact Hausdorff topologies has proven to be very
fruitful in various parts of mathematics: in the form of spectral spaces,
these structures appear in Stone duality for distributive lattices [70] and
Hochster’s characterisation of prime spectra of commutative rings [34], the
connection between spectral spaces and certain partially ordered compact
spaces was made explicit in [61, 62] (see also [18, 22]), and was further ex-
tended to an equivalence between all partially ordered compact spaces and
stably compact topological spaces in the 1970s (see [25]). Subsequently,
stably compact spaces have also played a central role in the development
of domain theory, see [49] for details. In a more general context, compact
Hausdorff spaces combined with the structure of a quantale-enriched cate-
gory have been essential in the study of topological structures as categories:
they appear in the definition of “dual space”, still implicitly in [15] and more
explicitly in [29, 37, 38]. This notion turned out to be an essential ingre-
dient in the investigation of (co)completeness properties of monad-quantale
enriched categories. In [12] we also explain the connection of Nachbin’s work
with the theory of multicategories [32, 33].

Motivated by this development, we focus here on the ultrafilter monad
and study quantale-enriched categories equipped with a compact Hausdorff
topology; our examples include ordered, metric, and probabilistic metric
compact Hausdorff spaces. We show that the presence of a compact Haus-
dorff topology guarantees Cauchy completeness and (suitably defined) codi-
rected completeness of the underlying quantale enriched category. Our inves-
tigation relies on a connection between these V-categorical compact Haus-
dorff spaces and monad-quantale enriched categories which generalises the
equivalence between partially ordered compact spaces and stably compact
topological spaces (see [40, Section III.5]). Another important ingredient
is the concept of Cauchy completeness à la Lawvere for monad-quantale
enriched categories as introduced in [15]. In order to include probabilistic
metric spaces in our study, our setting is slightly weaker than the one con-
sidered in [15]. Due to these weaker assumptions, we have to overcome some
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technical difficulties which force us to revise and extend some notions and
results of [15].

In order to explain our motivation more in detail, we find it useful to
place it in a historical context.

1.2 Historical background Right from its origins at the beginning of
the 20th century, one major concern of set-theoretic topology was the devel-
opment of a satisfactory notion of convergence. This in turn was motivated
by the increasing use of abstract objects in mathematics: besides numbers,
mathematical theories deal with sequences of functions, curves, surfaces,. . . .
To the best of our knowledge, a first attempt to treat convergence abstractly
is presented in [24]. Whereby the main contribution of [24] is the concept
of a (nowadays called) metric space, the starting point of [24] is actually
an abstract theory of sequential convergence. Fréchet considers a function
associating to every sequence of a set X a point of X, its convergence point,
subject to the following axioms:

(A) Every constant sequence (x, x, . . . ) converges to x;

(B) If a sequence (xn)n∈N converges to x, then also every subsequence
of (xn)n∈N converges to x.

Under these conditions, Fréchet gave indeed a generalisation of Weierstraß’s
theorem [23]; however, these constraints seem to be too weak in general
since the limit axioms (A), (B) are not very meaningful . . . ([31, page 266],
original in German; our translation). In [30], Hausdorff introduces the notion
of topological space via neighbourhood systems and compares the notions of
distance, topology and sequential convergence as . . . the theory of distances
seems to be the most specific, the limes theory the most general. . . ([31,
page 211], original in German; our translation). In the introduction to
Chapter 7 “Punktmengen in allgemeinen Räumen”, Hausdorff affirms that
the greatest triumph of set theory lies in its application to the point sets
of the space, in the clarification and sharpening of the geometric notions. . .
([31, page 209], original in German; our translation). According to Hausdorff,
these geometric notions not only involve approximation and distance, but
also the theory of (partially) ordered sets to which he dedicates a substantial
part of his book. Thinking of an order relation on a set M as a function

f : M ×M −→ {<,>,=},
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Hausdorff also foresees that ( [31, page 210], original in German; our trans-
lation)

Now there stands nothing in the way of a generalisation of this
idea, and we can think of an arbitrary function of pairs of points
which associates to each pair (a, b) of elements of a set M a
specific element n = f(a, b) of a second set N . Generalising fur-
ther, we can consider a function of triples, sequences, complexes,
subsets, etc.

In particular, Hausdorff already presents metric spaces as a direct generali-
sation of ordered sets where now f associates to each pair (a, b) the distance
between a and b. This point of view was taken much further in [50]: not only
the structure but also the axioms of an ordered set and of a metric space
are very similar and, moreover, can be seen as instances of the definition of
a category. Furthermore, Hausdorff sees also the definition of a topological
space as a generalisation of the concept of a partially ordered set: instead
of a relation between points, sequential convergence relates sequences with
their convergence points, and a neighbourhood system relies on a relation
between points and subsets. Surprisingly, also here the relevant axioms on
such relations can be formulated so that they resemble the ones of a par-
tially ordered set. We refer the reader to the monograph [40] for an extensive
presentation of this theory and for further pointers to the literature.

Clearly, Hausdorff considers topologies as generalised partial orders; how-
ever, a more direct relation between the two concepts was only given more
than twenty years later. In [2], Alexandroff observes that every partial order
on a set X defines a topology, and from this topology one can reconstruct
the given order relation via

x ≤ y ⇐⇒ y belongs to every neighbourhood of x. (1.2.1)

Furthermore, Alexandroff characterises the topological spaces obtained this
way as the so called “diskrete Räume”, namely as those T0 spaces where the
intersection of open subsets is open. These spaces, without assuming the
T0 separation axiom, are nowadays called Alexandroff spaces. In this paper
we depart from Hausdorff’s nomenclature since partial orders seem to be
more frequent than total ones. Therefore we call a binary relation ≤ on a
set X an order relation whenever ≤ is reflexive and transitive, and speak
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of a total order whenever all elements are comparable. Furthermore, we
think of the anti-symmetry condition as a(n often unnecessary) separation
axiom. We write Ord for the category of ordered sets and monotone maps
and, with Top denoting the category of topological spaces and continuous
maps, Alexandroff’s construction extends to a functor

Top −→ Ord

which commutes with the underlying forgetful functors to the category Set
of sets and functions. The order relation defined by (1.2.1) is now known
as the specialisation order of the space X. This order looses most of the
topological information of a space X and does not seem to be very useful for
the study of topological properties. Nevertheless, there are some properties
of a space X which are reflected in the specialisation order, in particular the
lower separation axioms:

• X is T0 if and only if the specialisation order of X is separated (=anti-
symmetric); and

• X is T1 if and only if the specialisation order of X is discrete.

The latter equivalence might be the reason why this order relation does not
play a dominant role in general topology. More interesting seems to be the
reverse question: which order properties are guaranteed by certain topolog-
ical properties? For instance, the following observation is very relevant for
our paper:

• if X is sober, then the specialisation order of X is directed complete
(see [44, Lemma II.1.9]).

The specialisation order plays also a role in Hochster’s study of ring spec-
tra: [34] characterises the prime spectra of commutative rings as precisely
Stone’s spectral spaces [70]. Here, for a commutative ring R, the order of
the topology on Σ(R) should match the inclusion order of prime ideals; by
that reason Hochster considers the dual of the specialisation order. Moti-
vated by the convergence theoretic approach described below, in this paper
we will also consider this underlying order of a topological space instead of
the specialisation order. A deep connection between topological properties
and order properties is made in [68] where injective topological T0 spaces
are characterised in terms of their underlying partial order.
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Whereby in the considerations above the order relation is the one induced
by a given topology, a different road was taken in [59] in his study of ordered
topological spaces where topology and order are two independent structures,
subject to a mild compatibility condition. This combination allows for a
substantial extension of the scope of various important notions and results
in topology, we mention here the concept of order-normality and the Urysohn
Lemma. Of special interest to us is a particular class of separated ordered
topological spaces, namely the compact ones, which are described in [45]
as “precisely the T0 analogues of compact Hausdorff spaces”. These spaces
can be equivalently described in purely topological terms: firstly, there is a
comparison functor

K : PosComp −→ Top

between the category PosComp of separated ordered compact spaces and
monotone continuous maps and Top; secondly, this functor restricts to an
equivalence PosComp ' StablyComp where StablyComp denotes the category
of stably compact spaces and spectral maps. These facts are known since
the beginning of the 1970’s and were first published in [25]. To explain this
connection better, we find it useful to return to the story of convergence.

After Hausdorff’s fundamental book [31], the notion of convergence does
not seem to have played a prominent role in the development of topology.
The notion of sequence proved to be insufficient, and only in the 1930s [6]
appeared a characterisation of topological T1 spaces in terms of an abstract
concept of convergence based on the notion of Moore-Smith sequence [57,
58]. At the same time, Cartan introduced the concept of filter convergence
[9, 10], and this idea was met with enthusiasm within the Bourbaki group
[8]. However, it seems to us that this enthusiasm was not shared by most
treatments of topology as convergence plays often only a secondary role. We
refer to [13] for more information on convergence and its history.

Using either filters or nets (as Moore-Smith sequence are typically called
nowadays), convergence finally conquered its appropriate place in topol-
ogy. This also led to the consideration of abstract (ultra)filter convergence
structures, we mention here the papers [17, 27, 28, 79] where topological
convergence structures are characterised among more general ones. In our
opinion, the most useful descriptions were obtained around 1970: firstly,
Manes characterises compact Hausdorff spaces as precisely the Eilenberg–
Moore algebras for the ultrafilter monad U = (U,m, e) on Set [55], and
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Barr characterises topological spaces as the lax algebras for the ultrafilter
monad [4]. More in detail, a compact Hausdorff space is given by a set X
together with a map α : UX → X so that the diagrams

X
eX //

1X !!

UX

α
��
X

and UUX
mX //

Uα
��

UX

α
��

UX α
// X

commute in Set; whereby a general topological space is given by a set X
together with a relation a : UX −→7 X so that the inequalities

X �eX //

�
1X

≤

!!

UX

_a
��
X

and UUX �mx //

_Ua
��

≤

UX

_a
��

UX �
a

// X

hold in the ordered category Rel of sets and relations, ordered by inclusion.
Elementwise, the latter axioms read as

eX(x)→ x and (X→ x & x→ x) =⇒ mX(X)→ x,

for all x ∈ X, x ∈ UX and X ∈ UUX. Note that the second condition
talks about the convergence of an ultrafilter of ultrafilters X to an ultrafil-
ter x, which comes from applying the ultrafilter functor U to the relation
a : UX −→7 X. Hence, this description involves the additional difficulty of
extending the functor U : Set → Set in a suitable way to a locally mono-
tone endofunctor on Rel; but it is extremely useful since it does not only
provide axioms but also a calculus to deal with these axioms since they are
formulated within the structure of the ordered category Rel. Barr’s charac-
terisation gives also new evidence to Hausdorff’s intuition that topological
spaces are generalised orders, as the two axioms are clearly reminiscent to
the reflexivity and the transitivity condition defining an order relation. We
also note that the underlying order of a topology a : UX −→7 X is simply the
composite a · eX : X −→7 X.

Using this language, Tholen [72] shows that an ordered compact Haus-
dorff space can be equivalently described as a set X equipped with an order
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relation ≤: X −→7 X and a compact Hausdorff topology α : UX → X which
must be compatible in the sense that

α : (UX,U≤) −→ (X,≤)

is monotone. Moreover, the object part of the functor K : PosComp→ Top
mentioned above can now be simply described by relational composition

(X,≤, α) 7−→ (X,≤ ·α);

a simple calculation shows that ≤ ·α : UX −→7 X satisfies indeed the two
axioms of a topology. More importantly, as already initiated in [72], this
approach paves the way to mix topology with metric structures or other
“generalised orders” in the spirit of Hausdorff; or better: enriched categories
in the spirit of Lawvere [50]. Undoubtedly, topology is already omnipresent
in the study of metric spaces; however, there does not seem to exist a sys-
tematic account in the literature thinking of metric and topology as a gen-
eralisation of Nachbin’s ordered topological spaces. This motivation brings
us to the following considerations.

• Instead of analysing a metric space (X, d) using the topology induced
by d, we ask what properties of d are ensured by a compact Hausdorff
topology compatible with d.

• To answer this question, we look back and ask the same question for
the ordered case. Surprisingly, there is a quick answer: since every sep-
arated ordered compact space corresponds to a stably compact space
which is in particular sober, every separated ordered compact space
has codirected infima and, by duality, also directed suprema.

• To transport this argumentation back to the metric case, we need a
metric variant of sober topological spaces, which is provided by the
notion of sober approach space [3, 53, 73].

• we also consider the notion of codirected completeness for metric spaces
which implies Cauchy completeness. We compare this notion to other
concepts of (co)directedness in the literature.

The principal aim of this paper is to present a theory which encompasses
the steps above, for quantale-enriched categories equipped with a compact
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Hausdorff topology; our examples include ordered, metric, and probabilistic
metric compact Hausdorff spaces. We place this study in the general frame-
work of topological theories [36] and monad-quantale-enriched categories
(see [40]), for the ultrafilter monad U on Set.

2 Basic notions

In this section, we recall various aspects of the theory of quantale-enriched
categories. All results presented here are well-known, for more information
about enriched category theory we refer to the classic [46] and to [71]. In
our examples we focus on quantales based on the lattices 2 = {0, 1}, [0, 1],
[0,∞] and the lattice D of distribution functions. The book [40] presents
and uses quantale-enriched categories in the context of topology, and in this
section we follow the notation of [40].

2.1 Quantale A quantale V = (V,⊗, k) is a complete lattice V, with the
order relation denoted by ≤, equipped with a monoidal structure given by
a commutative and associative binary operation ⊗, with identity k, which
distributes over joins:

u⊗
(∨

i∈I
ui

)
=
∨

i∈I
(u⊗ ui).

Thus, by Freyd’s Adjoint Functor Theorem, for each u ∈ V, the monotone
map u⊗− : V → V has a right adjoint hom(u,−) characterised by

u⊗ v ≤ w ⇐⇒ v ≤ hom(u,w),

for all v, w ∈ V. Our principal examples include the following.

Example 2.1. (1) The two element chain 2 = {0, 1} of truth values with
0 ≤ 1 is a quantale for ⊗ = & being the logical operation “and”; in this case
hom(u, v) is just the implication u =⇒ v. More general, every Heyting
algebra with ⊗ = ∧ being infimum and the identity given by the top element
> is a quantale.

(2) The extended real half line
←−−−
[0,∞] ordered by the “greater or equal”

relation > becomes a quantale with the tensor product given by the usual
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addition +, denoted by
←−−−
[0,∞]+. In this case, hom(u, v) = v	 u = max{v−

u, 0}, for all u, v ∈ [0,∞]. According to (1), one can also equip
←−−−
[0,∞] with

the infimum ⊗ = max of this lattice, we denote the resulting quantale as←−−−
[0,∞]∧.

(3) Similar to (2), we consider the unit interval [0, 1] with the “greater
or equal” relation > and the tensor

u⊕ v = min{1, u+ v},

for all u, v ∈ [0, 1]. This quantale will be denoted by
←−−
[0, 1]⊕.

(4) The quantales introduced in (2) and (3) can be more uniformly de-
scribed using the unit interval [0, 1] equipped with the usual order 6. In
fact, [0, 1] admits several interesting quantale structures, the most impor-
tant ones to us are the minimum ∧, the usual multiplication ∗, and the
Lukasiewicz sum defined by u � v = max{0, u + v − 1}, for all u, v ∈ [0, 1].
The corresponding operation hom is given, respectively, by

hom(u, v) =

{
1, if u ≤ v
v, else

, hom(u, v) =

{
min{ vu , 1}, if u 6= 0

1, u = 0
,

hom(u, v) = min{1, 1− u+ v} = 1−max{0, u− v},
for u, v ∈ [0, 1]. We will denote these quantales by [0, 1]∧, [0, 1]∗, and [0, 1]�,
respectively. Then, through the map

[0,∞] −→ [0, 1], u 7−→ e−u

with e−∞ = 0, the quantale
←−−−
[0,∞]+ is isomorphic to [0, 1]∗ and

←−−−
[0,∞]∧ is

isomorphic to [0, 1]∧. Finally, the quantale
←−−
[0, 1]⊕ of (3) is isomorphic to the

quantale [0, 1]�, via the lattice isomorphism u 7→ 1− u.
(5) Another way to equip the unit interval [0, 1] with a quantale structure

is to consider the usual order and to give ⊗ by the nilpotent minimum

u⊗ v =

{
min{u, v} if u+ v > 1,

0 else

for u, v ∈ [0, 1], for which hom(u, v) = max{1 − u, v}. This is a classical
example of a tensor in [0, 1] that is left continuous but not continuous.
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(6) The set

D = {f : [0,∞] −→ [0, 1] | f(α) =
∨

β<α

f(β) for all α ∈ [0,∞]}

of left continuous distribution functions, ordered pointwise, is a complete
lattice. Here the supremum of a family (hi)i∈I of elements of D can be
calculated pointwise as h(α) =

∨
i∈I hi(α), for all α ∈ [0,∞]. The infimum of

an arbitrary collection of elements of D cannot be obtained by an analogous
process since the pointwise infimum of a family of left continuous maps need
not be left continuous. However, the infimum of a family (fi)i∈I in D is
given by ∧

i∈I
fi(α) = sup

β<α
inf
i∈I

fi(β),

for every α ∈ [0,∞], due to the adjunction i a c, where i is the embedding
D → Ord([0,∞], [0, 1]) and c : Ord([0,∞], [0, 1]) → D, such that c(f)(α) =
supβ<α f(β).

For each of the tensor products ⊗ on [0, 1] defined in (4), D becomes a
quantale with

f ⊗ g(γ) =
∨

α+β6γ
f(α)⊗ g(β),

for all γ ∈ [0,∞]; the identity is given by

σ0,1(α) =

{
0 if α = 0,

1 else.

For more information about this quantale we refer to [16, 20, 39].

2.2 Completely distributive lattices In this subsection we recall
some properties of complete lattices and quantales which will be useful in
the sequel. First of all, we call a quantale V = (V,⊗, k) non-trivial whenever
k > ⊥. More generally:

Definition 2.2. The neutral element k of a quantale V = (V,⊗, k) is called
∨-irreducible whenever k > ⊥ and, for all u, v ∈ V, k ≤ u ∨ v implies k ≤ u
or k ≤ v.
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For an ordered set X, we denote by P↓X the complete lattice of down
sets of X ordered by inclusion. The ordered set X can be embedded into
P↓X by

↓X : X −→ P↓X, x 7−→ ↓x = {y ∈ X | y ≤ x};
and X is complete if and only if ↓X : X → P↓X has a left adjoint

∨
: P↓X →

X. In this paper we will often require that the complete lattice V is com-
pletely distributive, a notion introduced in [64]. Therefore we recall suc-
cinctly the notions and results needed in this paper and refer for all details
to [78].

Definition 2.3. A complete ordered set X is called completely distributive
whenever the map

∨
: P↓X → X preserves all infima.

Hence, since P↓X is complete, the lattice X is completely distributive if
and only if

∨
has a left adjoint ⇓X : X → P↓X. We recall that

⇓Xa
∨

⇐⇒ ∀x ∈ X ∀A ∈ P↓X . (⇓X x ⊆ A ⇐⇒ x ≤
∨
A).

Definition 2.4. Let X be a complete ordered set X. For all x, y ∈ X, x is
totally below y (x� y) whenever, for all A ∈ P↓X,

y ≤
∨
A =⇒ x ∈ A.

Proposition 2.5. Let � be the totally below relation in a complete ordered
set X with order relation ≤. Then, for all x, y, z ∈ X:

(1) x� y =⇒ x ≤ y;
(2) x ≤ y � z =⇒ x� z;
(3) x� y ≤ z =⇒ x� z;
(4) x� y =⇒ ∃z ∈ X .x� z � y.

If X is a completely distributive lattice, then, for every y ∈ X,

⇓ y =
⋂
{A ∈ P↓X | y ≤

∨
A};

therefore x ∈⇓ y if and only if x� y.

Theorem 2.6. A complete lattice X is completely distributive if and only if
every y ∈ X can be expressed as y =

∨{x ∈ X | x� y}.
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Remark 2.7. A complete ordered set X is completely distributive if and
only if Xop is so.

Example 2.8. (1) The complete lattice 2 is completely distributive where
x� y if and only if y = 1.

(2) The lattices [0, 1] and [0,∞], ordered by 6, are completely distribu-
tive with � being the usual smaller relation <. Similarly,

←−−
[0, 1] and

←−−−
[0,∞],

with the “greater or equal relation” >, are completely distributive where the
totally below relation is the larger relation >.

(3) In order to show that the complete lattice D is completely distribu-
tive, it is useful to introduce some special elements that will allow a more
simplified description of D and of its properties. The step functions σn,ε,
with n ∈ [0,∞] and ε ∈ [0, 1], are elements of D defined by

σn,ε(α) =

{
0 if α 6 n,
ε if α > n;

for all α ∈ [0,∞]. It is shown in [20] that, for all f, σn,ε ∈ D, σn,ε � f if
and only if ε < f(n). This observation allows to write every element f ∈ D
as the supremum of those step functions totally bellow f : f =

∨{σn,ε ∈ D |
σn,ε � f}. A complete description of the totally below relation on D can
be found in [16].

Definition 2.9. For a quantale V = (V,⊗, k), we say that k is approximated
whenever the set

⇓k = {u ∈ V | u� k}
is directed and k =

∨⇓k.

We note that in each of the quantales of Examples 2.8 the neutral element
is approximated.

Proposition 2.10. Let V = (V,⊗, k) be a quantale where k is approximated.
Then k is ∨-irreducible and k =

∨
u�k u⊗ u.

Proof. Assume that k is approximated. First note that k > ⊥ since, being
directed, ⇓k is non-empty. Furthermore, k is ∨-irreducible by [39, Remark
4.21], and the second assertion follows from [19, Theorem 1.12].
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2.3 V-relations For a quantale V = (V,⊗, k), a V-relation r : X −→7 Y
is a map X × Y → V. Given V-relations r : X −→7 Y and s : Y −→7 Z, their
composite s · r : X −→7 Z is defined by

s · r(x, z) =
∨

y∈Y
r(x, y)⊗ s(y, z),

for all x ∈ X and z ∈ Z. Every map f : X → Y can be seen as a V-relation
f : X −→7 Y with

f(x, y) =

{
k if f(x) = y,

⊥ else;

and the identity map 1X : X → X induces the identity V-relation 1X : X −→7
X. The resulting category of sets and V-relations is denoted by V-Rel. We
note that the construction above defines a functor Set → V-Rel which is
faithful if and only if V is non-trivial.

The set V-Rel(X,Y ) of V-relations from X to Y is actually a complete
ordered set where the supremum of a family (ϕi : X −→7 Y )i∈I is calculated
pointwise. Since the tensor product of V preserves suprema, for every V-
relation r : X −→7 Y , the maps (−) · r : V-Rel(Y,Z) → V-Rel(X,Z) and r ·
(−) : V-Rel(Z,X) → V-Rel(Z, Y ) preserve suprema as well; which tells us
that V-Rel is actually a quantaloid (see [65]). In particular, both maps have
right adjoints in Ord.

Explicitly, the right adjoint −� r of (−) · r is given by

t� r(y, z) =
∧

x∈X
hom(r(x, y), t(x, z)),

for each t : X −→7 Z; we call t � r the extension of t along r. Similarly,
we denote the right adjoint of r · (−) by r � −; for each t : Z −→7 Y , the
V-relation r � t is called the lifting of t along r and can be calculated as

r � t(z, x) =
∧

y∈Y
hom(r(x, y), t(z, y)).

Another important feature which comes from the fact that V-Rel is locally
ordered, is the possibility to define adjoint V-relations: r : X −→7 Y is left
adjoint to s : Y −→7 X if and only if 1X ≤ s · r and r · s ≤ 1Y .
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For each V-relation r : X −→7 Y one can consider its opposite r◦ : Y −→7 X
given by r◦(x, y) = r(y, x), for all x ∈ X and all y ∈ Y . This construction
defines a locally monotone functor (−)op : V-Relop → V-Rel. We also note
that f a f◦ in V-Rel, for every function f : X → Y .

2.4 V-categories We introduce now categories enriched in a quantale
V.

Definition 2.11. Let V = (V,⊗, k) be a quantale. A V-category is a pair
(X, a) consisting of a set X and a V-relation a : X −→7 X satisfying 1X ≤ a
and a · a ≤ a; in pointwise notation:

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z),

for all x, y, z ∈ X. A V-functor f : (X, a) → (Y, b) between V-categories is
a map f : X → Y such that f · a ≤ b · f ; equivalently, for all x, x′ ∈ X,
a(x, x′) ≤ b(f(x), f(x′)).

With the usual composition of maps and the identity maps, V-categories
and V-functors provide the category V-Cat. Note that 1X ≤ a implies a ≤
a · a; therefore a · a = a, for every V-category (X, a). The quantale V is
itself a V-category with structure given by hom: V × V → V. To every
V-category (X, a) one can associate its dual V-category Xop = (X, a◦), and
this construction defines a functor

(−)op : V-Cat −→ V-Cat

commuting with the canonical forgetful functor OV : V-Cat→ Set.

Definition 2.12. A V-category X is called symmetric whenever X = Xop.

Due to the fact that the forgetful functor OV : V-Cat→ Set is topological
(see [1, 14]), the category V-Cat admits all limits and colimits. Moreover,
OV : V-Cat → Set has a left adjoint and the free V-category over the one-
element set 1 = {?} is given by G = (1, k), where k(?, ?) = k. For every set
X, we have the X-fold power VX of the V-category V whose elements are
maps ϕ : X → V and, for maps ϕ1, ϕ2 : X → V,

[ϕ1, ϕ2] := ϕ2 � ϕ1 =
∧

x∈X
hom(ϕ1(x), ϕ2(x))
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describes the V-categorical structure of VX . Another example is the product
of V-categories (X, a) and (Y, b), which is the V-categoryX×Y = (X×Y, d),
where, for (x, y), (x′, y′) ∈ X×Y , d((x, y), (x′, y′)) = a(x, x′)∧b(y, y′). How-
ever one can also consider the structure a⊗b onX×Y : a⊗b((x, y), (x′, y′)) =
a(x, x′)⊗ b(y, y′). Both operations are commutative and associative but the
neutral objects differ in general: (1,>) is the neutral object for the first
product while G = (1, k) is the neutral object for the second.

We consider now the quantales of Examples 2.1.

Example 2.13. (1) The objects of 2-Cat are ordered sets (that is, sets
equipped with a reflexive and transitive binary relation) and the morphisms
are monotone maps; thus, 2-Cat ' Ord.

(2) A
←−−−
[0,∞]+-category is a generalised metric space in the sense of [50]

and a
←−−−
[0,∞]+-functor is a non-expansive map. We write Met for the result-

ing category, that is,
←−−−
[0,∞]+-Cat ' Met. Due to the lattice isomorphism←−−−

[0,∞]+ ' [0, 1]∗, also [0, 1]∗-Cat ' Met. Similarly, for V =
←−−−
[0,∞]∧, a V-

category is a (generalised) ultrametric space and, since
←−−−
[0,∞]∧ ' [0, 1]∧, we

have
←−−−
[0,∞]∧-Cat ' [0, 1]∧-Cat ' UMet. Finally, we can interpret

←−−
[0, 1]⊕-

categories and [0, 1]�-categories as bounded-by-1 metric spaces and [0, 1]�-
functors as non-expansive maps, so that

←−−
[0, 1]⊕-Cat ' [0, 1]�-Cat ' BMet.

(3) A D-category consists of a set equipped with a structure a : X×X →
D such that, for all x, y, z ∈ X and t ∈ [0,∞]:

1 6 a(x, y)(t) and
∨

q+r6t
a(x, y)(q)⊗ a(y, z)(r) 6 a(x, z)(t),

and a D-functor f : (X, a)→ (Y, b) satisfies a(x, y)(t) 6 b(f(x), f(y))(t), for
x, y ∈ X and t ∈ [0,∞]. Therefore the category D-Cat is isomorphic to the
category of (generalised) probabilistic metric spaces ProbMet. The classical
definition of probabilistic metric space (see [56, 67]) demands that (X, a) is
separated (see Definition 2.16), symmetric and finitary (a(x, y) ∈ D should
be finite for all x, y ∈ X). A detailed study of probabilistic metric spaces as
enriched categories can be found in [39].

Definition 2.14. Let V1 and V2 be quantales, we write ⊗ for the multi-
plication in both V1 and V2, and k1 denotes the neutral element of V1 and
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k2 the neutral element of V2. A lax quantale morphism ϕ : V1 → V2 is a
monotone map between the underlying ordered sets satisfying

k2 ≤ ϕ(k1) and ϕ(u)⊗ ϕ(v) ≤ ϕ(u⊗ v),

for all u, v ∈ V2.

These properties ensure that the mapping (X, a) 7→ (X,ϕa) sends V1-
categories to V2-categories; hence, this construction defines a functor

Bϕ : V1-Cat −→ V2-Cat

which commutes with the forgetful functors to Set.

Example 2.15. (1) The identity map on [0,∞] defines a lax quantale mor-
phism ←−−−

[0,∞]∧ −→
←−−−
[0,∞]+,

and the map [0,∞]→ [0, 1], u 7→ min{u, 1} gives a lax quantale morphism
←−−−
[0,∞]+ −→

←−−
[0, 1]⊕.

The corresponding functors produce the canonical chain of functors

UMet −→ Met −→ BMet.

(2) The quantale
←−−−
[0,∞]+ embeds canonically into D via I∞ :

←−−−
[0,∞]+ →

D, taking an element n ∈ [0,∞] to σn,1 ∈ D. This map is a lax quantale
morphism and it admits a right and a left adjoint

←−−−
[0,∞]+ I∞ // D

⊥
P∞

ff

⊥
O∞

vv

with P∞(f) = inf{n ∈ [0,∞] | f(n) = 1} and O∞(f) = sup{n ∈ [0,∞] |
f(n) = 0}, for all f ∈ D with P∞ and O∞ being lax quantale morphisms.
These lax morphisms induce adjoint functors

Met I∞ // ProbMet.
⊥
P∞

ff

⊥
O∞

xx

between the categories Met and ProbMet.
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For every quantale V, the canonical map

i : 2 −→ V, 0 7−→ ⊥, 1 7−→ k

is a lax quantale morphism, which induces the functor Bi : Ord −→ V-Cat.
The monotone map i : 2→ V has a right adjoint

p : V −→ 2, v 7−→
{

1 if v ≥ k,
0 else

which is a lax morphism of quantales too and induces the functorBp : V-Cat→
Ord; explicitly,

x ≤ y ⇐⇒ k ≤ a(x, y),

for all elements x, y of a V-category X.

Definition 2.16. A V-category X = (X, a) is called separated whenever
BpX is separated; that is, for all x, y ∈ X, k ≤ a(x, y) and k ≤ a(y, x)
imply x = y.

2.5 V-distributors Besides V-functors, there is another important type
of morphisms between categories, called V-distributors. The notion of dis-
tributor was introduced by Bénabou in the 1960s and provides “a general-
isation of relations between sets to ‘relations between (small) categories’ ”
(see [5]).

Definition 2.17. For V-categoriesX = (X, a) and Y = (Y, b), a V-distributor
ϕ : X −→◦ Y is a V-relation ϕ : X −→7 Y compatible with both structures,
meaning that ϕ · a ≤ ϕ and that b · ϕ ≤ ϕ.

In fact, these inequalities are equalities due to the reflexivity of a and
b. Thus the identity distributor on (X, a) is actually a and, considering the
composition of V-relations, we obtain the category V-Dist. We also note that
a V-relation ϕ : X −→7 Y is a V-distributor precisely when ϕ : Xop ⊗ Y → V
is a V-functor (see [50]).

For V-categories X and Y , the subset

V-Dist(X,Y ) ↪→ V-Rel(X,Y )
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is closed under suprema; hence, the supremum of a family (ϕi : X −→◦ Y )i∈I
of V-distributors can be calculated pointwise. As in Subsection 2.3, for a
V-distributor ϕ : X −→◦ Y , both maps (−) · ϕ and ϕ · (−) have right adjoint
given, respectively, by the extension and lifting along ϕ.

Every V-functor f : (X, a) → (Y, b) induces a pair of V-distributors
f∗ : (X, a) −→◦ (Y, b) and f∗ : (Y, b) −→◦ (X, a) given by f∗ = b · f and
f∗ = f◦ · b; in pointwise notation, for x ∈ X and y ∈ Y ,

f∗(x, y) = b(f(x), y) and f∗(y, x) = b(y, f(x)),

which characterise the functors (−)∗ : V-Cat → V-Dist and (−)∗ : V-Cat →
V-Distop. An important fact about these induced V-distributors is that they
form an adjunction f∗ a f∗ in V-Dist. For the particular case of a V-functor
of the form x : G→ X we obtain x∗ = a(x,−) and x∗ = a(−, x).

Definition 2.18. A V-functor f : (X, a) → (Y, b) is called fully faithful
whenever f∗ · f∗ = a, and f is called fully dense whenever f∗ · f∗ = b.

The underlying order of V-categories extends point-wise to an order re-
lation between V-functors. This order relation can be equivalently described
using V-distributors: for V-functors f, g : (X, a)→ (Y, b),

f ≤ g ⇐⇒ f∗ ≤ g∗ ⇐⇒ g∗ ≤ f∗.

Furthermore, the composition from either side preserves this order, and
therefore V-Cat is actually an ordered category. An important consequence is
the possibility to define adjoint V-functors: a pair of V-functors f : (X, a)→
(Y, b) and g : (Y, b)→ (X, a) forms an adjunction, f a g, whenever, 1X ≤ g·f
and ·fg ≤ 1Y . Since

f a g ⇐⇒ g∗ a f∗ ⇐⇒ f∗ = g∗,

f a g if and only if, for all x ∈ X and y ∈ Y , a(x, g(y)) = b(f(x), y).

2.6 Cauchy complete V-categories In 1973, Lawvere [50] proved
that a metric space X is Cauchy complete if and only if every adjunction
ϕ a ψ : Y −→◦ X of

←−−−
[0,∞]+-distributors is of the form f∗ a f∗, for some

non-expansive map f : X → Y . This observation motivates the following
nomenclature.
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Definition 2.19. Let V = (V,⊗, k) be a quantale. A V-category (X, a)
is Cauchy complete if every adjunction of V-distributors (ϕ : X −→◦ Y ) a
(ψ : Y −→◦ X) is representable, meaning that there is a V-functor f : Y → X
such that ϕ = f∗ and ψ = f∗.

Although the definition requires the representability of every adjunction,
it is enough to consider the case Y = G. Thus, a V-category X is Cauchy
complete if and only if every adjunction (ϕ : G −→◦ X) a (ψ : X −→◦ G) is rep-
resentable by some x ∈ X. Subsequent developments established conditions
under which results relating Cauchy sequences, convergence of sequences,
adjunctions of distributors and representability can be generalised to V-Cat
(see [11, 15, 19, 39, 42, 75]).

Finally, we recall some topological notions for V-categories from [42].
For a quantale V = (V,⊗, k), a V-category (X, a) and a subset M ⊆ X, the
L-closure M of M is given by the collection of all x ∈ X which represent
adjoint distributors on M . More precisely, x ∈M whenever i∗ · x∗ a x∗ · i∗,
where i : M ↪→ X is the inclusion V-functor. In more elementary terms, we
have (see [42]):

Proposition 2.20. Let (X, a) be a V-category, M ⊆ X and x ∈ X. Then
x ∈M if and only if k ≤ ∨z∈M a(x, z)⊗ a(z, x).

The above proposition also shows that (X, a) and (X, a)op induce the
same closure operator on the set X. The following two results can be found
in [42] and describe fundamental properties of the L-closure.

Proposition 2.21. Let V = (V,⊗, k) be a quantale. For a V-functor
f : X → Y and M,M ′ ⊆ X, N ⊆ Y , one has:

(1) M ⊆M and M ⊆M ′ implies M ⊆M ′.
(2) M = M .
(3) f(M) ⊆ f(M) and f−1(N) ⊇ f−1(N).
(4) If k is ∨-irreducible, then M ∪M ′ = M ∪M ′ and ∅ = ∅.

Corollary 2.22. If k is ∨-irreducible in V, then the L-closure operator de-
fines a topology on X such that every V-functor becomes continuous. Hence,
in this case the L-closure defines a functor LV : V-Cat→ Top.
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3 Combining convergence and V-categories

In this section, we study V-categories equipped with a compatible conver-
gence structure. As we explained in Section 1, this study has its roots in
Nachbin’s “Topology and Order” [59] as presented in [72]. We recall the
notion of topological theory U [36], which provides enough structure to ex-
tend the ultrafilter monad U to a monad on V-Cat; the algebras for this
monad we designate as V-categorical compact Hausdorff spaces. We also re-
call the notions of U-category and U-functor and the comparison between
V-categorical compact Hausdorff spaces and U-categories, which can already
be found in [72]. In Subsection 3.6 we use the closure operator on V-Cat
(see Subsection 2.6) to define compact V-categories, and show, under some
conditions on V, that compact separated V-categories provide examples of
V-categorical compact Hausdorff spaces.

3.1 Ultrafilter theories Of particular interest to us is the ultrafilter
monad U = (U,m, e) which is induced by the adjunction

Booleop >

Boole(−,2)
((

Set(−,2)

hh Set;

for more information on monads we refer to [54]. Here the functor U : Set→
Set takes a setX to the set UX of ultrafilters onX and, for a map f : X → Y
and x ∈ UX, Uf(x) = {A ⊆ Y | f−1(A) ∈ x}. The unit eX : X → UX on
X sends x ∈ X to the principal ultrafilter �x on X, and the multiplication
mX : U2X → UX is characterised, for every X ∈ U2X, by mX(X) = {A ∈
UX | A# ∈ X}, where A# = {x ∈ UX | A ∈ x}. The Eilenberg-Moore
category of U, SetU, is equivalent to the category of compact Hausdorff
topological spaces and continuous maps (see [55]).

The following result (see [70]) ensures the existence of certain ultrafilters
and will be very important for later usage.

Lemma 3.1. Let f be a filter and j be an ideal on a set X such that f∩j = ∅.
Then there is an ultrafilter r that extends f and excludes j; that is, f ⊆ r and
j ∩ r = ∅.
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In this paper, we consider a particular case U = (U,V, ξ) of a topological
theory (in the sense of [36]) based on the ultrafilter monad U = (U,m, e), a
quantale V = (V,⊗, k) and a map ξ : UV → V. Here we require (U,V, ξ) to
satisfy all the axioms of the definition of a strict topological theory with the
exception of the axiom regarding the tensor product ⊗ of V, for which it is
enough to have lax continuity. We call such a theory an ultrafilter theory.
More in detail:

• the map ξ : UV → V is the structure of an Eilenberg–Moore algebra
on V,

X
eX //

1X !!

UX

ξ
��
X

UUX

Uξ
��

mX // UX

ξ
��

UX
ξ

// X

that is, ξ : UV → V is the convergence of a compact Hausdorff topology
on V;

• The tensor product is “laxly continuous”:

U(V × V)

〈ξUπ1,ξUπ2〉
��

U⊗ //

≤

UV
ξ

��
V × V ⊗

// V

• ξ is “compatible with suprema in V” as specified in condition (Q∨)
in [36].

We call a theory U satisfying even equality in the axiom involving the
tensor product a strict ultrafilter theory. We note that every ultrafilter theory
U = (U,V, ξ) based on a frame V with ⊗ = ∧ is strict. Furthermore, U is
called compatible with finite suprema whenever the diagram

U(V × V)

〈ξUπ1,ξUπ2〉
��

U∨ // UV
ξ

��
V × V ∨

// V
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commutes. Note that we do not need to impose a condition on the empty
supremum since, for every ultrafilter theory, the diagram

U1
U⊥ //

��

UV
ξ
��

1 ⊥
// V

commutes. For u ∈ V, we consider the map

tu : V −→ V, v 7−→ u⊗ v.

An ultrafilter theory U = (U,V, ξ) is called pointwise strict whenever, for
all u ∈ V, the diagram

UV Utu //

ξ
��

UV
ξ
��

V
tu

// V

commutes. Clearly, every strict ultrafilter theory is pointwise strict.
The following result (see [36, Theorem 3.3]) provides examples of ultra-

filter theories.

Theorem 3.2. For every completely distributive quantale V, the map

ξ : UV −→ V, v 7−→
∧

A∈v

∨

u∈A
u

defines an ultrafilter theory (U,V, ξ).

Somehow surprisingly, the formula above depends only on the lattice
structure of V; moreover, it is self-dual in the sense that

ξ(v) =
∧

A∈v

∨

u∈A
u =

∨

A∈v

∧

u∈A
u,

for all v ∈ UV. For the lattices V = 2, V = [0, 1], V = [0,∞] and V = D
we denote the corresponding map ξ : UV → V by ξ2, ξ[0,1], ξ[0,∞] and ξD,
respectively.
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Proposition 3.3. Let V be a completely distributive quantale and ξ : UV →
V as in Theorem 3.2. Then U = (U,V, ξ) is compatible with finite suprema.

Proof. Just apply Theorem 3.2 to the quantale Vop with tensor product
given by binary suprema ∨ in V. Here we use the fact that also the lattice
Vop is completely distributive and therefore in particular a frame.

Example 3.4. According to the quantales introduced in Examples 2.1, and
keeping in mind Examples 2.8, we have the following examples of ultrafilter
theories.

(1) For V = 2, the convergence of Theorem 3.2 corresponds to the dis-
crete topology on 2. We denote this theory as U2.

(2) For the quantales based on the lattices [0, 1] and [0,∞], the con-
vergence of Theorem 3.2 corresponds to the usual Euclidean topology. We
denote the corresponding theories by U←−−−

[0,∞]+
, U←−−−

[0,∞]∧
, U[0,1]∗ , U[0,1]∧ , and

U[0,1]� , respectively.
(3) We will denote the ultrafilter theory based on the quantale D and on

the the convergence of Theorem 3.2 by UD.

Remark 3.5. For each of the quantales V = 2, V = [0, 1] and V = [0,∞],
the theory obtained from Theorem 3.2 is strict. However, we do not know
if there is a strict ultrafilter theory involving the quantale D of distribution
functions.

Definition 3.6. Let U1 = (U,V1, ξ1) and U2 = (U,V2, ξ2) be ultrafilter
theories and ϕ : V1 → V2 be a lax quantale morphism. Then ϕ is compatible
with U1 and U2 whenever, for all v ∈ UV1, ξ2 · Uϕ(v) ≤ ϕ · ξ1(v).

UV1
Uϕ //

ξ1
��

≥

UV2

ξ2
��

V1 ϕ
// V2

For instance, for every ultrafilter theory U = (U,V, ξ), the canonical
map i : 2 → V (see Subsection 2.4) is a lax quantale morphism making the
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diagram

U2 Ui //

ξ2
��

UV
ξ
��

2
i
// V

commutative; hence i is compatible with U2 and U .

Lemma 3.7. Let U = (U,V, ξ) be an ultrafilter theory where k is the top
element of V. Then the right adjoint p : V → 2 of i is compatible with U
and U2.

Proof. Let v ∈ UV and assume that ξ2(Up(v)) = 1. Then Up(v) =
�
1 and

therefore ↑k ∈ v. If k is the top-element of V, then {k} ∈ v and consequently
ξ(v) = k.

Lemma 3.8. Let U1 = (U,V1, ξ1) and U2 = (U,V2, ξ2) be ultrafilter theories
where ξ1, ξ2 are as in Theorem 3.2. Assume that ϕ : V1 → V2 is a lax
quantale morphism preserving codirected infima. Then ϕ is compatible with
U1 and U2.

Proof. Let v ∈ UV1. Then

ξ2(Uϕ(v)) =
∧

A∈v

∨

u∈A
ϕ(u) ≤

∧

A∈v
ϕ

(∨

u∈A
u

)
= ϕ

(∧

A∈v

∨

u∈A
u

)
= ϕ(ξ1(v)).

The result above applies in particular when ϕ : V1 → V2 is right adjoint.
For instance, if U = (U,V, ξ) is an ultrafilter theory where V is completely
distributive and ξ : UV → V is as in Theorem 3.2, then p : V → 2 is compat-
ible with U and U2 since i a p.

Example 3.9. Recall the chain O∞ a I∞ a P∞ of adjoint lax quantale
morphisms introduced in Example 2.15 (2). Since I∞ and P∞ are both
right adjoints, they are compatible with the ultrafilter theories U←−−−

[0,∞]+
and

UD.
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3.2 Extending the monad Given an ultrafilter theory U = (U,V, ξ),
we extend the functor U : Set→ Set to a lax functor U

ξ
on V-Rel by putting

U
ξ
X = UX for each set X and

U
ξ
r : UX × UY −→ V

(x, y) 7−→
∨{

ξ · Ur(w)
∣∣∣ w ∈ U(X × Y ), UπX(w) = x, UπY (w) = y

}

for each V-relation r : X×Y → V. The following result can be found in [36].

Theorem 3.10. Let U = (U,V, ξ) be an ultrafilter theory. Then the follow-
ing assertions hold.

(1) For each V-relation r : X −→7 Y , U
ξ
(r◦) = U

ξ
(r)◦ (and we write U

ξ
r◦).

(2) For each function f : X → Y , Uf = U
ξ
f and (Uf)◦ = U

ξ
(f◦).

(3) For each V-relation r : X −→7 Y and functions f : A→ X and g : Y →
Z,

U
ξ
(g · r) = Ug · U

ξ
r and U

ξ
(r · f) = U

ξ
r · Uf.

(4) For all V-relations r : X −→7 Y and s : Y −→7 Z, U
ξ
s · U

ξ
r ≤ U

ξ
(s · r).

We have even equality if U is a strict theory.
(5) Then e becomes an op-lax natural transformation e : 1 → U

ξ
and

m a natural transformation m : U
ξ
U
ξ
→ U

ξ
, that is, for every V-relation

r : X −→7 Y we have

eY · r ≤ Uξr · eX , mY · UξUξr = U
ξ
r ·mX .

X
eX //

_r
��

≤

U
ξ
X

_U
ξ
r

��
Y eY

// UξY

U
ξ
U
ξ
X

mX //

_U
ξ
U
ξ
r

��

U
ξ
X

_U
ξ
r

��
U
ξ
U
ξ
Y mY

// U
ξ
Y

3.3 V-categorical compact Hausdorff spaces Based on the lax
extension of the Set-monad U = (U,m, e) to V-Rel described in Subsec-
tion 3.2, the Set-monad U admits a natural extension to a monad on V-Cat,
in the sequel also denoted as U = (U,m, e) (see [72]). Here the functor
U : V-Cat→ V-Cat sends a V-category (X, a0) to (UX,U

ξ
a0), and with this

definition eX : X → UX and mX : UUX → UX become V-functors for each
V-category X.
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Definition 3.11. Let U = (U,V, ξ) be an ultrafilter theory. An Eilenberg–
Moore algebra for the monad U on V-Cat is called V-categorical compact
Hausdorff space.

Hence, a V-categorical compact Hausdorff space can be described as a
triple (X, a0, α) where (X, a0) is a V-category and α : UX → X is the con-
vergence of a compact Hausdorff topology on X such that α : U(X, a0) →
(X, a0) is a V-functor. For U-algebras (X, a0, α) and (Y, b0, β), a map
f : X → Y is a homomorphism f : (X, a0, α) → (Y, b0, β) precisely if f
preserves both structures, that is, whenever f : (X, a0) → (Y, b0) is a V-
functor and f : (X,α) → (Y, β) is continuous. Since the extension U

ξ
of U

commutes with the involution (−)◦, with X = (X, a0, α) also (X, a◦0, α) is a
V-categorical compact Hausdorff space. It follows from [36, Lemma 3.2] that
the V-category (V, hom) combined with the U-algebra structure ξ induces
the V-categorical compact Hausdorff space V = (V, hom, ξ).

Example 3.12. (1) Our motivating example is produced by U = U2. In
this case, the objects of the Eilenberg-Moore category for the monad U on
Ord are precisely the ordered compact Hausdorff spaces introduced in [59],
and the homomorphisms are the monotone continuous map. We denote this
category by OrdCH. We recall that an ordered compact Hausdorff space X is
a set equipped with an order relation ≤ and a compact Hausdorff topology
so that

{(x, y) | x ≤ y} ⊆ X ×X
is closed with respect to the product topology. It is shown in [72] that
this condition is equivalent to being an Eilenberg–Moore algebra for the
ultrafilter monad on Ord.

(2) For U = U←−−−
[0,∞]+

, we put MetCH = MetU and call an object of MetCH

a metric compact Hausdorff space.
(3) Similarly, for U = UD, the objects of ProbMetU are called proba-

bilistic metric compact Hausdorff spaces. The category ProbMetU will be
represented by ProbMetCH.

Proposition 3.13. Let U1 = (U,V1, ξ1) and U2 = (U,V2, ξ2) be ultrafilter
theories and ϕ : V1 → V2 be a lax quantale morphism compatible with U1

and U2. Then, for every V1-category X, the identity map on the set UX is
a V2-functor of type

UBϕ(X) −→ BϕU(X).
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Proof. Let (X, a0) be a V1-category. Then, since ϕ is compatible with the
ultrafilter theories U1 and U2, for all x, y ∈ UX we have

U
ξ2

(ϕa0)(x, y) =
∨
{ξ2 · Uϕ · Ua0(w) | Uπ1(w) = x, Uπ2(w) = y}

≤
∨
{ϕ · ξ1 · Ua0(w) | Uπ1(w) = x, Uπ2(w) = y}

≤ ϕ
(∨
{ξ1 · Ua0(w) | Uπ1(w) = x, Uπ2(w) = y}

)

= ϕ(U
ξ1
a0)(x, y);

which proves the claim.

Hence, the family of these maps defines a natural transformation

V1-Cat
Bϕ //

U
��

�	

V2-Cat

U
��

V1-Cat
Bϕ
// V2-Cat

and, together with Bϕ : V1-Cat→ V2-Cat, a monad morphism (see [63]) from
the ultrafilter monad U on V1-Cat to the ultrafilter monad U on V2-Cat. As
a result, we obtain the functor Bϕ : V1-CatU → V2-CatU sending (X, a0, α)
to (X,ϕa0, α) and making the diagram

V1-CatU
Bϕ //

GU

��

V2-CatU

GU

��
V1-Cat

Bϕ
// V2-Cat

commutative. In particular, for every completely distributive quantale V
and ξ given by the formula in Theorem 3.2, the lax quantale morphism
p : V → 2 induces the functor

Bp : V-CatU −→ OrdCH.

Example 3.14. We have seen in Example 3.9 that the lax quantale mor-
phisms introduced in Example 2.15 (2) are compatible with the ultrafilter
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theories U←−−−
[0,∞]+

and UD. As a consequence one has the adjoint functors

ProbMetCH >

BP∞
((

BI∞

hh MetCH.

3.4 U-categories and U-functors We have already mentioned in
Section 1 that there is a close connection between ordered compact Haus-
dorff spaces and certain topological spaces. In this subsection we recall the
definition of U-categories as enriched substitutes of topological spaces. This
notion has its roots in Barr’s “relational algebras” [4]; an extensive presen-
tation of the theory of (T,V)-categories (also called (T,V)-algebras), for a
monad T and a quantale V, can be found in [40].

Definition 3.15. A U-category is a pair (X, a) consisting of a setX and a V-
relation a : TX −→7 X satisfying the lax Eilenberg–Moore axioms 1X ≤ a ·eX
and a · U

ξ
a ≤ a ·mX .

Expressed elementwise, these two conditions read as

k ≤ a(eX(x), x) and U
ξ
a(X, x)⊗ a(x, x) ≤ a(mX(X), x),

for all X ∈ UUX, x ∈ UX and x ∈ X.

Definition 3.16. A function f : X → Y between U-categories (X, a) and
(Y, b) is a U-functor whenever f · a ≤ b · Uf .

Since f a f◦ in V-Rel, this condition is equivalent to a ≤ f◦ · b ·Uf , and
in pointwise notation the latter inequality becomes

a(x, x) ≤ b(Uf(x), f(x)),

for all x ∈ UX, x ∈ X. The category of U-categories and U-functors is
denoted by U-Cat.
Example 3.17. (1) For V = 2, a U2-category is a set X equipped with a
relation →: UX −→7 X such that ex(x) → x and, if X → r and r → x, then
mX(X)→ x. It is shown in [4] that these are precisely the convergence rela-
tions induced by topologies; in fact, the main result of [4] states that U2-Cat
is isomorphic to the category Top of topological spaces and continuous maps.
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(2) The concept of approach space was introduced by Lowen in 1989
(see [52, 53]). It involves a set X and a map δ : PX × X → [0,∞], called
approach distance or distance map, satisfying:

(a) δ({x}, x) = 0,

(b) δ(∅, x) =∞,

(c) δ(A ∪B, x) = min{δ(A, x), δ(B, x)},

(d) δ(A(ε), x) + ε ≥ δ(A, x), with A(ε) = {x ∈ X | ε ≥ δ(A, x)},

for all x ∈ X, all A,B ∈ PX and all ε ∈ [0,∞]. A non-expansive map
is a map f : X → Y between approach spaces (X, δ) and (Y, δ′) subject to
δ(A, x) > δ′(f(A), f(x)), for all A ∈ PX and all x ∈ X.

It was proved in [14] that a
←−−−
[0,∞]+-relation a : UX −→7 X is induced by

an approach distance δ : PX ×X → [0,∞] if and only if

0 > a(
�
x, x) and Uξa(X, r) + a(r, x) > a(mX(X), x).

for all x ∈ X, all r ∈ UX and all X ∈ UUX, or equivalently, if and only
if (X, a) is a U←−−−

[0,∞]+
-category. Moreover, non-expansive maps correspond

precisely to U←−−−
[0,∞]+

-functors, so that App ' U←−−−
[0,∞]+

-Cat.

(3) For V =
←−−−
[0,∞]∧ ' [0, 1]∧, U←−−−[0,∞]∧

-Cat can be identified with the
subcategory of App whose objects (X, a) are the approach spaces satisfying
additionally the condition

max(Uξa(X, r), a(r, x)) > a(mX(X), x),

for all X ∈ UUX, r ∈ UX and x ∈ X.
(4) For V = [0, 1]�, U[0,1]�-Cat is the category whose objects are struc-

tures of the type (X, a) with a : UX −→7 X satisfying 1 6 a(
�
x, x) and

Uξa(X, r) + a(r, x) > 1 =⇒ Uξa(X, r) + a(r, x) 6 a(mX(X), x) + 1.

(5) For V = D, U-categories can be identified with probabilistic approach
spaces. This is an example of a quantale-valued approach space studied
in [48]. For the sake of simplicity we will represent UD-Cat by ProbApp.
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Similarly to the situation for V-categories, the canonical forgetful functor
OU : U-Cat → Set is topological (see [14]); which implies that the category
U-Cat is complete and cocomplete and OU preserves limits and colimits. We
denote the free U-category over the one-element set 1 by G = (1, k); here
k : U1 −→7 1 is the V-relation which sends the unique element of U1× 1 to k.

There are several functors connecting U-categories with V-categories and
topological spaces. Firstly, we have a functor SetU ↪→ U-Cat interpreting an
Eilenberg–Moore algebra as a lax one. Furthermore, there is a forgetful
functor (−)0 : U-Cat→ V-Cat sending (X, a) to (X, a0 = a · eX) and leaving
maps unchanged. We notice that the diagram

SetU //

GU
��

U-Cat
(−)0
��

Set
discrete

// V-Cat

commutes. Furthermore, by [36, Section 4], we have:

Proposition 3.18. Assume that ϕ : V1 → V2 is is a lax quantale morphism
compatible with the ultrafilter theories U1 = (U,V1, ξ1) and U2 = (U,V2, ξ2).
Then

(X, a) 7−→ (X,ϕa) and f 7−→ f

define a functor Bϕ : U1-Cat→ U2-Cat.

By Proposition 3.18, for every ultrafilter theory U = (U,V, ξ), the canon-
ical map i : 2→ V (see Subsection 2.4) induces the functor

Bi : Top −→ U-Cat.

interpreting a topological space X as the U-category with structure

(x, x) 7−→
{
k if x→ x

⊥ else,

for x ∈ UX and x ∈ X. If, moreover, the right adjoint p : V → 2 of i is
compatible with U and U2 (see Lemmas 3.7 and 3.8), then p defines a functor

Bp : U-Cat −→ Top
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which is right adjoint to Bi. Here Bp sends an U-category (X, a) to the
topological space X with convergence

UX ×X a−−−−→ V p−−−−→ 2;

that is, for x ∈ UX and x ∈ X, x→ x if and only if k ≤ a(x, x).

Example 3.19. The adjoint lax quantale morphisms I∞ a P∞ (see Ex-
ample 2.15) are compatible with the ultrafilter theories U←−−−

[0,∞]+
and UD.

Therefore they induce the adjoint functors

ProbApp >

BP∞
((

BI∞

hh App.

3.5 Comparison with U-categories It is shown in [72] that there is
a canonical functor

K : (V-Cat)U −→ U-Cat
which associates to each X = (X, a0, α) in (V-Cat)U the U-category KX =
(X, a) where a = a0 · α. Note that (a0 · α)0 = a0, that is, the diagram

(V-Cat)U K //

GU %%

U-Cat
(−)0
��

V-Cat

(3.5.1)

commutes. Applying K to V = (V, hom, ξ) produces the U-category V =
(V, homξ) where

homξ : UV × V −→ V, (v, v) 7−→ hom(ξ(v), v).

Example 3.20. (1) For U = U2, one obtains the commutative diagram

OrdCH
K //

GU $$

Top

(−)0
��

Ord
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Here every ordered compact Hausdorff space maps to a weakly sober, locally
compact and stable topological space; assuming also the T0-axiom, these
spaces are called stably compact (see [26]). We recall that a topological
space X is called weakly sober whenever every irreducible closed subset of
A ⊆ X is the closure of a singleton A = {x}; and X is called stable whenever
the way-below relation on the lattice of opens of X is stable under finite
intersection. It is also shown in [26] that the full subcategory of OrdCH
defined by the separated orders is isomorphic to the category StablyComp of
stably compact topological spaces and spectral maps. We also note that the
space K2 is the Sierpiński space 2 = {0, 1} with {1} closed.

(2) When we consider the ultrafilter theory U = U←−−−
[0,∞]+

, diagram (3.5.1)
becomes

MetCH
K //

GU $$

App

(−)0
��

Met.

Here the space K
←−−−
[0,∞]+ coincides with the “Sierpiński approach space” of

[53, Example 1.8.33 (2)]. Similarly to the topological case, it is shown in
[29] that separated metric compact Hausdorff spaces correspond precisely to
stably compact approach spaces.

(3) For U = UD, we obtain the diagram

ProbMetCH
K //

GU ''

ProbApp

(−)0
��

ProbMet.

The functorK : (V-Cat)U → U-Cat is right adjoint, its left adjoint assigns
to every U-category the V-categorical compact Hausdorff space (UX, â,mX).
Regarding this construction, we recall here from [15]:

Lemma 3.21. For every U-category (X, a), â := U
ξ
a ·m◦X is a V-category

structure on UX.

We give now an alternative characterisation of the compatibility between
the convergence and the V-categorical structure of an Eilenberg–Moore al-
gebra (X, a0, α) in V-CatU, which resembles the classical condition stating
that “the order relation is closed in the product space”.
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Proposition 3.22. For a V-category (X, a0) and a U-algebra (X,α) with
the same underlying set X, the following assertions are equivalent.

(i) α : U(X, a0)→ (X, a0) is a V-functor.
(ii) a0 : (X,α)× (X,α)→ (V,homξ) is an U-functor.

Proof. The first assertions is equivalent to

∀x, y ∈ UX .U
ξ
a0(x, y) ≤ a0(α(x), α(y)),

and, since

U
ξ
a0(x, y) =

∨
{ξ · Ua0(w) | w ∈ U(X ×X), Uπ1(w) = x, Uπ2(w) = y},

this is equivalent to

∀x, y ∈ UX,∀w ∈ U(X ×X) . ((Uπ1(w) = x&Uπ2(w) = y) =⇒
(ξ · Ua0(w) ≤ a0(α(x), α(y)))).

On the other hand, the second statement translates to

∀w ∈ U(X ×X),∀x, y ∈ UX . ((Uπ1(w) = x&Uπ2(w) = y) =⇒
(k ≤ hom(ξ · Ua0(w), a0(α(x), α(y))))),

which proves the equivalence.

From Proposition 3.22 we conclude immediately:

Lemma 3.23. Let U be an ultrafilter theory so that p : V → 2 is compatible
with U and U2, and (X, a0, α) be a V-categorical compact Hausdorff space.
Then, for all x ∈ X and u ∈ V, the closed balls

{y ∈ X | a0(x, y) ≥ u} and {y ∈ X | a0(y, x) ≥ u}
with center x and radius u are closed with respect to the compact Hausdorff
topology.

Proof. Applying the forgetful functor Bp : U-Cat → Top, we obtain that
a0 : (X,α)×(X,α)→ Bp(V, homξ) is continuous. For every x ∈ X, consider
the continuous maps

X
〈1X ,x 〉−−−−→ X ×X a0−−→ V and X

〈x,1X 〉−−−−→ X ×X a0−−→ V.
Then, for every u ∈ V, the closed balls with center x and radius u are the
preimages of the closed set ↑u in V.
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3.6 Convergences from V-categories We recall from Corollary 2.22
that, for every quantale V = (V,⊗, k) where k is ∨-irreducible, we have the
functor

LV : V-Cat −→ Top

sending a V-category (X, a0) to X equipped with the L-closure of (X, a0).
We investigate now connections between V-categorical and topological prop-
erties. Note that, if k is the top element of the quantale V, then the projec-
tion maps π1 : X × Y → X and π2 : X × Y → Y are V-functors

π1 : (X, a0)⊗ (Y, b0) −→ (X, a0) and π2 : (X, a0)⊗ (Y, b0) −→ (Y, b0),

for all V-categories (X, a0) and (Y, b0). Therefore, with the same proof as
for [42, Corollary 5.8], we obtain:

Lemma 3.24. Let V be a quantale where k is the top element and (X, a0)
be V-category. For all x, y ∈ X,

x ' y ⇐⇒ (x, y) ∈ ∆ in (X, a0)⊗ (X, a0).

Hence, (X, a0) is separated if and only if ∆ is closed in (X, a0)⊗ (X, a0).

In the sequel we will often require that the functor LV is monoidal.

Definition 3.25. The functor LV : V-Cat → Top is monoidal if, for all V-
categories (X, a0) and (Y, b0), the identity map on X × Y is continuous of
type

LV(X, a0)× LV(Y, b0) −→ LV((X, a0)⊗ (Y, b0)).

Proposition 3.26. Let V = (V,⊗, k) be a completely distributive quantale
where k is the top element and ∨-irreducible in V. We consider the ultrafilter
theory U = (U,V, ξ) where ξ : UV → V is as in Theorem 3.2. Then the
following assertions hold.

(1) The identity map on V is continuous of type LV(V, hom)→ Bp(V,homξ).
(2) Assume that LV is monoidal. Then, for every V-category (X, a0), the

topological space LV(X, a0) is Hausdorff if and only if (X, a0) is separated.

Proof. To see (1), we note that an ultrafilter x converges to x in LV(V, hom)
if and only if, for all A ∈ x, x ∈ A; that is,

k ≤
∨

z∈A
hom(x, z)⊗ hom(z, x).
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On the other hand, x→ x in Bp(V, homξ) is equivalent to

∀A ∈ x . (
∧
A ≤ x).

Assume x→ x in LV(V, hom). For every A ∈ x, we calculate

x = hom(k, x) ≥ hom(
∨

z∈A
hom(x, z)⊗ hom(z, x), x)

=
∧

z∈A
hom(hom(x, z)⊗ hom(z, x), x).

Since k is the top element of V,

z ⊗ hom(x, z)⊗ hom(z, x) ≤ x⊗ hom(x, z) ≤ x;

we obtain
∧

z∈A
z ≤

∧

z∈A
hom(hom(x, z)⊗ hom(z, x), x) ≤ x.

Regarding (2), by Lemma 3.24, a V-category (X, a0) is separated if and only

∆X ⊆ X ×X

is closed in LV((X, a0)⊗(X, a0)). Hence, since LV is monoidal, the assertion
follows.

Definition 3.27. Let V = (V,⊗, k) be a quantale where k is ∨-irreducible.
A V-category X is called compact whenever the topological space LV(X) is
compact. The full subcategory of V-Cat defined by all compact separated
V-categories is denoted by V-Catsep,comp.

Theorem 3.28. Let V be a completely distributive quantale where k is ∨-
irreducible and the top element of V and assume that LV : V-Cat → Top is
monoidal. Let U = (U,V, ξ) be the ultrafilter theory with ξ : UV → V as in
Theorem 3.2. Then the functor LV : V-Catsep,comp → CompHaus lifts to a
functor TU : V-Catsep,comp → (V-Cat)U which commutes with the canonical
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forgetful functors
V-Cat

V-Catsep,comp
TU //

LV ''

66

(V-Cat)U

OO

��
CompHaus

to V-Cat and CompHaus.

Proof. Since the composite

LV(X, a0)× LV(X, a0)
can−−→ LV((X, a0)op ⊗ (X, a0))

LVa0−−−→
−→ LV(V,hom) −→ Bp(V, homξ)

is continuous, every separated compact V-category becomes a V-categorical
compact Hausdorff space when equipped with the topology of LV(X).

Proposition 3.29. Let V = (V,⊗, k) be a quantale where k is approximated.
Then LV is monoidal.

Proof. Under the condition that k is approximated, the topology of a V-
category (X, a0) is generated by the “symmetric open balls”

BS(x, u) = {y ∈ X | u� a0(x, y) and u� a0(y, x)},

for x ∈ X and u � k (see Proposition 2.10 and [39, Remark 4.21]). Let
now (X, a0) and (Y, b0) be V-categories, (x, y) ∈ X × Y and u � k. By
Proposition 2.10, there is some v � k with u ≤ v ⊗ v. Then BS(x, v) ×
BS(y, v) ⊆ BS((x, y), u); which proves the claim.

Remark 3.30. By the results of this subsection, every compact separated
(probabilistic) metric space is a (probabilistic) metric compact Hausdorff
space. Put differently, the theory developed in this paper provides a new
technique to study (probabilistic) metric spaces: instead of considering the
topology induced by the metric, find a (compact Hausdorff) topology com-
patible with the metric. As we will see, this method is particularly useful in
the study of Cauchy completeness (see Corollary 4.21).
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4 Completeness from compactness

The central topic of this section is Cauchy completeness for U-categories, a
notion defined in terms of adjoint U-distributors in [15]. We recall here the
notion of U-distributor and how to compose U-distributors; unfortunately,
only if the ultrafilter theory U is strict we are able to conclude that this
composition is associative. In order to keep the quantale D of distribution
functions included (see Remark 3.5), we avoid as much as possible assuming
that U is strict. The lack of associativity forces us to be more careful in
our treatment of adjunctions; in particular, adjoints need not be unique.
We show, under some conditions on the quantale V, that the corresponding
U-category of a V-categorical compact Hausdorff space is Cauchy complete.
Moreover, for strict theories U , we prove that the forgetful functor U-Cat→
V-Cat preserves Cauchy-completeness. Combining both results shows that
the underlying V-category of a V-categorical compact Hausdorff space is
Cauchy complete. In the last subsection we go a step further and study
codirected completeness for V-categories.

4.1 U-distributors A V-relation of the form ϕ : UX −→7 Y is called a
U-relation and think of ϕ as an arrow from X to Y , and write ϕ : X −⇀7 Y .
Composition is given by Kleisli composition:

ψ ◦ ϕ := ψ · U
ξ
ϕ ·m◦X ,

UX

_ϕ

��

UY

_ψ

��

UX �m◦X //

w
ψ◦ϕ

��

UUX
_U

ξ
ϕ

��
� // UY

_ψ
��

Y Z Z

for all ϕ : X −⇀7 Y and ψ : Y −⇀7 Z. One easily verifies

ϕ ◦ e◦X = ϕ · Ue◦X ·m◦X = ϕ

and

e◦X ◦ ϕ = e◦X · Uξϕ ·m◦X ≥ ϕ · e◦UX ·m◦X = ϕ,
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for all U-relations ϕ : X −⇀7 Y ; that is, e◦X is a lax identity for the Kleisli
composition. Moreover:

Theorem 4.1. For composable U-relations we have

ϕ ◦ (ψ ◦ γ) ≥ (ϕ ◦ ψ) ◦ γ,

with equality if U is a strict theory.

Proof. See [35, Subsection 2.1].

Remark 4.2. In the language of U-relations, an U-category (X, a) consists
of a set X and an U-relation a : X −⇀7 X satisfying e◦X ≤ a and a ◦ a ≤ a.

Definition 4.3. A U-relation ϕ : X −⇀7 Y between U-categories X = (X, a)
and Y = (Y, b) is a U-distributor, written as ϕ : X −⇀◦ Y , whenever ϕ◦a ≤ ϕ
and b ◦ ϕ ≤ ϕ. In pointwise notation, ϕ : X −⇀7 Y is an U-distributor if, for
all r ∈ UX, all X ∈ UUX, all y ∈ Y and all y ∈ UY ,

Uξa(X, r)⊗ϕ(r, y) ≤ ϕ(mX(X), y) and Uξϕ(X, y)⊗b(y, y) ≤ ϕ(mX(X), y).

In other words, an U-distributor ϕ : X −⇀◦ Y comes with a right action
of the U-relation a and a left action of b. This perspective motivates the
designations bimodule or module used by some authors. Note that we always
have ϕ ◦a ≥ ϕ and b ◦ϕ ≥ ϕ, so that the U-distributor conditions above are
in fact equalities which make the U-structures identities for the composition
of U-distributors.

Remark 4.4. In general, U-distributors do not compose. However, this
property is guaranteed by assuming that the ultrafilter theory is strict.

The following result establishes a connection between U-distributors and
U-functors and generalises slightly [15, Theorem 4.3].

Theorem 4.5. Let (X, a) and (Y, b) be U-categories, and ϕ : UX −→7 Y be
a V-relation. Then the following assertions are equivalent.

(i) The V-relation ϕ is an U-distributor ϕ : X −⇀◦ Y .

(ii) ϕ : (UX, â)op×(Y, 1Y )→ (V,hom) is a V-functor and ϕ : (UX,mX)×
(Y, b)→ (V, homξ) is an U-functor.
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Proof. First note that ϕ is an U-distributor if and only if

ϕ · â ≤ ϕ and b · U
ξ
ϕ ≤ ϕ ·mX .

The first inequality above means precisely that, for all y ∈ Y and all x, y ∈
UX,

ϕ(x, y)⊗ â(y, x) ≤ ϕ(y, y),

which in turn is equivalent to

â(y, x) ≤ hom(ϕ(x, y), ϕ(y, y)).

Consequently, ϕ · â ≤ ϕ if and only if, for all y ∈ Y ,

ϕ(−, y) : (UX, â)op → (V,hom)

is a V-functor; which is the case if and only if ϕ : (UX, â)op × (Y, 1Y ) →
(V, hom) is a V-functor.

Secondly, b · U
ξ
ϕ ≤ ϕ ·mX if and only if, for all X ∈ UUX, y ∈ UY and

y ∈ Y ,
b(y, y)⊗ U

ξ
ϕ(X, y) ≤ ϕ(mX(X), y),

and this inequality is equivalent to

∨
{b(y, y)⊗ ξUϕ(W) |W ∈ U(UX × Y ), Uπ1(W) = X, Uπ2(W) = y}

≤ ϕ(mX(X), y).

The latter holds if and only if, for all W ∈ U(UX × Y ), x ∈ UX and y ∈ Y
with mX(Uπ1(W)) = x,

b(Uπ2(W), y) ≤ hom(ξUϕ(W), ϕ(x, y)).

Hence, b · U
ξ
ϕ ≤ ϕ ·mX is equivalent to ϕ : (UX,mX)× (Y, b)→ (V,homξ)

being an U-functor.

In the sequel we will consider in particular U-distributors with domain
or codomain G. For an U-category X = (X, a), an U-relation ϕ : 1 −⇀7 X is
an U-distributor ϕ : G −⇀◦ X if and only if, for all x ∈ X and all r ∈ UX,

Uξϕ(r)⊗ a(r, x) ≤ ϕ(x).



Convergence and quantale-enriched categories 117

Similarly, an U-relation ψ : X −⇀7 1 is an U-distributor ψ : X −⇀◦ G if and
only if, for all r ∈ UX and all X ∈ UUX,

Uξa(X, r)⊗ ψ(r) ≤ ψ(mX(X)) and Uξψ(X) ≤ ψ(mX(X)).

Let (X, a) and (Y, b) be U-categories. Each map f : X → Y induces
U-relations

f~ = b · Uf : X −⇀7 Y and f~ = f◦ · b : Y −⇀7 X;

moreover, one has b ◦ f~ ≤ f~ and f~ ◦ b ≤ f~. These U-relations are
actually U-distributors precisely when f is an U-functor.

Lemma 4.6. The following are equivalent, for U-categories (X, a) and (Y, b)
and a map f : X → Y .

(i) f is an U-functor f : (X, a)→ (Y, b).

(ii) f~ is an U-distributor, that is, f~ ◦ a ≤ f~.

(iii) f~ is an U-distributor, that is, a ◦ f~ ≤ f~.

Proof. See [15, Subsection 3.6].

Lemma 4.7. Let f : A→ X and g : Y → B be U-functors and ϕ : X −⇀◦ Y
be an U-distributor. Then

ϕ ◦ f~ = ϕ · Uf and g~ ◦ ϕ = g◦ · ϕ

are U-distributors.

Proof. See [15, Proposition 3.6].

Similarly to the case of V-categories, the local order of V-Rel allows us
to consider U-Cat as an ordered category: for U-functors f, g : X → Y ,

f ≤ g ⇐⇒ f~ ≤ g~ ⇐⇒ g~ ≤ f~
⇐⇒ f∗ ≤ g∗.
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In particular, every U-category X has an underlying order where x ≤ y
whenever x~ ≤ y~, for all x, y ∈ X; which in turn is equivalent to k ≤
a(
�
x, y). This construction defines a functor

ÕU : U-Cat −→ Ord,

and the diagrams

U-Cat
Bp
��

(−)0 //

ÕU
$$

V-Cat
Bp
��

Top
(−)0

// Ord

commute. A U-category (X, a) is separated (see [42]) whenever the underly-
ing ordered set ÕU (X, a) is separated. We note that (−)0 : U-Cat → V-Cat
sends separated U-categories to separated V-categories.

4.2 Adjoint U-distributors In this subsection we study the impor-
tant notion of adjoint U-distributor. We employ here the usual definition of
adjunction in an ordered category; however, some extra caution is needed
since U-distributors in general do not compose.

Definition 4.8. Let X = (X, a) and Y = (Y, b) be U-categories. A pair of
U-distributors ϕ : X −⇀◦ Y and ψ : Y −⇀◦ X form an adjunction, denoted as
ϕ a ψ, whenever their composites, ϕ ◦ ψ and ψ ◦ ϕ, are U-distributors and
a ≤ ψ ◦ ϕ and ϕ ◦ ψ ≤ b.

We hasten to remark that f~ a f~, for every U-functor f : (X, a) →
(Y, b). In fact, by [15, Proposition 3.6 (2), p. 188], f~ ◦ f~ and f~ ◦ f~ are
U-distributors and

f~ ◦ f~ = b · Uf · Uf◦ · U
ξ
b ·m◦Y ≤ b · Uξb ·m◦Y = b

and

f~◦f~ = f◦ ·b·U
ξ
b·UUf ·m◦X = f◦ ·b·U

ξ
b·m◦Y ·Uf = f◦ ·b·Uf ≥ f◦ ·f ·a ≥ a.

Similarly to the nomenclature for V-categories, we call an U-functor f : (X, a)→
(Y, b) fully faithful whenever f~◦f~ = a, and fully dense whenever f~◦f~ =
b.
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In general, we are not able to prove unicity of left adjoints since com-
position of U-distributors does not need to be associative. However, we can
still prove that right adjoints are unique:

Proposition 4.9. Let ϕ : X −⇀◦ Y , ψ : Y −⇀◦ X and ψ′ : Y −⇀◦ X be U-
distributors with ϕ a ψ and ϕ a ψ′. Then ψ = ψ′.

Proof. From a ≤ ψ◦ϕ we get ψ′ = a◦ψ′ ≤ (ψ◦ϕ)◦ψ′ ≤ ψ◦(ϕ◦ψ′) ≤ ψ◦b = ψ.
Similarly, ψ ≤ ψ′, and we conclude that ψ = ψ′.

We now turn our attention to U-distributors with domain or codomain
G.

Lemma 4.10. Let X = (X, a) be an U-category and ϕ : G −⇀◦ X and
ψ : X −⇀◦ G be U-distributors. Then the composites ϕ ◦ ψ and ψ ◦ ϕ are
U-distributors.

Proof. Clearly, ψ ◦ ϕ : G −⇀◦ G is an U-distributor. To prove that ϕ ◦ ψ is
indeed an U-distributor of type X −⇀◦ X, we verify first that

ϕ ◦ ψ = ϕ · e1 · e◦1 · Uψ ·m◦X = ϕ · e1 · (e◦1 ◦ ψ) = ϕ · e1 · ψ.

Therefore

a◦(ϕ◦ψ) = a·Uϕ·Ue1·Uψ·m◦X ≤ a·Uϕ·m◦1·Uψ·m◦X = (a◦ϕ)·Uψ·m◦X = ϕ◦ψ,

and (ϕ ◦ ψ) ◦ a ≤ ϕ ◦ (ψ ◦ a) = ϕ ◦ ψ.

Therefore, when studying adjunctions of the form

X >
◦
ψ

(

◦
ϕ

h G,

we do not need to worry about the composites ϕ◦ψ and ψ◦ϕ. Elementwise,
ϕ a ψ translates to

k ≤
∨

z∈UX
ψ(z)⊗ ξUϕ(z) and ψ(x)⊗ ϕ(x) ≤ a(x, x),

for all x ∈ UX and x ∈ X. We also point out that



120 D. Hofmann and C.D. Reis

• A map ϕ : X → V (seen as an U-relation ϕ : G −⇀7 X) is an U-
distributor ϕ : G −⇀◦ X if and only if a◦ϕ ≤ ϕ if and only if ϕ : X → V
is a U-functor (see Theorem 4.5) if and only if

ϕ(x) =
∨

x∈UX
a(x, x)⊗ ξUϕ(x).

• A U-relation ψ : X −⇀7 G is an U-distributor ψ : X −⇀◦ G if and only if
ψ ◦ a ≤ ψ and e◦1 · Uξψ ·m◦X ≤ ψ.

Proposition 4.11. Let ψ : X −⇀◦ G, ϕ : G −⇀◦ X and ϕ′ : G −⇀◦ X be U-
distributors with ϕ a ψ and ϕ′ a ψ. Then ϕ = ϕ′.

Proof. We calculate

ϕ′(x) ≤
∨

z∈UX
ϕ′(x)⊗ ψ(z)⊗ ξUϕ(z) ≤

∨

z∈UX
a(x, x)⊗ ξUϕ(z) = ϕ(x).

4.3 Cauchy complete U-categories With the notion of adjunction
of U-distributors at our disposal, we come now to the concept of Cauchy
completeness (called Lawvere completeness in [15]).

Definition 4.12. A U-categoryX = (X, a) is called Cauchy complete when-
ever every adjunction

X >
◦
ψ

(

◦
ϕ

h G,

of U-distributors is of the form x~ a x~, for some x ∈ X.

Note that x~ = a(
�
x,−) and that x~ = a(−, x), so that x~ a x~ means,

for all x ∈ UX and x′ ∈ X,

k ≤
∨

z∈UX
a(z, x)⊗ Uξx~(z) and a(x, x)⊗ a(

�
x, x′) ≤ a(x, x′).

Example 4.13. Various examples of Cauchy complete U-categories are de-
scribed in [15], we sketch here the principal facts.
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(1) We have already seen that Top ' U2-Cat. In this context, a U2-
distributor ϕ : (X, a) −⇀◦ (Y, b) is a relation ϕ : UX −→7 Y that satisfies, for
all y ∈ Y , y ∈ UY , r ∈ UX and X ∈ UUX,

X→ r & ϕ(r, y) =⇒ ϕ(mX(X), y)

and

Uξϕ(X, y) & y→ y =⇒ ϕ(mX(X), y).

In particular, U2-distributors of the form ϕ : G −⇀◦ X can be identified with
relations ϕ : 1 −→7 X satisfying

∀x ∈ X ∀r ∈ UX . (Uξϕ(r) & r→ x) =⇒ ϕ(x),

and a relation ψ : UX −→7 1 is a U2-distributor ψ : X −⇀◦ G if and only if

(X→ r & ψ(r)) ≤ ψ(mX(X)) and Uξψ(X) ≤ ψ(mX(X)),

for all X ∈ UUX and r ∈ UX. Using Theorem 4.5, a U2-distributor ϕ : G −⇀◦
X can be also seen as a continuous map X → 2 into the Sierpiński space,
which in turn can be interpreted as a closed subset A ⊆ X. A U-distributor
ψ : X −⇀◦ G is a map UX → 2 which is continuous with respect to the Zariski
closure on UX (an ultrafilter x ∈ UX belongs to the closure of B ⊆ UX
whenever

⋂B ⊆ r) and antitone with respect to the order relation where

x ≤ y whenever ∀A ∈ x . A ∈ y,

for all x, y ∈ UX. Such maps correspond precisely to subsets A ⊆ UX which
are Zariski closed and down-closed with respect to the order relation defined
above.

A pair of U -distributors forms an adjunction X >
◦
ψ

(

◦
ϕ

h G if and only

if

∃x ∈ UX .Uξϕ(x) & ψ(x)

and

∀x ∈ X ∀x ∈ UX . (ψ(x) & ϕ(x)) =⇒ r→ x.
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In terms of the corresponding subsets A ⊆ X and A ⊆ UX, these conditions
read as

∃x ∈ UX . (A ∈ x & x ∈ A)

and

∀x ∈ X ∀x ∈ UX . (x ∈ A & x ∈ A) =⇒ x→ x.

From this it follows that ϕ : G −⇀◦ X is left adjoint if and only if the cor-
responding closed subset A ⊆ X is irreducible. Consequently, a topological
space X is Cauchy complete if and only if X is weakly sober.

(2) We consider now U = U←−−−
[0,∞]+

, and recall that U←−−−
[0,∞]+

-Cat ' App.

Here, a U←−−−
[0,∞]+

-distributor ϕ : (X, a) −⇀◦ (Y, b) is a
←−−−
[0,∞]+-relation ϕ : UX −→7

Y subject to ϕ ◦ a > ϕ and b ◦ϕ > ϕ. These conditions express that, for all
y ∈ Y , y ∈ UY , r ∈ UX and X ∈ UUX,

Uξa(X, r) + ϕ(r, y) > ϕ(mX(X), y)

and

Uξϕ(X, y) + b(y, y) > ϕ(mX(X), y).

A U←−−−
[0,∞]+

-distributor of the type ϕ : G −⇀◦ X can be seen as a U←−−−
[0,∞]+

-functor

ϕ : X →←−−−[0,∞]+ and it is characterised by

Uξϕ(r) + a(r, x) ≥ ϕ(x),

for x ∈ X and r ∈ UX, and a U←−−−
[0,∞]+

-distributor of the type ψ : X −⇀◦ G is

a mapping UX →←−−−[0,∞]+ that satisfies

Uξa(X, r) + ψ(r) > ψ(mX(X))

and

Uξψ(X) > ψ(mX(X)),
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for all r ∈ UX and X ∈ UUX. U←−−−
[0,∞]+

-distributors form an adjunction of

type X >
◦
ψ

(

◦
ϕ

h G if, for all x ∈ X and X ∈ UUX,

0 >
∧

r∈UX
Uξϕ(r) + ψ(r)

and

ψ(mX(X)) + ϕ(x) > a(mX(X), x).

Furthermore, U←−−−
[0,∞]+

-distributors of type ϕ : G −⇀◦ X are identified with
closed variable sets. Here a variable set is a family (Av)v∈[0,∞] such that, for
all v ∈ [0,∞], Av =

⋂
u>v Au. Such a variable set is closed whenever, for all

u, v ∈ [0,∞], {x ∈ X | d(Au, x) ≤ v} ⊆ Au+v, where d(Au, x) = inf{a(r, x) |
r ∈ UAu}. A U←−−−

[0,∞]+
-distributor ψ : X −⇀◦ G which is right adjoint to ϕ is

induced by the variable set A = (Av)v∈[0,∞] with Av = {r ∈ UX | ∀u ∈
[0,∞],∀x ∈ Au, a(r, x) ≤ u + v}. Such a variable set A corresponds to a
right adjoint of ϕ if and only if A is irreducible, that is, for all u ∈ [0,∞]
with u > 0, UAu ∩ A 6= ∅. A U←−−−

[0,∞]+
-distributor ϕ : G −⇀◦ X is represented

by x ∈ X if and only if the induced variable set A = (Av)v∈[0,∞] is given
by Av = {y ∈ X | d(x, y) ≤ v} for each v ∈ [0,∞]. Therefore an approach
space X is Cauchy complete if and only if each irreducible variable set is
representable. Finally, this condition is equivalent to X being weakly sober
in the sense of [3].

4.4 U-distributors vs U-functors In this subsection we will show
that, under suitable conditions, every U-category of the form K(X, a0, α) is
Cauchy complete, for (X, a0, α) in (V-Cat)U. For an U-category X = (X, a)
and M ⊆ X, we define

ϕM (x) =
∨

z∈UM
a(z, x),

for all x ∈ X. We can view ϕM as an U-relation ϕM : 1 −⇀7 X given by
ϕM = a · Ui · U !◦ (here i : M ↪→ X and ! : M → 1). It is easy to see that
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ϕM is actually an U-distributor ϕM : G −⇀◦ X, hence, ϕM : X → V is an
U-functor. We also not that ϕ∅ = ⊥ and ϕA∪B = ϕA ∨ ϕB.

We import now from [41, Lemma 3.2 and Corollary 3.3]:

Proposition 4.14. Let U = (U,V, ξ) be an ultrafilter theory where V is
completely distributive and ξ : UV → V is as in Theorem 3.2. For every
U-category X = (X, a), x ∈ UX and x ∈ X, a(x, x) =

∧
A∈x ϕA(x).

Next we analyse left adjoint U-distributors ϕ : G −⇀◦ X.

Lemma 4.15. Let U be an ultrafilter theory and ϕ : G −⇀◦ X be a left adjoint
U-distributor with right adjoint ψ : X −⇀◦ G. Then, for every U-distributor
ϕ′ : G −⇀◦ X,

[ϕ,ϕ′] :=
∧

x∈X
hom(ϕ(x), ϕ′(x)) = ψ ◦ ϕ′.

Proof. Recall that [ϕ,ϕ′] = ϕ′ � ϕ is the largest element u ∈ V with
ϕ(x)⊗ u ≤ ϕ′(x), for all x ∈ X (see Subsection 2.3). From

ϕ(x)⊗
∨

x∈UX
ψ(x)⊗ ξUϕ′(x) =

∨

x∈UX
ϕ(x)⊗ ψ(x)⊗ ξUϕ′(x)

≤
∨

x∈UX
a(x, x)⊗ ξUϕ′(x) = ϕ′(x)

we get ψ ◦ ϕ′ ≤ [ϕ,ϕ′]. On the other hand, from ϕ⊗ u ≤ ϕ′ we get

u ≤
∨

x∈UX
ψ(x)⊗ξUϕ(x)⊗u ≤

∨

x∈UX
ψ(x)⊗ξU(ϕ⊗u)(x) ≤

∨

x∈UX
ψ(x)⊗ξUϕ′(x).

Proposition 4.16. Let U = (U,V, ξ) be an ultrafilter theory where V is
completely distributive, ξ is as in Theorem 3.2, and k is the top element of
V.

(1) For every left adjoint U-distributor ϕ : G −⇀◦ X,

k ≤
∨

x∈X
ϕ(x).

(2) If k is ∨-irreducible, then every left adjoint U-distributor ϕ : G −⇀◦ X
is irreducible (that is: ϕ 6= ⊥ and ϕ ≤ ϕ1 ∨ ϕ2 implies ϕ ≤ ϕ1 or ϕ ≤ ϕ2).
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Proof. Regarding the first statement, first observe that

k ≤
∨

x∈UX
ψ(x)⊗ ξUϕ(x) ≤

∨

x∈UX
ξUϕ(x).

Let u� k. Then there is some x ∈ UX with

u ≤ ξUϕ(x) =
∧

A∈x

∨

x∈A
ϕ(x) ≤

∨

x∈X
ϕ(x).

Regarding the second statement, we observe first that ϕ 6= ⊥ since

⊥ < k ≤
∨

x∈X
ϕ(x).

Furthermore, by Lemma 4.15, [ϕ,−] preserves finite suprema. Therefore, if
ϕ ≤ ϕ1 ∨ ϕ2, then

k ≤ [ϕ,ϕ1 ∨ ϕ2] = [ϕ,ϕ1] ∨ [ϕ,ϕ2].

Since k is ∨-irreducible, we conclude that ϕ ≤ ϕ1 or ϕ ≤ ϕ2.

The following result is inspired by [40, Lemma III.5.9.1] which in turn is
motivated by [3, Proposition 5.7]

Proposition 4.17. Let U = (U,V, ξ) be an ultrafilter theory where V is
completely distributive, ξ is as in Theorem 3.2, and k is approximated and
the top element of V. Then every left adjoint U-distributor ϕ : G −⇀◦ X is of
the form ϕ = a(x,−), for some x ∈ UX.

Proof. First note that from {u ∈ V | u � k} is directed it follows that k is
∨-irreducible (see [39, Remark 4.21]). For every u� k, put Au = {x ∈ X |
u ≤ ϕ(x)}. By hypothesis, Au 6= ∅. We claim that ϕ ≤ ϕAu . To see this,
put A = {x ∈ X | ϕ(x) ≤ ϕAu(x)}. Since ϕAu(x) = k for every x ∈ Au, it
follows that Au ⊆ A. Put v =

∨{ϕ(x) | x /∈ A}, then k 6≤ v since u � v.
By construction, ϕ ≤ ϕAu ∨v. But ϕ ≤ v is impossible since k ≤ ∨x∈X ϕ(x)
and k 6≤ v, hence ϕ ≤ ϕAu .

The directed set f = {Au | u� k} is disjoint from the ideal j = {B ⊆ X |
ϕ 6≤ ϕB}, hence there is some ultrafilter x ∈ UX with f ⊆ x and x ∩ j = ∅.
Therefore

ϕ ≤
∧

A∈x
ϕA = a(x,−)

and ϕ(x) ≥ a(x, x)⊗ ξUϕ(x) ≥ a(x, x), for all x ∈ X.
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Corollary 4.18. Under the conditions of Proposition 4.17, every U-category
in the image of

K : (V-Cat)U −→ U-Cat
is Cauchy complete. In particular, the U-category V is Cauchy complete.

Proof. Given a left adjoint U-distributor ϕ : G −⇀◦ X, we have ϕ = a(x,−) =
a0(α(x),−).

For our next result, we recall that the forgetful functor (−)0 : U-Cat →
V-Cat has a left adjoint F : V-Cat→ U -Cat sending a V-category (X, a0) to
the U-category (X, e◦X · Uξa0), and leaving maps unchanged.

Proposition 4.19. Let U be an ultrafilter theory. Then the following asser-
tions hold.

(1) F sends fully faithful V-functors to fully faithful U-functors.
(2) If U is strict, then F sends fully dense V-functors to fully dense

U-functors.

Proof. For a V-functor f : (X, a0)→ (Y, b0), we write

a = e◦X · Uξa0 and b = e◦Y · Uξb0

for the corresponding U-structures. Assume first that f : (X, a0) → (Y, b0)
is fully faithful. Then

f~ ◦ f~ = f◦ · e◦Y · Uξb0 · Uf = e◦X · Uf◦ · Uξb0 · Uf = e◦X · Uξ(f◦ · b0 · f) = a

Assume now that U is strict and f is fully dense. Now we calculate:

f~ ◦ f~ = b · Uf · Uf◦ · U
ξ
b ·m◦Y = e◦Y · Uξb0 · Uf · Uf◦ · Ue◦Y · UξUξb0 ·m◦Y

= e◦Y ·Uξb0 ·Uf ·Uf◦ ·Ue◦Y ·m◦Y ·Uξb0 = e◦Y ·Uξb0 ·Uf ·Uf◦ ·Uξb0 = b

Theorem 4.20. Let U be a strict ultrafilter theory. Then (−)0 : U-Cat →
V-Cat sends Cauchy complete U-categories to Cauchy complete V-categories.

Proof. Just note that a V-category (resp. U-category) is Cauchy complete
if and only if it is injective with respect to fully faithful and fully dense
V-functors (resp. U-functors) as it was proven in [42, Theorems 3.10 and
5.11].
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Corollary 4.21. Let U = (U,V, ξ) be a strict ultrafilter theory where V
is completely distributive, ξ is as in Theorem 3.2, and k is approximated
and the top element of V. Then, for every (X, a0, α) in (V-Cat)U, the V-
category (X, a0) is Cauchy complete. In particular, every compact separated
V-category is Cauchy complete.

Corollary 4.22. Let U = (U,V, ξ) be a strict ultrafilter theory. Then, for
every V-category (X, a0), the V-category (UX,Ua0) is Cauchy complete.

Proof. Just observe that (UX,Ua0,mX) is a V-categorical compact Haus-
dorff space since it is the free Eilenberg–Moore algebra over (X, a0).

We stress that the topology of Ua0 need not be compact. For instance,
if a0 is discrete, then so is Ua0.

For U = U2, Corollary 4.21 is vacuous since every ordered set is Cauchy
complete. As we already pointed out in Section 1, a stronger result holds in
this case: the underlying order of a sober space is codirected complete. In the
next subsection we proof a similar result for U-categories, under additional
conditions on the quantale V.

Remark 4.23. A related study of properties of metric spaces via approach
spaces can be found in [51]. Among other results, it is shown there that
in the underlying metric of an approach space every forward Cauchy se-
quence converges (see [7, 76]). We will come back to this notion in the next
subsection.

4.5 Codirected complete V-categories In this subsection we look
at Cauchy completeness of V-categories from a different perspective, namely
as
(co)completeness with respect to some choice of (co)limit weights. In this
paper we need only very particular limits and colimits, therefore we refer for
more information to [47, 71] and recall here only what we believe is essential
for our paper.

As the starting point, we assume that a saturated class Φ of limit weights
ϕ : G −→◦ X is given; examples of such choices are given below. For each
V-category X, we write Φ(X) to denote the weights with codomain X.
Moreover, we consider V-Dist(G,X) as a V-subcategory of V-Rel(1, X) ' VX
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and Φ(X) as a V-subcategory of V-Dist(G,X)op, this way the mapping

hΦ
X : X −→ Φ(X), x 7−→ x∗

is a V-functor. A V-category X is called Φ-complete whenever hΦ
X has a right

adjoint
infΦ

X : Φ(X) −→ X.

Intuitively, infΦ
X calculates the infimum of a limit weight ϕ : G −→◦ X. The

assumption that Φ is saturated guarantees that each Φ(X) is Φ-complete;
in fact, it is the free Φ-completion of X. Dually, notions of cocompleteness
depend on a choice of a saturated class Ψ of colimit weights ψ : X −→◦ G.
Then a V-category X is Ψ-cocomplete if and only if the V-functor

X −→ Ψ(X), x 7−→ x∗

has a left adjoint. Here we consider Ψ(X) as a V-subcategory of V-Dist(X,G).

Remark 4.24. For a saturated class Φ of limit weights, a V-category X
is Φ-complete if and only if there exists a V-functor I : Φ(X) → X with
IhΦ
X ' 1X ; such a V-functor is necessarily right adjoint to hΦ

X .

For instance,

Φ = {all left adjoint V-distributors ϕ : G −→◦ X with domain G}

is a saturated class of limit weights, and a V-category X is Φ-complete if
and only if X is Cauchy complete. The following definition provides another
important example of a saturated class of limit weights.

Definition 4.25. Let V be a quantale. A V-distributor ϕ0 : G −→◦ X with
domain G is called codirected whenever the V-functor

[ϕ0,−] : V-Dist(G,X) −→ V

preserves finite suprema and tensors; that is, for all ϕ,ϕ′ : G −→◦ X and all
u ∈ V,

[ϕ0,⊥] = ⊥, [ϕ0, ϕ ∨ ϕ′] = [ϕ0, ϕ] ∨ [ϕ0, ϕ
′] [ϕ0, u⊗ ϕ] = u⊗ [ϕ0, ϕ].
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We note that the class Φ∆ of all codirected V-distributors ϕ : G −→◦ X is
saturated (see [47]).

Definition 4.26. A V-category X is called codirected complete whenever X
is Φ∆-complete.

For a left adjoint V-distributor ϕ : G −→◦ X with right adjoint ψ : X −→◦ G,
we have

[ϕ,−] = ψ · −
since ϕ · − a ψ · − and ϕ · − a [ϕ,−]; which shows that ϕ : G −→◦ X
is codirected. Therefore every codirected complete V-category is Cauchy
complete.

Example 4.27. For V = 2, we can interpret every 2-distributor ϕ : G −→◦ X
as an upclosed subset A ⊆ X of X. Then A is codirected in the sense of
Definition 4.25 if and only if A is codirected in the usual sense; that is,
A 6= ∅ and, for all x, y ∈ A, there is some z ∈ A with z ≤ x and z ≤ y.

We recall now that, by Theorem 4.5, U-distributors of type G −⇀◦ X
correspond to U-functors X → V; and with this perspective we can consider
U-Dist(G,X) as a V-subcategory of V-Dist(G,X0).

Proposition 4.28. For every ultrafilter theory U = (U,V, ξ), the inclusion
V-functor

U-Dist(G,X) −→ V-Dist(G,X0)

has a left adjoint

(−) : V-Dist(G,X0) −→ U-Dist(G,X).

Moreover, if U is pointwise strict and compatible with finite suprema, then
U-Dist(G,X) is closed in V-Dist(G,X0) under finite suprema and tensors.

Proof. By [36, Corollary 5.3], the V-category U-Dist(G,X) is closed in
V-Dist(G,X0) under weighted limits. The additional conditions guarantee
that the maps

tu : V −→ V and ∨ : V × V −→ V

are U-functors, for every u ∈ V; which justifies the second claim.
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Corollary 4.29. Let U = (U,V, ξ) be a strict ultrafilter theory compati-
ble with finite suprema so that k is approximated and the top element of
V. Then, for every codirected V-distributor ϕ : G −→◦ X, the U-distributor
ϕ : G −⇀◦ X is left adjoint in U-Dist.

Proof. We recall first from Proposition 2.10 that, under these assumptions,
k is ∨-irreducible. Using the adjunction of Proposition 4.28, the V-functor

[ϕ,−] : U-Dist(G,X) −→ V

is equal to the composite

U-Dist(G,X) −→ V-Dist(G,X0)
[ϕ,−]−−−→ V,

and therefore [ϕ,−] preserves tensors and finite suprema. By [41, Propo-
sitions 2.15 and 3.5], ϕ : G −⇀◦ X is left adjoint in U-Cat. Note that the
notation regarding distributors in [41] is dual to ours.

Theorem 4.30. Let U = (U,V, ξ) be a strict ultrafilter theory compati-
ble with finite suprema where V is completely distributive, ξ is as in Theo-
rem 3.2, and k is approximated and the top element of V. Then, for every
V-categorical compact Hausdorff space (X, a0, α), the V-category (X, a0) is
codirected complete.

Proof. Let ϕ : G −→◦ X be a codirected V-distributor. By Corollaries 4.18
and 4.29, there is some y ∈ X with

ϕ = y~ = y∗. Then, for every x ∈ X,

[ϕ, x∗] = [ϕ, x∗] = [y∗, x∗] = a0(x, y).

This proves that yX : X → Φ∆(X) has a right adjoint in V-Cat.

We finish this subsection by exhibiting a connection with other ac-
counts of “codirected complete metric spaces” which appear in the litera-
ture. Firstly, non-symmetric versions of Cauchy sequences and their limits
are introduced in [69] and further studied in [7, 66]: a sequence (xn)n∈N in
a metric space (X, d) is called forward-Cauchy whenever

∀ε > 0 ∃N ∈ N ∀n ≥ m ≥ N . d(xm, xn) < ε,
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and (xn)n∈N is called backward-Cauchy whenever

∀ε > 0 ∃N ∈ N ∀n ≥ m ≥ N . d(xn, xm) < ε.

The definitions above extend naturally to nets (see [21]), and in [74] it is
shown that that forward-Cauchy nets in metric spaces correspond precisely
to those

←−−−
[0,∞]+-distributors ψ : X −→◦ G with the property that the V-

functor
ψ · − :

←−−−
[0,∞]+-Dist(G,X) −→←−−−[0,∞]+, ϕ 7−→ ψ · ϕ

preserves finite meets. On the other hand, in [43] it is shown that these
distributors do not coincide with forward-Cauchy nets for V =

←−−−
[0,∞]∧. Such←−−−

[0,∞]+-distributors are called flat in [74]; however, in this paper we deviate
slightly from the notation of [74].

Definition 4.31. A V-distributor ψ : X −→◦ G is called flat if

ψ · − : V-Dist(G,X)→ V

preserves finite infima and cotensors.

In order to compare these two notions of “directedness”, we restrict our
study to a certain type of quantales.

Definition 4.32. We call a quantale V = (V,⊗, k) a Girard quantale when-
ever V has a dualising element D ∈ V; that is, for every u ∈ V, u =
hom(hom(u,D), D).

This type of quantales is introduced in [80], we also refer to [77] for a
study of categories enriched in a Girard quantale.

Example 4.33. The quantale 2 = {0, 1} and the quantale [0, 1] with the
Lukasiewicz tensor ⊗ = � are Girard quantales, with dualising object the
bottom element 0.

For V = (V,⊗, k) being a Girard quantale with dualising element D, we
write u⊥ = hom(u,D). As shown in [80], the operations (−)⊥ and ⊗ allow
us to determine the internal hom of V: for all u, v ∈ V,

hom(u, v) = (u⊗ v⊥)⊥.
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Lemma 4.34. The map (−)⊥ : V → Vop is a V-functor. Hence, V ' Vop

in V-Cat.
Proof. For all u, v ∈ V we have

hom(u, v)⊗ hom(v,D) ≤ hom(u,D),

which is equivalent to hom(u, v) ≤ hom(v⊥, u⊥).

Hence, for every ϕ : G −→◦ X in V-Dist, ϕ⊥(x) = ϕ(x)⊥ defines a V-
distributor ϕ⊥ : X −→◦ G. Hence, the isomorphism of Lemma 4.34 induces a
V-isomorphism

(−)⊥ : V-Dist(G,X) −→ V-Dist(X,G)op.

Proposition 4.35. Let V = (V,⊗, k) be a Girard quantale, X a V-category
and ϕ0 : G −→◦ X in V-Dist. Then the diagram

V-Dist(G,X)
(−)⊥ //

[ϕ0,−]
��

V-Dist(X,G)op

(−·ϕ0)op

��
V

(−)⊥
// Vop

commutes.

Proof. Let ϕ : G −→◦ X be a V-distributor. Then

[ϕ0, ϕ]⊥ =

(∧

x∈X
hom(ϕ0(x), ϕ(x))

)⊥

=
∨

x∈X
hom(ϕ0(x), ϕ(x))⊥

=
∨

x∈X
ϕ0(x)⊗ ϕ(x)⊥.

Corollary 4.36. Let V = (V,⊗, k) be a Girard quantale. Then a V-
distributor ϕ : G −→◦ X is codirected if and only if the V-functor

− · ϕ : V-Dist(X,G)→ V
preserves cotensors and finite infima. Hence, X is codirected complete if and
only if Xop is cocomplete with respect to all flat V-distributors ψ : X −→◦ G.
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